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9.1 PROPERTIES AND TEST OF
POSITIVE-REAL FUNCTIONS

In Chapter 3 we established the fact that the driving-point immittance
functions of RLCM networks (that is, networks entirely consisting of R, L, |
C, and M) are positive-real functions. That is, a function H(s) must be a
positive-real function to be physically realizable as a driving-point impedance
or admittance (immittance) of a positive RLCM network. We can always
check whether a given function H(s) is positive-real by applying the definition
of a positive-real function. This checking process, however, is not always
practically feasible, particularly when the function is of higher order.
Furthermore, it is preferable (actually it is essential, as would become
apparent soon) to break down the definition of a positive-real function
into a number of simple conditions so that they can be used as a set of design
criteria, and this is the motivation of this section.

9.1.1 Properties of positive-real functions

A large number of analytical properties of a positive-real function can
be derived from its definition. Among them, the most basic and significant
ones are first summarized in Table 9.1.1, and then the proof and practical
implementation of each property will be in order.

Table 9.1.1 PROPERTIES OF POSITIVE-REAL FUNCTIONS

A" 4+ a, "+t ag
bos™ + by " 4+ by

Positive-real function Z(s) =

. Z(s) is real when s is real.

. ReZ(s) > 0 for Res > 0.

. All the coefficients must be real and non-negative.

1/Z(s) 1s also positive-real.

. No poles or zeros must be in the right half (in which ¢ > 0 for s = o + jw) of
the s-plane.

. Poles of Z(s) and poles of 1/Z(s) on the finite imaginary axis must be simple and

have real and positive residues.

|[n — m| < 1; poles and zeros at infinity must be simple.

. |larg Z(s)| < n/2 for |arg 5| < n/2.

. A sum of positive-real functions is positive-real.

. F[Z(s)] is positive-real if both F(s) and Z(s) are positive-real.

—_
OO =N

The first two properties are nothing but the definition of a positive-real
function, and the third follows directly from the second and sixth. The
fourth property was already established in Chapter 3.

To prove the fifth property, assume that function Z(s) has a pole of multi-
plicity m at s = A in the right half of the s-plane, where A is a complex num-
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ber with positive-real part. Then, in the neighborhood of the pole, Z(s) can
be expanded into a Laurent series of the form

Am Am—l ,
Z(s) = G + ot T A =)+ Z(s) 9.1

where Z'(s) is the remainder and the A’s are complex constants. Now, if we
choose a point in the s-plane sufficiently near to 4, Z(s) behaves in very
much the same way as the first term in (9.1.1). Therefore we have

A,
Z(s) ~ A 9.1.2)

Consider a small circle of radius d drawn about the point 4 as shown in F ig.
9.1.1. Then for values of s on this circle,

S — A =de (9.1.3)
We also rewrite A, 0of (9.1.2) in the polar form
A = |4, e “ ) 9.1.4)
Using (9.1.3) and (9.1.4), rewrite (9.1.2) as
Anl €A
R e = M il —m 9.1.5
Z(S) dmejmo dm e ( )
Thus
, |4,
Re Z(s) ~ T Cos (¥ ~ mb) (9.1.6)
But
cosy —mb) <0 for g <~ mh) < % 9.1.7)
+ Ims
s-plane

Ti\*. Re s

Fig. 9.1.1
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and this contradicts the assumption that Z(s) is positive-real. Similarly, it can
be proved that 1/Z(s) has no poles [that is, zeros of Z(s)] in the right half of
the s-plane since it is positive-real. Hence the property.

The evaluation of poles of a high order is not practically feasible, and a
simple testing method for this property is therefore desirable. This will be
discussed in the next section.

