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Preface 

. . 

For many years, network theory has beenone of the more mathematically 
developed of the electrical engineering fields. In more recent times, it has 
shared this distinction with fields such as control theory and communication 
systems theory, and is now viewed, together with these fields, as a sub- 
discipline of modem system theory. However, one of the key concepts of 
modern system theory, the notion of state, has received very little attention 
in network synthesis, while in network analysis the emphasis has come only 
in recent times. The aim of this book is to counteract what is seen to be an 
unfortunate situation, by embedding network theory, both analysis and 
synthesis, squarely within the framework of modem system theory. This is 
done by emphasizing the state-variable approach to analysis and synthesis. 

Aside from the fact that there is a gap in the literature, we see several 
important reasons justifying presentation of the materia1 found in this book. 
First, in solving network problems with a computer, experience has shown 
that very frequently programs based on state-variable methods can be more 
easily written and used than.programs based on, for example, Laplace trans- 
form methods. Second, the state concept is one that emphasizes the internal 
structure of a system. As such, it is the obvious tool for solving a problem 
such as finding all networks synthesizing a prescribed impedance; this and 
many other problems of internal structure are beyond the power of classical 
network theory. Third, the state-space description of passivity, dealt with 
at some length in this book, applies in such diverse areas as Popov stability, 
inverse optimal control problems, sensitivity reduction in controI systems, 



and Kalman-Bucy or Wiener filtering (a topic of such rich application surely 
deserves treatment within a textbook framework). Fourth, the graduate 
major in systems science is better served by a common approach to diierent 
disciplines of systems science than by a multiplicity of different approaches 
with no common ground; a move injecting the state variable into network 
analysis and synthesis is therefore as welcome from the pedagogical view- 
point as recent moves which have injected state variables into communica- 
tions systems. 

The book has been written with a greater emphasis on passive than on 
active networks. This is in part a reflection of the authors' personal interests, 
and in part a reflection of their view that passive system theory is a topic 
about which no graduate systems major should be ignorant. Nevertheless, 
the inclusion of starred material which can. be omitted with no loss of con- 
tinuity offers the instructor a great deal offreedom in setting the emphasis 
in a course based on the book. A course could, if the instructor desires, 
de-emphasize the networks aspect to a great degree, and concentrate mostly 
on general systems theory, including the theory of passive systems. Again, 
a course could emphasize the active networks aspect by excluding much 
material on passive network synthesis. 

The book is aimed at the first year graduate student, though it could 
certainly be used in a class containing advanced undergraduates, or later 
year graduate students. The background required b an introductory course 
on linear systems, the usual elementary undergraduate networks material, 
and ability to handle matrices. Proceeding at a fair pace, the entire book 
cduld be completed.in a semester, while omission of starred material wouJd 
allow a more leisurely coverage in a semester. In a course of two quarters 
]eng&: the book could be comfortably completed, while in one quarter, 
particularly with stude"&. of strong backgrounds, a judicious selection of 
material could build a unifid course: 

. . 

',; . . 
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Part I 

INTRODUCTION 

What is the modern system theory approach to network analysis 
and synthesis? In this part we begin answering this question. 



introduction 

1 .I ANALYSIS AND SYNTHESIS 

Two complementary functions of the engineer are analysis and 
synthesis. In analysis problems, one is usually given a description of a physical 
system, i.e., a statement of what its components are, how they are assembled, 
and what the laws of physics are that govern the behavior of each component. 
One is generally required to perform some computations to predict the 
behavior of the system, such as predicting its response to a prescribed input. 
The synthesis problem is the reverse of this. One is generally told of a behav- 
ioral characteristic that a system should have, and asked to devise a system 
with this prescribed behavioral characteristic. 

In this book we shall be concerned with network analysis and synthesis. 
More precisely, the networks will be electrical networks, which ahvays will 
be assumed to be (1) linear, (2) time invariant, and (3) comprised of a finite 
number of lumped elements. Usually, the networks will also be assumed to 
be passive. We presume the reader knows what it means for a network to 
be linear and time invariant. In Chapter 2 we shall define more precisely 
the allowed element classes and the notion of passivity. 

In the context of this book the analysis problem becomes one of knowing the 
set of elements comprising a network, the way they are interconnected, the set 
of initial conditions associated with the energy storage elements, and the 
set of excitations provided by externally connected voltage and current 
generators. The problem is to find the response of the network, i.e., the 

3 



4 INTRODUCTION CHAP. 1 

resultant set of voltages and currents associated with the elements of the 
network. 

In contrast, tackling the synthesis problem requires us to start with a 
statement of what responses should result from what excitations, and we 
are required to determine a network, or a set of network elements and a 
scheme for their interconnection, that will provide the desired excitation- 
response characteristic. Naturally, we shall state both the synthesis problem 
and the analysis problem in more explicit terms at the appropriate time; 
the reader should regard the above explanations as being rough, but tempo- 
rarily satisfactory. 

1.2 CLASSICAL AND MODERN APPROACHES 

Control and network theory have historically been closely linked, 
because the methods used to study problems in both fields have often been 
very similar, or identical. Recent developments in control theory have, how- 
ever, tended to outpace those in network theory. The magnitude and impor- 
tance of the developments in control theory have even led to the attachment 
of the labels "classical" and "modem" to large bodies of knowledge within 
the discipline. It is the development of network theory paralleling modern 
control theory that has been lacking, and it is with such network theory that 
this book is concerned. 

The distinction between modern and classical control theory is at points 
blurred. Yet while the dividing line cannot be accurately drawn, it would 
be reasonable to say that frequency-domain, including Laplace-transform, 
methods belong to classical control theory, while state-space methods belong 
to modern control theory. Given this division within the field of control, 
it seems reasonable to translate it to the field of network theory. Classical 
network theory therefore will be deemed to include frequency-domain 
methods, and modem network theory to include state-space methods. 

In this book we aim to emphasize application of the notions of state, and 
system description via state-variable equations, to the study of networks. In 
so doing, we shall consider problems of both analysis and synthesis. 

As already noted, modern theory looks at statespace descriptions while 
classical. theory tends to look at Laplace-transform descriptions. What are 
the consequences of this difference? They are numerous; some are as follows. 

First and foremost, the state-variable description of a network or system 
emphasizes the internal structure of that system, as well as its input-output 
performance. This is in contrast to the Laplace-transform description of 
a network or system involving transfer functions and the like, which ernpha- 
sizes the input-output performance alone. The internal structure of a network 
must be considered in dealing with a number of important questions. For  
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example, minimizing the number of reactive elements in a network synthe- 
&zing a prescribed excitation-response pair is a problem involving examina- 
tion of the details of the internal structure of the network. Other pertinent 

include minimizing the total resistance of a network, examining 
the effect of nonzero initial conditions of energy storage or reactive elements 
on the externally observable behavior of the network, and examining the 
sensitivity of the externally observable behavior of the circuit to variations 
in the component values. It would be quite illogical to attempt to solve all 
these problems with the tools of classical network theory (though to be sure 
some progress could be made on some of them). It would, on the other hand, 
be natural to study these problems with the aid of modern network theory 
and the state-variable approach. 

Some other important differences between the classical and modern 
approaches can be quickly summarized: 

1. The classical approach to synthesis usually relies on the application of 
ingeniously contrived algorithms to achieve syntheses, with the number 
of variations on the basic synthesis structures often being severely 
circumscribed. The modern approach to synthesis, on the other hand, 
usually relies on solution, without the aid of too many tricks or clever 
technical artifices, of a well-motivated and easily formulated problem. 
At the same time, the modern approach frequently allows the straight- 
forward generation of an infinity of solutions to the synthesis problem. 

2. The modern approach to network analysis is ideally suited to imple- 
mentation on a digital computer. Time-domain integration of state- 
space differential equations is generally more easily achieved than 
operations involving computation of Laplace transforms and inverse 
Laplace transforms. 

3. The modem approach emphasizes the algebraic content of network 
descriptions and the solution of synthesis problems by matrix algebra. 
The classical approach is more concerned with using the tools of 
complex variable analysis. 

The modern approach is not better than the classical approach in every 
way. For example, it can be argued that the intuitional pictures provided 
by Bode diagrams and pole-zero diagrams in the classical approach tend to 
be lost in the modern approach. Some, however, would challenge this argu- 
ment on the grounds that the modem approach subsumes the classical 
approach. The modem approach too has yet to live up to all its promise. 
Above we listed problems to which the modern approach could logically 
be applied; some of these problems have yet to be solved. Accordingly, at 
this stage of development of the modern system theory approach to network 
analysis and synthesis, we believe the classical and modern approaches are 
best seen as being complementary. The fact that this book contains so little 
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of the classical approach may then be queried; but the answer to this query 
is provided by the extensive array of books on network analysis and synthe- 
sis, e.g., [I-41, which, at least in the case of the synthesis books, are heady 
committed to presenting the classical approach, sometimes to the exclusion 
of the modern approach. 

The classical approach to network analysis and synthesis has been devel- 
oped for many years. Virtually all the analysis problems have been solved, 
and a falling off in research on synthesis problems suggests that the majority 
of those synthesis problems that are solvable may have been solved. Much 
of practical benefit has been forthcoming, but there do remain practical 
problems that have yet to succumb. As we noted above, the modern approach 
has not yet solved all the problems that it might he expected to solve; par- 
ticularly is it the case that it has solved few practical problems, although in 
isolated cases, as in the case of active synthesis discussed in Chapter 13, there 
have been spectacular results. We attribute the present lack of other tangible 
results to the fact that relatively little research has been devoted to the 
modern approach; compared with modern control theory, modern network 
theory is in its infancy, or, at latest, its early adolescence. We must wait to 
see the payoffs that maturity will bring. 

1.3 OUTLINE OF THE BOOK 

. . 

Besides the introductory Part I, the book falls into five parts. 
Part 11 is aimed at providing background in two areas, the first being m-port 
networks and means for describing them, and the second being state-space 
equations and their relation with transfer-function matrices. In Chapter 2, 
which discusses m-port networks, we deal with classes of circuit elements, 
such network properties as passivity, losslessness, and reciprocity, the immit- 
lance, hybrid and scattering-matrix descriptions of a network, as well as some 
important network interconnections. In Chapter 3 we discussthe description 
of lumped systems by state-space equations, solution of state-space equations, 
such properties as controliability, observability, and stability, aad the rela- 
tion of state descriptions to transfer-function-matrix descriptions. 

Part 111, consisting of one long chapter, discusses network analysis via 
state-space procedures. We discuss three procedures for analysis of passive 
networks, of increasing.degree of complexity and generality, as well as 
analysis of active networks. This material is presented without significant 
use of network topology. 

Part 1V is concerned with translating into state-space terms the notions 
of passivity and reciprocity. Chapter 5 discusses a basic result of modern 
system theory, which we term the positive real lemma. It is of fundamental 
importance in areas such as nonlinear system stability and optimal control, 
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as well as in network theory; Chapter 6 is concerned with developing pro- 
cedures for solving equations that appear in the positive real lemma. Chapter 
7 covers two matters; one is the bounded real lemma, a first cousin to the 
positive real lemma, and the other is the state-space description of the 
reciprocity property, first introduced in Chapter 2. 

p a t  V is concerned with passive network synthesis and relies heavily on 
the positive real lemma material of Part IV. Chapter 8 introduces the general 
approaches to synthesis and disposes of some essential preliminaries. 
Chapters 9 and 10 cover impedance synthesis and reciprocal impedance 
synthesis, respectively. Chapter 11 deals with scattering-matrix synthesis, 
and Chapter 12 with transfer-function synthesis. 

Part VI comprises one chapter and deals with active RC synthesis, i.e., 
synthesis using active elements, resistors, and capacitors. As with the earlier 
part of the book, state-space methods alone are considered. 

REFERENCES 

[ I  J H. J. CARLIN and A. B. GIORDANO, Network Tlreory, Prentice-Hall, Englewood 
Cliffs, N.J., 1964. 

[ 2 ]  R. W. NEWCOMB, Linear Mulfiport Synthesis, McGraw-Hill, New York, 1966. 
[ 3  ] L. A. WEINBERG, Network Amlysis and Synthesis, McGraw-Hill, New York, 

1962. 
[ 4  I M. R. Womms, Lumped and Di'stributedPassive Nefworks, Academic Press, 

New York. 1969. 



Part II 

BACKGROUND INFORMATION- 
NETWORKS AND 
STATE-SPACE EQUATIONS 

In this part our main concern is to lay groundwork for the real 
meat of the book, which occurs in later parts. In particular, we 
introduce the notion of mnltiport networks, and we review the 
notion of state-space equations and their connection with 
transfer-function matrices. Almost certainly, the reader will have 
had exposure to many of the concepts touched upon in this 
part, and, accordingly, the material is presented in a reasonably 
terse fashion. 



m-Port Networks and 

their Port Descriptions 

2.1 INTRODUCTION 

The main aim of this chapter is to define what is meant by a 
network and especially to define the subclass of networks that we shall be 
interested in from the viewpoint of synthesis. This requites us to list the 
the types of permitted circuit elements that can appear in the networks of 
interest, and to note the existence of various network descriptions, principally 
port descriptions by transfer-function matrices. 

We shall define the important notions of pmsivify, losslessness, and reci- 
procity for circult elements and for networks. At the same time, we shall 
relate these notions to properties of port descriptions of networks. 

Section 2.2 of the chapter is devoted to giving basic definitions of such 
notions as rn-port networks, circuit elements, sources, passivity, and loss- 
lessness. An axiomatic introduction to these concepts may be found in [I]. 
Section 2.3 states Tellegen's theorem, which proves a useful device in inter- 
preting what effect constraints on circuit elements (such as passivity and, 
later, reciprocity) have on the behavior of the network as observed at the 
ports of the network. This material can be found in various texts, e.g., 12, 31. 
In Section 2.4 we consider various port descriptions of networks using 
transfer-function matrices, and we exhibit various interrelations among 
them where applicable. Next, some commonly encountered methods of 
comecting networks to form a more complex network are discussed in 
Section 2.5. In Sections 2.6 and 2.7 we introduce the-definitions of the 

11 



12 m-PORT NETWORKS AND THEIR PORT DESCRIPTIONS CHAP. 2 

bounded real and positive real properties of transfer-function matrices, and 
we relate these properties to port descriptions of networks. Specializations of 
the bounded real and positive real properties are discussed, viz., the lossless 
bouna'ed real and losslesspositive realproperties, and the subclass of networks 
whose transfer-function matrices have these properties is stated. In Section 2.8 
we define the notion of reciprocity and consider the property possessed by 
port descriptions of a network when the network is composed entirely of 
reciprocal circuit elements. Much ofthe material from Section 2.4 on will 
be found in one of [l-31. 

We might summarize what we plan to do in this chapter in two statements: 

I .  We shall offer various port descriptions of a network as alternatives to 
a network description consisting of a list of elements and a scheme for 
interconnecting the elements. 

2. We shall translate constraints on individual components of a network 
into constraints on the port descriptions of the network. 

2.2 rn-PORT NETWORKS AND CIRCUIT ELEMENTS 

Multipart Networks 

An m-port network is a physical device consisting of a collection 
of circuit elements or components that are connected according to some 
scheme. Associated with the m-port network are access points called ter- 
minals, which are paired to form ports. At each port of the network it is 
possible to connect other circuit elements, the port of another network, or 
some kind of exciting devicz, itself possessing two terminals. In general, 
there will be a voltage across each terminal pair, and a current leaving one 
terminal of the pair making up a port must equal the current entering the 
other terminal of the pair. Thus if the jth port is defined by terminals Ti 
and T:, then for each j, two variables, v, and i,, may be assigned to represent 
the voltage of T, with respect to T; and the current entering T, and leaving 
T;, respectively, as illustrated in Fig. 2.2.la. A simplified representation is 
shown in Fig. 2.2.lb. Thus associated with the m-port network are two vector 
functions of time, the (vector) port voltage v = [v, v, . . . v,'J' and the 
(vector) port current i = [i, i, . . . iJ. The physical structure of them port 
will generally constrain, often in a very general way, the two vector variables 
v and i, and conversely the constraints on v and i serve to completely describe 
the externally observable behavior of the m port. 

In following through the above remarks, the reader is asked to note two 
important points: 

. I .  Given a network with a list of terminals rather than ports, it is not 
permissible to combine pairs of terminals and call the pairs ports unless 
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3 'i, 

FIGURE 2.2.1. Networks with ~ssociated~oks.  

under all operating conditions the current entering one terminal of 
the pair equals that leaving the other terminal. 

2. Given a network with a list of terminals rather than ports, if one prop- 
erly constructs ports by selecting terminal pairs and appropriately 
constraining the excitations, it is quite permissible to include one 
terminal in two port pairs (see Fig. 2 .2 .1~ for an example of a three- 
terminal network redrawn as a two-port network). 
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Elements of a Network 

Circuit elements of interest here are listed in Fig. 2.2.2, where 
their precise definitions are given. (An additional circuit element, a general- 
ization of the two-port transformer, will be defined shortly.) Interconnections 
of these elements provide the networks to which we shall devote most atten- 
tion. Note that each element may also be viewed as a simple network in its 
own right. For example, the simple one-port network of Fig. 2.22% the 
resistor, is described by a voltage v, a current i, and the relation v = ri, with 
i or v arbitrarily chosen. 

The only possibly unfamiliar element in the list of circuit elements is the 

FIGURE 2.2.2. Representations and Definitions of Basic 
Circuit Elements. 
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gyrator. At audio frequencies the gyrator is very much an idealized sort of 
component, since it may only be constructed from resistor, capacitor, and 
transistor or other active components, in the sense that a two-port network 
using these types of elements may be built having a performance very close 
to that of the ideal component of Fig. 2.2.2d. In contrast, at microwave fre- 
quencies gyrators can be constructed that do not involve the use of active 
elements (and thus of an external power supply) for their operation. (They do 
however require a permanent magnetic field.) 

Passive Circuit Elements 

. . In the sequel we shall be concerned almost exclusively with circuit 
elements with constant element values, and, in the case of resistor, inductor, 
and capacitor components, with nonnegative element values. The Class of 
all such elements (including transformer and gyrator elements) will be termed 
linear, lumped, time invariant, and passive.~he term linear arises from the 
fact that the port variables are constrained by a linear relation; the word 
lumped arises because the port variables are constrained either via a memory- 
less transformation or an ordinary differential equation (as opposed to a 
partial differential equation or an ordinary differential equation with delay); 
the term time invariant arises because the element values are constant. The 
regon for use of the term passive is not quite so transparent. Passivity of 
a component is defmed as follows: 

Suppose that a component contains no stored energy at some 
arbitrary time I , .  Then the total energy delivered to the com- 
ponent from any generating source connected to the component, 
computed over any time interval [to, TI, is always nonnegative. 

Since the instantaneous power flow into a terminal pair at time t is u(t)i(t), 
sign conventions being as in Fig. 2.2.1, passivity requires for the one-port 
components shown in Fig. 2.2.2 that 

for allinitial times to, all T 2 I,, and all possible voltage-current pairs satisfy- 
ing the constraints imposed by the component. It is easy to check (and 
checking is requested in the problems) that with real constant r, I, and c, 
(2.2.1) is fulfilled if and only ifr, 1, and c are nonnegative. 

For a multipart circuit element, i.e., the two-port transformer and gyrator 
already defined or the multipart transformer yet to be defined, (2.2.1) is 
replaced by 
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Notice that v'(r)i(t), being C v,(t)i,(t), represents the instantaneous power 
flow into the element, being computed by summing the power flows at each 
port. 

