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Preface

For many years, network theory has been one of the more mathematically
developed of the electrical engineering fields. In more recent times, it has
shared this distinction with fields such as control theory and communication
systems theory, and is now viewed, together with these fields, as a sub-
discipline of modern system theory. However, one of the key concepts of
modern system theory, the notion of state, has received very little attention
in neiwork synihesis, while in network analysis the emphasis has come only
in recent times. The aim of this book is to counieract what is seen o be an
unfortunate situation, by embedding network theory, both analysis and
‘synthesis, squarely within the framework of modern system theory. This is
done by emphasizing the state-variable approach to analysis and synthesis.

Aside from the fact that there is 2 gap in the literature, we see several
important reasons justifying presentation of the maierial found in this book.
First, in solving network problems with a computer, experience has shown
that very frequently programs based on state-variable methods can be more
casily written and used than programs based on, for example, Laplace trans-
form methods. Second, the state concept is one that emphasizes the internal
structure of a system. As such, it is the obvious tool for solving a problem
such as finding all networks synthesizing a prescribed impedance; this and
many other problems of internal structure are beyond the power of classical
network theory. Third, the state-space description of passivity, dealt with
at some length in this book, applies in such diverse areas as Popov stability,
inverse optimal control problems, sensttivity reduction in control systems,



and Kalman-Bucy or Wiener filtering (a topic of such rich application surely
deserves treatment within a textbook framework). Fourth, the graduate
major in systems science is better served by a common approach to different
disciplines of systems science than by a multiplicity of different approaches
with no common ground; a move injecting the state variable into network
analysis and synthesis is therefore as welcome from the pedagogical view-
point as recent moves which have injected state variables into communica-
tions systems.

The book has been written with a greater emphasis on passive than on
active networks. This is in part a reflection of the authors’ personal interests,
and in part a reflection of their view that passive system theory is a topic
about which no graduate systems major should be ignorant. Nevertheless,
the inclusion of starred material which can be omitted with no loss of con-
tinuity offers the instructor a great deal of freedom in setting the emphasis
in a course based on the book. A course could, if the instructor desires,
de-emphasize the networks aspect to a great degree, and concentrate mostly
on general systems theory, including the theory of passive systems. Again,
a course could emphasize the active nctworks aspect by excluding much
matenal on passwe network synthesis.

"~ The book is aimed at the first year graduate student, though it could
certainly be used in a class containing advanced undergraduates, or later
year graduate students. The background required is an introductory course
on linear systems, the usual elementary undergraduate networks material,
and ability to handle matrices. Proceeding at a fair pace, the entire book
‘could be completed .in a semester, while omission of starred material would
allow a more leisurely coverage in a semester. In & course of two quarters
Iength the book could be comfortably completed, while in one quarter,
particularly with students of strong backgrounds, a _]lldICIOUS selection of
material could build a umﬁed course.
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Part |

- INTRODUCTION

What is the modern system theory approach to network aralysis
and synthesis? In this part we begin answering this question.



Introduction

1.1  ANALYSIS AND SYNTHESIS.

Two complementary functions of the engineer are analysis and
synthesis, In analysis problems, one is usually given a description of a physical
system, i.e.,  statement of what its components are, how they are assembled,
and what the laws of physics are that govern the behavior of each component,
One is generally required to perform some computations to predict the
behavior of the system, such as predicting its response to a prescribed input.
The synthesis problem is the reverse of this. One is generally told of a behav-
ioral characteristic that a system should have, and asked to devise a system
with this prescribed behavioral characteristic.

In this book we shall be conicerned with nerwork analysis and synthesis.
More precisely, the networks will be electrical networks, which always will
be assumed to be (1) linear, (2) time invariant, and (3) comprised of a finite
number of lTumped elements. Usualily, the networks will also be assumed to
be passive. We presume the reader knows what it means for a network to
be linear and time invariant. In Chapter 2 we shall define more precisely
- the allowed element classes and the notion of passivity.

‘In the context of this book the analysis problem becomes one of knowing the
set of elements comprising a network, the way they are interconnected, the set
of initial conditions associated with ‘the energy storage elements, and the
set of excitations provided by externally connecied voltage and current
generators. The problem is to find the response of the network, i.c., the

3



4 INTRODUCTION CHAP. 1

resultant set of voltages and currents associated with the elements of the
network.,

In contrast, tackling the synthesis problem requires us to start with a
statement of what responses should result from what excitations, and we
are required to determine a network, or a set of network elements and a
scheme for their interconnection, that will provide the desired excitation-
response characteristic. Naturalty, we shall state both the synthesis problem
and the analysis problem in more explicit terms at the appropriate time;
the reader should regard the above explanations as being rough but tempo-
rarily satisfactory.

1.2 CLASSICAL AND MODERN APPROACHES

Control and network theory have historically been closely linked,
because the methods used to study problems in both fields have often been
very similar, or identical. Recent developments in control theory have, how-
ever, tended to outpace those in network theory. The magaitude and impor-
tance of the developments in control theory have even led to the attachment
of the labels “classical” and “modern” to large bodies of knowledge within
the discipline. It is the development of network theory paralleling modern
control theory that has been lacking, and it is with such network theory that
this book is concerned.

The distinction between modem and classical control theory is at points
blurred. Yet while the dividing line cannot be accurately drawn, it would
be reasonable to say that frequency-domain, including Laplace-transform,
‘methods belong to classical control theory, while state-space methods belong
to modern control theory. Given this division within the field of control,
it seems reasonable to translate it to the field of network theory. Classical
network theory therefore will be deemed to include frequency-domain -
methods, and modern network theory to include state-space methods.

In this book we aim to emphasize application of the notions of state, and
system description via state-variable equations, to the study of networks. In
so doing, we shall consider problems of both analysis and synthesis.

" Asg already noted, modern theory looks at state-space descriptions while
“classical. theory tends to look at Laplace-transform descriptions. What are
the consequences of this difference ? They are numerous; some are as follows.

