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properties of (2.4). Hence any rational, positive real function is accept-
able as either an impedance or an admittance. )

PROBLEMS

2.1. Prove that a pole at s = 0 of a driving-point impedance must be simple and
have a positive residue.
2.2. Which of the following functions are realizable as impedances or admittances?

@ S Te+3 i (o S 3 +Es+5
s2+s+1 s?+s41 (s + 1)3

2.3. What are the conditions on the constants a, b, «, 8, v for the following functions
to be realizable as impedances or admittances?

(@) as + b . ) bs? 4+ as .
Y ast b s v st 485 + o

Can you find any way of providing the conditions for (b) from the results of (a)?
2.4. Prove that the impedance

s2 4+ as + 8

Z6) = H s ¥ b

is realizable if H, «, 8, a, b are positive and
Vea z |[VB — /b

What property does the impedance possess if the last expression is an equality ?




CHAPTER 3

FOSTER’S REACTANCE SYNTHESIS

As a prelude to the synthesis of general impedances, it is worthwhile
first to consider the synthesis of a circuit containing only two types of
ements. In this chapter, the problem of synthesizing an impedance
ntaining only inductances and capacitances, i.e., a pure reactance,
ill be considered. The next chapter will treat the case where only
esistances and inductances, or resistances and capacitances, are present.
The first synthesis of a reactance is due to Foster.! Basically, his
rocedure was to observe that a reactance, Z(jw) = jX(w), can be
tten in the form

X(w) = Ho @8 Zeled = o) 0

(CO(]Z — wZ)(w22 — w2) « ..

where wa,.; are the zeros of X(w), w2, the poles, and H is a positive con-
stant. He then proceeds to prove that

3.1)

a% X(w) 2 0 (3.2)

his fact [Eq. (3.2)] in connection with (3.1) implies the property of
paration of poles and zeros.” In other words, the poles and zeros of
1) can be ordered in such a fashion that

O_S_wo<w1<w2<w3"' (33)

is is Foster’s theorem, and his synthesis follows directly from it.
nee (3.1) and (3.2) constitute necessary and sufficient conditions for a
ctance to be realizable.

nstead of taking Foster’s approach, the synthesis of reactances will
treated here as a direct consequence of the realizability conditions
sented in the previous chapter. To begin, a reactance is defined as an
edance whose resistance is zero; i.e.,

Z(jo) = jX(») X (w) real (3.4)
e first realizability condition (2.4a) states that an impedance is a

R. M. Foster, A Reactance Theorem, Bell System Tech. J., 3:259 (1924).
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ratio of two polynomials, and real for s real. This fact, taken together
with (3.4), implies that, for a reactance, Z(s) must be of the form

3 (s + w2)(s? + wg?) -+ - -
Z(s) = Hs (5" + @) (s + ws?) - - - 3.5)

The constants wo, w1, ws must be real since, if they were not, Z(s) would
have poles and zeros in the right half of the s plane. A partial fraction
expansion of Z(s) can now be performed, i.e.,

N
Z(s) = 2( A + A >+ Aps (3.6)

s — jwzk s + jC\’Zlc

From the realizability condition (2.4¢), all the poles must be simple
and the residues Ao positive. Hence the partial fraction expansion (3.6)
can be written in the form

Z(s) = z —24% + Aus 3.7)

The synthesis of the reactance Z(s) is now apparent as a series connection
of antiresonant circuits and is given in Fig. 3.1. A pole at s = 0 is

ZAO 2A2
wg? wp?
o0
A,
1 1
Zis)— 24, 24,

o—

Fr1a. 3.1. Foster I synthesis of reactances.

o- e
= L
Zis)—> 1 2By 2Bs B.. = :
Bo 1 28, 2B; .
o2 v &
o T B S ;

Fra. 3.2. Foster 11 synthesis of reactances.