For both the transformer and gyrator, the relation v'i = v,i, f v,i, = 0 
holds for all t and all possible excitations. This means that it is never posslble 
for there to be a net flow of power into a transformer and gyrator, and, there- 
fore, that it is never possible for there to be a nonzero value of stored energy. 
Hence (2.2.2) is satisfied with &(T) identically zero. 

Lossless Circuit Elements 

A concept related to that of passivity is losslessness. Roughly 
speaking, a circuit element is lossless if it is passive and if, when a finite 
amount of energy is put into the element, all theenergy can be extractedagain. 
More precisely, losslessness requires passivity and, assuming zero excitation 
at time to ,  

or, for a multiport circuit element, 

for all compatible pairs v( . )  and i(-),  which are also square integrable; i.e., 

The gyrator and transformer are lossless for the reason that &(T) = 0 for all 
T, as noted above, independently of the excitation. The capacitor and 
inductor are also lossless-a proof is called for in the problems. 

In constructing our m-port networks, we shall restrict the number of 
elements to being finite. An m-port network comprised of afinite number of 
linear, lumped, time-invariant, and passive components will be c d e d  a finite, 
linear, lumped, time-invariant, passive m port; unless otherwise stated, we 
shall simply call suck a network an mport. An m port containing only lossless 
components will be called a lossless m port. 

The Multiport Transformer 

A generalization is now presented of the ideal two-port trans- 
former, viz., the ideal multiport trandormer, introduced by Belevitch 141. It 
will be seen later in our discussion of synthesis procedures that the multiport 
transformer indeed plays a major role in almost all synthesis methods that 
we shall discuss. 
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Consider the (p + q)-port transformer N, shown in Fig. 2.2.3. Figure 
2.2.3a shows a convenient symbolic representation that can frequently replace 
the more detailed arrangement of Fig. 2.2.3b. In this figure are depicted 
secondary currents and voltages (i,),, (i,),, . . . , (i,), and (v,),, . . . , (v,), at 
the q secondary ports, primary currents (i,),, (i,),, . . . , (i,), at thep primary 
ports, and one of the primary voltages (v,) , .  (The definition of the other 

( b )  

FIGURE 2.2.3. The Multiport Ideal Transformer. 
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primary voltages is clear from the figure.) The symbols t ,  denote turns ratios, 
and the figure is meant to depict the relations 

0 

(v,); = t,;(w,), i = I, 2, . . . , P 
I= 1 

and 

or, in matrix notation 

v,  = T'v, i, = -Ti, (2.2.5) 

where T = [t,l is the q x p turns-ratio matrix, and v,, v,, i,, and i, are vectors 
representing, respectively, the primary voltage, secondary voltage, primary 
current, and secondary current. The ideal multiport transformer is a lossless 
circuit element (see Problem 2.2.1), and, as is reasonable, is the same as the 
two-port transformer already defined if p = q = 1 .  

Generating Sources 

Frequently, at each port of an m-port network a voltage source 
or a current source is wnnected. These are shown symbolically in Fig. 2.2.4. 

F I G U R E  2.2.4. Independent Voltage and Current Sources. 

The voltage source has the characteristic that the voltage across its terminals 
takes on a specified value or is a specified function of time independent of 
the current flowing through the source; similarly with a current source, the 
current entering and leaving the source is 6xed as a specified value or speci- 
fied function of time for all voltages across the source. In the sense that the 
terminal voltage for a voltage source and the current entering and leaving 
the terminal pair for a current source are invariant and are independent of 
the rest of the network, these sources are termed independent sources. 

If, for example, an independent voltage source V is connected to a terminal 
pair T, and T: of an m port, then the voltage v, across the ith port is con- 
strained to be V or - V depending on the polarity of the source. The two 
situations are depicted in Fig. 2.2.5. 
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m-port ~9;l-l (a1 v , = V  

(0) 

( b )  

FIGURE 2.2.5. Connection of an Independent Voltage 
Source. 

In contrast, there exists another class of sources, dependent or controlled 
voltage and current sources, the values of voitage or current of which depend 
on one or more of  the variables of the network under consideration. Depen- 
dent sources are generally found in active networksjn fact, dependent 
sources are the basic elements of active device modeling. A commonly found 
example is the hybrid-pi model of a transistor in the common-emitter con- 
figuration, as shown in Fig. 2.2.6. The controlled current source is made to 
depend on V. , ,  the voltage across terminals B' and E. Basically, we may 
consider four types of controlled sources: a voltage-controlled voltage source, 

FIGURE 2.2.6. The Common Emitter Hybrid-pi Model 
of a Transistor. 
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a current-controlled voltage source, a voltage-controlled current source, and 
a current-controlled current source. 

In the usual problems we consider, we hope that if a source is connected 
to a network, there will result voltages and currents in the network and at 
its ports that are well-defined functions of time. This may not always be 
possible. For example, if a one-port network consists of simply a short 
circuit, connection of an arbitrary voltage source at the network's port will 
not result in a well-defined current. Again, if a one-port network consists 
of simply a 1-henry (H) inductor, connection of a current source with the cur- 
rent a nondifferentiahle function of time will not lead to a well-behaved 
voltage. Yet another example is provided by connecting at time to = -m a 
constant current source to a 1-farad (F) capacitor; at any finite time thevolt- 
age will be infinite. The first sort of difficulty is so basic that one cannot avoid 
it unless application of one class of sources is simply disallowed. The second 
difficulty can be avoided by assuming that all excitafions are suitably smooth, 
while the third sort of difficulty can be avoided by assuming that all excita- 
tions arejirst applied at somefinite time t o ;  i.e., prior to t ,  all excitations are 
zero. We shall make no further explicit mention of these last two assumptions 
unless required by special circumstances; they will he assumed to apply at 
all times unless statements to the contrary are made. 

Problem Show that the linear time-invariailt resistor, capacitor, and inductor are 
2.2.1 passive if the element valua are nonnegative, and that the capacitor, 

inductor, and multipart transformer are lossless. 

Problem A time-variable capacitor c(.) constrains its voltage and current by 
2.2.2 i(t) = (d/dt)[c(r)v(t)l. What are necessary and sufficient conditions on 

d..) for the capacitor to be ( I )  passive, and (2) lossless? 

Problem Establish the equivalents given in Fig. 2.2.7. 
2.2.3 

rl 
I1 

72 - bpj-rc = ~ l l l <  
FIGURE 2.2.7. Some Equivalent Networks 
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Problem Devise a simple network employing a controlled source that simulates 
2.2.4 a negative resistance (one whose element value is negative). 

Problem Figure 2.2.8a shows a one-port device called the nullator, while Fig. 
2.2.5 2.2.8b depicts the norator. Show that the nullator has simultaneously 

zero current and zero voltage at its terminals, and that the norator can 
have arbitrary and independent current and voltage at its terminals. 

FIGURE 2.2.8. (a) The Nullator; and (b) the Norator. 

2.3 TELLEGEN'S THEOREM-PASSIVE 
AND LOSSLESS NETWORKS 

Passivity and Losslessness of m ports 

The definitions of passivity and losslessness given in the last 
section were applied to circuit elements only; in this section we shall note 
the application of these definitions to m-port networks. We shall also intro- 
duce an important theorem that will permit us to connect circuit element 
properties, including passivity, with network properties. 

The delinition of passivity for an m-port network is straightforward. 
An m-port network, assumed to be storing no energy* at time to, is said 

to be passive if 

for all to ,  T, and all port voltage vectors v( . )  and current vectors i(.) satisfying 
constraints imposed by the network. 

An m port is said to be active if it is not passive, while the losslessness 
property is defined as follows. 

An m-port network, assumed to be storing no energy at time to ,  is said 
to be lossless if it is passive and if 

*A network is said to be storing no energy at time r o  if none of its elements is storing 
energy at time t o .  
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for all to and all port voltage vectors v(.) and current vectors i ( . )  satisfying 
constraints imposed by the network together with 

Intuitively, we would feel that a network all of whose circuit elements are 
passive should itself be passive; likewise, a network all of whose circuit 
elements are lossless should also be lossless. These intuitive feelings are 
certainly correct, and as our tool to verify them we shall make use of Tel- 
legen's theorem. 

Tellegen's Theorem 

The theoremis one of the most general results of all circuit theory, 
as it applies to virtually any kind of lumped network. Linearity, time invari- 
ance, and passivity are not required of the elements; there is, though, a 
requirement that the number of elements be finite. Roughly speaking, the 
reason the theorem is valid for such a large class of networks is that it depends 
on the validity of two laws applicable to all such networks-viz., Kirchhoff's 
current law and Kirchhoff's voltage law. We shall first state the theorem, 
then make brief comments concerning the theorem statement, and finally 
we shall prove the theorem. The statement of the theorem requires an under- 
standing of the concepts of a graph of a network, and the branches, nodes, 
and loops of a graph. KirchhofF's current law requires that the sum of the 
currents in all branches incident on any one node, with positive direction of 
current entering the node, be zero. Kirchhoff's voltage law requires that 
the sum of the voltages in all branches forming a loop, with consistent defini- 
tion of signs, be zero. 

Tellegen's Theorem. Suppose that Nis a lumpedfinite network 
with b branches and n nodes. For the kth branch of the graph, 
suppose that u, is the branch voltage under one set of operating 
conditions* at any one instant of time, and ik the branch current 
under any other set of operating conditions at any other instant 
of time, with the sign convention for vk and i, being as shown 

*By the tern set of operating condifions we mean the set of voltages and currents in the . ~ 

various circuit elements of the network, arising from certain source voltages and currents 
and certain initial stoied energies in the energy storage elements. Different operating con- 
ditions will result from different choices of these quantities. In the main theorem statkment 
it is not assumed that element values can be varied, though a problem does extend the 
theorem to this case. 



TELLEGEN'S THEOREM 23 

Branch 

FIGURE 2.3.1. Reference Directions for Tellegen's 
Theorem. 

in Fig. 2.3.1. Assuming the validity of the two Kirchhoff laws, 
then 

b 

, z l w ~ i ~  = 0 (2.3.3) 

We ask the reader to note carefully the following points. 

1. The theorem assumes that the network N is representable by a graph, 
with branches and nodes. Certainly, if Ncontains only inductor, resistor, 
and capacitor elements, this is so. But it remains so if N contains trans- 
formers or gyrators; Fig. 2.3.2 shows, for example, how a transformer 
can be drawn as a network containing "simple" branches. 

Sensing vr 

FIGURE 2.3.2. Redrawing of a Transformer. 

2. N can contain sources, controlled or independent. These are treated just 
like any other element. 

3. Most importantly, u, and i, are not necessarily determined under the 
same set of operating conditions--though they may be. 

Proof. We can suppose, without loss of generality, that between 
every pair of nodes of the graph of N there is one and only one 
branch. For if there is no branch, we can introduce one on the 
understanding that under all operating conditions there will be 
zero current through it, and if there is more than one branch, 
we can replace this by a single branch with the current under 
any operating condition equal to the sum of the currents through 
the separate branches. 
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Denote the node voltage of the ath node by V,, and tKe current 
from node a to node p by I.,. If the kth branch connects node 
a to node 8, then 

V* = v, - v, 
relates the branch voltage with the node voltages under one set 
of operating conditions, and 

relates the branch cnrrent to the current flowing from node a to 
node under some other operating conditions (note that these 
equations are consistent with the sign convention of Fig. 2.3.1). 

It follows that 

Note that for every node pair a, ,3 there will be one and only 
one branch k such that the above equation holds and, conversely, 
for every branch k there will be one and only one node pair a, ,9 
such that the equation holds. This means that if we sum the left 
side over all branches, we should sum the right side over all pos- 
sible node pairs; i.e., 

(Why is the right-hand side not twice the quantity shown?) Now 
we have 

For fixed a, x;=, I., is the sum of all currents leaving node a. 
It is therefore zero. Likewise, EL=, I ,  = 0. Thus 

*The symbol V V V will denote the end of the proof of a theorem or lemma 
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The reader may wonder where the Kirchhoff voltage law was used in the 
above proof; actually, there was a use, albeit a very minor one. In setting 
n, = V .  - V,, where branch k connects nodes a and 8, we were making 
use of a very elementary form of the law. 

Example Just to convince the reader that the theorem really does work, we shall 
2.3.1 consider a very simple example, illustrated in Fig. 2.3.3. A circuit is 

FIGURE 2.3.3. Example of Tellegen's Theorem. 

shown under two conditions of excitation in Fig. 2.3.3a and b, with its 
+ranches and reference directions for current in Fig. 2.3.3~. The reference 
directions for voltage are automatically determined. 

For the arrangement of Fig. 2.3.3a and b 

Vc = 30 1, = -40 VJ,  = -1200 
v2 = 10 Iz = 20 v,zz = 200 
v3 5 2Q I ,  = 20 v3t = 400 
V4 = 30 I, = 20 V4Z4= 600 x VkZk = 0 

Passive Networks and Passive Circuit Elements 

Tellegen's theorem yields a very simple proof of the fact that a 
finite number of passive elements when interconnected yields a passive 
network. (Recall that the term passive has been used hitherto in two inde- 
pendent contexts; we can now justify this double use.) Consider a network 
N ,  comprising an m port N, with m sources at each port (see Fig. 2.3.4). 
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Whether the sources are current or voltage sources is irrelevant. We shall 
argue that if the elements of N, are passive, then N, itself is passive. Let us 
number the branches of N, from I to k, with the sources being numbered as 
branches 1 through m. Voltage and current reference directions are chosen 
for the sources as shown in Fig. 2.3.4, and for the remaining branch elements 

FIGURE 2.3.4. Passivity of N, is Related to Passivity of 
Elements of N , .  

r - - - - - - - - - - - - - - - - - - - -  1 
I I 

of N,, i.e., for the branch elements of N,, in accordance with the usual con- 
vention required for application of Tellegen's theorem. (Note that the sign 
convention for the source currents andvoltages differs from that required for 
application of TeIlegen's theorem, but agrees with that adopted for port volt- 
ages and currents.) 

Tellegen's theorem now yields that 
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Taking into account the sign conventions, we see that the left side represents 
the instantaneous power flow into N, at time t through its ports, while 
v,(r)ij(t) for each branch of N, represents the instantaneous power ffow into 
that branch. Thus with v the port voltage vector and i the port current vector 

k 
v'i = C v,(t)iJ(t) 

j % r n + J  

and 
r I,, v'i dt 2 0 (2.3.4) 

by the passivity of the m-port circuit elements, provided these elements are 
all storing no energy at time to. Equation (2.3.4) of course holds for all such 
to ,  all T, and all possible excitations of the m port; it is the equation that 
defines the passivity of the m port. 

In a similar fashion to the above argument, one can argue that an m port 
consisting entirely of lossless circuit elements is lossless. (Note: The word 
lossless has hitherto been applied to two different entities, circuit elements 
and m ports.) There is a minor technical difficulty in the argument however; 
this is to show that if the port voltage v and current i are square integrable, 
the same is true of each branch voltage and current.* We shall not pursue 
this matter further at this point, but shall accept that the two uses of the 
word lossless can be satisfactorily tied together. 

Problem Consider an m-port network driven by m independent sinusoidal sources. 
2.3.1 Describeeach branch voltage and current by a phasor, a complex number 

with amplitude equal to 1/fl times the amplitude of the sine wave 
variation of the quantity, and with phase equal to the phase, relative to 
a reference phase, of the sine wave. Then for branch k, Vxl :  represents 
the complex power flowing into the branch. Show that the sum of the 
complex powers delivered by the sources to them port is equal to the sum 
of the complex powers received by all branches of the network. 

Problem Let N ,  and N2 be two networks with the same graph. In each network 
2.3.2 choose reference directions for the voltage and current of each branch 

in the same way. Let v,, and ik. be the voltage and current in branch k 
of network i for i = 1,2, and assume that the two Kirchhoff laws are 
valid. Show that 

~ k l i k 1  = v k l i k ~  = 0 
k 

*Actually, the time invariance of the circuit elements is needed to prove this point, and 
counterexamples can be found if the circuit elements are permitted to be time varying. 
This means that interconnections of Iossless time-varying elements need not be lossless 
1141. 
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2.4 IMPEDANCE, ADMITTANCE, HYBRID. 
AND SCATTERING DESCRIPTIONS 
OF A NETWORK 

Since the m-port networks under consideration are time invariant, 
they may be described in the frequency domain-a standard technique used 
in all classical network theory. Thus instead of working in terms of the 
vector functions of time v(.) and i(.), the Laplace transforms of these quanti- 
ties, V(s) and Z(s), may be used, the elements of V(s) and i(s) being functions 
of the complex variable s = v + jo. 

Impedance and Admittance Descriptions 

Now suppose that for a certain m port it is possible to connect 
arbitrary current sources at each of the ports and obtain a well-defined voIt- 
age response at each port. (This will not always be the case of course-for 
example, a one-port consisting simply of an open circuit does not have the 
property that an arbitrary current source can be applied to it.) In case con- 
nection of arbitrary current sources is possible, we can conceive of the port 
current vector I(s) as being an independent variable, and the port voltage 
vector V(s) as a dependent variable. Then network analysis provides proce- 
dures for determining an m x m matrix Z(s) = [z,,(s)] thaL maps i(s) into 
V(s) through 

[Subsequently, we shall' investigate procedures using stare-space equations 
for the determination of Z(s).] We call Z( . )  the impedance matrix of N, and 
say that N possesses an impedance description. Conversely, if it is possible 
to take V(s) as the independent variable, i.e., if there exists a well-defined set 
of port currents for an arbitrary selection of port voltages, N possesses an 
admittance description, and there exists an admittance matrix Y(s) relating 
I(s) and V(s) by 

As elementary network analysis shows, and as we shall see subsequently in 
discussing the analysis of networks via state-space ideas, the impedance and 
admittance matrices of m ports (if they exist) are m x m matrices of real 
rational functions of s. If both Y(s) and Z(s) exist, then Y(s)Z(s) = I, as is 
clear from (2.4.1) and (2.4.2). The term immittance matrix is often used to 
denote either an impedance or an admittance matrix. Physically, the (i, j) 
element z,,(s) of Z(s) represents the Laplace transform of the voltage appear- 
ing at the ith port when a unit impulse of current is applied at port j, with 
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all other ports open circuited to make I,(s) = 0, k f j. A dual interpretation 
can be made for y,,(s). 

Hybrid Descriptions 

There are situations when one or both of Z(s) and Y(s) do not 
exist. This means that one cannot, under these circumstances, choose the 
excitations to be all independent voltages or all independent currents. For 
example, an open circuit possesses no impedance matrix, but does possess 
an admittance matrix-a scalar Y(s) = 0. Conversely, the short circuit 
possesses no admittance matrix, but does possess an impedance matrix. As 
shown in Example 2.4.1, a simple two-port transformer possesses neither an 
impedance matrix nor an admittance matrix. But for any m port, it can be 
shown [5,6] that rhere always exists at least one set of independent excitations, 
described by U(s), where u,(s) may be the ith port voltage or the ithport current, 
such that the corresponding responses are well defined. Of course, it is under- 
stood that the network consists of only a finite number of passive, linear, 
time-invariant resistors, inductors, capacitors, transformers, and gyrators. 
With r,(s) denoting the ith port current when uis) denotes the ith port 
voltage, or conversely, there exists a matrix H(s) = [h,](s)] such that 

Such a matrix H(s) is called a hybrid matrix, and its elements are again 
rational fuctions in s with real coefficients. It  is intuitively clear that a net- 
work in general may possess several alternative hybrid matrices; however, 
any one describes completely 'the externally observable behavior of the 
network. 