In order to prove property 6, assume that Z(s) has a pole at s = s; of
multiplicity n and that s; = jo,. In the neighborhood of the pole, we can
approximate Z(s) by taking the first terms of its Laurent expansion as

An 9.1.8)

(s — jo)
If we draw a small circle of radius r about the pole jow; on the imaginary axis
as shown in Fig. 9.1.2, we have

Z(s) &

s — jow; = re (9.19a)

A, = |A,]e* (9.1.9h)
Therefore, rewrite (9.1.8) as

4]

Z(s) ~ o el — k:,%' [cos(¢ — nb) + jsin(¢p — nB)] (9.1.10)

The real part of Z(s) is then found as

Re Z(s) = 4. cos(¢ — nb) 9.1.11)

rll

Now, in order to assure that the real part of Z(s) is always positive, we need

cos(¢p — nf)) = 0 (9.1.12a)

or

jw

s-plane

-0 g
To
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i i
—-=<¢ -nh <= 10126
;= ¢ — nf < 3 (9.1.12b)
However, the argument stays in the range of
n 7
-0 = 9.1.13
27 T2 ( )

. To have both conditions (9.1.12b) and (9.1.13) consistent, it is necessary that
¢ =0 and n =1 (9.1.14)

In other words, the pole on the imaginary axis of Z(s) must be simple and its
residue must be real and positive (that is, 4, is real and positive). If Z(s) has
zeros on the imaginary axis, then 1/Z(s) has poles at the same points. Since
1/Z(s) is also a positive-real function, these poles [that is, zeros of 1/Z(s)]
must satisfy the conditions required by property 6. Hence the sixth property.
The seventh property is a special case of property 6.

Example 9.1.1.  Consider the partial fraction expansion of Z(s) given by
(9.1.15):

4 352 1 1 1
S+l 1, 3 2 4 (9.1.15)

Z(s) = =-+ +
(s) s(s + @) S s+ j s—|

The residues 1, 4, 1, and 1 are real and positive, and thus satisfy property 6.
Actually Z(s) given in (9.1.15) satisfies all the other properties and therefore
is a positive-real function. We now combine the second and the third terms
in the expansion and obtain

1 s
=4+ - 1.1
Z(s) ‘s+s2+1+s (9.1.16)

If we apply the definition of a positive-real function to each term in the
right-hand expression of (9.1.16), we can easily check that each of them is
again a positive-real function. It is therefore possible to represent each term
as the impedance or as the admittance of a simple network. If we regard
Z(s) as a driving-point impedance, then we obtain the realization shown in
Fig. 9.1.3. The reader should realize Z(s) as a driving-point admittance and
compare the realization with the one shown in F ig. 9.1.3. '

The last three properties! directly follow from the definition of a positive-
real function (see Problems 9.1 and 9.2).

Each of the properties listed in Table 9.1.1 is necessary for a function to be
positive-real. However, by combining some of these properties we may con-

. "Property 8 is actually identical to Property 2.
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e
=

1

Zis) —>=

O—

Fig. 9.1.3 A realization of Z(s) given by (9.1.16) as driving-point impedance.

struct a test which will be necessary and sufficient fora function to be positive-
real; one of them is given below.

Theorem 9.1.1.  Given a real rational function Z(s) such that
(i) Z(s) has no poles in the right-half of the s-plane;
(ii) If Z(s) has poles on the imaginary axis or at infinity, the poles must be
simple with real and positive residue;
(iii) Re Z(jw) = 0 for all .
Then, Z(s) is positive-real.

It is clear that these conditions are necessary for Z(s) to be positive-real
from the properties listed in Table 9.1.1. Therefore we are going to prove
~ only the sufficiency; that is, if a function Z(s) satisfies these conditions, then
Z(s) must be positive-real. Let us define a closed region (or contour) going
around the imaginary poles in s-plane as shown in Fig. 9.1.4.
In the region indicated, we let r — 0 and R — oo then it will cover the
entire right half of the s-plane, including the imaginary axis, that is, the
jm-axis, except the poles of Z(s) on the imaginary axis. Let us choose points

jw

s-plane

Fig. 9.1.4 A closed region in which Z(s) is analytic.
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§; and s; such that s, is on the boundary and s; is inside the region. Then

Re [Z(s)] = Re [Z(sy] (9.1.17)

where s; is a point located on the boundary and S; is any point inside the
region in which Z(s) is analytic including the boundary. Note here that
% = jw;and s; = 0; + jowjand g; > 0. Moreover, we have already assumed
that Re [Z(jw)] = 0. Therefore, Re [Z(s)]= 0 for o = 0 and Z(s) is already
a real function. Hence the theorem.