- First and foremost, the state-variable description of a network or system
emphasizes the internal structure of that system, as well as its input-output -
performance. This is in contrast to the Laplace-transform description of
a network or system involving transfer functions and the like, which empha-
sizes the input—output performance alone. The internal structure of a network
must be considered in dealing with a npumber of imporfant questions. For
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example, minimizing the number of reactive elements in a network synthe-
sizing a prescribed excitation-response pair is a problem involving examina-
tion of the details of the internal structure of the network, Other pertinent
examples include minimizing the total resistance of a network, examining
the effect of nonzero initial conditions of energy storage or reactive elements
on the externally observable behavior of the network, and examining the
sensitivity of the externally. observable behavior of the circuit to variations
in the component values. It would be quite illogical to attempt to solve all
‘these problems with the tools of classical network theory (though to be sure
some progress could be made on some of them). It would, on the other hand,
be natural to study these problems w1th the aid of modern network theory
and the state-variable approach.

Some othér important ‘differences between the class:cal and modern
approaches can be quickly summarized:

1. The classical approach to synthesis usually relies on the application of
ingeniously contrived algerithms to achieve syntheses, with the number
_of variations on the basic synthesis structures often being severely
circumscribed. The modern approach to synthesis, on the other hand,
usually relies on solution, without the aid of too many tricks or clever
technical artifices, of a well-motivated and easily formulated problem.
At the same time, the modern approach frequently allows the straight-
-forward generation of an infinity of solutions to the synthesis problem.
2. The modern approach to network aralysis is ideally suited to imple-
mentation on a digital computer. Time-domain integration of state-
space differential equations is generally more easily achieved than
operations involving computation of Laplace transforms and inverse
. Laplace transforms,

3. The modern approach emphasizes the algebraic content of network
descriptions and the solution of synthesis problems by matrix algebra.
The classical approach is more concerned with using the tools of
complex variable analysis.

The modern approach is not better than the classical approach in every
"~ way. For example, it can be argued that the intuvitional pictures provided
- by Bode diagrams and pole-zero diagrams in the classical approach tend to
be lost in the modern approach. Some, however, would challenge this argu-
ment on the grounds that the modern approach subsumes the clagsical
approach. The modern approach too has yet to iive up to all its promise,
Above we listed problems to which the modern approach could jogically
" be applied; some of these problems have yet to be solved. Accordingly, at
this stage of development of the modern system theory approach to network
- analysis and synthesis, we befieve the classical and modern approaches are
- best seen as being complementary. The fact that this book contains so ittle
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of the classical approach may then be queried; but the answer to this query
is provided by the extensive array of books on network analysis and synthe-
sis, €.g., [1~4], which, at least in the case of the synthesis books, are heavily
committed to presenting the classical approach, sometimes to the exclusion
of the modern approach.

The classical approach to network analysis and synthesis has been devel-
oped for many years. Virtually all the analysis problems have been solved,
and a falling off in research on synthesis problems suggests that the majority -

-of those synthesis problems that are solvable may have been solved. Much
of practical benefit has been forthcoming, but there do remain practical
problems that have yet to succumb. As we noted above, the moedern approach
has not yet solved all the problems that it might be expected to solve; par-
ticularly is it the case that it has solved few practical problems, although in
isolated cases, as in the case of active synthesis discussed in Chapter 13, there
have been spectacular results. We attribute the present lack of other tangible
results to the fact that relatively little reseaich has been devoted to the

_ maodern approach; compared with modern control theory, modern network

theory is in its infancy, or, at latest, its early adolescence. We must wait to
see the payoffs that maturity will bring. '

1.3 OUTLUNE OF THE BOOK

Besides the introductory Part 1, the book falls into five parts.

Part 11 is aimed at providing background in two areas, the first being m-port
networks and means for describing them, and the second being state-space
equations and their relation with transfer-function matrices. In Chapter 2,
which discusses m-port networks, we deal with classes of circuit elements,
‘such network properties as passivity, losslessness, and reciprocity, the immit-
tance, hybrid and scaftering-matrix descriptions of a network, as well as sorme
important network interconnections. In Chapter 3 we discuss the description
of lumped systems by state-space equations, solution of state-space equations,
‘such properties as controllability, observability, and stability, and the refa-
. tion of state descriptions to transfer-function-matrix descriptions.

Pari- I, consisting of one long chapter, discusses network analysis via
state-space precedures. We discuss three procedures for analysis of passive
networks, of increasing -degree of complexity and generality, as well as
analysis of active networks. This material is presented without significant
" use of network topology.

- Part 1V is concerned with translating into state-space terms the notions
of passivity and reciprocity. Chapter 5 discusses a basic result of modern
system theory, which we term the positive real lemma. It is of fundamental
importance in areas such as nonlinear system stability and optimatl contrel,
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as well as in network theory; Chapter 6 is concerned with developing pro-
cedures for solving equations that appear in the positive real lemma. Chapter
7 covers two matters; one is the bounded real lemma, a first cousin to the
positive real lemma, and the other is the state-space description of the
reciprocity property, first introduced in Chapter 2.

Part V is concerned with passive network synthesis and relies heavily on
the positive real lemma material of Part IV. Chapter 8 introduces the geperal
approaches to synthesis and disposes of some essential preliminaries.
Chapters 9 and 10 cover impedance synthesis and reciprocal impedance
synthesis, respectively, Chapter 11 deals with scattering-matrix synthesis,
and Chapter 12 with transfer-function synthesis.

Part VI comprises one chapter and deals with active RC synthesis, i.e.,
synthesis using active elements, resistors, and capacitors. As with the earlier
part of the book, state-space methods alone are considered.

REFERENCES

[1] H. J. CArRLIN and A, B. GiorRDANO, Netwark Theory, Prentice-Hall, Englewood
Cliffs, N.J., 1964,

[2] R. W. Newcowms, Linear Multiport Synthesis, McGraw-Hill, New York, 1966,

{31 L. A. WEINBERG, Network Analysis and Synthesis, McGraw-Hill, New York,
1962,

[4]1 M. R. WouLERS, Lymped and D:smbuted Passive Netwarks, Academic Press
New York, 1969. )



Part I

BACKGROUND INFORMATION—
'NETWORKS AND
STATE-SPACE EQUATIONS

In this part our main concern is to lay grosndwork for the real
meat of the book, which occurs in later parts. In particular, we
introduce the notion of multiport networks, and we review the
notion of state-space equations and their connection with
transfer-function matrices, Almost certainly, the reader will have
had exposure to many of the concepts touched upon in this
part, and, accordingly, the material is presented in a reasonably
terse fashion,



m-Port Networks and
their Port Descriptions

2.1 INTRODUCTION

The main aim of this chapter is to define what is meant by a
network and especially to define the subclass of networks that we shall be
inferested in from the viewpoint of synthesis. This requires us to list the
the types of permitted circuit elements that can appear in the networks of
interest, and to note the existence of various network descnpttons principally
port descriptions by transfer-function matrices.