Example Consider the two-port transformer of Fig. 2.22. By inspection of its 
2.4.1 defining equations 

we can see immediately that the port currents i, and i~ cannot be chosen 
independently. Here, according to (2.4.4b), the admissible currents are 
those for which i2 = -Til. Consequently, the transformer does not 
possess an impedance-matrix description. Similarly, by looking at (2.44, 
we see that it does not possess an admittance-matrix description. These 
conclusions may altemathely be deduced on rewriting (2.4.4) in the fre- 
qucncy domain as 
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from which it is clear that an equation of the form of (2.4.1) or (2.4.2) 
cannot be obtained. 

However, the twoport transformer has a hybrid-matrix description, 
as may be seen by rearranging (2.4.5) in the form 

Scattering Descriptions 

Another port description of networks commonly used in network 
theory is the scattering matrix S(s). In the field of microwave systems, 
scattering matrices actually provide the most natural and convenient way of 
describing networks, which usually consist of distributed as well as lumped 
elements.* 

To define S(s) for an m port N, consider the augmented m-port network 
of Fig. 2.4.1, formed from the originally given m port N by adding unit 

I I 
k - - - - - - - - - _ _ - - _  J 

FIGURE 2.4.1. The Augmented m-Port Network. 

resistors in series with each of its m p0rts.t We may excite the augmented 
network with voltage sources designated bye. It is straightforward to deduce 
from Fig. 2.4.1 that these sources are related to the original port voltage and 
current of N via 

We shall suppose for the moment that e(.) can be arbitrary, and any response 
of interest is well defined. Now the most obvious physical response to the 
voltage sources [e,] is the currents flowing through these sources, which are 

*A well-known example of a distributed element is a transmission line. 
tln this figure the symbol I,  denotes the m x rn unit matrix. Whether I denotes a 

current in the Laplace-transform domain or the unit matrix should be quite clear from the 
context. 
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the entries of the port current vector i. But since . . 

from the mathematical point of view we may as well use v - i instead as 
the response vector, So for N we can think mathematically of v + i as the 
excitation vector and v - i as the response vector, with the understanding 
that physically this excitation may be applied by identifying e in Fig. 2.4.1 
with v + iand taking e - 2i a .  the response. Actually, excitation and response 
vectors of $(v + i) and (v - i )  are more commonly adopted, these two 
quantities often being termed the incident voltage u' and reflected voltage vr. 
Then, with the following definition in the frequency domain, 

we defme the scattering matrix S(s) = [su(s)], an m x m matrix of real 
rational functions of s, such that 

The matrix S(s) so defined is sometimes called the normalized scattering 
matrix, since the augmenting resistances are of unit value. 

Example Consider once again the two-port transformer in Fig. 2.2.2e; it is simple 
2.4.2 to calculate its scattering matrix using (2.4.7) and (2.4.8); the end result is 

The above example also illustrates an important result in network theory 
that although an immittance-matrix description may not necessarify exist for 
an m-port network, 4 scntfering-matrix description does always exist [6]. 
( A  sketch of the proof will he given shortly.) For this reason, scattering 
matrices are often preferred in theoretical work. 

Since it is sometimes necessary to convert from S to Y or Z, or vice versa, 
interrelations between these matrices are of interest and are summarized in 
Table 2.4.1. Of course, Y or Z may not exist, but if they do, the table gives 
the correct formula. Problem 2.4.1 asks for the derivation of this table. 

Table 2.4.1 
SUMMARY OF MATRIX INTERRELATIONS 
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Problem Establish, in accordance with the definitions of the impedance, admit- 
2.4.1 tance, and scattering matrices, the formulas of Table 2.4.1. 

Problem In defining the normalized scattering matrix S, the augmented network, 
2.4.2 Fig. 2.4.1, is used when the referellce terminations of N are 1-ohm (Q) 

resistors connected in series with N. Consider the general situation of 
Fig. 2.4.2, in which a resistive network of symmetric impedance matrix 

FIGURE 2.4.2. An m-port Network with Resistive Net- 
work Termination of Symmetric Impedance Matrix R. 

R is connected in series with N. By analogy with (2.4.7) and (2.4.8). we 
define incident and reflected voltages with reference to R by 

and the scattering matrix wifli the refrence R, SR, by 

Express S, in terms of S. Hence show that if R =I, then S, = S. 

Problem Find the scattering matrix (actually a scalar) of the resistor, inductor, 
2.4.3 and capacitor. 

Problem Evaluate the scattering matrix of the multiport transformer and check 
2.4.4 that it is symmetric. Specialize the result to the case in which the turns- 

ratio matrix T is square and orthogonal-defining the orthogonal trans- 
former. 

Problem Find the impedance, admittance, and scattering matrices of the gyrator. 
2.4.5 Observe that they are not symmetric. 

Problem This problem relates the scattering matrix to the augmented admittance 
2.4.6 matrix of a network. Consider the m-port network defined by the dotted 

lines on Fig. 2.4.1. Show that it has an admittance matrix Y. (the aug- 
mented admittance matrix of N) if and only if N possesses a scattering 
matrix S, and that 
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In this section we consider some simple interconnections of 
networks. The most frequently encountered forms of interconnection are the 
series, parallel, and cascade-load connections. 

Series and Parallel Connections 

Consider the arrangement of Fig. 2.5.1 in which two m ports N, 
and N ,  are connected in series; i.e., the terminal (Ti), of the jth port of N, 
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FIGURE 2.5.1. Series Connection. 

is connected in series with the terminal (T,), of thejth port of N,, and the 
remaining terminals (T,), and (Ti), are paired as new port terminals. Since 
the port currents of N ,  and N ,  are constrained to be the same and the port 
voltages to add, the series connection has an impedance matrix 

Z = Z, -I- Z, (2.5.1) 

where Z, and Z ,  are the respective impedance matrices of N ,  and N,.  
It is important in drawing conclusions about the series connection (and 

other connections) of two networks that, after connection, it must remain 
true that the same current enters terminal T, of N, or N, as leaves the 
associated terminal Ti of the network. It is possible for this arrangement to 
be disturbed. Consider, for example, the arrangement of Fig. 2.5.2, where 
two twoport networks are series connected, the connections being shown 
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FIGURE 2.5.2. Series Connections Illustrating Nonadditiv- 
ity and Additivity of Impedance Matrices. 

with dotted lines. AFter connection a two port is obtained with terminal 
pairs 1 4 '  and 2-3'. Suppose that the second pair is left open circuit, but 
a voltage is applied at the pair 1-4'. It is easy to see that there will be no 
current entering at terminal 2, but there will be current leaving the top 
network at terminal 2'. Therefore, the impedance matrix of the interconnected 
network will not be the sum of the separate impedance matrices. However, 
introduction of one-to-one turns-ratio transformers, as in Fig. 2.5.2b, will 
always guarantee that impedance matrices can be added. In our subsequent 
work we shall assume, without further comment on the fact, that the impe- 
dance matrix of any series connection can be derived according to (2.5.1). 
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with, if necessary, the validity of the equation being guaranteed by the use 
of transformers. 

The parallel connection of N, and N,, shown in Fig. 2.5.3, has the corre- 

FIGURE 2.5.3. Parallel Connection. 

sponding terminal pairs ofN, and N, joined together to form a set of common 
terminal pairs, which constitute the ports of the resulting m port. Here, since 
the currents of N, and N, add and the voltages are the same, the parallel 
connection has an admittance matrix 

where Y ,  and Y,  are the respective admittance matrices of N, and N,. 
Similar cautions apply in writing (2.5.2) as apply in writing (2.5.1). 

Cascade-Load Connection 

Now consider the arrangement of Fig. 2.5.4, where an n port N, 
cascade loads an (m + n) port No to produce an m-port network N. If N, 
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FIGURE 2.5.4. CascadeLoad Connection. 
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and N, possess impedance matrices 2, and Z., the latter being partitioned 
like the ports of N, as 

where Z,, is m x m and Z,, is n x n, then simple algebraic manipulation 
shows that N possesses an impedance matrix Z given by 

assuming the inverse exists. (Problem 2.5.1 requests verification of this result.) 
Likewise, if N, and N ,  are described by admittance matrices Y, and Y,, 

and an analogous partition of Y, defines submatrices Y,, it can be checked 
that N possesses an admittance matrix 

Again, we must assume the inverse exists. 
For scattering-matrix descriptions of N, the situation is a little more 

tricky. Suppose that the scattering matrices for N, and N, are, respectively, 
S, and So, with the latter partitioned as 

where S, ,  is m x m and S,, is n x n. Then the scattering matrix S of the 
cascade-loading interconnection N is given by (see Problem 2.5.1) 

or equivalently 

In (2.5.3), (2.5.4),.and (2.5.5) it is possible for the inverses not to exist, in 
which case the formulas are not valid. However, it is shown in [6] that if 
N, and N ,  are passive, the resultant cascade-connected network N always 
possesses a scattering matrix S. The scattering matrix is given by (2.5.5), 
with the inverse replaced by a pseudo inverse if necessary. 

An important situation in which (2.5.3) and (2.5.4) break down arises when 
N, consists of a multiport transformer. Here N, possesses neither an impe- 
dance nor an admittance matrix. Consider the arrangement of Fig. 2.5.5a, 
and suppose that N, possesses an impedance matrix Z,. Let v, and i, denote 
the port voltage and current of N,, and v and i those of N. Application of the 
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FLGURE 2.5.5. Cascade-Loaded Transformer Arrange- 
ments. 

multipart-transformer definition with due regard to sign conventions yields 

since v,(s) = Zds)I,(s), it follows that V(s) = T'Zis)TZ(s) or 

Z = TIZ,T (2.5.6) 

The dual case for admittances has the transformer turned around (see 
Fig. 2.5.5b), and the equation relating Y and Y, is 

We note also another important result of the arrangement of Fig. 2.5.5a. 
the development of which is called for in the problems. If T is orthogonal, 
i.e., TT' = T'T = I, and if N, possesses a scattering matrix S,, then Npossess 
a scattering matrix S given by 

Finally, we consider one important special case of (2.5.5) in which N, 
consists of uncoupled 1-Q resistors, as in Fig. 2.5.6. In this case, one 
compute's S, = 0, and then Eq. (2.5.5) simplifies to 
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FIGURE 2.5.6. Special Cascade Load Connection. 

Thus the termination of ports in unit resistors blocks out corresponding rows 
and columns of the scattering matrix. 

The three types of interconnections-series, parallel, and cascade-load 
connections-are equally important in synthesis, since, as we shall see, one of 
the basic principles in synthesis is to build up a complicated structure or network 
from simple structures. It is perhaps interesting to note that the cascade-load 
connection is the most general form of all, in that the series and parallel 
connection may be regarded as special cases of the cascade-load connection. 
This result is illustrated in Fig. 2.5.7. 

Scattering-Matrix Existence 

More generally, it is clear that any finite linear time-invariant 
m-port network N composed of resistors, capacitors, inductors, transformers, 
and gyrators can be regarded as the cascade connection of a network No 
composed only of connecting wires, by themselves constituting opens and 
shorts, and terminated in a network N, consisting of the circuit elements 
of N uncoupled from one another. The situation is shown in Fig. 2.5.8. 

Now we have already quoted the result of [6], which guarantees that if 
N, and N, are passive and individually possess scattering matrices, then N 
possesses a scattering matrix, computable in accordance with (2.5.5) or a 
minor modification thereof. Accordingly, if we can show that N, and N, 
possess scattering matrices, it will follow, as claimed earlier, that every m port 
(with the usual restrictions, such as linearity) possesses a scattering matrix. 
Let us therefore now note why Nc and N, possess scattering matrices. 

First, it is straightforward to see that each of the network elements-the 
resistor, inductor, capacitor, gyrator, and two-port transformer-possesses 
a scattering matrix. In the case of a multipart transformer with a turns-ratio 
matrix T,  its scattering matrix also exists and is given by 

(I f T ' T ) ( T I T  - 1)  2(1+ TIT)-IT' ] (2.5.10) 
2T(I f T'T).' (I -b TT')-'(1 - TT') 



NETWORK INTERCONNECTIONS 39 

FIGURE 2.5.7. Cascade-Load Equivalents for: 
(a) Parallel; (b) Series Connection. 

(Note that Sin  (2.5.10) reduces to that of (2.4.9) for the two-part transformer 
when Tis a I x 1 matrix.) The scattering matrix of the network N, is now 
seen to exist. It is simply the direct sum* in the matrix sense of a number of 
scattering matrices for resistors, inductors, capacitors, gyrators, and trans- 
formers. 

The network N. composed entirely of opens and shorts is evidently linear, 
time invariant, passive, and, in fact, lossless. We now outline in rather tech- 
nical terms an argument for the existence of So. The argument can well be 
omitted by the reader unfamiliar with network topology, who should merely 
note the main result, viz., that any m-port possesses a scattering matrix. 

Consider the augmented network corresponding to N, as shown in Fig. 
2.5.9. The only network elements other than the voltage sources are the 
m + n unit resistors. With the aid of algorithms detaiied in standard text- 
books on network topology, e.g., 171, one can form a tree for this augmented 

'The direct sum of A and B, denoted by [A 4- Bl, is K ;I. 
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FIGURE 2.5.8. CascadeLoading Representation for N. 

network and select as independent variables a certain set of corresponding 
link currents, arranged in vector form as I,. The remaining tree branch 
currents, in vector form I,, are then related to I, via a relation of the form 
I, = BI,. Notice that I, and I, between them include all the port currents, 
but no other currents since there are no branches in the circuit of Fig. 2.5.9 
other than those associated with the unit resistors. One is free to choose 
reference directions for the branch-current entries of I ,  and I,, and this is 
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FIGURE 2.5.9. Augmented Network for N, of Figure2.5.8. 

done so @at they coincide with reference directions for the port currents of 
N o .  Denoting the corresponding port voltages by V ,  and V,, the losslessness 
of N, implies that 

v:I ,  + v:1, = 0 

or, using I, = BI,, 

(V', -k v:B)I, = 0 

Since I ,  is arbitrary, it must be true therefore that 

Comparing the results V ,  = -B'V, and I, = BI, with (2.2.5), we see that 
constraining relations on the port variables of N ,  are identical to those for 
a multiport transformer with a turns-ratio matrix T = -B. Therefore, N, 
possesses a scattering matrix. [See Eq. (2.5.10).] 

Problem Consider the arrangement of Fig. 2.5.4. 
2.5.1 (a) Let the impedance matrices for N, NI, and N. be, respectively, Z, 

Z,, and Z, with Z, partitioned as the ports 

(Here Z , ,  is m x m, etc.) Show that Z is given by 

(b) Establish the corresponding result for scattering matrices. 

Problem Suppose that a multiport transformer with turns-ratio matrix T is ter- 
2.5.2 minated at its secondary ports in a network of scattering matrix SI. 

Suppose also that T is orthogonal. Show that the scattering matrix of 
the overall network is T'S,T. 

Problem Show, by working from the definitions, that if an (m + n) port with scat- 
2.5.3 tering matrix 
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(SI I being m x m, etc.) is terminated at its last n ports in 1-GI resistors, 
the scattering matrix of the resulting m-port network is simply SII. 

2.6 THE BOUNDED REAL PROPERTY 

We recall that the m-port networks we are considering are finite, 
linear, lumped, time invariant, and passive. Sometimes they are lossless also. 
The sort of mathematical properties these physical properties of the network 
impose on the scattering, impedance, admittance, and hybrid matrices will 
now be discussed. 

In this section we shall define the bounded real property; then we shall 
show that the scatteripg matrix of an nz port N is necessarily bounded real. 
Next we shall consider modifications of the bounded real property that are 
possible when a bounded real matrix is rational. Finally, we shall study the 
lossless bounded real property for rational matrices. 

In the next section we shall define the positive real property, following 
which we show that any immittance or hybrid matrix of an m port is neces- 
sarily positive real. Though immittance matrices will probably be more 
familiar to the reader, it turns out that it is easier to prove results ab initio 
for scattering matrices, and then to deduce from them the results for immit- 
tance matrices, than to go the other way round, i.e., than to prove results 
first for immittance matrices, and deduce from them results for scattering 
matrices. 

Bounded real and positive real matrices occur in a number of areas of 
system science other than passive network theory. For example, scattering 
matrices arise in characterizing sensitivity reduction in control systems and 
in inverse linear optimal control problems [8]. Positive real matrices arise in 
problems of control-system stability, particularly those tackled via the circle 
or Popov criteria 191, and they arise also in analyzing covariance properties 
of stationary random processes [lo]. A discussion now of applications would 
take us too far afield, but the existence of these applications does provide an 
extra motivation for the study of bounded real and positive real matrices. 

The Bounded Real Property 

We assume that there is given an m x m matrix A ( - )  of functions 
of a complex variables. With no assumption at this stage on the rationality 
or otherwise of the entries of A(.) ,  the matrix A( . )  is termed bounded real 
if the following conditions are satisfied [I]: 
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1. All elements of A(.) are analytic in Re Is] > 0. 
2. A(s) is real for real positive s. 
3. For Re IS] > 0, Z - A1*(s)A(s) is nonnegative definite Hermitian, that 

is, x'*[Z - A'*(s)A(s)]x 2 0 for all complex m vectors x. We shall write 
this simply as I - A'*(s)A(s) 2 0. 

Example Suppose that A,@) and A2(s)-are two m x m bounded real matrices. 
2.6.1 We show that Al(s)A2(s) is bounded real. Properties 1 and 2 are clearly 

true for the product if they are true for each A,(s). Property 3 is a little 
more tricky. Since for Re Is] > 0, 

I - A',*(s)A,(s) r o 
we have 

Also for Re [sl > 0, 

Adding the second and third inequalities, 

for Re [sl > 0, which establishes property 3 for A,(s)A,(s). 

We now wish to show the connection between the bounded real property 
and the scattering matrix of an m port. Before doing so, we note the following 
easy lemma. 

Lemma 2.6.1. Let v and i be the port voltage andcurrent vectors 
of an m port, and d and v' the incident and reflected voltage 
vectors. Then 

I. v'i = vrd - v"vr. (2.6.1) 
2. The passivity of the m port is equivalent to 

for all times to at which the network is unexcited, and all 
incident voltages vl, with v: v r  fulfilling the constraints 
imposed by the network. 

3. The losslessness of the m port is equivalent to passivity in 
the sense just noted, and 
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for all square integrable u'; i.e., 

The formal proof will be omitted. Part 1 is a trivial consequence of the 
definitions of u'and v: part 2 a consequence of the earlier passivity definition 
in terms of v and i, and part 3 a consequence of the earlier losslessness defini- 
tion. 

Now we can state one of themajor results of network theory. The reader 
may well omit the proof if he desires; the result itself is one of network 
analysis rather than network synthesis, and its statement is far more impor- 
tant than the details of its proof, which are unpleasantly technical. The 
reader should also note that the result is a statement for a broader class of 
m ports than considered under our usual convention; very shortly, we shall 
revert to our usual convention and. indicate the appropriate modifications 
to the result. 

Theorem 2.6.1. Let N be an m port that is linear, time invariant, 
and passive-but not necessarily lumped or jinite. -Suppose that 
N possesses a scattering matrix S(s). Then S(.) is bounded real. 

Before presenting a proof of the theorem (which, we warn the reader, 
will draw on some technical results of Laplace-transform theory), we make 
several remarks. 