Practical implementation of this theorem, however, requires the evalua-
tion of poles as well as of residues at the imaginary poles of a function to be
tested. We shall therefore introduce in the following section an equivalent
test which has a simpler checking procedure.

9.1.2 Hurwitz-polynomial test

As illustrated through several examples in the foregoing section, each
property can be checked directly on a function under consideration. How-
ever, the practical implementation of some of them becomes very laborious

locations of poles and zeros, and the evaluation of residues ofimaginary poles.
Therefore, alternative but simpler testing methods will be briefly introduced
in this and the following sections.

A Hurwitz polynomial is a polynomial all of whose roots have zero or
negative real parts. More specifically, we may further break down Hurwitz
polynomials into two subclasses: “strict” and modified Hurwitz polynomials.
The former includes no roots with zero real parts (that is, pure imaginary
zeros) whereas the latter does. We now introduce a necessary and sufficient
test for a Hurwitz polynomial,

Consider a real polynomial K(s) such that

K(s) = m(s) + n(s) (9.1.18)
where m(s) and n(s) are the even and odd parts of the polynomial, respectively.
Then, form a ratio H(s) such that

H(s) = %S)) (9.1.19)

*Minimum real part theorem: If Fi (s) is analytic in a closed region of the complex plane and
also on the boundary of the region, then the real part of F(s) is minimum on the boundary and
' not in the interior of the region.
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and expand H(s) into a finite Stieltjes continued fraction by synthetic division
or, as it is sometimes called, the Euclid algorithm, as

H(s) = a;s + % T I (9.1.20)

. +L
Oy

where k is the order of m(s) and it is assumed that the order of m(s) is higher
than that of n(s) by unity; otherwise, form a ratio such that H(s) = n(s)/m(s).
If all o’s in the expansion, called Hurwitz coefficients, are positive, K(s) is a
(strict) Hurwitz polynomial. This is a necessary and sufficient condition for a
real polynomial K(s) to be Hurwitz. If K(s) contains pure imaginary zeros
(that is, a modified Hurwitz polynomial), the number of «’s is smaller than
the order of m(s) or n(s) (whichever is higher). That is, the expansion ter-
minates prematurely. This will be illustrated by the following examples.

Example 9.1.2.  Consider three real polynomials K,(s), K,(s), and K,(s)
defined by
Ki(s) =2s* +s + 75" + 5+ 1
Ky(s) = s* + 2% + 25% + 25 + 1

Kis) =8>+ + 542 (9.1.21)
Then the Hurwitz test yields
2s* + 75 + 1 1
H(s) =~~~ = ° _ 1.
1(s) e 2s + i 1 (9.1.22)
25/4 —
@54 + @75)s

and thus K (s) is (strict) Hurwitz. On the other hand, the continued fraction
expansion for K,(s) gives

st 287 + 1 1 1
H ot e = 1
5(s) 255 s 25 + 2 (9.1.23)

That is, we obtain

25% + 2s¥)s* 4+ 257 + 1 <%
st 4 2
s? 4+ 1)2s% + 2s(2s
2s% + 2s
0 (9.1.24)
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Thus, K,(s) is a modified Hurwitz polynomial having zeros at s = +).
Finally, for K,(s) we obtain

s+ s L 1
242 —s + (1/=1s)

Hi(s) = (9.1.25)

Therefore, K;(s) is not Hurwitz and has zeros in the right half-plane.