We shall define the important notions of passivity, losslessness, and reci-
procity for circuit elements and for networks. At the same time, we shall
refate these notions to properties of port descriptions of networks.

‘Section 2.2 of the chapter is devoted-to giving basic definitions of such
‘notions as m-port networks, circuit elements, sources, passivity, and loss-
lessness. An axiomatic introduction to these concepts may be found in [1].
Section 2.3 states Tellegen's theorem, which proves a useful device in inter-
preting what effect constraints on circuit elements (such as passivity and,
_later, reciprocity) have on the behavior of the network as observed at the
ports of the network. This material can be found in various fexts, e.g., [2, 3].
In Section 2.4 we consider various port descriptions of networks using
transfer-function matrices, and we exhibit various interrelations among
‘them where applicable. Next, some commonly encountered mcthods of
connecting networks fo form a more complex network are discussed in
Section 2.5. In Sections 2.6 and 2.7 we introduce the. definitions of the

11



12 m-PORT NETWORKS AND THEIR PCRT DESCRIPTIONS CHAP. 2

bounded real and positive real properties of transfer-function matrices, and
we relate these properties to port descriptions of networks. Specializations of
the bounded real and positive real propertics are discussed, viz., the Jossless
bounded real and lossless positive real properties, and the subclass of networks
whose transfer-function matrices have these properties is stated. In Section 2.8
we define the notion of reciprocity and consider the property possessed by
port descriptions of a network when the network is composed entirely of
reciprocal circuit elements. Much of the material from Section 2.4 on will
be found in one of [1-3].

We might summarize what we plan to do in this chapter in two statements:

1. We shall offer various port descriptions of a network as alfernatives to
a network description consisting of a list of elements and a scheme for
interconnecting the elements.

2. We shall translate constraints on individual components of a neiwork
into constraints on the port descriptions of the network.

2.2 m-PORT NETWORKS AND CIRCUIT ELEMENTS

Multiport Networks

An m-port network is a physical device consisting of a collection
of circuit ¢lements or components that are connected according to some
scheme. Associated with the m-port network are access points called ter-
minals, which are paired to form poris. At each port of the network it is
possible to connect other circuit elements, the port of another network, or
some kind of exciting device, itself possessing two terminals. In peneral,
there will be a voltage across each terminai pair, and a current leaving one
terminal of the pair making up a port must equal the current entering the.
other terminal of the pair. Thus if the jth port is defined by terminals T,
and T, then for each j, two variables, v, and 7, may be assigned to represent
the voltage of T, with respect to T; and the current entering T, and leaving
T}, respectively, as illustrated in Fig. 2.2.1a. A simplified representation is
shown in Fig, 2.2.1b. Thus associated with the m-port network are two vector
functions of time, the (vector) port voltage v =[v, #,---v_J and the
. (vector) port current § = [i, {,---i_]". The physical structure of the m port
will generally constrain, often in a very general way, the two vector variables
o and 7, and conversely the constraints on v and § serve to completely describe
the externally observable behavior of the m port.

In following through the above remarks, the reader is asked to note two
important points:

1. Given a network with a list of terminals rather than ports, i is not
permissible to combine pairs of terminals and call the pairs ports unless
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FIGURE 2.2.1. Networks with Associated Ports.

under all operating conditions the current entering one terminal of
the pair equals that leaving the other terminal.

. Given a network with a list of terminals rather than ports, if one prop-

‘erly constructs ports by selecting terminal pairs and appropriately
constraining the excitations, it is quite permissible to include one
terminal in two port pairs (see Fig. 2.2.1¢ for an example of a three-
terminal network redrawn as a two-port network).
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Elements of a Network

Circuit elements of interest here are listed in Fig, 2.2.2, where
their precise definitions are given. (An additional circuit element, a general-
ization of the two-port transformer, will be defined shortly.) Interconnections
of these elements provide the networks to which we shail devote most atten-
tion. Note that each element may also be viewed as a simple network in its
own right, For example, the simple one-port network of Fig. 2.2.2a, the
resistor, is described by a voltage », a current i, and the relation v = rf, with
i or v arbitrarily chosen.

The only possibly unfamiliar element in the list of circuit elements is the

m—

+

(d) '
+ %mé +
(e
FIGURE 2.2.2. Representations and Definitions of Basic
Circuit Elements.
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gyrator. At audio frequencies the gyrator is very much an idealized sort of
component, since it may only be constructed from resistor, capacitor, and
transistor or other active components, in the sense that a two-port network
using these types of elements may be built having a performance very close
1o that of the ideal component of Fig. 2.2.2d. In contrast, at microwave fre-
quencies gyrators can be constructed that do not involve the use of active
glements (and thus of an external power supply) for their operation, (They do
however require a permanent magnetic field.)

Passive Circuit Elements

In the sequel we shall be concerned almost exclusively with circuit
elements with constant element values, and, in the case of resistor, inductor,
and capacitor components, with nonnegative element values. The class of
all such elements (including transformer and gyrator elements) will be termed
linear, Iumped time invariant, and passive. The term linear arises from the
fact that the port variables are constrained by a linear relation; the word
jumped arises because the port variables are constrained either via a memory-
less transformation or an ordinary differential equation (as opposed to a
partial differential equation or an ordinary differential equation with delay);
the term time invariant arises because the element values are constant. The
reason for use of the term passive is not quite so transparent. Passivity of
a conponent is defined as follows:

Suppaose that a component conlains no stored energy at some
arbitrary time 7,. Then the total energy delivered to the com-
ponent from any generating source connected to the component,
computed over any time interval [#,, T], is always nonnegative,

Since the instantaneous power flow into a terminal pair at time ¢ is »{()iz),
sign conventions being as in Fig. 2.2.1, passivity requires for the one—port
components shown in Fig. 2.2.2 that