1. The theorem statement assumes the existence of S(s); it does not give 
conditions for existence. As we know though, if N is finite and lumped, 
as well as satisfying the conditions of the theorem, S(s) exists. 

2. When we say "S(s) exists," we should really qualify this statement by. 
saying for what values of s it exists. The bounded real conditions only 
require certain properties to be true in Rc [s] > 0, and so, actually, we 

could just require S(s) to exist in Re [s] > 0 rather than for all s. 
3. It is the linearity of N that more or less causes there to be a linear 

operator mapping v' into v', while it is the time invariance of N that 
permits this operator to be described in the s domain. It is essentially 
the passivity of N that causes properties 1 and 3 of the bounded real 
definition to hold;.property 2 is a consequence of the fact that real v' 
lead to real vr. 

4. In a moment we shall indicate a modification of the theorem applying 
when N is also lumped and finite. This will give necessary conditions 
on a matrix function for it to be the scattering matrix of an m port 
with the conventional properties. One major synthesis task will be to 
show fhat these conditions are also suflcient, by starting with a matrix 
S(s) satisfying the conditions and exhibiting a network with S(s) as its 
scattering matrix. 
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Proof. Consider the passivity property (2.6.2), and let T 
approach infinity. Then if d is square integrable, we have 

so that v' is square integrable. Therefore, S(s) is the Laplace 
transform of a convolution operator that maps square integrable 
functions into square integrable functions. This means (see [I, 111) 
that S(s) must have every element analytic in Re [s] > 0. This 
establishes property 1. 

Let a, be an arbitrary real positive constant, and let v' be 
xeso'l(t - to), where x i s  a real constant m vector and l ( t )  is the 
unit step function, which is zero for negative t, one for positive 
t. Notice that er' will be smaller the more negative is t .  

As to - -w and t - ca, vr(t) will approach S(u,)xe"'l(t-to). 
Because x is arbitrary and vr(t) is real, $(a,) must be real. This 
proves property 2. 

Now let so = u, + jw, be an arbitrary point in Re [s] > 0. 
Let x be an arbitrary constant complex m vector, and let v be 
Re [~e '~ ' l ( t  - to)] .  As to  - -w, vr approaches 

and the instantaneous power flow v"d - v"vr at time t becomes 

where 0, = argx, and 4, = a r g ( S ( ~ , ) x ) ~  Using the relation 
cosZ a = j(1 f cos 2a), we have 

p(t) = $x'*[I - S'*(so)S(so)]xez"' 
+ 4 C 1 x, l z  eZ-' cos (2w,t + 28,) 

- 4 C 1 (S(s,)x), lye2"' cos (2wot + 263 
Integration leads to E(T): 
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Now if w, is nonzero, the angle of (I/s,)x'[I - S'(s,)S(s,)]xe2'~ 
takes on aU values between 0 and 2n as T varies, since e2'eT = 
e2~*e2ja(*, and the angle of e2jmr takes on all values between 0 
and 27c as T varies. Therefore, for certain values of T, 

The nonnegativity of E(T) then forces 

x'"[l - S*(S,)~(S,)]X = 0 

If w, is zero, let x be an arbitrary real constant. Thenj recalling 
that S(s,) will be real, we have 

Therefore, for so real or complex in Re [s] > 0, we have 

I - S * ( S , ) ~ ( S , )  2 0 

as required. This establishes property 3. V V 

Once again, we stress that them ports under consideration in the theorem 
need not be lumped or iinite; equivalently, there is no requirement that S(s) 
be rational. However, by adding in a constraint that S(s) is rational, we can 
do somewhat better. 

The Rational Bounded Real Property 

We d e h e  an m x m matrix A(.) of functions of a complex 
variable s to be rational bounded real, abbreviated simply BR, if 

1. It is a matrix of rational functions of s. 
2. It is bounded real. 

Let us now observe the variations on the bounded real conditions that 
become possible. First, instead of saying simply that every eIement of A(.) 
is analytic in Re [s] > 0, we can clearly say that no element of A(-)  possesses 
a pole in Re [sl > 0. Second, if A(s) is real for real positives, this means that 
each entry of A(-)  must be a real rational function, i.e., a ratio of two 
polynomials with real coefficients. 

The implications of the third property are the most interesting. Any 
function in the vicinity of a pole takes unbounded values. Now the inequality 
I - A'*(s)A(s) Z 0 implies that the (i - i)  term of I - Af*(s)A(s) is non- 
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negative, i.e., 
1 - x I a,'(s) l2 2 0 

i 

Therefore, 1 a,(s) I must. be bounded by 1 at any point in Re [s] > 0. Con- 
sequently, it is impossible for aij(s) to have a pole on the imaginary axis 
Re [s] = 0, for if it did have a pole there, I a,,(s) I would take on arbitrarily 
large values in the half-plane Re [sl > 0 in the vicinity of the pole. It follows 
that 

A ( j 4  = lim A(a + j o )  
r-0 
.>o 

exists for all real m and that 

1 - AJ*(jm)A(jo) 2 0 (2.6.5) 

for all real o. What is perhaps most interesting is that, knowing only that: 
(1) every element of A(.)  is analytic in Re [s] 2 0; and (2)-Eq. (2.6.5) holds 
for all real o, we can deduce, by an extension of the maximum modulus 
theorem of complex variable theory, that I - A'*(s)A(s) 2 0 for all s in 
Re [s] > 0. (See [ I ]  and the problems at the end of this section.) In other 
words, if A(.) is rational and known to have analytic elements in Re [s] 2 0, 
Eq. (2.6.5) carries as much information as 

.'. 
I - A'*(s)A(s) 2 0 (2.6.6) 

for all s in Re [s] > 0. 
We can sum up these facts by saying that an m x m matrix A(.)  of real 

rational functions of a complex variable s is bounded real if and only if: 
(1) no element of A(.) possesses a pole in Re [sf 2 0; and (2) I - 
A1*(jcu)A(jm) 2 0 for all real m. If we accept the fact that the scattering 
matrix of an m port that is finite and lumped must be rational, then Theorem 
2.6.1 and the above statement yield the following: 

Theorem 2.6.2. Let N be in m port that is linear, time invariant, 
lwnped, finite, and passive. Let S(s) be the scattering matrix of 
N. Then no element of S(s) possesses a pole in Re [s] 2 0, and 
I - S1*(jo)S(jm) 2 0 for all real o. 

In our later synthesis work we shall start with a real rational S(s) satisfying 
the conditions of the theorem, and provide procedures for generating a 
network with scattering matrix S(s). 

Example We shall establish the bounded real nature of 
2.6.2 

r o 11 
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Obviously, S(s) is real rational, and no element possesses a pole in Re [s] 
2 0. It remains to examine I - S'*(jw)S(jw). We have 

The Lossless Bounded Real Property 

We now want to look at the constraints imposed on the scattering 
matrix of a network if that network is known to be lossless. Because it is far 
more convenient to do so, we shall confine discussions to real rational 
scattering matrices. 

In  anticipation of the main result, we shall define an m x m real rational 
matrix A(.) to be lossless bounded real (abbreviated LBR) if 

1. A(.) is bounded real. 
2. I - A'*(jw)A(jw) = 0 for all real w. 

Comparison with the BR conditions studied earlier yields the equivalent 
conditions that (1) every element of A(-) is analytic in Re [s] 2 0, and (2) 
Eq. (2.6.7) holds. 

The main result, hardly surprising in view of the definition, is as follows: 

Theorem 2.6.3. Let N be an m port (usual conventions apply) 
with S(s) the scattering matrix. Then N is lossless if and only if 

I - s*(jo)S(jw) = 0 for all real (2.6.8) 

Proof. Suppose that the network is unexcited at time to. Then 
losslessness implies that 

for all square integrable v'. Since vr is then also square integrable, 
the Fourier transforms V'(jo) and Vr(jw) exist and the equation 
becomes, by Parseval's theorem, 
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Since 8' is an arbitrary square integrable function, Vr(jw) is 
sufficently arbitrary to conclude that 

I - S'*(jo)S(jw) =. 0 for all real o 

The converse follows by retracing the above steps. V V V 

Example IF S, and S, are LBR, then S,& is LBR. Clearly the only nontrivial 
2.6.3 matter to verify is the equality (2.6.8) with S replaced by S,S2. 

1 - S;*(jo)S\*(jw)S,(jo)S2( jw) 

= 1 - S;*(jw)S2(jw) since S, is LBR 
= 0 since S, b LBR 

Example The scattering matrix of Example 2.6.2, 

is LBR, since, as verified in ExampSe 26.2, Eq. (2.6.8) holds. 

In view of the fact that A'(-) is real rational, it follows that Si(jo) = 
S'(-jo), and so the condition (2.6.8) becomes 

for s = jo, w real. But any analytic function that is zero on a line must be 
zero everywhere, and so (2.6.9) holds for all s. We can call this the extended 
LBR property. It is easy to verify, for example, that the scattering matrix 
of Example 2.6.4 satisfies (2.6.9). 

Testing for the BR and LBR Properties 

Examination of the BR conditions shows that testing for the BR 
property requires two distinct efforts. First, the poles of elements of the 
candidate matrix A(s) must be examined. To check that they are all in the left 
half-plane, a Hurwitz test may be used (see, e.g., 112, 13D. Second, the 
nonnegativity of the matrix I - A'*(jm)A(jw) = I - A'(-jw)A(jw) must 
be checked. As it turns out, this is equivalent to checking whether certain 
polynomials have any real zeros, and various tests, e.g., the Stnrm test, are 
available for this 112,131. To detail these tests would take us too far afield; 
suffic~ it to say that both tests require only a finite number of steps, and do 
not demand that any polynomials be factored. 

Testing for the LBR property is somewhat simpler, in that the zero nature, 
rather than the nonnegativity, of a matrix must be established. 
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Summary 

For future reference, we summarize the following sets of condi- 
. tions. 

Bounded Real Property 

1. All elements of A(-) are analytic in Re [s] > 0. 
2. A(s) is real for real positive s. 
3. I - A'*(s)A(s) 2 0 for Re [s] > 0. 

BR Property 

1. A(.) is real rational. 
2. All eIements of A(.) are analytic in Re [s] 2 0. 
3. I - A'*(jo)A(jo) 2 0 for all real q. 

LBR Property 

1. A(-) is real rational. 
2. AU elements of A(.) are analytic in Re [s] 3 0. 
3. I - A'*(jo)A(jo) = 0 for all real w.  
4. I - A'(-s)A(s) = 0 for all s (extended LBR property). 

We also note the following result, the proof of which is called for in 
Problem 2.6.3. Suppose A(s) is BR, and that [If A(s)b = 0 for some s in 
Re [s] > 0, and some constant x. Then [I & A(s)]x = 0 for all s in  Re [sl2 0. 

Problem Prove statement 3 of Lemma 2.6.1, vii, losslessness of an rn port is 
2.6.1 equivalent to passivity together with the condition 

for all compatible incident and reflected voltagevectors, with thenetwork 
assumed to be storing no energy at time to,  and with 

You may need to use the fact that the sum and difference of square 
integrabIe quantities are square integrable. 

Problem The maximum modulus theorem states the following. Let f(s) be an 
2.6.2 analytic function within and on a closed contour C. Let M be the upper 

bound of ( / ( s f  1 on C. Then If (s)  1 < M within C, and equality holds at 
one point if and only i f f  (s) is a constant. Use this theorem to prove that 
if all elements of A(s) are analyticin Re[s]>O, then I - A ' * ( j o ) A ( j o )  
2 0 for all real o implies that I - A8*(s)A(s) 2 0 for all s  in Re Is] r 0. 
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Problem Suppose that A(s) is rational bounded real. Using the ideas contained in 
2.6.3 Problem 2.6.2, show that if 

for some s in Re [$I> 0, then equality holds for all Re Is] 2 0. 

Problem (Alternative derivation of Theorems 2.62 and 2.6.3.) Verify by direct 
2.6.4 calculation that the scattering matrices of the passive resistor, inductor, 

capacitor, transformer, and gyrator are BR, with the last four being 
LBR. Represent an arbitrary m port as a cascade load, with the loaded 
network comprising merely opens and shorts, and, as shown in the last 
section, possessing a scattering matrix l i e  that of an ideal transformer. 
Assume the validity of Eq. (2.5.5) to prove Theorems 2.6.2 and 2.6.3. 

Problem Establish whether the following function is BR: 

2.7 THE POSITIVE REAL PROPERTY 

In this section our task is to define three properties: the positive 
real property, the rational positive real property, and the Iossless positive 
real property. We shall relate these properties to properties of immittance 
or hybrid matrices of various classes of networks, much as we related the 
bounded real properties to properties of scattering.matrices. 

The Positive.Real Property 

We assume that there is given an m x m matrix B ( . )  of functions 
of a complex variable s. With no assumption at this stage on the rationaIity 
or otherwise of the entries of B(.), the matrix B(.) is termed positive real 
if the following conditions are satisfied [I]: 

1. All elements of B(.) are analytic in Re [s] > 0. 
2. B(s) is real for real positive s. 
3. B'*(s) + B(s) 2 0 for Re [s] > 0. 

Example Suppose that A(s) is bounded real and that [Z - A($)]-' exists for all 
2.7.1 s in Re [s] > 0. Define 

Then B(s) is positive real. 
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To verify condition 1, observe that an element of B(s) will have a 
right-half-plane singularity only if A(s) has a right-half-plane singularity, 
or [I - A@)] is singular in Re [s] > 0. The first possibility is ruled out 
by the bounded real property, the second by assumption. Verification 
of condition 2 is trivial, while to verify condition 3, observe that 

and the nonnegativity follows from the bounded real property. The con- 
verse result holds too; i.e., if B(s) is positive real, then A(s) is bounded 
real. 

In passing we note the following theorem of [I, 81. Of itself, it will be of 
no use to us, although a modified version (Theorem 2.7.3) will prove impor- 
tant. The theorem here parallels Theorem 2.6.1, and a partial proof is 
requested in the problems. 

Theorem 2.7.1. Let N be an m port that is linear, time invariant 
and passive-but not necessarily lumped or finite. Suppose that 
N possesses an immittance or hybrid matrix B(s). Then B(.)  is 
positive real. 

The Rational Positive Reai Property 

We define an m x m matrix B(- )  of functions of a complex vari- 
able s to be rational positive real, abbreviated simply PR, if 

1. B(.) is a matrix of rational functions of s. 
2. B(.) is positive real. 

Given that B(.)  is a rational matrix, conditions 1 and 2 of the positive real 
definition are equivalent to requirements that no element of B(.)  has a pole 
in Re [s] > 0 and that each element of B(.) be a real rational function. It 
is clear that condition 3 implies, by a limiting operation, that 

for all real o such that no element of B(s) has a pole at s = jw. If it were 
true that no element of B(-)  could have a pole for s = jo,  then (2.7.1) would 
be true for all real w and, we might imagine, would imply that 
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However, there do exist positive real matrices for which an element possesses 
a pure imaginary pole, as the following example shows. 

Example Consider the function B(s) = lls, which is the impedance of a 1-F 
2.7.2 capacitor. Then B(s) is analytic in Re [sJ 7 0, is real for real positives, 

and 
1 1 2Re[s] B'*(s) C B(s) = - t- - = s* S 1sJ1 2 0  

in Re [s] I 0. Thus B(s) is positive real, but possesses a pure imaginary 
pole. 

One might then ask the following question. Suppose that B(s) is real 
rational, that no element of B(s) has a pole in Re [s] > 0, and that (2.7.1) 
holds for all w for which jw is not a pole of any element of B(s); is it then 
true that B(s) must be PR; i.e., does (2.7.2) always follow? The answer to 
this question is no, as shown in the following example. 

Example Consider B(s) = -11s. This is real rational, analytic for Re [sl> 0, with 
2.7.3 B'*(jw) +B(jm) = 0 for all a# 0. But it is not true that B"(s) + Bfs) 

2 0 for all Re [s] > 0. 

At this stage, the reader might feel like giving up a search for any jo-axis 
conditions equivalent to (2.7.2). However, there are some conditions, and 
they are useful. A statement is contained in the following theorem. 

Theorem 2.7.2. Let B(s) be a real rational matrix of functions 
of s. Then B(.) is PR if and only if 

1. No element of B(-)  has a pole in Re [sl > 0. 
2. B'YJo) + B(jo) > 0 for all real w, with jw not a pole of 

any element of B(.). 
3. If jw, i s  a pole of any element of B(.), it is at most a simple 

pole, and the residue matrix, KO = lim,,,, (s - jwO)B(s) 
in case w, is finite, and K, = lim,, B(jw)/jo in case w, is 
infinite, is nonnegative definite Hermitian. 

Proof. In the light of earlier remarks it is clear that what we 
have to do is establish the equivalence of statements 2 and 3 of 
the theorem with (2.7.2). under the assumption that all entries 
of B(-) are analytic in Re [s] > 0. We first show that conditions 
2 and 3 of the theorem imply (2.7.2); the argument is based on 
application of the maximum modulus theorem, in a slightly more 
sophisticated form than in our discussion on BR matrices. Set 
f(s) = xi*3(s)x for an arbitrary n vector x, and consider a con- 
tow C extending from -jQ to j!2 along the jw axis, with small 
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semicircular indentations into Re [s] > 0 around those points 
jw, which are poles of elements of B(s); the contour C is closed 
with a semicircular arc in Re [s] > 0. On the portion of C coin- 
cident with the jo axis, Ref > 0 by condition 2. On the semi- 
circular indentations, 

x'*K x -0 
f - s -  jw, 

and Ref 2 0 by condition 3 and the fact that Re [s] > 0. if 
B(.) has no element with a pole at infinity, Ref 2 0 on the right- 
half-plane contour, taking the constant value lim,..,x'*[B'*(jw) 
+ B(jw)]x there. If B(.) has an element with a pole at infinity, 
then 

f -- s x ' * K ~  

with Ref 2 0 on the large semicircular arc. 
We conclude that Ref 2 0 on C, and by the maximum modulus 

theorem applied to exp [-f(s)] and the fact that 

we see that Ref 2 0 in Re [s] > 0. This proves (2.7.2). 
We now prove that Eq. (2.7.2) implies condition 3 of the 

theorem. (Condition 2 is trivial.) Suppose that jw, is a pole of 
order m of an element of B(s). Then the values taken by x'*B(s)x 
on a semicircular arc of radius p, center jw,, are for small p 

Therefore 

p" Re [x'*B(s)x] 2. Re [x'*K,x] cos m0 + Im [x'*K,x] sin me 

which must be nonnegative by (2.7.2). Clearly m = I ; i.e., only 
simple poles are possible else the expression could have either 
sign. Choosing 0 near -z/2, 0, and 7112 shows that Im [x'*K,x] 
= 0 and Re [x'*K,x] 2 0. In other words, KO is nonnegative 
definite Hermitian. V V 0 

Example B(s) = -11s fulfills conditions I and 2 of Theorem 2.7.2, but not con- 
2.7.4 dition 3 and is not positive real. On the other hand, B(s) = 11s is positive 

real. 
Example Let B(s) = sL. Then B(s) is positive real if and only if L is nonnegative 
2.7.6 definite symmetric. We show this as follows. By condition 3 of Theorem 

2.7.2, we know that L is nonnegative definite Hermitian. The Hermitian 
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nature of L means that L = L, + jLl, where L, is symmetric, L1 skew 
symmetric, and L, and L, are real. However, L = lim,,, B(s)/s, and if 
s -. m along the positive real axis, B(s)/s is always real, so that L is real. 

