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Key elements of control

Control Theory

Regulation & Tracking

Trajectory Optimization

Mathematical aspects get applied in engineering
Electrical, Mechanical, Aerospace, Mathematics, Chemical
Engineering Depts
Energy Engineering, Financial Engineering,

Involves analysis (mathematical modelling, and response analysis)
and then synthesis (controller design, shaping)



Dynamical systems

Systems have delays/dynamics/memory

Generators: when load increases, speed decreases (in some
time)

Heat: effect on temperature

Vehicle control: steering/brakes: some delay before it has an
effect

Filters: input/output relation is ‘dynamic’

Economic systems: cash-reserve-ratio: effect on
markets/liquidity in some time

Economic systems: interest rates (FD/lending): effect on
economy: delays

Overview: read from Polderman & Willems:
Intro to mathematical systems theory: a behavioral approach
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Control Theory - Regulation

Plant: system to be controlled

Regulation: keep certain to-be-controlled variables at desired
values (set-point)

In spite of external disturbances

In spite of changes in plant properties

Examples:

Temperature control at home/office
Suspension (passive/active) of an automobile
(absorbs the irregularities of the road to improve the comfort
and safety)

Regulation: for efficiency, quality control, safety, and
reliability.



Control inventions

History

Christiaan Huygens (1629-1695)
invented a flywheel device
for speed control of windmills

Main idea used later: centrifugal
fly-ball governor (by James Watt,
1736-1819, the inventor of the
steam engine)

Tuning centrifugal governors that
achieved ‘fast regulation’,



Control inventions

History

Christiaan Huygens (1629-1695)
invented a flywheel device
for speed control of windmills

Main idea used later: centrifugal
fly-ball governor (by James Watt,
1736-1819, the inventor of the
steam engine)

Tuning centrifugal governors that
achieved ‘fast regulation’,
but avoided ‘hunting’ (James
Clerk Maxwell)

Fly ball Governor

(Source: Polderman/Willems 1998 book)



Two key recent control inventions

About a century ago: two main inventions drove control
theory: regulation

1 Proportional-Integral-Differential (PID) controller

2 In 1930s, the ‘negative feedback amplifier’ by Harold Black
(of Bells)



Control Inventions: feedback amplifier

Had far-reaching applications to
telephone technology and other areas
of communication.

Long-distance communication used
to be hampered due to the drifting
of the gains of the amplifiers used in
repeater stations.

Impressive technological
development: it permitted signals to
be amplified in a reliable way,



Control Inventions: feedback amplifier

Had far-reaching applications to
telephone technology and other areas
of communication.

Long-distance communication used
to be hampered due to the drifting
of the gains of the amplifiers used in
repeater stations.

Impressive technological
development: it permitted signals to
be amplified in a reliable way,

Now: insensitive to the parameter
changes inherent in vacuum-tube
(and also solid-state) amplifiers.

Feedback Amplifier

(Source: Polderman/Willems 1998 book)



Control Inventions - Feedback Amplifier

Assume that we have an electronic amplifier that amplifies its
input voltage to output voltage with a gain K .

Vout = KV (1)

Use a voltage divider and ‘feed back’ µVout to the amplifier
input.

Basic calculations give:

V = Vin − µVout (2)

Combining these two gives a crucial relation

Vout =
1

µ+ 1
K

Vin (3)
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Feedback amplifier

What’s the big deal with this formula?

Value of K of an electronic amplifier is typically large,
but also very unstable: due to:
sensitivity to aging, temperature, loading

The voltage divider: can be implemented by means of passive
resistors: gives a very stable value for µ.

Now, for large values of K (although varying values of K ):

1

µ+ 1
K

≈ 1

µ
(4)

and so Black’s feedback amplifier gives:
an amplifier with a stable amplification gain (1/µ)
based on an amplifier that has an inherent uncertain gain K.
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a given initial state to a given terminal state.

Most common example: satellite: go from one periodic orbit
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Control theory - trajectory optimization

Trajectory transfer (for a dynamical system): find a path from
a given initial state to a given terminal state.