1l

included by taking wo = 0, in which case the inductance is absent in the
first parallel LC circuit. A circuit of this form (Fig. 3.1) is known as the
Foster I type.
Foster II synthesis is identical to Foster I synthesis except that the
admittance instead of the impedance is dealt with. Thus,
1 (32 + wOZ)(SZ + w22) -

Y(s) = 7Z() = Hs(s* + @) (s + wg?) - - -
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Bkt Bl )
: Bs
s — ]w2k+1 s + Jwaria *

28B o1

2 2
5 §* + Wiy

+ Bys (3.8)

again, if the admittance is to be realizable, the Bu..1 must be real
positive. The circuit follows directly as a parallel connection of
ant circuits from (3.8) and is given in F1g 3.2. The leading shunt
etance is not present if wo = 0.
V_tmg 8 = jwin (3.7), with Z(jw) = jX (w), it is seen that

rentiating (3.9),

d o 2A 2);(0)2 + wzkz) !
% [X((d)] - 2 (w2k2 - w2)2 + Aeo _% 0 (3.10)

k=0
Foster’s original condition (3.2) is verified as being necessary.
g (3.9) by » and adding or subtracting it from (3.10), the some-

onger inequality

(X(w)] = ’X(‘”l (3.11)

~ d
ined.
, perhaps, worthwhile to illustrate the Foster synthesis with a
erical example. Consider the impedance

8(s? 4+ 1)(s* + 3) o
s(s? +2)(s* + 4) (8.12)
his function has its poles and zeros located on the imaginary axis

ssesses the “separation property,” it is realizable as a reactance.
ster I expansion is of the form

A Ass A
26) =Lt g et wad

Z(s) =

(3.13)

problem is to evaluate Ay, A and A, This can be done most
y dividing (3.13) by s and setting z = s%.  Then from (3.12) and

Z (\/37) 8(1' + D + 3) o + A,
vz x(x+2)(x+4) x z+ 2
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Equation (3.14) is now a conventional partial fraction expansion. Hence,

8X1X3 »

Ao=£133)[xF(x)] = 9%a1 —°
. C8(—24 D(=2+3) _
A,y = zgn—lz [(x + 2)F(x)] = —o(—2 14 2
o L 8(=A+ (=4 +3) .
Ay = 1211}4 [(x + 4)F(.’L')] - (_4)(_4 + 2) =3
and so Z(s) [Eq. (3.12)] can be written as
3 2s 38
20 =5t et ota
with the corresponding circuit given by Fig. 3.3.  The Foster 11 synthesis
1 i
G o U
1 ' 3
do— 3 3 21— % EIG =4
3 1
. Tk Tk |

o
Frc. 3.3. Foster I synthesis of Bq. (3.12).  Fia. 3.4, Foster I1 synthesis of Eq. (3.12).

is equally direct. Thus,
1 s(s? + 2)(s* + 4)

Y6) = 769 "8+ D + 3)
o BxS B;;S
B R R

Again, dividing by s and setting s* = z,
@+ +4) B + B; + B,

GO =8t @+3) c+1 z+3
and hence -
B, = linr_x1 [(@ + DGE@)] = 316
<&=1MJ@+3WQH=%6
B, = lim [G(x)] = 1§

The resulting circuit is given in Fig. 3.4.

It is to be noted that the Foster synthesis procedure yields canonic
circuits, i.e., circuits synthesized with the least number of elements.
Thus in the numerical example above there are five parameters: two
poles, two zeros, and the constant multiplier. The circuits of Figs. 3.3
and 3.4 each contain five elements.
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Tt is instructive to view these Foster synthesis procedures as a process
f pole removals. As an illustration, consider the numerical example
ealt with previously. This impedance [Eq. (3.12)] can be written in
he form
8+ 1)(s* +3) _ 2s
EFF Y sr2 T AW (3-13a)

B 25 6(s2+2)
Zl(s) - Z(S) 82 + 2 - 8(82 + 4)

It is apparent from (3.15) that the poles at +j 4/2 have been removed
rom Z(s). The circuit corresponding to (3.15a) is that of Fig. 3.5.

Z(s) =

(3.15b)

Zyls)

Zls)—>

o
Fr1a. 3.5. Single-pole removal from Z(s) [Eq. (3.15a)].