Example We shall verify that 
2.7.6 

z(s) = 
s3 + 3sf + 5s + 1 
s ' + z s " s t 2  

is PR. Obviously, z(s) is real rational. Its poles are the zeros of s3 + 2s' 
+ s + 2 = (s" 1))s + 2), so that L(S) is analytic in Re [s] > 0. Next 

Therefore, the residues at the purely imaginary poles are both positive. 
Finally, 

2 0 

for all real w # 1 .  

In Theorem 2.7.3 we relate the PR property to a property of port de- 
scriptions of passive networks. If we accept the fact that any immittance or 
hybrid matrix associated with an m port that is finite and lumped must be 
rational, then we have the following important result. 

Theorem 2.7.3. Let N be anm port that is linear, time invariant, 
lumped, finite, and passive. Let B(s) be an immittance or hybrid 
matrix for N. Then B(s) is PR. 

Proof. We shall prove the result for the case when B(s) is an 
impedance. The other cases follow by rninor variation. The steps 
of the proof are, first, to note that N has a scattering matrix 
S(s) related in a certain way to B(s), and, second, to use the BR 
constraint on S(s) to deduce the PR constraint on B(s). 

The scattering matrix S(s) exists because of the properties 
assumed for N. The impedance matrix B(s) is related to S(s) via 
a formula we noted earlier: 
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As we know, S(s) is bounded real, and so, by the result in 
Example 2.7.1, B(s) is positive real. Since B(s) is rational, B(s) is 
then PR. V V V  

The Lossless Positive Real Property 

Our task now is to isolate what extra constraints are imposed on 
the immittance or hybrid matrix B(s) of an m port N when the m port is 
lossless. The result is simple to obtain and is as follows: 

Theorem 2.7.4. Let N be an m port (usual conventions apply) 
with B(s) an immittance or hybrid matrix of N. Then N is lossless 
if and only if 

B'*( jw) + Bl jw) = 0 (2.7.3) 

for all real o such that j o  is not apoIe of any element of B(-). 

Proof. We shall only prove the result for the case when B(s) is 
an impedance. Then there exists a scattering matrix S(s) such that 

It follows that 

if and only if S(.) is LBR, i.e., if and only if N is lossless. Note 
that if j o  is a pole of an element of B(s), then [ I  - S(jw)] will be 
singular; so the above calculation is only valid when j o  is not a 
pole of any element of B(-). V V V 

Having in mind the result of the above theorem, we shall say that a 
matrix B(s) is lossless positive real (LPR) if (1) B(s) is positive real, and (2) 
B'*(jw) + B( jo )  = 0 for all real a, with j o  not a pole of any element of 
4 s ) .  

In view of the fact that B(s) is rational, we have that B'*(jw) = B'(-jw), 
and so (2.7.3) implies that 
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for all s = jw, where jw is not a pole of any element of E(.). This means, since 
Bf(-s) + E(s) is an analytic function of s, that (2.7.4) holds for all s that 
are not poles of any element of E(.).  

To this point, the arguments have paralleled those given for scattering 
matrices. But for impedance matrices, we can go one step farther by isoIating 
the pole positions of LPR matrices. Suppose that s,  is a pole of E(s). Then 
as s - so but s f so, (2.7.4) remains valid. It follows that some element of 
B'(-s) becomes infinite as s -+ so, so that -so is a pole of an element of 

Now if whenever S,  is a pole, -so is too, and if there can be no poles in 
Re [s] > 0, allpoles of elements of E(s) must be pure imaginary. It follows 
that necessary and sufficient conditions for a real rational matrix E(s) to be 
LBR are 

I. AU poles of elements of E(s) have zero real part* and the residue 
matrix at any pole is nonnegative definite Hermitian. 

2. B'(-s) + B(s) = 0 for all s such that s is not a pole of any element of 
E(s). 

Example We shall verify that 

is lossless positive real. By inspection, z(-s) + z(s) = 0, and the poles 
of z(s), viz., s = m, s = f j l  have zero real part. The residue at s = m 
is 1 and at s = jl is lim,,,, s(s' f 2)/(s + j l )  = 4. Therefore, z(s) is 
lossless positive real. 

Testing for the PR and LPR Properties 

The situationas far as testing whether the PR and LPR conditions 
are satisfied is much as for testing whether the BR and LBR conditions are 
satisfied, with one complicating feature. It is possible for elements of the 
matrices being tested to have jwaxis poles, which requires some minor 
adjustments of the procedures (see [12]). We shall not outline any of the 
tests here, but the reader should be aware of the existence of such tests. 

Problem Suppose that Z(s) is positive real and that Z-l(s) exists. Suppose also 
2.7.1 that [I + Z(s)l-1 is known to exist. Show that Z-'(s) is positive real. 

[Hint: Show that AD) = [Z(s)  + I]-ljZ(s) - I ]  is bounded real, that 
-A(s) is bounded real, and thence that Z-'(s) is positive real.] 

Problem Suppose that an rn port N, assumed to be linear and time invariant, 
2.7.2 is known to have an impedance matrix Z(s) that is positive real. Show 

*Far this purpdsc, a pole at infinity is deemed as having zero real part. 
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that [I  + Z(s)l-' exists for all s in Re [s] z 0, and deduce that N has a 
bounded real scattering matrix. 

Problem Find whether the following matrices are positive real: 
2.7.3 

Problem Suppose that Z,(s) and Z2(s) are m x m PR matrices. Show that Z,(s) 
2.7.4 + ZZ(S) is PR. Establish an analogous result for LPR matrices. 

An important class of networks are those m ports that contain 
resistor, inductor, capacitor, and transformer elements, but no gyrators. 
As already noted, gyrators may need to be constructed from active elements, 
so that their use usually demands power supplies. This may not always be 
acceptable. 

The resistor, inductor, capacitor, and multipoli transformer are alt said 
to be reciprocal circuit elements, while the gyrator is nonreciprocal. An 
m port consisting entirely of reciprocal elements will be termed a reciprocal 
m-port network. We shall not explore the origin of this terminology here, 
which lies in thermodynamics. Rather, we shall indicate what constraints 
are imposed on the port descriptions of a network if the network is reciprocal. 

Our basic tool will be Tellegen's Theorem, which we shall use to prove 
Lemma 2.8.1. From this lemma will follow the constraints imposed on 
immittance, hybrid, and scattering matrices of reciprocal networks. 

Lemma 2.8.1. Let N be a reciprocal m-port network with all but 
two of its ports arbitrarily terminated in open circuits, short 
circuits, or two-terminal circuit elements. Without loss of gen- 
erality, take these terminated ports as the last m - 2 ports. 
Suppose also that sources are connected at the lirst two ports so 
that with one choice of excitations, the port voltages and currents 
have Laplace transforms V\"(s), V',"(s), Z:"(s) and Iil'(s), while 
with another choice of excitations, the port voltages and currents 
have Laplace transfonns ViZ1(s), Vi2'(s), Z\z'(s), and liZ)(s). As 
depicted in Fig. 2.8.1, the subscript denotes the port number 
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FIGURE 2.8.1. Arrangement to Illustrate Reciprocity; 
j = 1,2 Gives Two Operating Conditions for Network. 

,\il 
+ 

rp 
4 - 

and the superscript indexes the choice of excitations. Then 

- 
I - 

1 Termination 
I - - . . . - 
I - 

Before presenting the proof of this lemma, we ask the reader to note care- 
fully the following points: 

m- port 
N 

I. The terminations on ports 3 through rn of the network Nare unaltered 
when different choices of excitations are made. The network N is also 
unaltered. So one could regard N with the terminations as a two-port 
network N' with various excitations at its ports. 

2. It is implicitly assumed that the excitations are Laplace transformable-- 
it turns out that there is no point in considering the situation when they 
are not Laplace transformable. 

Proof. Number the branches of the network N' (not N) from 
3 to b, and consider a network N" comprising N' together with 
the specified sources connected to its two ports. Assign voltage 
and current reference directions to the branches of N' in the 
usual way compatible with the application of Tellegen's theorem, 

Termination 
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with the voltage and current for the kth branch being denoted by 
Vy'(s) and IY'(s), respectively. Here j = 1 or 2, depending on 
the choice of excitations. Notice that the pairs V:"(s), I\J)(s) and 
VY'(s), Iy'(s) have excitations opposite to those required by 
Tellegen's theorem. 

Now V\"(s), . . . , VP'(s), being Laplace transforms of branch 
voltages, satisfy Kirchhoff's voltage law, and Ii2'(s), . . . , IJ1)(s), 
being Laplace transforms of branch currents, satisfy Kirchhoff's 
current law. Therefore, Tellegen's theorem implies that 

Similarly, 

Comparison with (2.8.1) shows that the lemma will be true if 

Now if branch k comprises a two-terminal circuit element, i.e., 
a resistor, inductor, or capacitor, with impedance Z,(s), we have 

V ~ ' ) ( S ) ~ ~ ' ( S )  = l~"(s)Zk(s)I:=~(s) 

= I ~ ' ( s ) V ~ ' ( s )  (2.8.3) 

I€ branches k, ,  . . . . k,,, are associated with a (p + 9)-port trans- 
former, it is easy to check that 

vi:'(s)Ig'(s) + . . . + vl?,(s)lb".!#(sf 

= V ~ ' ( s ) l C ' ( s )  + . . . + V ~ ~ q ( s ) I i ~  (2.8.4) 

Summing (2.8.3) and (2.8.4) over all branches, we obtain (2.8.2), 
as required. 9 V 

The lemma just proved can be used to prove the main results describing 
the constraints on the port descriptions of m ports. We only prove one of 
these results in the text, leaving to the problem of this section a request to 
the reader to prove the remaining results. All proofs are much the same, 
demanding application of the lemma with a cleverly selected set of exciting 
variables. 

Theorem 2.8.1. Let N be a reciprocal m port. Then 

1. If N possesses an impedance matrix Z(s), it is symmetric. 
2. If N possesses an admittance matrix Y(s), it is symmetric. 
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3. If H(s) is a hybrid matrix of N, then for i # j, one has 

h,j(s) = f hjt(s) 

with the + sign holding if the exciting variables at ports 
i and j are both currents or both voltages, and the - sign 
holding if one is a current and the other a voltage. 

4. The scattering matrix S(s) of N is symmetric. 

Proof. We shall prove part 1 only. Let i, j be arbitrary different 
integers with 1 _< i, j< m. We shall show that z,,(s) = z,(s), 
where Z(s) = [z,,(s)] is the impedance matrix of N. Let us re- 
number temporarily the ports of N so that the new port 1 is the 
old port i and the new port 2 is the old port j. We shall show that 
with the new numbering, z,,(s) = z2,(s). 

First, suppose that all ports other than the first one are ter- 
minated in open circuits, and a current source with Laplace 
transform of the current equal to i:lj(s) is connected to port I. 
Then the voltage present at port 2, viz., V:''(s), is z2,(s)l',"(s), 
while I$"(s) = 0, by the open-circuit constraint. 

Second, suppose that all ports other than the second are ter- 
minated in open circuits, and a current source with Laplace 
transform of current equal to iiZ'(s) is connected to port 2. Then 
the voltage present at port I ,  viz., Y',2)(s), is z,,(s)li2'(s), while 
I$(s) = 0. 

Now apply Lemma 2.8.1. There results the equation 

z2,(s)Iy' (s)I~'(s)  = Z ~ ~ ( ~ ) I \ " ( ~ ) I ~ ~ ' ( S )  

Since I',"(s) and Iia'(s) can be arbitrarily chosen, 

~ t l ( ~ )  = z,a(s) V V v 
Complete proofs of the remaining points of the theorem are requested 

in the problem. Note that if Z(s) and Y(s) are both known to exist, then 
Z(s) = Z'(s) implies that Y(s) = Y1(s), since Z( . )  and Y(.) are inverses. Also, 
if Z(s) is known to exist, then symmetry of S(s) follows from S(s) = 
[Z(s) - I][Z(s) + I]-' and the symmetry of Z(s). 

In the later work on synthesis we shall pay some attention to the reciprocal 
synthesis problem, which, roughly, is the problem of passing from a port 
description of a network fulfilling the conditions of Theorem 2.8.1 to a 
reciprocal network with port description coinciding with the prescribed 
description. 

The reader should note exactly how the presence of a gyrator destroys 
reciprocity. First, the gyrator has a skew-symmetric impedance matrix-so 
that by Theorem 2.8.1, it cannot be a reciprocal network. Second, the argu- 
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ments ending in  Eq. (2.8.3) and (2.8.4) simply cannot be repeated for the 
gyrator, so the proof of Lemma 2.8.1 breaks down if gyrators are brought 
into the picture. 

Problem Complete the proof of Theorem 2.8.1. To prove part 4, it may be helpful 
2.8.1 toaugment N by connectingseriesresistors at its ports, or to use the result 

of Problem 2.4.6. 
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State-Space Equations 

and Transfer-Function Matrices 

In this chapter our aim is to explore (independently of any net- 
work associations) connections between the description of linear, lumped, 
time-invariant systems by transfer-function matrices and by state-space equa- 
tions. We assume that the reader has been exposed to these concepts before, 
though perhaps not in sufficient depth to understand all the various connec- 
tions between the two system descriptions. While this chapter does not pur- 
port to be a definitive treatise on linear systems, it does attempt to survey 
those aspects of linear-system theory, particularly the various connections 
between transfer-function matrices and state-space equations, that will be 
needed in the sequel. To do this in an appropriate length requires a terse 
treatment; we partially excuse this on the grounds of the reader having had 
prior exposure to most of the ideas. 

In this section we do little more than summarize what is to come, and 
indicate how a transfer-function matrix may be computed from a set of state- 
space equations. In Section 2 we outline techniques for solving state-space 
equations, and in Sections 3, 4, and 5 we cover the topics of complete con- 
trolIability and observability, minimal realizations, and the generation of 
state-space equations from a prescribed transfer-function matrix. In Sections 
6 and 7 we examine two specific connections between transfer-function 
matrices and state-space equations-the relation between the degree of a 
transfer-function matrix and the dimension of the associated minimal real- 



64 STATE-SPACE EQUATIONS CHAP. 3 

izations, and the stability properties of a system that can be inferred from 
transfer-function matrix and state-space descriptions. For more complete 
discussions of linear system theory, see, e.g., [I-31. 

Two Linear System Descriptions 

The most obvious way to describe a lumped physical system is 
via differential equations (or, sometimes, integro-differential equations). 
Though the most obvious procedure, this is not necessarily the most helpful. 
If there are well-identified input, or excitation or control variables, and well- 
identified output or response variables, and if there is little or no interest in 
the behavior of other quantities, a convenient description is provided by 
the system impulse response or its Laplace transform, the system transfer- 
function matrix. 

Suppose that there are p scalar inputs and m scalar outputs. We arrange 
the inputs in vector form, to yield a p-vector function of time, u(.). Likewise 
the outputs may be arranged as an m-vector function of time y(.). The 
impulse response is an m x p matrix function* of time, w ( . )  say, which is 
zero for negative values of its argument and which relates u(.) to y(.) accord- 
ing to 

where it is assumed that (I) u(t) is zero for f 2 0, and (2) there are zero 
initial conditions on the physical system at t = 0. 

Of course, the time invariance of the system allows shifting of the time 
origin, so we can deal with an initial time to # 0 if desired. 

Introduce the notation 

[Here, F(.) is the Laplace transform off(.).] 
Then, with mild restrictions on u(.) and y( . ) ,  (3.1.1) may be written as 

The m x p matrix W(.), which is the Laplace transform of the impulse 
response w(.), is a matrix of real rational functions of its argument, provided 
the system with which it is associated is a lumped system.? Henceforth in 

*More properly, a generalized function, since w ( . )  may contain delta functions and 
even their derivatives. 

?Existence of W(s) for all but a finite set of points in the complex plane is guaranteed 
when W(s) is the transfer-function matrix of a lumped system. 



SEC. 3.1 DESCRlPTlONS OF LUMPED SYSTEMS 65 

this cha~ter we shall almost always omit the use of the word "real" in describ- 
ing ~ ( s j .  

A second technique for describing lumped systems is by means of state- 
variable equations. These are differential equations of the form 

i = F x + G u  

y = H'x + Ju 

where x 1s a vector, say of dimension n, and F, G, H, and J are constant 
matrices of appropriate dimension. The vector x is termed the stare vector, 
and (3.1.4) are known as state-space equations. Of course, u(.) and y(.) are 
as before. 

As is immediately evident from (3.1.4), the state vector serves as an inter- 
mediate variable linking u(.)  and y(.). Thus to compute y(.) from u(-), one 
would first compute 4.)-by solving the first equation in (3.1.4)-and then 
compute y(.) from x(.) and u(.). But a state vector is indeed much more 
than this; we shall develop briefly here one of its most important interpreta- 
tions, which is as follows. Suppose that an input u,(. )  is applied over the inter- 
val [ t ~ , ,  z,] and a second input u, ( . )  is applied over It,, t,]. To compute the 
resulting output over [to, t,], one could use 

1. the value of x(t_,) as aninitial wndition for the first equation in (3.1.41, 
2. the control u,(.) over It-,, I,], and 
3. the control u,(.) over fro, t,]. 

Alternatively, if we knew x(t,), it is evident from (3.1.4) that we could 
compute the output over [ to ,  r,] using 

1. the value of x(t,) as an initial wndition for the first equation in (3.1.4), 
and 

2. the control u,( . )  over [to, t,]. 

Let us think of to as a present time, t-, as a past time, and t ,  as a future 
time. What we have just said is that in computing rhe future behavior of the 
system, the present state carries as much information as a pasl state and past 
control, or we might say that the present state sums up all that we need to 
know of the past in or&r to compute future behavior. 

State-space equations may be derived from the differential or integro- 
differential equations describing the lumped system; or they may be derived 
from knowledge of a transfer-function matrix W(s) or impulse response w@); 
or, again, they may be derived from other state-space equations by mecha- 
nisms such as change of coordinate basis. The derivation of state-space equa- 
tions directly from other differential equations describing the system cannot 
generally proceed by any systematic technique; we shall devote one chapter 
to such a derivation when the lumped system in question is a network. Deri- 
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vation from a transfer-function matrix or other state-space equations will be 
discussed subsequently in this chapter. 

The advantages and disadvantages of a state-space-equation description as 
opposed to a transfer-function-matrix description are many and often subtle. 
One obvious advantage of state-space equations is that the incorporation of 
nonzero initial conditions is possible. 

In the remainder of this section we shall indicate how to compute a transfer- 
function mairix from state-space equations. 

From (3.1.4) it follows by taking Laplace transforms that 

[Zero initial conditions have been assumed, since only then will the transfer 
function matrix relate U(s) and Y(s).] Straightforward manipulation yields 

and 

Y(s) = [J + H'(s1- F)-'GI U(s) (3.1.5) 

Now compare (3.1.3) and (3.1.5). Assuming that (3.1.3) and (3.1.5) describe 
the same physical system, it is immediate that 

Equation (3.1.6) shows how to pass from a set of state-space equations to 
the associated transfer-function matrix. Several points should be noted. First, 

It follows that if W(s) is prescribed, and if W(m)  is not finite, there cannot be 
a set of state-space equations of the form (3.1.4) describing the same physical 
system that W(s) describes.* Second, we remark that although the computa- 
tion of (sl- F)-' might seem a difficult task for large dimension F, an effi- 
cient algorithm is available (see, e.g., [4D. Third, it should be noted that the 
impulse response w(t) can also be computed from the state-space equations, 
though this requires the ability to solve (3.1.4) when u is a delta function. 