Most common example: satellite: go from one periodic orbit
to another: with least power/energy

Path with maximum distance from obstacles

Classic example: Brachystochrone problem (Johann Bernoulli
- 1696)

Find path/curve between two points A and B such that
a body falling under its own weight moves in least time.



Control theory - trajectory optimization

Case 1 Case 2

(Source: Polderman/Willems 1998 book)







Example of Air Conditioning Mechanism

Air Conditioner with fixed time interval on/off: cheaper
implementation

For example AC is on for 20 minutes and off for 10 minutes.
Timings are preset to save energy consumption.
Actual room conditions unconsidered (blind control)

Air Conditioner with sensor based control: expensive
implementation

AC with sensor based control takes the actual parameters,
analyse them with reference values, adjust the conditioning to
the required level.
There will be a slight band at reference value, where no
control action is taken.
Feedback: can make closed loop ‘unstable’ (even if open-loop
was well-behaved)



Open Loop Control System

Advantages of Open Loop Control System

Simple in construction and design
Economical (no need of sensors)
Easy to maintain
Generally stable
Convenient to use (since output could be difficult to
access/measure)

Disadvantages of Open Loop Control System

They could be inaccurate (especially if situation changes)
Any change in output cannot be corrected automatically



Closed Loop Control System

Advantages of Closed Loop Control System
Closed loop control systems are usually more accurate
Error is corrected due to presence of feedback signal
Wide bandwidth (range of frequencies for which system
responds desirably)
Facilitates automation
The sensitivity of system may be made small to make system
more stable
This system is less affected by
noise/modelling/system-uncertainties: robust

Disadvantages of Closed Loop Control System
They are costlier
They are complicated to design/implement
They are less reliable (complex design means more scope for
breakdowns/degradation)
Require more maintenance
Feedback could lead to oscillatory/unstable response (unless
we all learn control-theory well)









Exercise:

Find example from our daily experience that involves
open loop control
closed loop control (involves feedback)



Exercise:

Find example from our daily experience that involves
open loop control
closed loop control (involves feedback)

Consider: A =

�
7 −10
5 −8

�

In general, when A acts on a vector v (i.e. Av), the vector v
gets scaled (lengthened/shortened/flipped) and also rotated.

Vectors: v1 =

�
1
1

�
and v2 =

�
2
1

�

Check that vector v1 gets purely scaled (when A acts on v1):
what is the scaling?

Check that vector v2 also gets purely ....

Suggest a square real 2 × 2 matrix in which no real vector
gets purely scaled.

Also find what is discrete-time impulse δd and continuous-time
impulse δc



Positive/negative feedback

d
dt x = u

Suppose u = +5x (positive feedback)

Suppose u = −5x (negative feedback)

Solve both differential equations (exponentially
growing/decaying)



LTI systems and exponential signals

Linear Time Invariant (LTI) systems:
systems governed by linear,
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LTI systems and exponential signals

Linear Time Invariant (LTI) systems:
systems governed by linear, constant coefficient,
ordinary differential equations

Signals: exponential functions eat : function of time t

a need not be real: can consider complex-valued functions of
real-variable time t



Exponential signals are ‘eigenfunctions’

For (square) matrices, we speak of eigenvectors

Consider: A =

�
7 −10
5 −8

�

Vectors: v1 =

�
1
1

�
and v2 =

�
2
1

�

For some real square matrices, need to allow eigenvectors to
be complex



LTI systems and exponential signals

LTI systems have all exponential signals as eigen-‘functions’

Scaling: depends on the system. ‘Transfer function’

Transfer function also rings a bell (resonates?) with
‘resonance’ !

Poles and zeros for input to output map

Convolution is how input gets mapped to output



LTI systems and sinusoids signals

For system with transfer function G (s)

Sinusoids are also exponentials: real part zero

Transfer function: complex (when evaluated at jω):
magnitude and angle depends on ω: ‘phasor’ analysis

If input is sin(ωt), then output is |G (jω)| sin(ωt + ∠G (jω))

Bode plot: plot |G (jω)| versus ω (in log-log scale)

and also: ∠G (jω)) versus ω (in normal-log scale)

Low-pass filters/high-pass filters



Particular solution and homogenous solution

Consider d
dt u − u = d2

dt2
y + 3 d

dt y + 2y

Let u(t) ≡ 0, then any y(t) = c1e
−2t + c2e

−t solves

When u(t) = eat , then ?