In view of the test just described for Hurwitz polynomials, Theorem 9.1.1
can be replaced by the following theorem® which eliminates the necessity
of the evaluation of residues.

Theorem 9.1.2.  For a rational function Z(s), if
(1) Z(s) is a real function of s;
(i1) P(s) + Q(s) is strict Hurwitz;
(iii) Re Z(jw) = 0 for all »
then Z(s) is a positive-real function.

Proof. Let us transform the right half of the Z-plane into a circle of unit
radius in the w-plane, by using the bilinear transformation of the form

_Zs) =1 _ Ps) = Q)

S Z(s) + 1 P(s) + Qfs) ©.1.26)

w(s)

or

_ReZ(s) — 1 + jIm Z(s)
" Re Z(s) + 1 + jIm Z(s)

w(s) 9.1.27)

From (9.1.27), it is apparent that

if and only if Re Z(s) = 0, then |w(s)| = 1

if and only if Re Z(s) > 0, then |w(s)| < 1

if and only if Re Z(s) < 0, then |w(s)| > 1 (9.1.28)
and these are illustrated in Fig. 9.1.5. We therefore restate the definition of a
positive-real function Z(s):

(a) Z(s)1s a real function of s
(b) ReZ(s) =20 forRes =0 (9.1.29)

- by the following statement in terms of w(s):
(a) w(s)is a real function of s

(b) |w(s)) <1 forRes =0 (9.1.30)

*A. Talbot, “*A new method of synthesis of reactance networks,” Monograph No. 77, Proc.
IEE (London), Part IV, 101, 73-90 (1954).
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Im Z{(s) Im Wis)

Z-plane
1

Re Z(s) - Re Wis?
7

2

tal b

Fig. 9.1.5 (a) The right half of the Z-plane, (b) transformed into a circle of unit radius about
the origin in the w-plane.
/

The first statement of (9.1.30) is obvious if Z(s) is real for real s. The second
condition requires the magnitude of w(s) to attain the bounded maximum
value on the boundary of the circle of unit radius in the w-plane. In order
for w(s) to achieve the maximum magnitude on the boundary of the circle,
w(s) must not contain any poles in the interior of the circle,* which alter-
nately implies that the denominator of w(s), P(s) plus Q(s), must not contain
any zeros in the right half of the s-plane including the imaginary axis.
In a simple statement, we would say that the denominator polynomial,
P(s) + Q(s), must be a Hurwitz polynomial. We therefore rewrite the
statements in (9.1.29) and (9.1.30):

P(s) .
a’) Z(s) = — is real for real s
@) 260 = 5
(b”) P(s) + Q(s) is a Hurwitz polynomial
(c) ReZ(jw)z 0 for all @

Hence the theorem.

Example 9.1.3. Prove that if Z(s) = P(s)/Q(s)isa positive-real function,
s0is Zy(s) = Py(5)/Q1(s), where P(s) = m,(s) + n1(s), Q(s) = my(s) + na(s),
P.(s) = my(s) + ny(s), and Q,(s) = my(s) + ny(s). It is assumed here that
all m(s) and n(s) are different from zero.

First, we know that Z, (s) is real when s is real. Second, Py(s) + Q,(s) isa
Hurwitz polynominal, since Py(s) + Q,(s) = P(s) + O(s). Furthermore, in

+Because of the maximum modulus theorem which is dual to the minimum real part theorem
used previously, and the unbounded behavior of w(s) at a pole.
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o momy(jo) + ny(jo)n,(jo)
Re Z4(jo) = m3(jo) — n¥(joo)

the denominator is always positive, and the numerator is identical to that of
Re[Z(jo)]. Therefore, Re[Z,( Jj®)] = 0 for all w. Thus, from Theorem 9.1.2,
Z(s) 1s positive-real.