*Note that a rational W(s) will becomeinfinite for s = m if and only if thereis differen- 
tiation of the input to the system with tmnsfer-function matrix W(s) in producing the 
system output. This is an uncommon occurrence, but will arise in some of our subsequent 
work. 
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The end result is 

~ ( t )  = J5(t) + H'eFfGl(t) (3.1.8) 

where a(.) is the unit delta function, i(t) the unit step function, and eP' is 
defied as the sum of the series 

The matrix 8' is well defined for all Fand all t, in the sense that the partial 
sums S, of n terms of the above series are such that each entry of S,, 
approaches a unique finite limit as n - m [4]. We shall explore additional 
properties of the matrix e" in the next section. 

Problem Compute the transfer function associated with state-space equations 
3.1 .I 

-1 0 .=[ d x + [ : l u  

Problem Show that if F is in block upper triangular form, i.a, 

then (s t  - F)-1 can be expressed in terms of (s l  - F,)-J, ( s l  - F,)-I, 
and F,. 

Problem Find state-space equations for the transfer functions 
3.1.3 

Deduce a procedure for computing state-space equations from a scalar 
transfer function W(s), assuming that W ( s )  is expressible as a constant 
plus a sum of partial fraction terms with linear and quadratic denomina- 
tors. 

Problem Suppose that W(s) = J f H'(sI - F)-IG and that W ( m )  = J is non- 
3.1.4 singular. Show that 

This result shows how to write down a set of state-space equations of a 
system that is the inverse of a prescribed system whose state-space equa- 
tions are known. 
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In this section we outline briefly procedures for solving 

We shall suppose that u(t) is prescribed for t 2 to ,  and that x(t,) is known. 
We shall show how to compute y(t) for t 2 to .  

In Section 3.1 we defined the matrix 6' as the sum of an infinite series of 
matrices. This matrix can be shown to satisfy the following properties: 

1. e"'fl" = eP"""'1, 
2. S'e-" = I. 
3. p (F)S1  = eP'p(F) for any polynomial p( . )  in the matrix F. 
4. d/dt(ePr) = Fern = eprF. 

One way to prove these properties is by manipulations involving the infinite- 
sum definition of @'. 

Now we turn to the solution of the first equation of (3.2.1). 

Theorem 3.2.1. The solution of 

for prescribed x(t,) = x, and u(z), z 2 to ,  is unique and is given 
by 

In particular, the solution of the homogeneous equation 

Proof. We shall omit a proof of uniqueness, which is somewhat 
technical and not of great interest. Also, we shall simply verify 
that (3.2.3) is a solution of (3.2.2), althoughit is possible to deduce 
(3.2.3) knowing the solution (3.2.5) of the homogeneous equation 
(3.2.4) and using the classical device of variation of parameters. 

To obtain i using (3.2.3), we need to differentiate eP('-" and 
@"-". The derivative of eF"-" follows easily using properties 1 



SEC. 3.2 SOLVING THE STATE-SPACE EQUATIONS 69 

and 4: 

Similarly, of course, 

Differentiation of (3.2.3) therefore yields 

on using (3.2.3). Thus (3.2.2) is recovered. Setting t = r ,  in (3.23) 
also yields x(t,) = x,, as required. This suffices to prove the 
theorem. V V V 

Notice that x(t) in (3.2.3) is the sum of two parts. The first, exp[F(t - t,)]x,, 
is the zero-input response of (3.2.2), or the response that would be observed if 
u( . )  were identically zero. The remaining part on the right side of (3.2.3) is 
the zero-initial-state response, or the response that would be observed if the 
initial state x(t,) were zero. 

ExamDle Consider 

Suppose that x(0) = [2 01' and u(f)  is a unit step function, zero until 
t = 0. The series formula for 8' yields simply that 

Therefore 
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The complete solution of (3.2.1), rather than just the solution of the differ- 
ential equation part of (3.2.1), is immediately obtainable from (3.2.3). The 
result is as follows. 

Theorem 3.2.2. The solution of (3.2.1) forprescribed x(t.) =x, 
and u(z), T 2 to, is 

Notice that by setting x,  = 0, to = 0, and 

in the formula for y(t), we obtain 

In other words, w(t) as defined by (3.2.7) is the impulse response associated 
with (3.2.1), as we claimed in the last section. . 

To apply (3.2.6) in practice, it is clearly necessary to be able to compute 
8'. We shall now examine a procedure for calculating this matrix. 

Calculation of eF' 

We assume that Fis known and that we need to find 8'. An exact 
technique is based on reduction of F to diagonal, or, more exactly, Jordan 
form. 

If F is diagonalizable, we can find a matrix T (whose columns are actually 
eigenvectors of F) and a diagonal matrix A (whose diagonal entries are actu- 
ally eigenvalues of F) such that 

(Procedures for finding such a Tare outlined in, for example, [4] and [51. 
The details of these procedures are inessential for the comprehension of this 
book.) Observe that 

A2 = T - l m - I F T =  T-lF2T 

More generally 
A- = T-IpT 

Therefore 
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It remains to compute eA'. This is easy however in view of the diagonal 
nature of A. Direct application of the infinite-sum definition shows that if 

then 
A = diag (A,, Al. . . . ,Ax) (3.2.1 I) 

PC = diag (eA", e"': . . . . e".') (3.2.1 2) 

Thus the problem of computing 8' is essentially a problem of computing 
eigenvalues and eigenvectors of F. 

If F has complex eigenvalues, the matrix T is complex. If it is desired to 
work with real T, a T is determined such that 

where 4- denotes the direct sum operation; A,, A,, . . . ,1, are real eigenvalues 
of F; and ((a,+, & j ~ + ~ ) .  (Afiz f j#r+2), . . . . (A,+, * jp;,,) are complex 
eigenvalues of F. 

It may easily be verified that 

The simplest way to see this is to observe that for arbitrary x,, 

d i i m p  -eA'rin p3x0] 

b {[if sin p eAf cos pt 

A i r  cos p - pea sin pt - 18' sin pt - flCleu cos pt 
A@ sin pt + +peUcos fit ReU ws pt  - #&'sin pt 
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Observe also that with r = 0, 

Xo = Xo 

Therefore 
r8' cos pt -P sin pi 

x(t) = 
lea'  sin pt eU cos pt 

is the solution of 

which is equal to x, at f ='O. Equation (3.2.14) is now an immediate conse- 
quence of Theorem 3.2.1. 

From (3.2.13) and (3.2.14), we have 

exp ([T-'FT] t )  = [e'"] -?- [&I] 4 . . . [eac"] 

cos p,+,t -e"le'' sin p,+,t 

eaisZ sin p,+,t cos p,+,t +[" I+ .. 
e"",' cos p,+,l -ehed sin p,+,f7 

e"" sin p,+,t eh'.A cos p,, ,t 

The left side is T-'enT, and so, again, evaluation of Fa is immediate. 

Example Suppose that 
3.2.2 

-1 - I  

1 -5 
With 

1 -2 

it follows that 

0 

1 -2 

Hence 
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e-L -2-1 + ze-Zrcos t + e-2: sin f Sf-' - 5e-" cos t - 5e-='sin t 
e-" cos t + 3c-2' sin t -lOe-flsin f 

e-" sin t e-" eos t - 3e-2r sin t 

If F is not diagonalizable, a similar approach can still be used based on 
evaluating e", where J is the Jordan form associated with F. Suppose that 
we find a T such that 

with J a direct sum of blocks of the form 

(Procedures for finding such a Tare outlined in [4] and M.) Clearly 

elf = &~l + +I+ . . . (3.2.17) 

and 
= Te"T-1 (3.2.18) 

The main problem is therefore to evaluate e'lf. If JL is an r x r matrix, one 
can show (and a derivation is called for in the problems) fhat 

From (3.2.10) through (3.2.12) notice that for a diagonalizable F, each 
entry of eP' will consist of sums of terms where 2, is an eigenvalue of F. 
Each eigenvalue A, of F shows up in the form a,@ in at least one entry of 



74 STATE-SPACE EQUATIONS CHAP. 3 

e: though not necessarily in all. As a consequence, if all eigenvalues of F 
have negative real parts, then all entries of eF' decay with time, while if one or 
more eigenvalues of F have positive real part, some entries of en' increase 
exponentially with time, and so on. If F  has a nondiagonal Jordan form we 
see from (3.2.15) through (3.2.19) that some entries of em contain terms of 
the form a,tSe2'' for positive integer a. If the Aj have negative real parts, 
such terms also decay for large t. 

Approximate Solutions of the State-Space 
Equations 

The procedures hitherto outlined for solution of the state-space 
equations are applicable provided the matrix ex' is computable. Here we wish 
to discuss procedures that are applicable when ep' is not known. Also, we 
wish to note procedures for evaluating 

when either 6' is not known, or em is known but the integral is not analyt- 
ically computable because of the form of u(.) .  

The problem of solving 

f = F x + G u  (3.2.2) 

is a special case of the problem of solving the general nonl~near equation 

x = f(x, t r , f )  (3.2.20) 

Accordingly, techniques for the numerical solution of (3.2.20)-and there are 
many-may be applied to any specialized version of (3.2.20), including 
(3.2.2). We can reasonably expect that the special form of (3.2.2), as compared 
with (3.2.20), may result in those techniques applicable to (3.2.20) possessing 
extra properties or even a simple form when applied to (3.2.2). Also, again 
because of the special form of (3.2.2), we can expect that there may be numer- 
ical procedures for solving (3.2.2) that are not derived from procedures for 
solving (3.2.20), but stand independently of these procedures. We shall first 
discuss procedures for solving (3.2.20), indicating for some of these proce- 
dures how they specialize when applied to (3.2.2). Then we shall discuss spe- 
cial procedures for solving (3.2.2). 

Our discussion will be brief. Material on the solution of (3.2.2) and (3.2.20) 
with particular reference to network analysis may be found in [6-81. A basic 
reference dealing with the numerical solution of differential equations is [9]. 

The solution of (3.2.20) commences in the selection of a step size h. This is 
the interval separating successive instants of time at which x(t) is computed; 
i.e., we compute x(h), x(2h), x(3h), . . . given x(0). We shall have more to say 
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about the selection of h subsequently. Let us denote x(n11) by x,, u(nh) by u,,, 
and f(x(nh), u(nh), nh) by f,. Numerical solution of (3.2.20) proceeds by 
specifying an algorithm for obtaining x. in terms of x ".,, . . . , x,_,,f,, . . . , 
f.-,. The general form of the algorithm will normally be a recursive relation 
of the type 

where the a, and b, are certain numerical constants. We shall discuss some 
procedures for the selection of the a, and b, in the course of making several 
comments concerning (3.2.21). 

1. Predictor and predictor-corrector formulas. If b, = 0, then f, is not 
required in (3.2.21), and x, depends only o n x  ,-,, x ._,, . . . , x,., and u ,_,, 
u ,_,, . . . , u,_, both linearly and through f(., ., .). The formula (3.2.21) is 
then called a predictor formula. But if b, f 0, then the right-hand side of 
(3.2.21) depends on x.; the equation cannot then necessarily be explicitly 
solved for x,,. But one may proceed as follows. First, replace f, = f(x,, u,,, nh) 
by f(x,_,, u,,nh) and with this replacement evaluate the right-hand side of 
(3.2.21). Call the result Z,,, since, in general, x, will not result. Second, replace 
f, = f(x,, u,, nh) by f(A,, u,,, nh) and with this replacement, evaluate the right 
side of (3.2.21). One may now take this quantity as xn and think of i t  as 
a corrected and predicted value of x,. [Alternatively, one may call the new 
right side 2,,, replace f, by f(B,, u,, nh), and reevaluate, etc.] The formula 
(3.2.21) with b, # 0 is termed apredictor-corrector formula. 

Example A Taylor series expansion of (3.2.20) yields 

which is known as the Euler formula. It is a predictor formula. An 
approximation of 

by a trapezoidal integration formula yields 

h 
xm = xn-I + T [~(x.-I, UB-I, (n - l)h) + f (x,, u,, nh)] (3.2.23) 

which is a predictor-corrector formula. In practice, one could implement 
the slightly simpler formula 

which is sometimes known as the Heun algorifhm. 
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When specialized to the linear equation (3.2.21, Eq. (3.2.22) becomes 

x. = x.-I + hFx.. + ~CI I . .  
(3.2.25) 

= ( I  + hF)x.-5 + hGzln_, 

Equation (3.2.24) becomes 

(3.2.26) 

2. Single-step and multistep formulas. If in the baslc algorithm equation 
(3.2.21) we have k = 1, then x, depends on the values of x ,.,, u ,.,, and u,, 
but not-at least d~rectly-on the earlier values of x ,_,, u ,_,, x ._,, . . . . I n  
this instance the algorithm is termed a single-step algorithm. If x, depends on  
values of x, and u, for i < n - I ,  the algorithm is called a multistep algorithm. 
Single-step algorithms are self-starting, in the sense that if x(0) = x, is 
known, x,, x,, . . . , can be computed straightforwardly; in contrast, multi- 
step algorithms are not self-starting. Knowing only x,, there is no way of 
obtaining x, from the algorithm. Use of a multistep algorithm has generally 
to be preceded by use of a single-step algorithm to generate sufficient initial 
data for the multistep algorithm. Against this disadvantage, it should be 
clear that multistep algorithms are inherently more accurate-because at  each 
step they use more data-than their single-step counterparts. 

Example (Adam's predictor-corrector algorithm) Note: This algorithm uses a 
3.2.4 different equation for obtaining the corrected value of x. than for obtain- 

ing the predicted value; it is therefore a generalization of the predictor- 
corrector algorithms described. The algorithm is also a multistep algori- 
thm; the predicted in is given by 

The corrected x, is given by 

Additional correction by repeated use of (3.2.27) may be employed. Of 
course, the algorithm must be started by a single-step algorithm. Deriva- 
tion of the appropriate formulas for the linear equation(3.2.2) is requested 
in the problems. 
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3. Order of an algorithm. Suppose that in a single-step algorithm x,_,  agrees 
exactly with the solution of the differential equation (3.2.20) for f = (n - 1)h. 
In general x, will not agree with the solution at time nh, but the difference, 
call it c,,, will depend on the algorithm and on the step size h. If IIcnII = 
O(hg+'), the algorithm is said to be of order* p. The definition extends to multi- 
step algorithms. High-order algorithms are therefore more accurate in going 
from step to step than are low-order ones. 

Example The Euler algorithm is of order 1, as is immediately checked. The Heun 
3.2.6 algorithm is of order 2-this is not difficult to check. An example of an 

algorithm of order p is obtained from a Taylor series expansion in 
(3.2.20): . 

assuming that the derivatives exist; A popular fouth-order algorithm is 
the Runge-Kutta algorithm: 

x. = X.-I + hR.-, ....... . . .  (3.2.29) 

with 
., 

%-I =&(kt + 2k1 + 2kn + k4) (3.2.30) 

and 

kl =A, 
h - h -  h k ,  = f  (xn-, + -Tk l ,  u (n - lh-+ T), n - Ih + T )  

This algorithm may be interpreted in geometric terms. First, the value 
k ,  of f(x,  U, f )  at r = (n - l)h is computed. Using this to estimate x 
at a time h/2 later, we compute k, = f (x, u, r) at t = (n - I)h + h12. 
Using this new value as an estimate of i, wereestimate x at time (u - I)h 
+ (hl2) and compute k, = f(x, u, t )  at this time. Finally, using this value 
as an estimate of i ,  we compute an estimate of x(nh) and thus of k, = 
f(x, u, t )  at t = nh. The various values off (x, u, t )  are then averaged, 
and this averaged value used in (3.2.29). It is interesting to note that 
this algorithm reduces to Simpson's rule if f(x,  u, t )  is independent of x. 

4. Stability of an algorithm. There are two kinds of errors that arise in 
applying the numerical algorithms: truncation error, which is due to the fact 

*We write f(h) = O(h*) when, as h - 0; f(h) - 0 at least as fast as h ~ .  
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that any algorithm is an approximation, and roundofferror, due to rounding 
off of numbers arising in the calculations. An algorithm is said to be numer- 
ically stable if the errors do not build up as iterations proceed. Stability 
depends on the form off(x, u, I )  and the step size; many algorithms are stable 
only for small h. 

Example In 181 the stability of the Euler algorithm applied to the linear equation 
3.2.6 (3.2.2) is discussed. The algorithm as noted earlier is 

x. = ( I  + hF)x.-I -t- hCu.-, (3.2.31) 

It is stable if the eigenvalues of F all possess negative real parts and if 

Re rl h < min [-2-+] I&I 

where 1, is an eigenvalue of F. 

It would seem that of those methods for solving (3.2.2) which are spe- 
cializations of methods for solving (3.2.20), the Runge-Kutta algorithm has 
proved to be one of the most attractive. It is not clear from the existing 
literature how well techniques above compare with special techniques for 
(3.2.2), two of which we now discuss. 

The simple approximation of e" by a finite number of terms in its series 
expansion has been suggested as one approach for avoiding the difficulties 
in computing 8'. Since the approximation by a fixed number of terms will be 
better the smaller the interval 10, TI over which it is used, one possibility is to 
approximate eF' over [0, h] and use an integration step size of h. Thus, follow- 
ing [81, 

If Simpson's rule is applied to the integral, one obtains 

The matrices eFb and ee' I f ih are approximated by polynomials in Fobtained 
by power series truncation and the standard form of algorithm is obtained. 

A second suggestion, discussed in 161, makes use of the fact that the expo- 
nential of a diagonal matrix is easy to compute. Suppose that F = D + A, 
where D is diagonal. We may rewrite (3.2.2) as 

.i = Dx t- [Ax + Gu] (3.2.34) 
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from which it follows that 

~ ( t )  = eDfx(0) 4- en('-"[Ax(z) + GI@)] dz 
and 

Again, Simpson's rule (or some other such rule) may be applied to evaluate 
the integral. Of course, there is now no need to approximate eDa. A condition 
for stability is reported in [6] as 

where c is a small constant and rl,(A) is an eigenvalue of A. 
The homogeneous, equation (3.2.4) has, as we know, the solution x(t) = 

@'x,, when x(O).= x,. Suggestions for approximate evaluation of PL have 
been many (see, c-g., [lo-17J). The three most important ideas used in these 
various techniques are as follows (note that any one technique may use only 
one idea): 

I. Approximation of em by a truncated power series. 
2. Evaluation of dkA by evaluating em for small A (with consequent early 

truncation of the power series), followed by formation of 
3. Making use of the fact that, by the Cayley-Hamilton theorem, @( may 

be written as 

where F i s  n x n, and the a,(.) are analytic functions for which power 
series are available (see Problem 3.2.7). In actual computation, each 
a,(.) is approximated by truncating its power series. 

Problem Let F be a prescribed n x n matrix and X an unknown n x n matrix. 
3.2.1 Show that a solution (actually the unique solution) of 

~ = F X  

with X(l0) = XO is 
X(t )  2% &"'-'dXo 

If matrices A and B, respectively n x n and m x m, are prescribed, and 
Xis an unknown n x m matrix, show that a solutionof 
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when X(t,) = XO is the prescribed boundary condition. 
What is the solution of 

where C(t) is a prescribed n x m matrix? 

problem Suppose that 
3.2.2 

is an r x r matrix. Show that 

Problem (Sinusoidal response) Consider the state-space equations 
3.2.3 

f = Fx + Cu 

y = H ' x + J u  

and suppose that for r 2 0, u(t) = u, cos (wt + 4) for some constant 
rr,, $, and w, with jw not an eigenvalue of F. Show from thedifferential 
equation that 

~ ( t )  = X, cos Wt + X. sin wt 

is a solution if x(0) is appropriately chosen. Evaluate x, and x, and con- 
clude that 
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y(t) = Re[[J + H'(jwI - F)-lGlej+]uo cos wt 
+ Im([J+ H'fjol- F)'fCle"Juo sin at 

Show also that if all eigenvalu-s of F have negative real parts, so that 
the zero-input component of y(t) approaches zero as t - m, then the 
above formula for y(t) is asymptotically correct as t - ao, irrapetive 
of ~ ( 0 ) .  