Obviously, if the poles at 0, +j2 were removed from Z;(s), the result-
circuit would be identical with the Toster I synthesis discussed
ously. However, Zi(s) can also be developed on an admittance

sis, 1.e., a Foster II expansion. Thus,

1 s(s? 4+ 4) s

- s/3
Vi) = 76) T 6 ¥2) ~ 6

2+ 2

+

lith the resulting circuit that of Fig. 3.6, which is different from those
ined previously (Figs. 3.3 and 3.4). It is now apparent that a large

1

Zis)—> t 3
R I T

Fi1c. 3.6. Generalized Foster synthesis of Z(s) [Eq. (3.12)].

ber of distinet circuits, yielding the same reactance, can be obtained
moving poles from the impedance, then poles from the remaining
ttance, then poles from the remaining impedance, ete. In Fig. 3.7,
e are indicated nine more circuits which synthesize the reactance
.12). The notation below each circuit indicates the location of
pole and whether it was removed from an admittance or impedance.
he basis of this notation, the circuit of Fig. 3.3 would be labeled
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01, 21, 41; that of Fig. 3.4, 14, 34, = 4; and of Fig. 3.6, 21, » A, 24.
It is suggested that the reader derive some of the circuits of Fig. 3.7 for.
himself as exercises.

Tt is apparent that all 12 of these Foster-type circuits (Figs. 3.3, 3.4,
and 3.7) are canonic. Lest the impression be given that such an array

g

AT - N .

£ =‘=% # L 1 =1 #
2 T T
15 245
o T o— T o
41, <A, $A 07, 04, A, =A OI, <A, =I, <A, =A
(a) / (b) (©)
E % B %
—
16
P B& 1
18
- 1L
0I, 04, 0I, 04, 0I 34,0131
(d) (e)
% :
24
o __I_ a3
T
O— - O
A, =I,31,0I ~A, 0l 04, %A A, oo, oA, =], ©A
&) - (@)

2 2
Fia. 3.7. Generalized Foster circuits for the reactance Z(s) = %E':Ti%gz?—i——%ai

of networks is exhaustive, it must be pointed out that they are all of the
form of generalized ladders, i.e., of the form of Fig. 3.8. If other types
of configurations are used, many more canonic circuits are usually pos-
sible. Thus, the impedance of (3.12) might be synthesized in one (or
more) ways with networks of the form of Fig. 3.9. However, finding
values of the elements in such an array is likely to be very difficult.
For many network topologies, this is impossible without resorting te
numerical techniques. It is an unsolved problem as to how many differ;
ent canonic networks there are which synthesize a given reactance.
Consider now the networks 7 and d of Fig. 3.7 which have particularly
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mple ladder structures. They are termed Cauer I and 11, respectively,
ter their originator.! Since the driving-point impedance of a ladder
ructure such as Fig. 3.8 is given by the continued fraction

=
z 7 nr

standard synthetic-division procedure can be used to determine the

coefficients in this continued fraction. Hence the element values of

X

Fia. 3.8. Ladder network. Fic. 3.9. Other possible network topol-

ogies for the reactance [Eq. (3.12)].

the networks (Figs. 3.77 and 3.7d) can be obtained in this manner. Thus,
rforming a synthetic division on (3.12) yields
s/8
+ 3252 + 24 [s* + 6s® + 8s
sb + 4s* + 3s 4s
2s% + b5s [8st + 3252 4 24
8s* + 20s? s/6
125% + 24 12s% 4+ 5s
2s% 4 4s 128
s [12s2 + 24
1252 5/24

s
bl
0

the continued-fraction expansion is

Z(s) =
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from which the element values of the circuit of Fig. 3.7¢ are obtained
directly. Similarly, doing this synthetic division in terms of 1/s yields

3/s
8 6 24 32 8
atet! Tra+s
24 18 | 3
¢t Ty ams
14, 5 8 6
g T; gt @t
S s 8 S
8 20
5 T 49/11s
22 14 5
et
14 49
s T 121721
6 22
rz%?+1 )
22 .
7 6/1ls
' L s
11s
6
s
0
and the continued-fraction expansion is
3 1
Z(s) =5 +
s 4 4 1
7s 49 . 1
s TRl 1
2ls = 6

and hence the circuit of Fig. 3.7d.