This particular result is a basis of a popular two-port synthesis technique
which is in use.®

Example 9.1.4. Expand Z(s), considered in Example 9.1.1, into a con-
tinued fraction expansion, and obtain \
st 32 41 1
=  — s+ 9.1.32
2+ 1 ST 1 G.132)

2 T i e

All the coefficients in the expansion are real and positive because Z(s) is.
positive-real and the numerator and denominator polynomials form a
Hurwitz polynomial. If we again regard Z(s) as a driving-point impedance,
the expansion gives the realization of Fig. 9.1.6.

T

Fig. 9.1.6 A realization of Z(s) given by (9.1.32).

 9.1.3 Sturm test

A test required for the property of Re Z(jw) > 0 for all  can be sim-
plified greatly if the method called Sturm test is employed.
- The real part of Z(jw) is given by

o = MUOMo) + mjomGo)  Aw?)
Re 2ljo) = mi(jo) — nd(joo) ~ Bo?)

(9.1.33)
Here, it is apparent that B(w?) = 0 for all w. Therefore the only test which
would be required is to check whether A(w?) ever becomes negative for any

value of . We let A(w?) be expressed generally by

*S. Darlington, “Synthesis of reactance 4-poles which produce prescribed insertion loss
characteristics,” Jour. Math. and Phys., 18, 257-353 (1939).

&
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Al?) = a,0*" + a, ,0*"" Y + ... 4+ q,
= (@% — o))" — @) - (0 — o)™ (9.1.34)

Then, from (9.1.34) we note that, if o; > 0,

=20 for all if n; = even number
(> —oy'<=20 forw®*=a ifn = odd number (9.1.35)
<0 forw? <a  ifn;, = odd number

It is thus clear that, if A(w?) contains real positive zeros of odd multiplicity,
it will become negative for a range of some values of w. That is, A(w?) must
have no real positive zeros of odd multiplicity. To test the odd multiplicity
of zeros of A(w?) we employ the Sturm theorem.

Replace w? in (9.1.34) by x, and obtain

A(x) = a,x" + a"_lx"—l + o+ oag (9.1.36)

where it is assumed (1) that a, # 0 and (2) that there are no repeated zeros.
Then, form the Sturm sequence defined by

A(x) = given
d
Aylx) = ix Alx) = A'(x)

Ay(x) = Ak x + ky) — Alx)
Az(x) = Az(x)(k?x + ky) — Ai(x)

A, = a constant

where all k’s are real numbers. If we assume a range of values of x, say
b, £ x £ b,, then we have the following relationship:

ISy, = S,,| = the number of real zeros of A(x) in the range of n, < x < b,

(9.1.38)

where S, = the number of sign variations of the Sturm sequence with
x replaced by by, that is, signs of 4(by), A,(b,),..., A4,

S,, = the number of sign variations of the Sturm sequence with
x replaced by b,, that is, signs of A(b,), 4,(b,),... A4,

Example 9.1.5. Consider
A@?) = 0® — 30* + 60w? — 1

By replacing w? by x, we obtain the Sturm sequence:
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Alx) = x* — 3x% + 6x — 1
A(x) = 3x? —6x + 6
Ay(x) = —(2x + 3)
As(x) = 39/4

In the range of x for 0 < x < oo, we find that

Sy =28, =2
thus |S — S| =0

Therefore, A(w?) has no real zero in the range of 0 < w? < oo. Thus, A(w?)
never becomes negative.

Note here that the Sturm test described so far is based on the assumption
that A(x) has no repeated zeros. If it does, the Sturm process terminates pre-
maturely because of the fact that the Sturm sequence is constructed by the
Euclid algorithm. We thus summarize the testing procedure of the real-part
requirement:

(a) If all a’s are nonnegative in (9.1.34), A(w?) > 0.

(b) If the Sturm sequence does not terminate prematurely, 4(w?) has all of
its zeros of order 1.

(c) If A(w®) has repeated zeros, say at w? = g, then the Sturm process
terminates prematurely. Divide A(w?) by a factor (w? — o) for n, = 2
and then proceed with the Sturm process.

