
Fourier Transform of a Gaussian

By a “Gaussian” signal, we mean one of the form e−Ct2 for some constant C. We will show

that the Fourier transform of a Guassian is also a Gaussian. Three different proofs are given, for

variety. The first uses complex analysis, the second uses integration by parts, and the third uses

Taylor series.

Theorem 0.1. The Fourier transform of f (t) = e−Ct2 is F(ω) = e−ω
2/4C
√
π/C.

First a lemma that will be used in the first two proofs. Its proof uses a trick - the desired integral

is squared and then converted into a double integral for which polar coordinates work well.

Lemma 0.2.
∫ ∞

−∞
e−x2

dx =
√
π.

Proof.

Let I =

∫ ∞

−∞
e−x2

dx

∴ I2
=

(∫ ∞

−∞
e−x2

dx

) (∫ ∞

−∞
e−y2

dy

)

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2

+y2)dxdy

(now let x = r cos θ, y = r sin θ, dxdy = rdrdθ)

=

∫ 2π

0

∫ ∞

0

e−r2

rdrdθ

= 2π

∫ ∞

0

e−r2

rdr

= −πe−r2
∣
∣
∣
∣

∞

0

= π

∴ I =
√
π �
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The first proof makes use of Lemma 0.3 below, which is based on complex analysis. You would

normally learn this material, for example, at UCSD in Math 120A. If you haven’t learned this yet,

you can skip to the other two proofs. Specifically, Cauchy’s theorem says that the contour integral

of a complex function around some closed path is 2π times the sum of the residues of the function.

If the function is analytic, then there are no residues and the contour integral is zero. We use a path

which is a rectangle and then let its width become infinite in both directions.

Lemma 0.3. If b > 0, then
∫ ∞

−∞
e−(x−b j)2

dx =
√
π.

Proof. The function e−z2

is analytic in the complex plane, so its integral around the rectangle shown

below is zero by Cauchy’s theorem.

Re

Im
a−a

−a − b j a − b j

That is,

0 =

�

e−z2

dz

=

∫ a

−a

e−(x−b j)2

dx +

∫ 0

−b

e−(a+y j)2

dy +

∫ −a

a

e−x2

dx +

∫ −b

0

e−(−a+y j)2

dy

∴

∣
∣
∣
∣
∣

∫ a

−a

e−(x−b j)2

dx −
∫ a

−a

e−x2

dx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∫ 0

−b

e−(−a+y j)2

dy −
∫ 0

−b

e−(a+y j)2

dy

∣
∣
∣
∣
∣
∣

≤
∫ 0

−b

∣
∣
∣
∣e
−(−a+y j)2

∣
∣
∣
∣ dy +

∫ 0

−b

∣
∣
∣
∣e
−(a+y j)2

∣
∣
∣
∣ dy

= 2e−a2

∫ 0

−b

ey2

dy

≤ 2e−a2

beb2

→ 0 as a→∞

∴

∫ ∞

−∞
e−(x−b j)2

dx =

∫ ∞

−∞
e−x2

dx

=
√
π by Lemma 0.2 �
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Proof #1 of Theorem 0.1.

F(ω) =

∫ ∞

−∞
e−Ct2 e− jωtdt

=

∫ ∞

−∞
e−C(t2+( jω/C))dt

=

∫ ∞

−∞
e−C(t+( jω/2C))2−ω2/4Cdt

= e−ω
2/4C

∫ ∞

−∞
e−C(t−( jω/2C))2

dt

(

now let τ = t
√

C, dτ =
√

Cdt
)

=
e−ω

2/4C

√
C

∫ ∞

−∞
e−(τ−( jω/2

√
C))2

dτ

= e−ω
2/4C

√

π/C by Lemma 0.3 �
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The second proof uses integration by parts on the Fourier transform. This results in a first order

seperable differential equation, which can easily be solved by integration and then determination

of the constant of integration. Such differential equations are standard material in a high school

Calculus BC course or at UCSD in Math 20D, and probably also earlier such as in Math 20ABC.

Proof #2 of Theorem 0.1.

F(ω) =

∫ ∞

−∞
e−Ct2 e− jωtdt

F′(ω) =

∫ ∞

−∞
− jte−Ct2 e− jωtdt

Now integrate by parts using:

u = − je− jωt du = −ωe− jωtdt

v = −e−Ct2/(2C) dv = te−Ct2 dt

F′(ω) = ( j/2C)e− jωte−Ct2
∣
∣
∣
∣

∞

−∞
︸                  ︷︷                  ︸

0

−
∫ ∞

−∞
(ω/2C)e−Ct2 e− jωtdt

= −(ω/2C)F(ω)

∴

F′(ω)

F(ω)
= −ω/2C.

Now integrate both sides with respect to ω to get

ln(F(ω)) = −ω2/4C + K

∴ F(ω) = e−ω
2/4CeK .

Also, we have

F(0) = eK

=

∫ ∞

−∞
e−Ct2 dt (Plug ω = 0 into Fourier Transform definition)

=

∫ ∞

−∞
e−x2

(dx/
√

C) (Substitute x = t
√

C)

=

√

π/C (by Lemma 0.2). �
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In the thrid proof, we first expand the complex exponential into its real and imaginary parts

inside the integal. Then, since sin(ωt) is an odd function and e−Ct2 is an even function, their

product is odd, so integrating the product on the whole real line gives zero. The Fourier transform

then is the real integral of e−Ct2 times cos(ωt). We expand the cosine in its Taylor series about

the origin and then integrate the product term by term (i.e. switching the order of summation and

integration). Then we add up the result.

Proof #3 of Theorem 0.1.

Let g(C) =

∫ ∞

−∞
e−Ct2 dt =

√

π/C (by Lemma 0.2) f g

g′(C) =
√
π(−1/2)C−3/2

g′′(C) =
√
π(−1/2)(−3/2)C−5/2

g′′′(C) =
√
π(−1/2)(−3/2)(−5/2)C−7/2

...

g(k)(C) =
√
π

(−1)k(1 · 3 · 5 . . . (2k − 1))

2k
C−(2k+1)/2

=

√
π(−1)kC−(2k+1)/2(2k − 1)!!

2k

= (−1)k

∫ ∞

−∞
t2ke−Ct2 dt
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F(ω) =

∫ ∞

−∞
e−Ct2 e− jωtdt

=

∫ ∞

−∞
e−Ct2 cos(ωt)dt + j

∫ ∞

−∞
e−Ct2 sin(ωt))dt

︸                   ︷︷                   ︸

0

=

∫ ∞

−∞
e−Ct2 cos(ωt)dt

=

∫ ∞

−∞
e−Ct2

∞∑

n=0
even

(−1)n/2(ωt)n

n!
dt

=

∞∑

n=0
even

(−1)n/2ωn

n!

∫ ∞

−∞
e−Ct2 tndt

=

∞∑

n=0
even

ωn

n!
· g(n/2)(C)

=

∞∑

n=0
even

ωn

n!
·
√
πC−(n+1)/2(−1)n/2(n − 1)!!

2n/2

=

√

π/C ·
∞∑

n=0
even

(−ω2/2C)n/2 ·
(n − 1)!!

n!

=

√

π/C ·
∞∑

n=0
even

(−ω2/2C)n/2

2n/2(n/2)!

=

√

π/C ·
∞∑

k=0

(−ω2/4C)k

k!

=

√

π/C · e−ω
2/4C

�
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