If homogenous solution goes to zero, then particular solution
worth studying!

Exponents in homogenous solution: ‘poles’ of the system

‘Zeros’ of the system: those exponents where gain G (s) is zero

Stability: all poles are in the LHP



What is Laplace transform?

Some similarities with Fourier transform, but not as much
‘duality’ between time/frequency domains

Laplace transform of f (t) gives F (s): this is also called
‘frequency’ domain

s = jω : many Fourier transform properties get recovered

F (s) :=
� +∞
0 f (t)e−stdt

View (for s = +5 (say)) e−5t as decaying-weighting before
area under f (t) is calculated.

If s is kept a (complex) variable, then F (s) has ‘full’ info
about f (t):
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What is Laplace transform?

Some similarities with Fourier transform, but not as much
‘duality’ between time/frequency domains

Laplace transform of f (t) gives F (s): this is also called
‘frequency’ domain

s = jω : many Fourier transform properties get recovered

F (s) :=
� +∞
0 f (t)e−stdt

View (for s = +5 (say)) e−5t as decaying-weighting before
area under f (t) is calculated.

If s is kept a (complex) variable, then F (s) has ‘full’ info
about f (t):
can recover f (t) from F (s).

Technical detail: integral from 0 to ∞: integral might not
exist!
f (t) ought not ‘grow too quickly’: don’t worry now. All
practical signals have Laplace transforms!



Laplace transform, definition and properties

Function f , f1, f2, g : [0,∞) → R: piecewise continuous

F (s) = L(f )(s), with F (s) :=

� ∞

0−
f (t)e−stdt

with real(s) > σ0 large-enough, and inverse1 defined using σ0

1

f (t) = L−1(F )(t), with f (t) :=
1

2πj
lim

ω0→∞

� σ0+jω0

σ0−jω0

F (s)estdt



Laplace transform, definition and properties

Function f , f1, f2, g : [0,∞) → R: piecewise continuous

F (s) = L(f )(s), with F (s) :=

� ∞

0−
f (t)e−stdt

with real(s) > σ0 large-enough, and inverse1 defined using σ0
Linearity: L(α1f1 + α2f2) = α2F1(s) + α2F2(s) for any
real/complex constants α1 and α2

Delayed f : L(σT (f )) = e−sTF (s) (with T � 0 and
f -‘zeroed’). (σT (f )(t) := f (t − T )).

Derivative of f : L( d
dt f ) = sF (s)− f (0−) and

Integral of f : L(
� t
0 f (τ)dτ) = F (s)

s
1

f (t) = L−1(F )(t), with f (t) :=
1

2πj
lim

ω0→∞

� σ0+jω0

σ0−jω0

F (s)estdt



Convolution and product:
(f ∗ g)(t) :=

�∞
−∞ f (τ)g(t − τ)dτ , L(f ∗ g) = F (s)G (s)

Dirac delta: δ ∗ f = f and L(δ) = 1

IVT: f (0+) = limt↓0 f (t) = lims→∞ sF (s)
(provided LHS exists, i.e. no impulses/their derivatives at
t = 0.)

FVT: f (∞) = limt→∞ f (t) = lims→0 sF (s)
(provided LHS exists, i.e. f neither diverges, nor oscillates)

Time multiplication L(tf (t)) = − d
dsF (s)

Complex shift: L(eat f (t)) = F (s − a)

Time scaling: L(f ( ta)) = aF (as) (for a > 0)



Polynomials/exponentials/sinusoids

L(1) = 1
s (note: functions are only on [0,∞))

L(t) = 1
s2

L(eat) = 1
s − a

L(sin(ωt)) = ω
s2 + ω2 and L(cos(ωt)) = s

s2 + ω2

(Use IVT to be sure of which is of which.)

L(eat sin(ωt)) = ω
(s − a)2 + ω2



Positive/negative feedback

d
dt x = u

Suppose u = +5x (positive feedback)

Suppose u = −5x (negative feedback)

Solve both differential equations (exponentially
growing/decaying)


