Brief solutions to Problems 8 and 9 of Tutorial sheet 5 (dated 11th Oct 2019)

EE210: Signals and Systems, brief solution prepared on 20th Oct 2019 Please send typos to belur@iitb.ac.in

Problem 8: Check/obtain "steady state output" y(t) for the differential equation $\dot{y} + 3y = x$ for: (a): $x(t) = e^{-t}$, (b): $x(t) = e^{-t}u(t)$, (c): $x(t) = e^{-3t}$, (d): $x(t) = e^{-3t}u(t)$ **Brief solution 8:** Use 'eigenfunction' argument when obtaining <u>an</u> output: y(t) = cx(t) with c to be evaluated by *substituting* y(t) in the differential equation: this method is for the case when x(t) is an eigenfunction, i.e. an exponential function (with any exponent) for all time t. (So this argument is not usable for $x(t) = e^{at}u(t)$ due to the presence of the step function u(t).) Relate c with transfer function evaluated at a.

y(t) obtained as above is <u>a</u> solution because this is just a so-called particular solution, and the so-called homogenous solutions are yet to be added. This brings us to why the above method is 'steady state output'.

When $x(t) = e^{at}u(t)$, then Laplace transform $X(s) = \frac{1}{s-a}$ and obtaining Y(s) from the above differential equation and performing partial fraction expansion of Y(s) gives

$$Y(s) = \frac{b_1}{s - p_1} + \frac{c}{s - a}$$

as long as exponent *a* in the input $x(t) = e^{at}u(t)$ is not equal to the system pole p_1 : in the above example $p_1 = -3$. For this case, call $b_1e^{p_1t}u(t)$ as the 'transients' part and ce^{at} as the 'steady state part' of the output: this is because the transients is caused due to system's inherent poles, while the steady state part is caused due to the forcing function $x(t) = e^{at}u(t)$.

For this case (i.e., when $a \neq -3$), notice that c is same as obtained using eigenfunction argument.

Check that $y(t) = \frac{1}{2}e^{-t}$ is this steady state output for (a) and (b).

On the other hand, for the remaining cases: (c) and (d), due to the exponent *a* being equal to system pole -3, we need a slightly different argument. Substitute $y(t) = c_1 t e^{-3t} + c_0 e^{-3t}$ and find value of c_1 and c_0 . Call $c_0 e^{-3t}$ as homogenous solutions (and coming from system poles). In this case, for $x(t) = e^{-3t}u(t)$ gives (using Laplace transform): $y(t) = te^{-3t}u(t)$.

Problem 9: Consider 8-point DFT of vector x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], to get its DFT X[0], X[1], X[2], X[3], X[4], X[5], X[6], X[7]. Construct the matrix $\mathscr{F} \in \mathbb{C}^{8 \times 8}$ such that

$\begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \\ X[4] \\ X[5] \\ X[6] \\ X[7] \end{bmatrix}$	$=\mathscr{F}$	$\begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ x[5] \\ x[6] \\ x[7] \end{bmatrix}$
X[7]		<i>x</i> [7]

Rearrange columns of \mathscr{F} to get $\tilde{\mathscr{F}}$ which acts on even part and odd part of x: $\tilde{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$. Rename the

 $\begin{array}{c} x[0] \\ x[2] \end{array}$

x[5]x[7]

four blocks of $\tilde{\mathscr{F}} = \begin{bmatrix} A_{ee} & A_{eo} \\ A_{oe} & A_{oo} \end{bmatrix}$ appropriately and find a structure in them: **Brief solution 9:** For 8-point DFT, using the definition of DFT as

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{\frac{-2\pi kn}{N}}$$

and defining $\omega = e^{\frac{-2\pi}{8}}$, we get $\mathscr{F} \in \mathbb{C}^{8 \times 8}$ as follows

and upon re-arranging the columns to get $\tilde{\mathscr{F}}$ that acts on x with even and odd elements re-arranged (with x and X as shown below), we get

X[0]	Γ	1	1	1	1	1	1	1	1	$\int x[0]$
X[1]		1	ω^2	ω^4	ω^6	ω	ω^3	ω^5	ω^7	x[2]
X[2]		1	ω^4	1	ω^4	ω^2	ω^6	ω^2	ω^6	x[4]
X[3]	_	1	ω^6	ω^4	ω^2	ω^3	ω	ω^7	ω^5	x[6]
X[4]	-	1	1	1	1	ω^4	ω^4	ω^4	ω^4	x[1]
X[5]		1	ω^2	ω^4	ω^6	ω^5	ω^7	ω	ω^3	x[3]
X[6]		1	ω^4	1	ω^4	ω^6	ω^2	ω^6	ω^2	x[5]
X[7]		1	ω^6	ω^4	ω^2	ω^7	ω^5	ω^3	ω	$\left\lfloor x[7] \right\rfloor$

Using the partitions as shown, define the four square 4×4 blocks of $\tilde{\mathscr{F}}$ as

$$\tilde{\mathscr{F}} = \begin{bmatrix} A_{ee} & A_{eo} \\ A_{oe} & A_{oo} \end{bmatrix}$$

Verify that $A_{oo} = \omega^4 A_{eo}$ and $A_{ee} = A_{oe}$.

First notice that A_{ee} is nothing but the DFT matrix corresponding to 4-point DFT. Second, $A_{eo} = DA_{ee}$ with the diagonal matrix D having diagonal elements: $[1, \omega, \omega^2, \omega^3]$.

Conclusion: obtain 4-point DFT of [x[0], x[2], x[4], x[6]] and [x[1], x[3], x[5], x[7]] separately and add them after appropriate 'component-by-component' scaling of the DFT of [x[1], x[3], x[5], x[7]].

Next, to compute the 4-point DFT of a vector, again separate its even components and odd-components, etc and find 2-point DFT. This recursive method is called FFT (Fast Fourier Transform): we will see later what is *fast* about it.

Problem 10: (new problem) Consider the 8×8 matrix \mathscr{F} defined above. Scale the matrix and consider $\frac{1}{\sqrt{8}}\mathscr{F}$. Check that this scaled matrix is unitary. (A square matrix $Q \in \mathbb{C}^{n \times n}$ is called unitary if $U^{-1} = U^*$, with U^* denoting the complex conjugate transpose.) Check this for any DFT matrix (for *N*-point DFT) scaled by $\frac{1}{\sqrt{N}}$.

Brief solution 10: Denote columns *i* and *j* of the original (i.e. unscaled) *F* as v_i and v_j . Use $\omega^8 = 1$ to check that inner product $v_i^* v_j = 0$ if $i \neq j$, and $v_i^* v_i = N$. (Here N = 8.) Next use the fact that for a square matrix, if any pair of columns are mutually perpendicular (i.e. inner product is zero) and each column length equals 1, then that matrix is unitary.