&(T) = j o(t)i(t) dt > 0 | @.2.1)

for all initial times #,, all T > t,, and all possible voltage——current pairs satisfy-
ing the consiraints imposed by the component. It is easy to check (and
checking is requested in the problems) that with real constant 7, I, and ¢,
(2.2.1) is fulfilled if and only if r, I, and ¢ are nonnegative,

For a multiport cireuit element, i.c., the two-port transformer and gyrator
already defined or the multiport transformer yet to be defined, (2.2.1) is
replaced by

8(T) = fﬂ'(t)i(t) dt>0 | (2.2.2)
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Notice that v"(£)i(s), being 3] v(1)i{e), represents the instantaneous power
flow into the element, being computed by summing the power flows at each
port, :

For both the transformer and gyrator, the relation v"i = #,i, + v,i, =0
holds for ail ¢ and all possible excitations. This means that it is never possible
for there to be a net flow of power into a transformer and gyrator, and, there-
fore, that it is never possible for there to be a nonzero value of stored energy.
Hence (2.2.2) is satisfied with &(7") identically zero.

Lossless Circuit Elements

A concept related to that of passivity is losslessness. Roughly
speaking, a circuit element is lossless if it is passive and if, when a finite
amount of energy is put into the element, all the energy can be extracied again.
Mote precisely, losslessness requires passivity and, assuming zero excitation
at time ¢,, ' '

&(00) == f :v(t)z'(t) Qt=0 (2.2.32)
or, for a multiport circ_:uit élenient,

8(c0) = j °° Y(Bi() dt = 0 | (2.2.3b)
for all_compatible pairs o(-) and i(-), which are also_square integrable; i.e.,
j °° P(E)o(f) dt < oo r F)i(E) dt < oo (2.2.4)

- The gyrator and transformer are lossless for the reason that &(7) = O for all
T, as noted above, independently of the excitation. The capacitor and
inductor are also lossless—a proof is called for in the problems.

In constructing our m-port networks, we shall restrict the number of
elements to being finite. An m-port network comprised of a finite number of
linear, lumped, fime-invariant, and passive components will be called a finite,
linear, lumped, time-invariant, passive m port; unless otherwise stated, we
shall simply call such a network an m port. An m port containing only lossless
components will be called a lossless m port. ’

The Multiport Transformer

: - A generalization is now presented of the ideal two-port trans-
former, viz., the ideal multiport transformer, introduced by Belevitch [4]. 1t
will be seen later in our discussion of synthesis procedures that the muitiport
transformer indeed plays a major role in almost all synthesis methods that
we shall discuss. ‘
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Consider the (p - ¢)-port transformer N, shown in Fig. 2.2.3. Figure
2.2.3a shows a convenient symbolic representation that can frequently replace
the more detailed arrangement of Fig. 2.2.3b. In this figure are depicted
secondary currents and voltages (i), (i)« . ., (i), and (v,),, .- ., (v5), at
the ¢ secondary ports, primary currents (i), (7,),, . . -, (£),, at the p primary
ports, and one of the pnmary voltages (»,),. (The definition of the other

b
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EIGURE 2.2.3. The Multiport Ideal Transformer.
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primary voltages is clear from the ﬁgure ) The symbols tf s denote turns ratios,
and the figure is meant to depict the relations

(vl)i —_—';tﬁ-(wz)] di=1 2: .- -.,P
and '

FJ
(iz).-z “'jz;tu(ix}; i=1,2,....4
or, in matrix notation

o, =T, i,=~Ti 2.2.5

where T= [, ] is the g X p turns-ratio matrix, and v, v,, i,, and #, are vectors
representing, respectively, the primary voltage, secondary voltage, primary
current, and secondary current. The ideal multiport transformer is a lossless
circuit element (see Problem 2.2.1), and, as is reasonable, is the same as the
two-port transformer already defined if p =g = 1.

Generating Sources

Frequently, at each port of an m-port network a voltage source
or a current sonrce is connected. These are shown symbolically in Fig, 2.2.4,

{a) (b}
FIGURE 2.2.4. Independent Volitage and Current Sources,

The voltage source has the characteristic that the voltage across ifs terminals
takes on a specified value or is a specified function of time independent of
the current flowing through the source; similarly with a current source, the
current entering and leaving the source is fixed as a specified valve or speci-
fled function of time for all voltages across the source. In the sense that the
terminal voltage for a voltage source and the current entering and Jeaving
the termninal pair for a current source are invariant and are independent of
the rest of the network, these sources are termed independent sources.

if, for example, an independent voltage source ¥ is connected to a terminal
pair T, and T} of an s port, then the voltage 9, across the ith port is con-
strained to be V" or —V depending on the polarity of the source, The two
sitnations are depicted in Fig. 2.2.5.
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v ‘ m-port {a) vi=V

m- port {b) yi==V

b

FIGURE 2.25. Connection of an Independent Voltage
Source. -

In contrast, there exists another class of sources, dependent or controlied
voltage and current sources, the values of voltage or current of which depend
on one or more of the variables of the network under comsideration. Depen-

dent sources are generally found in active networks—in fact, dependent
* sources are the basic elements of active device modeling. A commonly found
example is the hybrid-pi model of a transistor in the common-emitter con-
figuration, as shown in Fig. 2.2.6. The controlled current source is made to
depend on V,.,, the voltage across terminals B and £. Basically, we may
consider four types of controlled sources: a.voltage-controlled voltage source,

Ce
___"___
Tb'b B|

B —AAA o(

+ g,

ke
To'e Ce-l-vh'e Tee Igm\’b'e
Eo— + — + + -o

FIGURE 2.2.6. The Common Emitter Hybrid—pi Model
of a Transistor. .
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a current-controlled voltape source, a voltage-controlied current source, and
a current-controlled current source.

