
Brief solutions to Problems 8 and 9 of Tutorial sheet 5 (dated 11th Oct 2019)

EE210: Signals and Systems, brief solution prepared on 20th Oct 2019
Please send typos to belur@iitb.ac.in

Problem 8: Check/obtain “steady state output” y(t) for the differential equation ẏ+3y = x for:
(a): x(t) = e−t , (b): x(t) = e−tu(t), (c): x(t) = e−3t , (d): x(t) = e−3tu(t)
Brief solution 8: Use ‘eigenfunction’ argument when obtaining an output: y(t) = cx(t) with c to be
evaluated by substituting y(t) in the differential equation: this method is for the case when x(t) is an
eigenfunction, i.e. an exponential function (with any exponent) for all time t. (So this argument is not
usable for x(t) = eatu(t) due to the presence of the step function u(t).) Relate c with transfer function
evaluated at a.

y(t) obtained as above is a solution because this is just a so-called particular solution, and the so-called
homogenous solutions are yet to be added. This brings us to why the above method is ‘steady state output’.

When x(t) = eatu(t), then Laplace transform X(s) = 1
s−a and obtaining Y (s) from the above differential

equation and performing partial fraction expansion of Y (s) gives

Y (s) =
b1

s− p1
+

c
s−a

as long as exponent a in the input x(t) = eatu(t) is not equal to the system pole p1: in the above example
p1 = −3. For this case, call b1ep1tu(t) as the ‘transients’ part and ceat as the ‘steady state part’ of the
output: this is because the transients is caused due to system’s inherent poles, while the steady state part
is caused due to the forcing function x(t) = eatu(t).

For this case (i.e., when a 6=−3), notice that c is same as obtained using eigenfunction argument.
Check that y(t) = 1

2e−t is this steady state output for (a) and (b).
On the other hand, for the remaining cases: (c) and (d), due to the exponent a being equal to system

pole −3, we need a slightly different argument. Substitute y(t) = c1te−3t +c0e−3t and find value of c1 and
c0. Call c0e−3t as homogenous solutions (and coming from system poles). In this case, for x(t) = e−3tu(t)
gives (using Laplace transform): y(t) = te−3tu(t).
Problem 9: Consider 8-point DFT of vector x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], to get its DFT X [0],
X [1], X [2], X [3], X [4], X [5], X [6], X [7]. Construct the matrix F ∈ C8×8 such that

X [0]
X [1]
X [2]
X [3]
X [4]
X [5]
X [6]
X [7]


= F



x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]


.

Rearrange columns of F to get F̃ which acts on even part and odd part of x: x̃ =



x[0]
x[2]
x[4]
x[6]
x[1]
x[3]
x[5]
x[7]


. Rename the



four blocks of F̃ =

[
Aee Aeo

Aoe Aoo

]
appropriately and find a structure in them:

Brief solution 9: For 8-point DFT, using the definition of DFT as

X [k] =
N−1

∑
n=0

x[n]e
−2πkn

N

and defining ω = e
−2π

8 , we get F ∈ C8×8 as follows

F =



1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14

1 ω3 ω6 ω9 ω12 ω15 ω18 ω21

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28

1 ω5 ω10 ω15 ω20 ω25 ω30 ω35

1 ω6 ω12 ω18 ω24 ω30 ω36 ω42

1 ω7 ω14 ω21 ω28 ω35 ω42 ω49


using ω8 = 1,

we get
F =



1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω


and upon re-arranging the columns to get F̃ that acts on x with even and odd elements re-arranged (with
x and X as shown below), we get

X [0]
X [1]
X [2]
X [3]
X [4]
X [5]
X [6]
X [7]


=



1 1 1 1 1 1 1 1
1 ω2 ω4 ω6 ω ω3 ω5 ω7

1 ω4 1 ω4 ω2 ω6 ω2 ω6

1 ω6 ω4 ω2 ω3 ω ω7 ω5

1 1 1 1 ω4 ω4 ω4 ω4

1 ω2 ω4 ω6 ω5 ω7 ω ω3

1 ω4 1 ω4 ω6 ω2 ω6 ω2

1 ω6 ω4 ω2 ω7 ω5 ω3 ω





x[0]
x[2]
x[4]
x[6]
x[1]
x[3]
x[5]
x[7]


Using the partitions as shown, define the four square 4×4 blocks of F̃ as

F̃ =

[
Aee Aeo

Aoe Aoo

]
.

Verify that Aoo = ω4Aeo and Aee = Aoe.
First notice that Aee is nothing but the DFT matrix corresponding to 4-point DFT. Second, Aeo = DAee

with the diagonal matrix D having diagonal elements: [1,ω,ω2,ω3].
Conclusion: obtain 4-point DFT of [x[0],x[2],x[4],x[6]] and [x[1],x[3],x[5],x[7]] separately and add them

after appropriate ‘component-by-component’ scaling of the DFT of [x[1],x[3],x[5],x[7]].
Next, to compute the 4-point DFT of a vector, again separate its even components and odd-components,

etc and find 2-point DFT. This recursive method is called FFT (Fast Fourier Transform): we will see later
what is fast about it.
Problem 10: (new problem) Consider the 8×8 matrix F defined above. Scale the matrix and consider

1√
8
F . Check that this scaled matrix is unitary. (A square matrix Q ∈Cn×n is called unitary if U−1 =U∗,

with U∗ denoting the complex conjugate transpose.) Check this for any DFT matrix (for N-point DFT)
scaled by 1√

N
.

Brief solution 10: Denote columns i and j of the original (i.e. unscaled) F as vi and v j. Use ω8 = 1
to check that inner product v∗i v j = 0 if i 6= j, and . v∗i vi = N. (Here N = 8.) Next use the fact that for
a square matrix, if any pair of columns are mutually perpendicular (i.e. inner product is zero) and each
column length equals 1, then that matrix is unitary.