The reader should work out the problems given at the end of this chapter
to familiarize himself with the Sturm test outlined above.

9.2 BASIC REALIZATION PRINCIPLES OF
POSITIVE-REAL FUNCTIONS

Although a few examples of network realization were given in the pre-
ceding section, the basic principles underlying network synthesis tech-
niques will be briefly discussed in this section, in order for the reader to
establish a sufficient background to follow various techniques available
in network synthesis problems. Again here, the reader is reminded of the
aim of this book; that is, we are primarily concerned throughout this text
with the network analysis rather than the network synthesis. Therefore a
more thorough study of the latter should include a text on the subject of
network synthesis.

Basically, the realization of positive-real functions is accomplished by
repeated use of the following four processes:
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(a) Removal of a pole at infinity.
(b) Removal of a pole at the origin.
(c) Removal of imaginary poles.
(d) Removal of a constant.

Each of these procedures will be briefly discussed in sequence.

(A) Removal of a pole at infinity: For there to be such a pole, a positive
real function H(s) is required to be of the form that its numerator is of degree
one higher than that of the denominator. Thus, we write H(s) in general as

P(s)  ap 8"+ ast + o 4 ag

H(S) = e n n—1
Q(s)  bs" + b,_ys + -+ by
Apiq

n

where a,, /b, is the residue of the pole at infinity, and H,(s) is the remainder.
Thus, it is clear that, if H(s) is a driving-point impedance, an inductance of
value (a, , ;/b,)henrys connected in series with /,(s) represents the decom-
position given by (9.2.1). This is shown in Fig. 9.2.1a. On the other hand, if
H(s) happens to be a driving-point admittance, the network of Fig. 9.2.1b
represents (9.2.1). Note that all a’s and b’s in (9.2.1) are real and nonnegative
and both qa,, , and b, are greater than zero.

Now, the question is whether H(s) is still positive real. However, the
following are apparent:

(1) H,(s)1s real for a real s,

(2) the residues of finite imaginary poles of H,(s) are identical to those of

H(s), (H,(s) has no longer a pole at infinity),

(3) Re H,(jw) = Re H(jw) = 0 since the real part of (a,, ,/b,)jw 1s zero.
Thus, H,(s) is still positive-real. Therefore we can work on H(s) again;
H,(s) no longer has a pole at infinity, but it may have a zero at infinity.
That is, 1/H;(s) may have a pole at infinity, and this pole then can be re-
moved again, leaving the remainder still positive real. [ Note that, if H,(s) is

H is) = I o Hs) =

-

— P o -
Hs1 = Z(s) Zys! Hisy = Yis) l " Yy
—_

(a) (h)
Fig. 9.2.1
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positive real, so is 1/H,(s).] This successive removal of poles at infinity

results in a so-called Cauer’s Jirst form realization, which will be illustrated
by the following example.

Example 9.2.1.Cauer’s First Form Realization. Consider a driving-point
impedance given by

2(s* + 1)s? + 3)

Z(s) = 922
) s(s? + 2) ©.2.2)
" The pole at infinity is now removed from Z(s). This results in
Z(s) = 25 + Z,(s)
, where
: 4s* + 6
Zis) = —5——
s(s* + 2)
. Since 1/Z (s) has a pole at infinity, this pole will be removed. Thus we have
1 s )
= - s
Zs)=4 7
where
s
5(s) = m
Again, 1/Y,(s) has a pole at infinity, and this will be removed. That is,
i 1 12
ne -

- This successive removal process of poles at infinity is nothing but a step-by-
step development of continued fraction expansion. When the numerator of
- Z(s) is divided through (that is, synthetic division) by the denominator in
. descending order, we see that ‘

1
Z(s) = 25 + (9.2.3)
l s, 1
L;s 4 1
i 8s + ?
C l 2
YLs 12
!
C,s

and the corresponding realization is given in Fig. 9.2.2.
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Z(8) —3m I 1 l .
TClzz ‘|\C2:ﬁ

O—

Fig. 9.2.2 Cauer’s first form realization of Z(s) of (9.2.2).