In the usual problems we consider, we hope that if a source is connected
to a network, there will result voltages and currents in the network and at
its ports that arc well-defined functions of time. This may not always be
possible. For example, if a one-port network consists of simply a short
circuit, connection of an arbitrary voltage source at the network’s port will
not result in a well-defined current. Again, if a one-port network consists
of simply a l-henry (H) inductor, connection of a current source with the cur-
rent a nondifferentiable function of time will not lead to a well-behaved
voltage. Yet another example is provided by connecting at time 7, = —oco 2
constant current source to a 1-farad (F) capacitor; at any finite time the volt-
age will be infinite. The first sort of difficulty is so basic that one cannot avoid
it unless application of one class of sources is simply disallowed. The second
difficulty can be avoided by assuming that all excitations are suitably smooth,
while the third sort of difficulty can be avoided by assuming that a¥l excita-
tions are first applied at some finite time t,; i.e., prior to ¢, all excitations are
zero. We shall make no further explicit mention of these last two assumptions
unless required by special circumstances; they will be assumed to apply at
all times unless statements io the contrary are made.

~ Problem Show that the linear time-invariant resistor, capacitor, and inducior are
2.2.1 passive if the element values are nonnegative, and that the capacitor,
inductor, and multiport transformer are lossless. '

Problem A time-variable capacitor ¢(-) consirains its voltage and current by
o222 i{t) = (d]dc()o(e)l. What are necessary and sufficient conditions on
c{+) for the capacitor to be (1) passive, and (2} lossless?

-Problem Establish the equivalents given in Fig. 2.2.7.
2.2.3

L
£
11
1}
O
I

cy?

] 72

b
. a 2 !
bd bd = }m{

FIGURE 2.2.7. Some Equivalent Networks '
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Problem Devise a simple network employing a controlled source that simulates
2.2.4 a negative resistance {(one whose element value is negative).

Problem Figure 2.2.8a shows a one-pori device called the nullator, while Fig.

2.2.5 - . 2.2.8b depicts the norator. Show that the nullator has simultaneously
zero current and zere voltage at its terminals, and that the norator can
have arbitrary and independent current and voltage at its terminals.

i -1

HH\N‘—- o——AN—
(o) 1[ ~ (0) 1! Z
b AN A

1 i
FIGURE 2.2.8. (a) The Nullator; and (b) the Norator.

2.3 TELLEGEN'S THEOREM—PASSIVE
AND LOSSLESS NETWORKS

Passivity and Losslessness of m ports

The definitions of passivity and losslessness given in the last
section were applied to circuit elements only; in this section we shall note
the application of these definitions to m-port neiworks. We shall also intro-
duce an important theorem that will permit us to connect circuit element
properties, including passivity, with network properties.

“The definition of passivity for an m-port nétwork is straightforward.
An m-port network, assumed to be storing no energy* at time #,, is said
to be passive if

&(T) = r Y Q)ittydt >0 @30

for all ¢,, T, and all port voltage vectors #(-) and cuxrent vectors i(+) satisfying
constraints imposed by the network.

An m port is said to be active if it is not passive, while the losslessness
property is defined as follows, ) '
~ An m-port network, assumed to be storing no energy at time ¢, is said
to be lossless if it is passive and if

*A network is said to be storing no energy at time to if none of its elements is storing
energy at tirae #g.
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&(co) = j "W @ity dt =0 (2.3.2)

for all ¢, and all port voltage vectors »(-) and current vectors i(+) satisfying
constraints imposet_l by the network together with

j °° YO d <o | T i) df < oo

Intuitively, we would feel that a network all of whose circuit elements are
passive should itself be passive; likewise, a network all of whose circuit
elements are lossless should also be lossless. These intuitive feelings are
certainly correct, and as our tool to verify them we shall make use of Tel
legen’s thearem.

Tellegen’s Theorem

The theorem: is one of the most general results of all circuit theory,
as it applies to virtually any kind of iumped network. Linearity, time invari-
ance, and passivity are not required of the elements; there is, though, a
requirement that the number of elements be finite. Roughly speaking, the
reason the theorem is valid for such a large class of networks is'that it depends
on the validity of two laws applicable to all such networks——viz., Kirchhoff’s
current Iaw and Kirchhoff’s voltage law. We shall first state the theorem,
then make brief comments concerning the theorem statement, and finally
we shall prove the theorem. The statement of the theorem requires an under-
standing of the concepts of a graph of a network, and the branches, nodes,
-and loops of a graph. Kirchhoff’s current law requires that the sum of the
currents in all branches incident on any one node, with positive direction of
current entering the node, be zero. Kirchhoff’s voltage law requires that
the sum of the voltages in all branches forming a Joop, with consistent defini-
tion of signs, be zero.

Tellegen’s Thecrem. Suppose that N is a lnmped finite network
with » branches and » nodes. For the kth branch of the graph,
suppose that v, is the branch voltage under one set of operating
conditions* at any one instant of time, and /, the branch current
under any other set of operating conditions at any other instant
of time, with the sign convention for v, and /, being as shown

*By the term set of operairing conditions we mean the set of voltages and ctrrents in the
various circuit elements of the network, arising from certain source voltages and currents
and certain initial stored energies in the energy storage elements. Differént operating con-
ditions will result from different choices of these guantities. In the main theorem statement
it is not assumed that element values can be varied, though a problem does extend the
theorem to this case. '
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Branch

FIGURE 2.3.1. Reference Directions for Tellegen’s
Theorem.

in Fig, 2.3.1. Assuming the validity of the two Kirchhoff laws,
" then '

,i: Vi, =0 (2.3.3)
=1

We ask the reader to note carefully the following points.

I. The theorem assumes that the network N is representable by a graph,
with branches and nodes. Certainly, if N contains only inductor, resistor,
and capacitor elements, this Is so. But it remains so if N contains trans-
formers or gyrators; Fig. 2.3.2 shows, for example, how a transformer
can be drawn as a network containing “simple™ branches.

° * o

0

l Open-Circuit
i22niy Branch for

V{=NVy ) L

J 1 !
, Sensing v
&> 2]

o *~— o

FIGURE 2.3.2. Redrawing of a Transformer.

2. N can contain sources, controlled or independent. These are treated just
like any other element.

3. Most importantly, », and i, are not necessarily determined under the
same set of operating conditions—though they may be.

