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Outline

LTI systems

Convolution

o

o

@ Laplace transforms

@ Exponential functions as ‘eigenfunctions’
o

Transfer functions as: gain (scaling) and also ratio of
Laplace transforms of output to input



LTI systems and exponential signals
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o Lineak Time Invariant (L)1) systems:

systems governed b r@ onstant coefficient, ﬂ—R’f @
e <

ordinary differential equations

@ Signals: exponential functions @ function of time t

@ a need not be real: can consider complex-valued functions of
real-variable ti_me t .t
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Exponential signals are ‘eigenfunctions’
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e For (square) matrices, we speak of eigenvectors

o Consider: A= [7 _10} V ——A~9 Av
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@ Vectors: v; = [ﬂ and v» = [ﬂ M%@% ?

@ For some real square matrices, need to allow eigenvectors to
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LTI systems and exponential signals

)
uk T = d + j{ 42 A

= (ZP alV Jc> M
Ls SECIS SV T + G w()=0

@ LTI systems have all exponential signals as eigen-‘functions’
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e Transfer function also rings a bell (resonates?) with C_\j
‘resonance’! X "

@ Scaling: depends on the system. ‘Transfer function’ C%\\<
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@ Poles and zeros for input to output map

° Convolutl n is how input gets mapped to output
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LTI systems and sinusoids signals
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e For system with transfer function G(s \j &

@ Sinusoids are also exponentials: real part zero @
Transfer function: complex (when evaluated at jw):

magnitude and angle depends on w: ‘phasor’ analysis

If input is sin(wt), then output is |G (jw)| sin(wt + 4\@3))

Bode plot: fplot |G(jw)| persus w (in Tog-log scale)

and also: ZG(jw)) versus w (in normal-log scale)

Low-pass filters/high-pass filters
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Particular solution and homogenous solution
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Consider jtu— u= t2y+3dty+2y <

Let u(t) = 0, then an t ——
(1) y ¥(t) §H 2 +2

When u(t) = e?t, then 7 ‘f) 4 6

If homogenous solution goes to zero then particular solution
worth studying!

Exponents in homogenous solution: ‘poles’ of the system

‘Zeros' of the system: those exponents where gain G(s) is zero

Stability: all poles are in the LHP %,
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What is Laplace transform?

@ Some similarities with Fourier transform, but not as much
‘duality’ between time/frequency domains

e Laplace transform of f(t) gives F(s): this is also called
equency’ domain zzf—l—a'bﬂ
. many Fourief transform properties get recovered
o F(s):= [, f(t)e >tdt
o View (for s = +5 (say)) e™°t as decaying-weighting before
area under f(t) is calculated -

o If s is kept a (complex) variable, then F(s) h
about f(t):

can recover f(t) from F(s).

o Technical detail: integral from 0 to co: integral might not

-{; eX|st|

f(t) ought not ‘grow too quickly': don't worry now. All
practical signals have Laplace transforms!






Laplace transform, definition and properties

Function f,f;,f, g : [0 o0) — R: piecewise continuous
C% ik \ %
L —st
(s), with F(s) := / f(t)e *tdt JA/
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with real(s) > o large-enough, and inverse! defined using oy

o Linearity: £(anfi + aph) = axFi(s) + azFa(s) for any
real /complex constants «; and ap

o Delayed f: £(o7(f)) = e 5T F(s) (with T >0 and
f-‘zeroed’). (o7 (f)(t) :=1f(t—T)).

e Derivative of # Y (s) - f(07) and

(_mtegral of f: 7)dr) = £
1

F(t) = £ X (F)(t), with f
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° Conm /\\/ >€ >

(f xg)(t) := ffooof( (t —7)dT, ,S\(f})

e Dirac delta@);r and £(0 i—Fﬁ [‘6> g
f(O*) = lim¢ o f(t) = lims_o0 SF(5)
provided LHS exists, i.e. no impulses/their derivatives at
t=0.)
¢ FVT: f(00) = limoo f(t) = lims_yo sF(s)
(provided LHS exists, i.e. f neither diverges, nor oscillates)
o Time multiplication £(tf(t)) = — <% F(s)
o Complex shift: £(e?'f(t)) = F(s — a)
% —8 [T{me scaling: £(f(%)) = aF(as) (for a > 0)
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Polynomials/exponentials/sinusoids
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o £(1) =1 (note: functions are only on [0, c0))

oﬂﬂ:é >0

° £(eat —

o S(sinfut)) = EEr ancil{cos(t) — P
(Use IVT to be sure of which is of which.)

o £(e?sin(wt)) = m
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° Suppose u = +5X\(positive feedback) ~ u(
@ Suppose u = —5x (negative feedback)

Positive /negative feedback
)

@ Solve both differential equations (exponentially
growing/decaying)



Convolution

For now: consider functions f; satisfying@

(Linked to causality and input: zero-in-the-past)
Then y[A%[>°_ f(t — 7)h(7)dT = [ F(t — 7)h(7)dT
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Laplace transform advantages

@ Linear equations in variables u, v and their derivatives can be
rewritten in terms of their Laplace transforms U(s) and V/(s)

KCL/KVL equations, impedances are S|mp|er (with /without g
initial conditions) Zurﬁ \]/

@ Take Laplace transform of ‘both’ S|aes;|n a differential
— SV - S
equation \{{ =
U

kR
ut;\'fﬂ (output/input) wW- U = (aifb -H_‘)‘a,,_
@ Transfer function: gamﬂrat that ‘frequency’ complex
— L,.)
frequency) 5*&/ }
@ Note: laplace transform: taken for signals

Transfer function: defln(ji as ‘ratio’ of Lapl Ee tranjforms

e Transfer function: ratio of Laplace transforms (of signals)

e Transfer function: also Laplace transform of some signal?



Transfer function: Laplace transform of which signal?
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The impulse kesp
Output = Convolution of: input and impulse-response (bnly for
LTI systems)
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