(B) Removal of a pole at s = 0. If a positive-real function H(s) has
a pole at s = 0, it can be generally written in the form of

a,s" + a,_s"" + o+ oag a
= " = — + Hs 9.24
H(s) b+ ay " T b 4 by by 1(s) (9.2.4)

where m = n + 1 or m = n, and H (s) is the remainder. Moreover, (ao/b;)
is the residue of the pole at the origin. This decomposition results in the
realization shown in Fig. 9.2.3, where H(s) = Z(s) or H(s) = Y(s) as the
case may be.

The remainder H,(s) is again positive-real for precisely the same reasons
used for the case of removal of a pole at infinity. This process can be succes-
sively repeated if 1/H ,(s) has again a pole at the origin, resulting in a so-called
“Cauer’s second form” realization which will be illustrated by the following
example.

%0
by
. H(s) = I ag H(s) =
His) = Z(s) Zys) | His) =Y 0 Y, (s)
[T

(a) (b}

Fig. 9.2.3 Realization corresponding to the removal of a pole at s = 0.
Example 9.2.2. Cauer’s Second Form Realization. Consider the same

function considered in Example 9.2.1, and remove from it a pole at the
origin. That is,

A+ Dis* +3) 3
R e R 9.2.5)
where
s(2s* + 3)

2= "0
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Since 1/Z(s) has a pole at s = 0, the pole is removed. Thus

1 5242 _2+Y(s)
Zi(s) 525 +5) 55 2 )
where S
3
358
Yals) = 452 5+ 1

Next, the pole at s = 0 is removed from 1/Y,(s). That is,
125 N 1
Yy(s)  3s ' (6/125s)

These successive processes carried out are the synthetic division process in
ascending order. We therefore have

3 1
Z(s) = 5 + 3 A 1 (9.2.6)
| 5525 1
1/Cys ! 3 + 6
VL 1255
1/C2S i/
1/L,s

and the corresponding network realization is,given in Fig. 9.2.4, where the
units for the element values are farads and henrys.

Fig. 9.2.4  Cauer’s second form realization of Z(s) of (9.2.2).

(C) Removal of imaginary poles. Ifa positive-real function H(s) has poles
on the imaginary axis, say polesat s = + Joy, it can be generally of the form

P(s) K, K,
H(s) = = + — + H (s 9.2.7
) (5% + 0DQ\s) s —jo, s + jo, s 627)
where K, and K, are residues of the polesats = jw, ands = —jw,, respec-

- tively, and H(s) is the remainder.
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Since H(s) is a positive-real function, both K| and K, are real and positive
and K, = K,. We therefore rewrite (9.2.7) as

H(s) = 2fs L+ Hy(s) 9.2.8)

where K, = K, = K. Here, the remainder H,(s) is again positive-real for
the reasons parallel to those used previously. Then the network configuration
representing (9.2.8) is given in Fig. 9.2.5.

RS

2K
—i

O [,
L 2n
LI @,
2K H,(s) = 1 Hi(s' =
His) = Zts) <° Z,(s) His) = v T Yyis)
[0 —
(ah v h

Fig. 9.2.5 Network representation for imaginary poles removed.

Example 9.2.3. Foster Realization Techniques. Consider the driving-
point impedance Z(s) given by (9.2.9a):

D+
We first remove the pole at infinity and then remove the poles at s = + /2.
Thus

(15/4)s
VA .
(s) = 24t 4s (9.2.9h)
4
15
1 500
o_m\_..
1L
It
15 ~. 4
Z_(:) 16 T°
O

Fig. 9.2.6 Foster’s first form realization of Z(s) of (9.2.9a).
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and the corresponding network representation is shown in Fig. 9.2.6; this
configuration is called Foster’s first form.