Problem Derive an Adams predictor-corrector fonnula for the integration of 
3.2.4 .i = Fx + Gu. 

Problem Derive Runge-Kutta formulas for the integration of i = Fx + Gu. 
3.2.5 

Problem Suppose that @ is approximated by the fist K f 1 terms of its Taylor 
3.2.8 series. Let R denote the remainder matrix; i.e., 

Let us introduce the constant E,  defined by 

Show that 1101 

This error formula can be used in determining the point at which apower 
series should be truncated to achieve satisfactory accuracy. 

Problem The Cayley-Hamilton theorem says that if an n x n matrix A has 
3.2.7 characteristic polynomial s" + 0"s"-1 + . . - + a l ,  then An + a,,An-1 

+ . . . + a,l = 0. Use this to show that there exist functions a&), 
i = 0, I , .  . . . n - 1 such that exp [At1 = x;;,L .%&)Ai. 

3.3 PROPERTIES OF STATE-SPACE 
REALIZATIONS 

In this section our aim is to describe the properties of complete 
controllability and complete observability. This will enable statement of one 
of the fundamental results of linear system theory concerning minimal realiza- 
tions of a transfer-function matrix, and enable solution of the problem of 
passing from a prescribed transfer-function matrix to a set of associated 
state-space equations. 
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Complete Controllability 

The term complete controllability refers to a condition on the 
matrices F and G of a state-space equation 

that guarantees the ability to get from one state to another with an appro- 
priate control. 

Complete Controllability Definition. The pair [F, C]  is 
completely controllable if, given any x(to) and to, there exists t, 
> to and a control u(.) defined over [to, t , ]  such that if this con- 
trol is applied to (3.3.1), assumed in state x(to) at to, then at time 
r ,  there results x(t,) = 0. 

We shall now give a number of equivalent formulations of the complete 
controllability statement. 

Theorem 3.3.1. The pair [F, G] is completely controllable if and 
only if any of the following conditions hold: 

1. There does not exist a nonzero constant vector w such that 
w'eP'G = .O for all t. 

2. If F is n x n, rank [G FG F2G . - - Fn-'C] = n. 

3. f: e-"'GG'eLP'i dt is nonsingular for all to and t,, with t, >to. 

4. ~ i v e n  r ,  and t,, to < t,, and two states x(to) andx(t,), there 
exists a control u ( - )  defined over [to, t,] taking x(to) at time 
to to x(t,) at time t,. 

Proof. We shall prove that the definition implies 1, that 1 and 2 
imply each other, that 1 implies 3, that 3 implies 4, and that 4 
implies the definition. 

DeJTnition implies I .  Suppose that there exists a nonzero con- 
stant vector w such that w'ePIG = 0 for all t. We shall show that 
this contradicts the definition. Take x(t,) = e-"'8-'"w. By defini- 
tion, there exists u(-) such that 
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Multiply on the left by w'. Then, since w'eP'G = 0 for all t ,  we 
obtain 

0 = w'w 

This is a contradiction. 

I md 2 imply each other. Suppose that w'emG = 0 for all t and 
some nonzero constant vector w. Then 

8 - (w1ePJ(3 = w'Fie"G = 0 
dl' 

for all 1. Set r = 0 in fhese relations for i = I ,  2, . . . , n - I to 
conclude that 

d [ G  FG . . . Fn"C;I = 0 (3.3.2) 

Noting that the matrix [G FG . . . P - l G ]  has n rows, it follows 
that if this matrix has rank n, there cannot exist w satisfying 
(3.3.2) and therefore there cannot exist a nonzero w such that 
w'ePrG = 0 for all t ;  i.e., 2 implies I. 

To prove the converse, suppose that 2 fails. We shall show that 
1 fails, from which it follows that 1 implies 2. Accordingly, s u p  
pose that there exists a nonzero w such that (3.3.2) holds. By 
the Cayley-Hamilton theorem, F", En+', and higher powers of F 
are linear combinations of I, F, . . . , P-', and so 

w'FIG = 0 for all i 

Therefore, using the series-expansion definition of em, 

w'ePtG = 0 for all t 

This says that 1 fails; so we have proved that failure of 2 implies 
failure of 1, or that I implies 2. 

I implies 3. We shall show that if 3 fails, then 1 fails. This is 
equivalent to showing that 1 implies 3. Accordingly, suppose that 

f: e-alGG'e-P"dt w = 0 

for some to, t , ,  and nonzero constant w, with t ,  > 1, .  Then 

1: (~'e-~'G)(G'e-~'~w) df = 0 
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The integrand is nonnegative; so 

(~'e-~'G)(G'e-~'~w) = 0 

for all f in [ f , ,  t , ] ,  whence 

for all t in [to, t , ] .  By the analyticity of w'd'G as a function oft ,  
it follows that w'eprG = 0 for all t ;  i.e., 1 fails. 

3 implies 4. What we have to show is that for given to, t , ,  x(t,), 
and x(t,), with t ,  to, there exists a control u( . )  such that 

Observe that if we take 

1 
&) = ~ ' e - " "  [I: ~-F~GG'~-P' . '  do]- [e-".x(t,) - e-Prox(t,)] 

then 

as required. 

4 implies the definition. This is trivial, since the defi~tion is 
a special case of 4, corresponding to x(f,)  = 0. V V V 

Property 2 of Theorem 3.3.1 offers what is probably the most efficient 
procedure for checking complete controllability. 

Example Suppose that 
3.3.1 

-1 -3 -3 
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Then 

0 

1 -3 

This matrix has rank 3, and so [F, gJ is completely controllable. 

Two other important properties of complete controllability will now be 
presented. Proofs are requested in the examples. 

Theorem 3.3.2. Suppose that IF, GI is completely controllable, 
with F n x n and G n x p. Then for any n x p matrix K, the pair 
[F + GK', GI is completely controllable. 

In control-systems terminology, this says that complete controllability is 
invariant under state-variable feedback. The system 

2 = {F + GK')x + Gu 

may be derived from (3.3.1) by replacing u by (u f a), i.e., by allowing 
the input to be composed of an external input and a quantity derived from 
the state vector. 

Theorem 3.3.3. Suppose that [F, GI is completely controllable, 
and T is an n X n nonsingular matrix. Then [TIT-', TG] is com- 
pletely controllable. Conversely, if [F, C;1 is not completely con- 
trollable, [TFT", TG] is not completely controllable. 

To place this theorem in perspective, consider the effect of the transfor- 
mation 

E = Tx  (3.3.3) 

on (3.3.1). Note that the transformation is invertible if T is nonsingular. It 
follows that 

.$ = T t  = TFx + TGu = TIT-'.? $ TGu (3.3.4) 

Because the transformation (3.3.3) is invertible, it follows that x and R 
abst~actly represent the same quantity, and that (3.3.1) and (3.3.4) are ab- 
stractly the same equation. The theorem guarantees that two versions of 
the same abstract equation inherit the same controllability properties. 

The definition and property 4 of Theorem 3.3.1 suggest that if [F, GI is not 
completely controllable, some part of the state vector, or more accurately, 
one or more linear functionals of it, are unaffected by the input. The next 
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theorem pins this property down precisely. We state the theorem, then offer 
several remarks, and then we prove it. 

Theorem 3.3.4. Suppose that in Eq. (3.3.1) the pair [F, is not 
completely controllable. Then there exists a nonsingular constant 
matrix T such that 

with [PC,, ell completely controllable. 

As we have remarked, under the transformation (3.3.3), Eq. (3.3.1) passes 
to 

2 = TET-'2 + TGu (3.3.6) 

Let us partition R conformably with the partitioning of TFT''. We derive, 
in obvious notation, 

It is immediately clear from this equation that 2 2  will be totally unaffected 
by the input or R,(t,); i.e., the R2 part of 2 is uncontrollable, in terms of both 
the definition and common sense. Aside from the term l ? , , ~ ,  in the differen- 
tial equation for R,, we see that 2, satisfies a differential equation with the 
completi controllability property; i.e., the 2, pas of R is completely control- 
lable. The purpose of the theorem is thus to explicitly show what is control- 
lable and what is not. 

Proof. Suppose that F is n x n, and that [F, GI is not completely 
controllable. Let 

rank[GFG ... P - ' G ] = r < n  (3.3.8) 

Notice that the space spanned by {G, FG, . . . , Fn-'Gj is an invari- 
ant F space; i.e., if any vector in the space is multiplied by F, 
then the resulting vector is in the space. This follows by noting 
that 
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for some set of constants a,, the existence of which is guaranteed 
by the Cayley-Hamilton theorem. 

Define the matrix T as follows. The first r columns of T-I are 
a basis for the space spanned by (G, FG, . . . , Fn-'GI, while the 
remaining n - r columns are chosen so as to guarantee that T-I 
is nonsingular. The existence of these column vectors is guaran- 
teed by (3.3.8). Since G is in the space spanned by {G, FG, . . . , 
FP1G} and since this space is spanned by the first r colllmns of 
T-I, it follows that 

for some 6,  with r rows. The same argument shows that 

where S^, has r rows. By (3.3.8), it follows that 3, has rank r. 
Also, we must have 

for some 3, with r rows. This implies 

Since 3, has rank r ,  this implies that 

where PI, is r x r. Equations (3.3.9) and_(3.3.11) jointly yield 
(3.3.5). It remains to be shown that [$,,, GI] is completely con- 
trollable. To see this, notice that (3.3.9) and (3.3.11) imply that 
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From (3.3.10) and the fact that has rank r, i t  follows that 

rank [(?, . . . (p,1,,)"-33,] = r a n k s ,  = r 

Now gl, is r X r, and therefore&,, P;:', . . . , E';;' depend lin- 
early on  I, j,,,F:,, . . . ,@;';;I, by the Cayley-Hamilton theorem. 
I t  follows that 

This establishes the complete controllability result. V V V 

Example Suppose that 
3.3.2 

Observe that 

which has rank 2, so that [F, g] is not completely controllable. We now 
seek an invertible transformation of the state vector that will highlight 
the uncontrollability in the sense of the preceding theorem. 

We take for T-1 the matrix 

The first two columns are a basis for the subspace spanned by g, Fg, and 
FZg, while the third column is linearly independent. of the first two. It 
follows then that 

Observe that 

0 -1 
8 1 1  =[ 1 -2 ] $I =[:I i t .  Ellt l]=[ '  o O] 1 

which exhibits the complete controllability of [PI ,, ell. Also 
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We can write new statespace equations as 

If, for the above example, we compute the transfer function from the 
original F, g, and h, we obtain l/(s f l)z, which is also the transfer function 
associated with state equations from which the uncontrollable part has been 
removed: 

This is no accident, but a direct consequence of Theorem 3.3.4. The following 
theorem provides the formal result. 

Theorem 3.3.5. Consider the state-space equations 

Then the transfer-function matrix relating U(s) to Y(s) is J + 
Ht1(sI - F,,)-'GI. 

The proof of this theorem is requested in the problems. In essence, the 
theorem says that the "uncontrollable part" of the state-space equations can 
be thrown away in determining the transfer-function matrix. In view of the 
latter being a description of input-output properties, this is hardly surpris- 
ing, since the uncontrollable part of x is that part not connected to the input 
U. 

Complete Observability 

The term complete observability refers to a relationship existing 
between the state and the output of a set of state-space equations: 
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Under (3.3.3), we obtain 

1 = TFT-'2 + TGu 
(3.3.14) 

y = [(T-')'HI': = H'T-'2 

Thus transformations of the form (3.3.3) transform both state-space equa- 
tions, according to the arrangement 

In other words, if these replacements are made in a set of statespace equa- 
tions, and if the initiaI condition vector is transformed according to (3.3.3), 
the input u( - )  and output y(.) will be related in the same way. The onIy 
difference is that the variable x, which can be thought of as an intermediate 
variable arising in the course of computing y(-) from u(.), is changed. 

This being the case, it should follow that Eq. (3.3.14) should define the 
same transfer-function matrix as (3.3.13). Indeed, this is so, since 

Let us sum up these important facts in a theorem, 

Theorem 3.3.9. Suppose that the triple {F, G, H) defines state 
space equations in accord with (3.3.13). Then if T is any non- 
singular matrix, {TFT-I, TG, (T-')'HI defines statespace equa- 
tions in accord with (3.3.14), where the relation between E and 
x is 2 = Tx. The pairs [F, GI and [TFT-', TG] are simultaneously 
either completely controllable or they are not, and [F, HI and 
[TFT-I, (T-')'HI are simuItaneously either completely observable 
or they are not. The variables u(.) and y(.) are related in the same 
way by both equation sets; in particular, the transfer-function 
matrices associated with both sets of equations are the same [see 
(3.3.15)l. 

Notice that by Theorems 3.3.3 and 3.3.8, the controllability and obsem- 
ability properties of (3.3.13) and (3.3.14) are the same. 

Notice also that if the second equation of (3.3.13) were 

y = H'x + JU 
then the above arguments would still carry through, the sole change being 
that the second equation of (3.3.14) would be 
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The dual theorem corresponding to Theorem 3.3.4 is as follows: 

Theorem 3.3.10. Suppose that in Eq. (3.3.13) the pair [F, HI is 
not completely observable. Then there exists a nonsingular matrix 
T such that 

with I$,,, I?,] completely observable. The matrix fill is r x r, 
where r = rank [H F'H . . . (F'p-'HI. 

It is not hard to see the physical significance of this structure of TFT-' 
and (T-')'I?. With P as state vector, with obvious partitioning of 2, and with 

TG - ["-3 
G ,  

we have 
2, = P,,R, + e,, 
y = H',R, 

32=P21P,f~2222+e,~ 

Observe that y depends directly on 2, and not P,, while the differential equa- 
tion for 2i., is also independent of 2,. Thus y is not even indirectly dependent 
on Z2. In essence, the P, part of P is observable and the P2 part unobservable. 

The dual of Theorem 3.3.5 is to the effect that the state-space equations 

y =  [H', O]x 

define the same transfer-function matrix as the equations 

In other words, we can eliminate the unobservable part of the state-space 
equations in computing a transfer-function matrix. Theorem 3.3.5 of course 
said that we could scrap the uncontrollable part. Now this elimination of 
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the unobservable part and uncontrollable part requires the F, G, and H 
matrices to have a special structure; so we might ask whether any form of 
elimination is possible when F, G, and H do not have the special structure. 
Theorem 3.3.9 may be used to obtain a result for all triples (F, G, H}, rather 
than specially structured ones, the result being as follows: 

Theorem 3.3.11. Consider the state-space equations (3.3.13), 
and suppose that complete controllability of [F, GI and complete 
observability of [F, If] do not simultaneously hold. Then there 
exists a set of state-space equations with the state vector of lower 
dimension than the state vector in (3.3.13), together with a con- 
structive procedure for obtaining them, such that if these equa- 
tions are 

then H'(s1- 4 - ' G  = H',(sI - F,)-'G,, with [F,, G,] com- 
pletely controllable and IFM, HM] completely observable. 

Proof. Suppose that [F, GI is not completely controllable. Use 
Theorem 3.3.4 to find a coordinate-basis transformation yielding 
state-space equations of the form of (3.3.12). By Theorem 3.3.9, 
the transfer-function matrix of the second set of equations is still 
H'(sI - F)-'G. By Theorem 3.3.5, we may drop the uncontrol- 
lable states without affecting the transfer-function matrix. A set of 
state-space equations results that now have the complete control- 
lability property, the transfer-function matrix of which is known 
to be W(sI - F)-IG. 

Theorem 3.3.10 and further application of Theorem 3.3.9 allow 
us to drop the unobservable states and derive observable state 
space equations. Controllabiiity is retained-a proof is requested 
in the problems-and the transfer-function matrix of each set of 
state-space equations arising is still H'(s1- F)-'G. 

If [F, C] is initially completely controllable, then we simply drop 
the unobservable states via Theorem 3.3.10. In any case, we obtain 
a set of state-space equations (3.3.16) that guarantees simulta- 
neously the complete controllability and observability properties, 
and with transfer-function matrix H'(sI - F)-lG. V V V 

Example Consider the triple IF, g, h] described by 
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As noted in Example 3.3.2, the pair [F, g] is not completely controllable. 
Moreover, the pair [F, hl is not completely observable, because 

which has rank 2. We shall derive a set of statespace equations that 
are completely controllable and observable and have as their transfer 
function h'(s1- F)-'g, which may be computed to be -l/(s + 1). 

First, we aim to get the state equation in a form that allows us to 
drop the uncontrollable part. This we did in Example 3.3.2, where we 
showed that with 

we had 

Also, it is easily found that 

Completely controllable state equations with transfer function 
h'(sI - F)-lg ate therefore provided by 

These equations are not completely observable because the "obse~ability 
matrix" 

does not have rank 2. Accordingly, we now seek to eliminate the unob- 
servable part. The procedure now is to find a matrix T such that the 
columns of T' consist of a basis for the subspace spanned by thecolumns 
of the observability matrix, together with linearly independent columns 
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yielding a nonsingular T'. Here, therefore, 

will suffice. It follows that, 

and the new state-space equations are 

= 11 01x 

Eliminating the unobservable part, we obtain 

a = [-IIX + 1-IIU 
y = x  

which has transfer function -I/(s + 1). 

Any triple (F, G, HJ such 'that Hi(sl - F)-'G = W(s) for a prescribed 
transfer-function matrix W(s) is called a realization or state-space realization 
of W(s). If [F, G] q ~ d  [F, HI are, respectively,.completely controllable and 
observable, the realizationis termed minimal, for reasons that will shortly 
become clear. The dimension of a realization is the dimension of the associated 
state vector. 

Does an arbitrary real rational W(s) always possess a realization? If 
lim,, W(s) = W(m) is nonzero, then it is impossible for W(s) to equal 
H'(s1- F)-"3 for any triple IF, G, H). However, if W(m) is finite but W(s) 
is otherwise arbitrary, there are always quadruples {F, G, H, Jf, as we shall 
show in Section 3.5, such that W(s) is precisely J $ H'(s1- F)-'G. We call 
such quadruples realizations and extend the use of the word minimal to such 
realizations. As we have noted earlier, the matrix J i s  uniquely determined-in 
contrast to F, C, and H-as W(m). 

Theorem 3.3.11 applies to realizations [F, C, H, J )  or state-space equations 

i =  Fx+ Gu 

y = H ' x + J u  
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whether or not J = 0. In other words, Theorem 3.3.11 says that any non- 
minimal realization, i.e., any realization where [F, is not completely con- 
trollable or [F, HI is not completely observable, can be replaced by a realiza- 
tion (F,, G,, H,, J ]  that is minimal, the replacement preserving the associ- 
ated transfer-function matrix; r.e., 

The appearance of J # 0 is irreIevant in all the operations that generate 
F,, G,, and H, from E, G, and H. 

P ~ O ~ J &  Prove Theorem 3.32. (Use the rankcondition or the original definition.) 
3.3.1 . . 