Proof. We can suppose, without loss of generality, that between
“every pair of nodes of the graph of ¥ there is one and only one
branch. For if there is no branch, we can introduce one on the
understanding that under ail operating conditions there will be
zero current through it, and if there is more than one branch,
we ¢an replace this by a single branch with the current under
any operating condition equal to the sum of the currents through
the separate branches. ' -
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Denote the node voltage of the ath node by V,, and the current
from node & to node f by I, If the kth branch connecis node
# to node §, then

=V, -V

relates the branch voltage with the node voltages under one set
of operating conditions, and

=1,

-relates the branch current to the current flowing from node & to

node f under some other operating conditions (note that these
equations are consistent with the sign convention of Fig. 2.3.1).
It follows that '

Ol = (Vo — V)l
= (Vp - Vz)Iﬂu )
_ = %[(Vu — Vﬂ}Izﬁ + (Vp - Vu)Iﬁu]
Note that for every node pair &, £ there will be one and only
one branch & such that the above equation holds and, conversely,
for every branch & there will be one and only one node pair ¢, §
such that the equation holds. This means that if we sum the left

side over all branches, we should sum the right side over all pos-
sible node pairs; i.e.,

;;blykik = E %[(Vz - V,ﬂ'-)laﬁ + (Vp —_ Vz)Iﬁ'u]

all pairs
of nodes

=3 ?;l g'[(l”, — V]

{Why is the right-hand side not twice the quantity shown ?) Now
we have

Ert=1 Br(Er) -1 Er(E )

For fixed &, 373, 1, is the sum of all currents leaving node a.
It is therefore zero. Likewise, >.7_, J,, = 0. Thus

ki::l”kikzo VVV#

*The symbol ¥V V V will denote the end of the proof of a theorem or femma.
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The reader may wonder where the Kirchhoff voltage law was used in the
above proof; actually, there was a use, albeit a very minor one. In setting
2, =V, — V;, where branch k connects nodes & and f, we were making
use of a very elementary form of the law.

Example Just to convince the reader that the theorem really does work, we shall
2.3.1 consider a very simple example, illustrated in Fig. 2.3.3. A circuit is

_ ) —
30 3 so@ 33
- 2
| (b)

{c)

FIGURE 2.3.3. Examplie of Tellegen’s Theorem.

shown under two conditions of excitation in Fig. 2.3.3a and b, with its
-branches and reference directions for current in Fig, 2,3.3¢c. The reference
directions for voltage are aufomatically determined.

For the arrangement of Fig. 2.3.3a and b

V, =30 I, =—4o VI, = —1200

Vo=10 L= 20 Vil = 200

V3 = 20 Ig = 20 V:,Ig = 400

Ve=30 IL,= 20 Vi = 600
2 Vka =

a
Passive Networks and Passive Circuit Elements

Tellegen’s theorem vyields a very simple proof of the fact that a
finite number of passive elements when interconnected yields a passive
network, (Recall that the term passive has been used hitherto in two inde-
pendent contexts; we can now justify this double use.) Consider a network
N, comprising an m port N, with m sources at each port (see Fig. 2.3.4).
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Whether the sources are current or voltage sources is irrelevant. We shall
argue that if the elements of &, are passive, then N, itself is passive. Let us
number the branches of ¥, from 1 to k, with the sources being numbered as
branches 1 through m. Voltage and current reference directions are chosen
for the sources as shown in Fig. 2.3.4, and for the remaining branch elements

[e = — m e — -~ —— 1
1 1
I . ]
| H_. 1
[ i P
i Source vy I
1 - t
1 . k
I 2 i
I - oy | N
i . / 2
; . '
X « | m-port '
¢ * N :
1 [ ]
- i
! e |
t e [
i - |
i 1
¥ 1
| 1
Lo e e = ——r e e — — - —— - l

FIGURE 2.3.4. Passivity of N; is Related to Passivity of
Elements of N,. :

of N,, i.e., for the branch.elements of ¥,, in accordance with the usual con-
vention required for application of Tellegen’s theorem. (Note that the sign
convention for the source currents and voltages differs from that required for
application of Tellegen’s theorem, but agrees with that adopted for port volt-
ages and currents.)

Tellegen's theorem now yields that

"ig v ()il + 3 v =0

k
WAL
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m k
or ' _ j; T)J,-(t) i_{(t) = J,.%l 'v_f{t) i,-(t)
Taking into account the sign conventions, we see that the left side represents
the instantanecus power flow into N, at time ¢ through its ports, while
»{0)i ) for each branch of N represents the instantaneous power flow into
that branch. Thus with » the port voltage vector and i the port current vector

&

vi= 3 v

FLCT
and

f T idt>0 (2.3.4)
]

by the passivity of the s-port circuit elements, provided these elements are
all storing no energy at fime ¢,. Equation (2.3.4) of course holds for all such
t,, all T, and all possible excitations of the m port; it is the equation that
defines the passivity of the m port,
In a similar fashion to the above argument, one can argue that an m port
consisting entirely of lossless circuit elements is lossless. (Nore: The word
-Jossless has hitherto been applied to two different entities, circuit elements
and m ports.) There is a minor technical difficulty in the argument however;
this is to show that if the port voltage » and current ; are square integrable,
the same is true of each branch voliage and current.* We shall not pursue
this matter further at-this point, but shall accept that the two uses of the
word lossless can be satisfactorily tied together.

Problem Consider an m-port network driven by s independent sinusoidal sources,
2.31 - Describe each branch voltage and current by a phasor, a complex number
: with. amplitude equal to 1/,/2 times the amplitude of the sinc wave
_variation of the quantity, and with phase egual io the phase, relative to
. & reference phase, of the sine wave. Then for branch &, ¥, I represents
the complex power flowing into the branch. Show that the sum of the
complex powers delivered by the sources to the m pott is equal to the sum

of the complex powers received by all branches of the network.

Problem Let &), and N, be two networks with the same graph, In each network

23.2 choose reference directions for the voltage and current of each branch
in the same way. Let o and i; be the voltage and current in branch &
of network § for i = 1, 2, and assume that the two Kirchhoff laws are
valid. Show that

g Vpyfps = % Vg = 0

*Actually, the time invariance of the circuit elements is needed to prove this point, and
counterexamples can be found if the circuit elements are permitted to be time varying.

