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Laplace transforms of output to input



LTI systems and exponential signals

Linear Time Invariant (LTI) systems:
systems governed by linear, constant coefficient,
ordinary differential equations

Signals: exponential functions eat : function of time t

a need not be real: can consider complex-valued functions of
real-variable time t



LTI systems



Exponential signals are ‘eigenfunctions’

For (square) matrices, we speak of eigenvectors

Consider: A =

�
7 −10
5 −8

�

Vectors: v1 =

�
1
1

�
and v2 =

�
2
1

�

For some real square matrices, need to allow eigenvectors to
be complex



LTI systems and exponential signals

LTI systems have all exponential signals as eigen-‘functions’

Scaling: depends on the system. ‘Transfer function’

Transfer function also rings a bell (resonates?) with
‘resonance’ !

Poles and zeros for input to output map

Convolution is how input gets mapped to output



LTI systems and sinusoids signals

For system with transfer function G (s)

Sinusoids are also exponentials: real part zero

Transfer function: complex (when evaluated at jω):
magnitude and angle depends on ω: ‘phasor’ analysis

If input is sin(ωt), then output is |G (jω)| sin(ωt + ∠G (jω))

Bode plot: plot |G (jω)| versus ω (in log-log scale)

and also: ∠G (jω)) versus ω (in normal-log scale)

Low-pass filters/high-pass filters



Particular solution and homogenous solution

Consider d
dt u − u = d2

dt2
y + 3 d

dt y + 2y

Let u(t) ≡ 0, then any y(t) = c1e
−2t + c2e

−t solves

When u(t) = eat , then ?

If homogenous solution goes to zero, then particular solution
worth studying!

Exponents in homogenous solution: ‘poles’ of the system

‘Zeros’ of the system: those exponents where gain G (s) is zero

Stability: all poles are in the LHP





What is Laplace transform?

Some similarities with Fourier transform, but not as much
‘duality’ between time/frequency domains

Laplace transform of f (t) gives F (s): this is also called
‘frequency’ domain

s = jω : many Fourier transform properties get recovered

F (s) :=
� +∞
0 f (t)e−stdt

View (for s = +5 (say)) e−5t as decaying-weighting before
area under f (t) is calculated.

If s is kept a (complex) variable, then F (s) has ‘full’ info
about f (t):
can recover f (t) from F (s).

Technical detail: integral from 0 to ∞: integral might not
exist!
f (t) ought not ‘grow too quickly’: don’t worry now. All
practical signals have Laplace transforms!





Laplace transform, definition and properties

Function f , f1, f2, g : [0,∞) → R: piecewise continuous

F (s) = L(f )(s), with F (s) :=

� ∞

0−
f (t)e−stdt

with real(s) > σ0 large-enough, and inverse1 defined using σ0
Linearity: L(α1f1 + α2f2) = α2F1(s) + α2F2(s) for any
real/complex constants α1 and α2

Delayed f : L(σT (f )) = e−sTF (s) (with T � 0 and
f -‘zeroed’). (σT (f )(t) := f (t − T )).

Derivative of f : L( d
dt f ) = sF (s)− f (0−) and

Integral of f : L(
� t
0 f (τ)dτ) = F (s)

s
1

f (t) = L−1(F )(t), with f (t) :=
1

2πj
lim

ω0→∞

� σ0+jω0

σ0−jω0

F (s)estdt



Convolution and product:
(f ∗ g)(t) :=

�∞
−∞ f (τ)g(t − τ)dτ , L(f ∗ g) = F (s)G (s)

Dirac delta: δ ∗ f = f and L(δ) = 1

IVT: f (0+) = limt↓0 f (t) = lims→∞ sF (s)
(provided LHS exists, i.e. no impulses/their derivatives at
t = 0.)

FVT: f (∞) = limt→∞ f (t) = lims→0 sF (s)
(provided LHS exists, i.e. f neither diverges, nor oscillates)

Time multiplication L(tf (t)) = − d
dsF (s)

Complex shift: L(eat f (t)) = F (s − a)

Time scaling: L(f ( ta)) = aF (as) (for a > 0)



Polynomials/exponentials/sinusoids

L(1) = 1
s (note: functions are only on [0,∞))

L(t) = 1
s2

L(eat) = 1
s − a

L(sin(ωt)) = ω
s2 + ω2 and L(cos(ωt)) = s

s2 + ω2

(Use IVT to be sure of which is of which.)

L(eat sin(ωt)) = ω
(s − a)2 + ω2



Positive/negative feedback

d
dt x = u

Suppose u = +5x (positive feedback)

Suppose u = −5x (negative feedback)

Solve both differential equations (exponentially
growing/decaying)



Convolution

For now: consider functions fi satisfying fi (t) = 0 for t < 0
(Linked to causality and input: zero-in-the-past)
Then y =

�∞
−∞ f (t − τ)h(τ)dτ =

� t
0 f (t − τ)h(τ)dτ



Laplace transform advantages

Linear equations in variables u, v and their derivatives can be
rewritten in terms of their Laplace transforms U(s) and V (s)

KCL/KVL equations, impedances are simpler (with/without
initial conditions)

Take Laplace transform of ‘both’ sides in a differential
equation

Transfer function: defined as ‘ratio’ of Laplace transforms
(output/input)

Transfer function: ‘gain’ at that ‘frequency’ (complex
frequency)

Note: laplace transform: taken for signals

Transfer function: ratio of Laplace transforms (of signals)

Transfer function: also Laplace transform of some signal?



Transfer function: Laplace transform of which signal?

The impulse response
Output = Convolution of: input and impulse-response (only for
LTI systems)