Now, the question obviously arises, if one were actually building a
reactance, which one of the many Foster-type circuits should be chosen?
Considering the point of view of economy, as well as the fact that induct-
ances are more lossy than capacitors, the circuit containing the least
total inductance is probably the best choice. On this basis for the .
impedance of (3.12), the Foster I form (Fig. 3.3) and the network of
Fig. 3.7¢ are the best, with the Cauer II form (Fig. 3.7d) running a close
third. Since the Cauer forms are easiest to derive, and usually one
of them has nearly the minimum inductance possible, they are normally
chosen as the network to synthesize a given reactance.
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In conclusion, it is desirable to point out that the Cauer forms serve
another very useful purpose. In later chapters, it will be necessary
to decide whether a given function is realizable as a reactance. The
Cauer development provides a simple and direct way of doing this.
Thus, for example, suppose it were desired to find out whether the function

Z()_s9+4s7+385+2s3+28
P S QN |

is realizable as a reactance. The process of locating its poles and zeros
is a tedious job. However, if it is a reactance, it has a Cauer develop-
ment. Thus, one can perform the synthetic division for its continued-
fraction expansion; i.e.,

S
S+ s+ st 4 2+ 187+ 45" + 355 + 2% + 2s
£ 4+ T+ S+ sT+ s
38T+ 285+ 24 s

s/3
38T+ 255 + 8+ s[sf 4+ sS4 st 241

2 g s?
8 ) o .
Szt gt oy 0
6 4 2
%+%+%+HW+N+§+S

387 + 6s® + 6s* + Os
— 45 — Hg® — 8s

Since negative numbers occur, the process can at once be terminated as
-this function obviously cannot be a reactance.

PROBLEMS

3.1. Prove that the conditions (3.1) and (3.2) are sufficient for a function to be
realizable as a reactance. :
3.2. For a reactance synthesized by a canonic network, prove that the number
of inductances and capacitances cannot differ by more than 1. On the basis of
" the dependence of the reactance at s = 0 and s = <, give conditions for deciding
~ whether the number of inductances exceeds, is equal to, or is less than the number of
- capacitances.
8.3. Synthesize the following reactances in at least four ways:

s(s? + 2) ' _ (s + 1)(s2 + 100),
FEOE S O 26) = "0 1 69)

3.4, Are either of the following functions realizable as reactances?

(a) Z(s) =

@ 2s® + 5s* +5s ® s7 4 18s> 4- 83s 4 66s
288 + 19s* + 452 + 3 "7 288 4 27st 4 85s? + 36




CHAPTER 7

HURWITZ POLYNOMIALS

- In the succeeding chapter on Darlington’s synthesis procedure, and in
later chapters dealing with the synthesis of transfer impedances, some
results will be needed concerning a class of polynomials known as Hurwitz
polynomials. Tt is the purpose of this chapter to present proofs of these
properties and some of their applications to impedances.

. A Hurwitz polynomial Q(s) is defined as a polynomial that possesses
‘the following properties: '

- 1. Q(s) is real for s real.

2. Q(s) has its zeros located in the left half plane or on the imaginary

is apparent from the definition above that an impedance is the ratio
of two Hurwitz polynomials. An alternate definition, anda very useful
property of Hurwitz polynomials, is expressed by the following theorem:
- A necessary and sufficient condition for a polynomial to be Hurwitz is
hat the function defined by the ratio of its odd to even parts is realizable as o
re reactance.

- Thus, if the Hurwitz polynomial Q(s) is explicitly

-

N
Q) = Y 0" = 0.(5) + (s)
0

ts even and odd parts are
0e(s) = Zquas™  qo(s) = Bqanpis?t!

e above theorem then states that the function 7.(8)/q.(s) is realizable
§ a reactance if, and only if, the polynomial Q(s) is Hurwitz.

proof of this property can be constructed as follows: Consider a
nction defined by

qe(s) ' . qe(s)

Y = = e—_—
© =00 = 26 + o
Q(s) is Hurwitz, then the function Y (s) is positive real, and hence a

alizable admittance, since
1. It is real for s real.