* This means that interconnections of lossiess time-varying elements need not be lossiess
{141, . . - _
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2.4 IMPEDANCE, ADMITTANGCE, HYBRID.
" AND SCATTERING DESCRIPTIONS
OF A NETWORK

_ Since the m-pori networks under congideration are time invariant,

they may be described in the frequency domain—a standard technique used

in all classical network theory. Thus instead of working in terms of the

vector functions of time o(+) and i(.), the Laplace transforms of these quanti-

ties, V(s) and J(5), may be used, the elernents of V{(s) and I(5) being functions
of the complex variable s = ¢ + jew.

impedance and Admiitance Descriptions

Now suppose that for a certain m port it is possible to connect
arbitrary cutrent sources at each of the ports and obtain a well-defined volt-
age response at each port. (This will not always be the case of course—for
example, a one-port consisting simply of an open circuit does not have the
property that an arbitrary current source can be applied to it.) In case con-

“nection of arbitrary current sources is possible, we can conceive of the port
current vector K{s) as being an independent variable, and the port voltage
vector V{s) as a dependent variable. Then network analysis provides proce-
dures for determining an m X m matrix Z(s) = [z, (s)] that maps I(s) into
V{(s) through

V(s) = Z()K(s) (2.A4.1)

{Subsequently, we shall investigate procedures using state-space egquations
“for the determination of Z(s).] We call Z(.) the impedance mairix of N, and
say that N possesses an impedance description, Conversely, if it is possible
‘to take ¥(s) as the independent variable, i.e., if there exists a well-defined set
_of port currents for an arbitrary selection of port veltages, N possesses an
~ admittance description, and there exists an admittance matrix ¥(s) relating
I(s) and V{(s) by

I(s) = Y(s)F(s) 2.4.2)

As elementary network analysis shows, and as we shall see subsequently in
discussing the analysis of networks via state-space ideas, the impedance and
admitiance matrices of z ports (if they exist) are m X a1 matrices of real
rational functions of 5. If both ¥{(s) and Z(s) exist, then Y(s)Z(s) = I, as is
clear from (2.4.1) and (2.4.2). The term immittance matrix is often used to
denote ecither an impedance or an admittance matrix. Physically, the (i, j)
element z, (s) of Z(s) represents the Laplace transform of the voltage appear-
ing at the ith port when a unit impulse of current is applied at port j, with
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all other ports open circuited to make I,(s) =0, k ¢ J. A dual mterpretatlon
can be made for y,(s).

Hybrid Descriptions

There are situations when one or both of Z(s) and ¥{s) do not
exist. This means that one cannot, under these circumstances, choose the
cxcitations to be all independent voltages or all independent currents. For
example, an open circuit possesses no impedance matrix, but does possess
an admittance matrix—a scalar Y(s) = 0, Conversely, the short circuit
possesses no admittance matrix, but does possess an impedance matrix. As
shown in Example 2.4.1, a simple two-port transformer posscsses neither an
impedance matrix nor an admittance matrix. But for any m port, it can be
shown [3, 6] that there always exists at least one set of independent excitations,
described by U(s), where u{s) may be the ith port voltage or the ith port current,
such that the corresponding responses are well defined. Of course, it is under-
stood that the network consists of only a finite number of passive, linear,
time-invariant resistors, inductors, capacitors, transformers, and gyrators.
With r(s) denoting the ith port current when u{s) denotes the #th port
voltage, or conversely, there eXists a matrix H(s) = [A,(s)] such that

R(s) = H(s}U(s) 24.3)

Such a matrix H(s) is calied a hybrid matrix, and its clements are again
rational fuctions in s with real coefficients. It is intuitively clear that a net-
work in general may possess several alternative hybrid matrices; however,
any one describes completely ‘the extemally observable bchavior of the
network.

Example Consider the two-port transformer of Fig. 2.2.2e. By inspection of its
2.4.1 defining equations

v = T?)z (2'4'43')
1.1 == “"Tflj . (2.4.4]3)

we can see immediately that the port currents #; and i, cannot be chosen
independently. Here, according to (2.4.4b), the admissible currents are
those for which iy = —77;. Consequently, the iransformer does not
possess an impedance-matrix description, Similarly, by looking at {2.4.4a),
we see that it does not possess an admittance-matrix description. These
conclusions may alternatively be deduced on rewriting (2.4.4) in the fre-
quency domain as

b Tollbiol-lr il e
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from which it is clear that an equation of the form of (2.4.1) or (2.4.2)
cannot be obtained.

However, the two-port transformer has a hybrid-matrix description,
as may be seen by rearranging (2.4.5) in the form

V,(s)] _ [ 0 T:I [ Il(s)]
[Iz(s) ~T 0J1LVas) (246)
Scattering Descriptions

Another port description of networks commonly used in network
theory is the scattering matrix S(s). In the field of microwave systems,
scattering matrices actually provide the most natural and convenient way of
describing networks, which usually consist of distribured as well as Jumped
elements.* o
. To define S(s) for an m port N, consider the augmented m-port network
of Fig. 2.4.1, formed from the originally given m port N by adding unit

r——— == =_—_-_,_-,,--m h

1 |

t I |

| A m | R—
- 2'%2% - !
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1 _ !

- - 1

| 1

1 1
T T J S — -1

FIGURE 2.4.1. The Augmented m-Port Network.

resistors in series with each of its m ports,t We may excite the augmented
network with voltage sources designated by e. It is straightforward to deduce
from Fig. 2.4.1 that these sources are related to the original port voltage and
current of &V via

e(t) = o(t} + i)

We shall suppose for the moment that e(-) can be arbitrary, and any response
of interest is well defined. Now the most obvious physical response to the
voltage sources [¢]] is the currents flowing through these sources, which are

*A well-known example of a distributed ¢lement is a transmission line,

+In this figure the symbol [, denotes the 77 X m unit matrix. Whether I denotes a
current in the Laplace-transform domain or the unit matrix should be quite clear from the
context. - :
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the entrics of the port current vector /. But since
e—{w—iYy=2

from the mathematical point of view we may as well use » — { instead as
the response vector. So for N we can think mathematically of » 4 i as the
‘excitation vector and v — i as the response vector, with the understanding
that physically this excitation may be applied by identifying ¢ in Fig, 2.4.1
with v + fand taking e — 2i as the response. Actually, excitation and response
vectors of (» + i) and §(v --i) are more commonly adopted, these two
quantities often being termed the incident voltage +f and reflected voltage v-.
Then, with the following definition in the frequency domain,

Wi =Vyl=E W=V-—I 4.7

we define the scattering matrix S(¢) = [s,/(s)l, an m X m matrix of real
rational functions of s, such that

Vis) = SEW(s) 2.4.8)

The matrix S(s) so defined is sometimes called the normalized scattering
matrix, since the augmenting resistances are of unit value.