If we realize the same Z(s) on admittance basis, we obtain

S L st 38 (5/8)
T e e T 1 ey 0210

resulting in a so-called F. oster’s second form realization as shown in Fig. 9.2.7.

fo °

Wi

E
5

Zis)
5
o T T 72

Fig. 9.2.7 Foster’s second form realization of Z(s) given by (9.2.9a).

0l

(D) Removal of a constant. Since the real part of a positive-real function
H(s) never becomes negative as long as the real part of s is nonnegative, a
typical characteristic of Re H(; ) may take a form as the one shown in
Fig. 9.2.8. Then it is clear that the smallest value of the real part which
appens to be at o = @, can be subtracted from H(s) without destroying
ts positive-real characteristic. Thus the remainder A, (s) given by

Hy(s) = H(s) — R, (9.2.11)

still positive-real. This is one of the most fundamental processes in network
ynthesis techniques.

Re[H(ju] |

—> )

Fig. 9.2.8 Typical characteristic of the real part of a positive-real function.
Example 9.2.4. Consider a positive-real function H(s) given by

Hes) = ©F Dis +3)

1D (9.2.12)
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First remove the pole at s = 0, resulting in

‘ 3
H(s) = 5.+ Hy()
where

2s + 5
H1(5)=m

If we find the smallest value of Re H(j), it turns out to occur atw = 0. We
therefore know that the smallest value of Re[1/H,(jw)] occurs at @ = 0.

Actually,

. 1 4
mmRe[m]—s atw =0

Thus we have

3 1
HG) = 5+ @75) + Yy0s)

where
2s
L0 = 505 +75)
Since 1/Y,(s) has a pole at the origin, it can be removed again. Therefore we
have -

3 1
5T 1
2s %

The corresponding network representations of (9.2.13) are given in Fig.
9.2.9, where the first considers H(s) as an impedance and the other treats it

as an admittance.

2 2 4
: 4

o——| S w/\;\f

o 2 s — AL 2 B
H(s) = Z(s ¢ His'=Y(s) = s
O (o
(a: (h)

Fig. 9.2.9 Realizations of H(s) of (9.2.12).
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There is a large class of positive-real functions to which none of these

removal processes is directly applicable. However, these will be considered
elsewhere.

9.3 ANALYTICAL PROPERTIES OF TWO-PORT FUNCTIONS

Through Chapters 5 and 8, and the first section of this chapter, the fol-
lowing properties have been established for z-parameters of an RLCM
tWo-port.

(1) z;,(s) and z,,(s) are driving-point impedances: thus they are positive-

real functions.

(2) z,,(5) and z,,(s) are real function of s (that is, all the coefficients are

real), but are not generally positive-real.

(3) The real parts of the parameters are related by riryy — 12, 20,

where r; is the real part of zi{shand ry, = r,,, for Re s > 0.

Note that the same are true for y-parameters. These results are, however,
insufficient for us to develop a systematic realization procedure for two-port
networks. We shall therefore derive some more in this section.

Let us assume that Z(s), z, (s). 212(5), and z,,(s), have a simple pole at
s = jw,. Therefore we write

| Z(s) = Z'(s) + :

~ S = Jw;

k

§ 2y4(s) = 2 ,(s) + 11.

| s — jo,

| ks o (9.3.1)

| 255(5) = Zyy(s) + 22

: S = Jwy;

z

: k

: Z1ads) = 20,(s) + ‘slz.
s — jw,

where each parameter with the prime superscript denotes the remainder of
the parameter after the pole is removed. Since Z(s), z;,(s), and z,,(s) are
positive-real functions, the residues k. kyy,and k,, are real and positive. It

is then clear that, in the close vicinity of this pole, each parameter can be
approximated by

Z(S)'s = joi ~

(9.3.2q)

1%

Zy 1(S)fs—>jw.'