(7.1)

47
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e
2. Re YUl = (i = (o) 2 ©

3. Since Q(s) is Hurwitz, its poles are confined to the left half plane.
There are no poles on the imaginary axis as any imaginary zeros of Q(s)
are also zeros of ¢.(s). _

Since Y(s) is a positive real function, Z(s) = 1/Y(s) can be synthesized
as an impedance. Note that, for (7.1),

. - g.(jw) + qo(jow) _
Re [Z(jw)] = Re T Ge) 1 (7.2)
Hence the impedance Z;(s), defined by
— _ 1 1 0o(8)
Zl(s) = Z(S) — 1 = }*7(?) 1= qe(S) (7.3)

is realizable since it merely represents the removal of the minimum value
of the resistance from Z(s), in a fashion identical to the start of the Brune
procedure. Thus, the function Z:(s) in (7.3) has been shown to be
realizable; moreover, it is a pure reactance (its resistance is zero). Com-
bining this result [Eq. (7.3)] with (7.1) demonstrates the fact that if Q(s)
is Hurwitz, ¢,(s)/q.(s) is a realizable reactance. A proof of sufficiency
can be obtained by reversing the procedure.

One consequence of the above proof is that the even and odd parts of
Hurwitz polynomials have their zeros located on the imaginary axis. A
direct demonstration of this without using the idea of positive real func-
tions can be quite difficult. It also should be pointed out that the fact
that ¢.(s)/q.(s) is a realizable reactance if, and only if, Q(s) is Hurwitz
means that a simple test as to whether a given polynomial is Hurwitz
can be made by carrying out the synthetic-division procedure discussed in
connection with the Cauer reactance forms (Chap. 3). As discussed in
connection with the Foster preamble, this synthetic division will also
locate any imaginary zeros Q(s) might have.!

y Next, consider a realizable impedance

_ P(s) _ pe(s) + po(s)
26 =36 = wl) T ) (7 4a)

where the subscripts ¢ and o denote the even and odd parts of the poly-
nomials. It will now be shown that all four functions

Po(8) 7.(3) Do(s) 0(s)
Pe(s) 7.(s) .(s) p.(5) (7.4b)

! This process of determining whether a polynomial is Hurwitz, i.e., whether it has
all its zeros located in the left half plane, is equivalent to the Routh test for stability
of mechanical systems. (E. J. Routh, “Dynamics of a System of Rigid Bodies,” 3d
ed., Macmillan, London, 1877.)
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are themselves realizable reactances. That the first two are realizable

- reactances are direct consequences of the fact that P(s) and Q(s) in
(7.4a) must be Hurwitz polynomials as Z(s) is a positive real function.
To prove that the function p,(s)/¢.(s) is a realizable reactance, it is
‘necessary to show that its poles lie on the imaginary axis and have positive
. residues. That they lie on the imaginary axis is a consequence of the
© fact that Q(s) is Hurwitz, and hence all the zeros of q.(s) are imaginary.
* To prove that the residues are positive, the original impedance of (7.4a)
" can be written in the form

_ Pe(8)/qe(s) + po(8)/qe(s)
28 = T ) as)

- Let Jw, be one of the poles of p,(s)/¢.(s). Evaluating (7.5) at jw, yields

da [Pe(s) po(s)]
Z(jw) = lim ds | qe(s) qe(s)
ey i [1 + QO(S)]
ds q.(s)
_ pe(jwv)/qg(jwv) + po(jwv)/QL(jwv)
4(jw,) /¢ (jw.)

(7.5)

(7.6)

here the primes denote differentiation with respect tos. It is to be noted
in (7.6) that p.(jw,)/q,(jw,) is purely imaginary, while p,(jw,)/¢.(jw,) and
- g(jw,)/q/(jw,) are real. Taking the real part of (7.6) yields

. po(jwy)/q;(jwy)
Re [Z(jw,)| = “=20 2o/ 7.7
O 1G] = g o) /gt () @7
ich must be positive since Z(s) is realizable. It is to be noted that
o(Je) /q.(jew,) is itself positive, since it is the residue of the pole at jw
-of the realizable reactance ¢,(s)/q.(s). Hence, from (7.6),

pO(j‘*’)
@) = °

which states that the residue of p,(s)/q.(s) at the pole Jw 18 positive.
Hence p,(s)/q.(s) is a realizable reactance. A similar proof can be
carried out to show that 7.(8)/p.(s) is a realizable reactance.

n conclusion, it is worthwhile to.consider how one might determine
hether or not a given function Z(s) is a realizable impedance. There
ire at least three possible methods, namely :

. Determine whether or not Z(s), or 1/Z(s), is a positive real function.
. Determine whether or not Z(s), or 1/Z(s), satisfies conditions (2.4).
. Use a synthesis procedure to determine whether or not Z(s), or
(s), can be synthesized,