Example Consider once again the two-port fransformer in Fig. 2.2.2¢; it is simple
2.4,2 to calculate its scattering matrix using (2.4.7) and (2.4.8); the end result is

T2 —1 2T
T¥7: 15712
s=|*7 + (2.4.9)

2r )} Iz
7 Ty

The above example also illustrates an important result in network theory
that although an immittance-matrix description may not necessarily exist for
an m-port network, a scattering-matrix description does always exist [6].
(A sketch of the proof will be given shortly.) For this reason, scaitering
matrices are often preferred in theoretical work.

Since it is sometimes necessary to convert from S to ¥ or Z, or vice versa,
~ interrelations between these matrices are of interest and are summarized in
Table 2.4.1. Of course, ¥ or Z may not exist, but if they do, the table gives
the correct formula. Problem 2.4.1 asks for the derivation of this table.

Table 2.4.1
SUMMARY OF MATRIX INTERRELATIONS

S = S =YX+ ¥yt (Z -1z +1Iy!
- - SYI + 8y Y Z-1
Z == (I + S)] — 8)t Y-t z
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Establish, in accordance with the definitions of the impedance, admit-
tance, and scattering matrices, the formulas of Table 2.4.1.

In defining the normalized scattering matrix S, the augmented network,
Fig. 2.4.1, is used when the reference terminations of ¥ are 1-ohm ()
resistors connected in series with N. Consider the general situation of
Fig. 2.4.2, in which a resistive network of symmetric impedance matrix

R
- VAYAYS

+
< 49

[ N}

[ ]

FIGURE 2.4.2. An m-port Network with Resistive Net-
work Termination of Symmetric Impedance Matrix R,

R is connected in series with &. By analogy with (2.4.7) and (2.4.8), we
define incident and refiected voltages with reference to R by

2Ve=V+RI=E;
2Vi =¥ — RI

and the scatrering maitrix with the reference R, Sz, by
Vi = SgVh

Express Sk in terms of S. Hence show that if R = £, then Sz = S.

Find the scattering matrix (actually a scalar) of the resistor, inductor,
and capacitor. :

Evaluate the scattering matrix of the multiport transformer and check
that it is symmetric. Specialize the result to the case in which the turns-
ratio matrix T is square and orthogonal—defining the orthogonal trans-
Jormer.

Find the impedance, admittance, and scattering matrices of the gyrator.
Observe that they are not symmetric,

This problem relates the scattering matrix to the augmented admittance
matrix of a network. Consider the m-port network defined by the dotted
lines on Fig. 2.4.1. Show that it has an admittance matrix Y, (the aug-
mented admittance matrix of N) if and only if N possesses a scattering
malrix S, and that

S=I-2Y,
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2.5 NETWORK INTERCONNECTIONS

In this section we consider some simple interconnections of
networks. The most frequently encountered forms of inferconnection are the
series, parallel, and cascade-load coanections.

Series and Parallel Connections

Consider the arrangement of Fig. 2.5.1 in which two m ports N,
and N, are connected in series; i.e., the terminal (7)), of the jth port of N,

¢

___5...._
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|
!
J
|
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%%

FIGURE 2.5.1. Series Connection.

is connected in series with the terminal (T'), of the jth port of N,, and the
remaining terminals (7)), and (T7), are paired as new port terrainals. Since
the port currents of N, and N, are constrained to be the same and the port
voltages to add, the series connection has an impedance matrix

Z=2,+2Z, C(250)

~ where Z, and Z, are the respective impedance matrices of N, and N,.

It is important in drawing conclusions about the series connection (and
other connections) of two networks that, affer connection, it must remain
true that the same current enters terminal T, of N, or N, as leaves the

_associated terminal T of the network. If is possible for this arrangement to
_ be disturbed. Consider, for example, the arrangement of Fig, 2.5.2, where
two two-port networks are series connected, the connections being shown
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(b}

FIGURE 2.6.2, Series Connectioﬁs Hlustrating Nonadditiv-
ity and Additivity of Impedance Matrices.

with dotted lines. Afier connection a two port is obtained with terminal -
pairs 1-4" and 2-3'. Suppose that the second pair is left open circuit, but
a voltage is applied at the pair 1-4". It is easy to see that there will be no
current entering at terminal 2, but there will be current leaving the top
network at terminal 2’. Therefore, the impedance matrix of the interconnected
network will not be the sum of the separate impedance matrices. However,
introduction of one-to-one turns-ratio transformers, as in Fig. 2.5.2b, will
always guarantee that impedance matrices can be added. In our subsequent
~work we shall assume, without further comment on the fact, that the impe-
dance matrix of any series connection can be derived according to (2.5.1),
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with, if necessary, the validity of the equation being guaranteed by the use
of transformers.

The parallel connection of N, and N,, shown in Fig. 2.5.3, has the corre-

e mm wms e o o = e e

FIGURE 2.5.3. Parallel Connection.

sponding terminal pairs of N, and ¥, joined together to form a set of common
terminal pairs, which constitute the ports of the resulting m port. Here, since
the currents of N, and N, add and the voltages are the same, the parallel
connection has an admittance matrix

Ye ¥, 4 ¥, (2.5.2)

where ¥, and Y, are the respective admittance matrices of N, and N,.
Similar cautions apply in writing (2.5.2) as apply in writing (2.5.1).

Cascade-Load Connection

Now consider the arrangement of Fig. 2.5.4, wher;a an n port N,
cascade loads an (m -+ u) port N, to produce an m-port network N. If N,

|

3
3
=
o
=
o
=
=

FIGURE 2.5.4. Casca_de-Load Connection.
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and N_ possess impedance matrices Z, and Z,, the latter béing partmoned

like the ports of i, as
Z; — [le ZIZ}
221 Z?.Z

where Z,, is m X m and Z,, is n X n, then simple algebraic manipulation
shows that N possesses an impedance matrix Z given by

Z=2Z, —Z)(Z), + Z)7'Z,, (2.5.3)

assuming the inverse exists. (Problem 2.5.1 requests verification of this result.)