. . . . 
Problem Prove Theorem 3.3.3. (Use the rank condition.) 
3.3.2 

Problem Prove Theorem 3.3.5. 
3.3.3 

Problem Consider the statespace equations 

Suppose that r1 ' ] and E]form a completely controllable pair, 
F21 f i z  

and that IF,,, HI] is completely observable. Show that [F, ,, C,] is com- 
pletely &ntrollable. This result shows that elimination of the Lob-- 
able part of state-space equations preserves complete controllability. 

Problem Find a set of stat-space equations with a one-dimensional state vector 
3.3.5 and with the same transfer function relating input and output as 

3.4 MINIMAL REALIZATIONS 

We recall that, given a rational transfer-function matrix W(s) with 
W(-) finite, a realization of W(s) is any quadruple {F, G, H, J ]  such that 

W(S) = J + H ~ S I  - F)-10 (3.4.1) 
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and a minimal realization is one with [F, G] completely controllable and 
[F, HI completely observable. With W(m) = 0, we can think of triples 
(F, G, H )  rather than quadruples "realizing" W(s). 

We postpone until Section 3.5 a proof of the existence of realizations. 
Meanwhile, we wish to do two things. First, we shall establish additional 
meaning for the use of the word minimal by proving that there exist no real- 
izations of a prescribed transfer function W(s) with state-space dimension 
less than that of any minimal realization, while all minimal realizations have 
the same dimension. Second, we shall explain how different minimal realiza- 
tions are related. 

To set the stage, we introduce the Markov matrices A, associated with a 
prescribed W(s), assumed to be such that W(w)  is finite. These matrices are 
defined as the coefficients in a matrix power series expansion of Wcs) in 
powers of s-I; thus 

Computation of the A, from W(s) is straightforward; one has A_, = lim,, 
W(s), A, = Jim,-, s[W(s) - A _ , ] ,  etc. Notice that the A, are defined inde- 
pendently of any realization of W(s). Nonetheless, they may be related to 
the matrices of a realization, as the following lemma shows. 

Lemma 3.4.1. Let W(s) be a rational transfer-function matrix 
with W(m) < m. Let (A*] be the Markov matrices and let [F, G, 
H,  J] be a realization of W(s). Then A _ ,  = J and 

Proof. Let w(t) be the impulse response matrix associated with 
W(s). From (3.4.2) it follows that for t 2 0 

Also, as we know, 

w(t) = J&t) + H'ePtG 
H'F'GtE + . . , 

= JKt)  + W'G + H'FGt + 2! 

The result follows by equating the coefficients of the two power 
series. 8 77 

We can now establish the first main result of this section. Let us define the 
Hankel matrix of order r by 
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A, .  .. . * . 
x, = 

A A, .,. A%,- 

Theorem 3.4.1. A11 minimal realizations of W(s) have the same 
dimension, n,, where n, is rank X, for any n 2 n,, or, to avoid 
the implicit nature of the definition, for suitably large n. M o w  
over, no realization of W(s) has dimension Iess than n,; i.e., 
minimal realizations are minimal dimension realizations. 

Proof. For a prescribed realization (F, G, H, J), define the 
matrices W j  and V, for positive integer i by 

W, = [G FG . . . F-'GI 
V, = [H F'H . . . (F')<-'HI 

Let n be the dimension of the realization (F, G, H ) ;  then 

v: W" = 

H'G H'FG . .. 

If IF, G, H )  is minimal and of dimension n,, then, by definition, 
[F, GI is completely controllable. It therefore follows from an ear- 
lier theorem that W, has rank n,. A similar argument shows 
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that V, has rank n,. But the dimensions of W, and V., are such 
that the product Vb,W., has the same rank; that is, 

n, = rank X, (3.4.5) 

But also, V, and W ,  for any n > n, will have rank n,; to see 
this, consider for example W,,,, = [W, F n ~ G ] .  By the Cayley- 
Hamilton theorem, F"m is a linear combination of J, F, F2 , .  . . , 
F"M-1, SO FnMG is a linear combination of G, FG, . . . , Fn*-'G. 
Hence rank Wow+, =rank W,. The argument is obviously extend- 
able ton = n, +- 2, n, + 3, etc. Thus for all n > ns, n, 2 rank 

.:(V:W,,) = rank X ,  ) rank X,, = n, with the second inequal- 
ity following, because X, is a submatrix of X,. Evidently, then, 

.. . . . 

n, = rank X, = rank X ,  for all n 2 n ,  (3.4.6) 

Now suppose that n, is not unique; i.e., there exist minimal 
realizations of dimensions n,, and n,,, with n,, # n,,. We 
easily find a contradiction. Suppose also without loss of generality 
that n,, > n,,. By the minimality of the realization of dimension 
n,,, we have by (3.4.5) 

rank X,, = n,, 

Likewise 
rank X,, = n,, 

But (3.4.6) implies, because n,, > n,,, that 

rank X,,, = n,, 

The two expressions for rank X.,, are contradictory; hence mini- 
mal realiiations have the same dimension. 

To see that there do not exist realizations of lower dimension, 
suppose that (F, G, H )  is a realization of dimension n and is not 
minimal, i.e., is either not completely controllakle or completely 
observable. Then, as we saw in the last section, there exists a real- 
ization of smaller dimension that is completely controllable and 
observable-in-fact, we have a constructive procedure for obtain- 
ing such a realization. Such a realization, being minimal, has 
dimension n,. Hence n, < n, proving the theorem. V V 7 

Exampla Consider the scalar transfer function 
3.4.1 

W(s) = 
1 

(S + 1)(s + 2) 



SEC. 3.4 MINIMAL REALIZATIONS 101 

Then 

A, = f i i  {sf [ ~ ( s )  - -A_,  - $11 = 1 

It follows that 

and one can verify that 

rank X2 = rank X3 = rank X, = . . . = 2 

Therefore, all minimal realizations of W(s) have dimension 2 

As the above example illustrates, the computation of the dimension of 
minimal realizations using Hankel matrices is not particularly efficient and 
suffers from the drastic disadvantage that, apparently, the ranks of an infinite 
numbcr of matrices have to be examined. If W(s) is rational, this is not 
actually the case, as we shall see in later sections. We shall also note later 
some other procedures for identifying the dimension of a minimal realization 
of a prescribed W(s). 

As background for the second main result of this section, we recall the 
following two facts, established in Theorem 3.3.9: 

1. If {F, G, H, J )  is a realization for a prescribed W(s), so is [TFT-', TG, 
(T")'H, J ]  for any nonsingular T. 

2. If [F, G, H, J ]  is minimal, so is [ T l T - l ,  TG, (T-l)'H, J j ,  and conversely. 

Evidently, we have a recipe for constructing an infinity of minimal realiza- 
tions given one minimal realization. The natural question arises as to whether 
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we can construct all minimal realizations by this technique. The answer is 
yes, but the result itself should not be thought of as trivial. 

Theorem 3.4.2. Let IF,, G I ,  HI ,  J l ]  and (F,, G,, Hz, J,] be two 
minimal realizations of a prescribed W(s). Then there exists anon- 
singular T such that 

F, = TF,T-' G, = TG, Hz = (T-l)'H1 (3.4.7) 

Proof. Suppose that Fl and F, are n x n matrices. Define W ,  
and V j  by 

We established in the course of proving Theorem 3.4.1 that 

where X, is the appropriately defined Hankel matrix. Hence 

Now Vl,  W l ,  V,, and W ,  all possess rank n and have n rows. 
This means that we can write 

(V, V',)-l(VzV\) W ,  = W, (3.4.10) 

and the inverse is guaranteed to exist. We claim that 

carries one realization into the other. Note that T is invertible- 
otherwise W E  and W, in (3.4.10) could not simultaneously possess 
rank n. Also, (3.4.10) and (3.4.11) imply that 

That G, = TG, is immediate. We shall now show that F, = 
TFIT-l.  As well as (3.4.9), it is easy to show that 

V',FIWl = V;F,W, 
whence 

TF; W ,  = f iW,  

Because TW; = W,, we have 
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and the fact that W ,  has rank n yields the desired result. To show 
that H, = (T-')'HI, we have from (3.4.9) and the equation TW, 
= W, that 

ViT-' W, = V i  W, 

and thus, using the fact that W, has rank n, 

V:T-' = V: 

The result follows by using the formula (3.4.8). V V v 
Notice that the proof of the above theorem contains a constructive pro- 

cedure for obtaining T ;  Eqs. (3.4.8) and(3.4.11) define T in terms of Fj, G,, 
and H, f o r j  = 1,2. 

Example To illustrate the procedure for computing T, consider the following two 
3.4.2 minimal realizations of the scalar transfer function l/(s + 1)(s + 2): 

We have 

Observe that 

so thai TFIT-' = Fz. Also 

,-[:]=HI TG, =[:I = G, and T'H - 

Problem Suppose that W(s) is a scalar transfer function, with minimal realization 
3.4.1 (F, G,H, J ] .  Because W(s) is scalar, W(s) = W'(s). Show that{F: H, G, J j  

is a minimal realization of W(s) and show that the. matrix T such that 

F' = TFT-1 H = TG G (T-')%I 
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Problem Suppose that W(s) is a scalar transfer function with minimal realization 
3.4.2 [F, G, H, J ] ,  and suppose that F is  diagonal. The matrices G and H are 

vectors. Show that no entry of C or H is zero. 

Problem Suppose that W(s) is an rn X p transfer-function matrix with minimal 
3.4.3 realization [F, G, H, Jl. Show that if F is n x n, G has rankp, and H 

has rank m, then 

rank [G FC . . . F n - p G l  = n 

mnk[H F'H .., (F3""HI = n 

and that rank X. = rank X.., where 
. . 

Problem I n  the text a formula for the matrix Trelating two minimal realizations 
3.4.4 {F,, G,, Hi]  with j = 1,2 of the same transfer-function matrix was given 

in terms qf the matrices [H, FjHj . . . (F;)"-'HJ], where Fj is n x n. 
Obtain a formula in terms of the matrices [GI F,Gl . . . F;-'G,]. 

3.5 CONSTRUCTION OF STATE-SPACE 
EOVATIONS FROM A TRANSFER- 
FUNCTION MATRIX 

I n  this section we examine the problem of passing from a pre- 
scribed rational transfer-function matrix W(s), with W(w) < m, to a qua- 
druple of constant matrices IF, G, H, J} such that 

W(s) = J + H'(sI - F)-'G (3.5.1) 

Of course, this is equivalent to the problem of finding state-space equations 
corresponding to a prescribed W(s). 

In general, we shall only be interested in minimal realizations of a pre- 
scribed W(s), although the first results have to do with realizations that are 
completely controllable, but not necessarily completely observable, and vice 
versa. We follow these results by describing the Silverman-Ho algorilhm; this 
is a technique for directly finding a minimal, or completely controllable and 
completely observable, realization of a transfer-function matrix W(s). 

We note first an almost obvious point-that in restricting ourselves to 
W(s) with W(w) i co, we may as well restrict ourselves to the case when 
W(w) = 0. For suppose that W(m) is nonzero; as we know, the matrix J 
of any realization of W(s), minimal or otherwise, is precisely W(m). Also, 
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and 

has the property that Y ( w )  = 0, with V(s) rational. Evidently, if we can find 
a minimal realization IF, G, H) for V(s), it is immediate that (F, G, H, J) is 
a minimal realization of W(s). 

Scalar W(s). 

It turns out that there are rapid ways of computing realizations 
for a scalar W(s) that are always either completely controllable or com- 
pletely observable. With a simple precaution, the realizations can be assured 
to be minimal also. 

Suppose that W(s) is given as 

Notice that we are restricting  attention.:^ the case W ( w )  = 0 without any 
real loss of generality, as we have noted. A completely controllable realiza- 
tion, often called the phase-variable realization, is described in the following 
theorem. The matrix F appearing in the theorem is termed in linear algebra 
a companion matrix, and the realization has sometimes been tenned a com- 
panion-matrix realization. 

Theorem 3.5.1. Let W(s) be givenas in Eq. (3.5.2). Then a com- 
pletely controllable realization {F, G, HI for W(s) is as follows: 

Moreover, this realization is also completely observable if and 
only if the polynomials sn $ a,sn-' f . . . + a, and b.sn-I + . . . 
+ b, have no common factors. 

Proof. The proof that fF, G, HI is a realization of W(s) divides 
into two main steps. First, we show that 
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Then we show that 

That [F, G, HI is a realization is then immediate from (3.55) and 
the definition of H. 

Let us prove (3.5.4). Assume that the result holds for F of 
dimension n = 1,2, 3, . . . , m - 1. We shall prove it must hold 
for n = m. Direct calculation establishes that it holds for n = 2, 
so the inductive proof will be complete. We have, on expanding 
by the first row, 

s -1 0 - . .  0 

-1 

-1 

. . 
- 1 

a, a,  a, . . . s + a ,  

= s(s"-' + anS"-= + . . . + a,s + a,) + 
where we have used the inductive hypothesis. This equality is 
precisely (3.5.4). 
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Let us now prove (3.5.5). In view of the form of G, it follows 
that (sl- F)-'G is a vector that is the last column of (sl- F ) - ' .  
The Jacobi formula for computing the inverse ofa  matrix in terms 
of the minors of its cofactors then establishes that, for example, 

with a similar calculation holding for-the other entries of 
(sI - F)-'G. Equation (3.5.5) follows. 

To complete the theorem proof, we must argue that [F, GI is 
completely controllable, and we must establish the complete 
observability condition. That [F, is completely controllable 
foUows from the fact that [G FG . . . Fn-'GI is a matrix of the 
form 

[ '#:!: 4 
. . ,  X X X  

where x denotes an arbitrary element. (This is easy to check.) 
Clearly, rank [G FG . . . F"-'G] = n. 

Finally, we examine the observability condition. If (3.5.2) is 
such that the numerator and denominator polynomial have com- 
mon factors, then these factors may be canceled. The resulting 
denominator polynomial will have degree n' < n, and, by what 
we have already proved, there will exist a realization of dimension 
n'. Hence nis not the minimal dimension of arealization, and thus 
the pair [F, H] In (3.5.3) cannot be completely observable. Thus, 
if [F, H] is completely observable, the numerator and denon~inator 
of W(s) as given in (3.5.2) have no common factors. 

Now suppose that [F, H] is not completely observable. Then, 
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as we have seen, there exists a minimal realization {F,, G,, H M )  
constructible from {F, G, H )  that will, of course, have lower 
dimension, and for which 

The matrix (sI - FM)-' is expressible as a matrix of polynomials 
divided by IsI- F,I, so H',(sI- FM)-'G, will consist of a 
polynomial divided by the polynomial 1 sI - F, 1. This means 
that W(s) is a ratio of two polynomials, with the denominator 
po1ynomial of degree equal to the size of F,, which is less than 
n. Consequently, the numerator and denominator of (3.5.2) must 
have common factors. 

Since we have proved that lack of complete observability of 
[F, H ]  implies existence of common factors in (3.5.2), it follows 
that if the numerator and denominator polynomials in (3.5.2) have 
no common factors, then [F, H] is completely observable. The 
proof of the theorem is now complete. V V V 

An important corollary follows immediately from the above theorem; this 
corollary relates the dimension of a minimal realization of a scalar W(s) to 
properties of W(s). 

Corollary. Let W(s) be givenasin(3.5.2),withno wmmon factors 
between the numerator and denominator. Then the dimension of 
a minimal realization of W(s) is n. 

Example In an example in the last section we studied the transfer function 
3.5.1 

and went to some pains to show that the dimension of minimal realiza- 
tions is 2. This is immediate from thecorollary. By Theorem 3.5.1, also, a 
minimal realization is provided by 

It is easy to check that [F, HI is completely observable. On the other 
band, if 

we could have the same Fand G but would have H = . Then [: 1 



SEC. 3.5 CONSTRUCTION OF STATE-SPACE EOUATIONS 109 

and lack of complete observability is evident. 

In the problems of ¶his section, proof of the following theorem is requested; 
the theorem is closely akin to, and can be proved rapidly by using, Theorem 
3.5.1. 

~ h e o i e m  3.5.2. Let W(s) be given as in Eq. (3.5.2).'~henacom- 
pletely observable realization {F, G, H] for W(s) is as follows: 

Moreover, this realization is completely controllable if and only 
if the polynomials s' + u,s"-' + . . . + o, and bmsn-I + - . . f 
b, have no common factors. 

Matrix W(s) 

Now we turn to transfer-function matrices. First, we shall give 
matrix generalizations of Theorems 3.5.1 and 3.5.2, following the treatment 
of [IS]. Then we shall indicate without proof one of a number of other pro- 
cedures, the Silverman-Ho algorithm, for direct computation of a minimal 
realization. (The matrix generalizations of Theorems 3.5.1 and 3.5.2 lead, in 
the first instance, to completely controllable or completely observable real- 
izations, but not necessarily minimal realizations.) For a treatment of the 
Silverman-Ho algorithm, including the proof, see [191. For an example of 
another procedure for generating a minimal realization, see 1201. 

To derive a completely controllable realization of a rational m x p trans- 
fer-function matrix W(s) with W(m) = 0, we proceed in the foUowing way. 

Let p(s) be the least common denominator of the mp entries of W(s), with 

Because of the definition of p(s), the matrix p(s)W(s) will be a matrix of 
polynomials in s, and because W(w) = 0, the highest degree polynomial 
occurring inp(s)W(s) has degree less than n. Therefore, there exist constant 
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m x p matrices B, ,  B,, . . . ,En with 

Now we can state the main result. 

Theorem 3.5.3. Let W(s) be a rational m x p transfer-function 
matrix with W(m) = 0, and let p(s) and B,, B,, . . . , B, be con- 
structed in the manner just descnbed. Then a completely control- 
lable realization for W(s) is provided by 

0, . - .  

1- 

and a completely observable realization is provided by 

where 0, and I, denote q x q zero and unit matrices, respectively. 

The proof of this theorem is closely allied to the proof. of the corresponding 
theorems for scalar W(s) and, accordingly, will be omitted. Proof is requested 
in the problems. Notice that, in contrast to the theorems for scalar transfer 
function matrices, there is no statement in Theorem 3.5.3 concetning condi- 
tions for complete observability of the completely controllable realization, 
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and complete controllability of the completely observable realization. Such 
a statement seems very difficuIt to give. 

We now ask the reader to note very carefully the following points: 

1. Theorem 3.5.3 establishes the result that any rational W(s) with W(m) 

< oo possesses a realization-in fact, a completely controllable or com- 
pletely observable realization. This in itself is a nontrivial result and, of 
course, justifies much of the discussion hitherto, in the sense that were 
there no such result, much of our discussion would have been valueless. 

2. The characteristic polynomial of the F matrix in the completely control- 
lable realization is 

Therefore, any eigenvalue of F must also be a pole of some eIement of 
W(s), since p(s) is the least common denominator of the entries of W(s). 
It follows that any eigenvalue of the Fmatrix in any minimlrealizatioon 
of W(s) must be apole of some eler~~e~ft  of W(s). (A  proof is requested in 
the problems.) The converse is also true; i.e., any pole of any element of 
W(s) must be an eigenvalue of the F matrix in any minimal realization, in 

fad, in any realization at all. This is immediate from the formula W(s) 
= J $ H'(s1- F)-'C, which shows that any singularity of any element 
of W(s) must be a zero of det(s1- F). 

3. Theorem 3.5.3 can be used to generate minimal realizations of a pre- 
scribed W(s) by employing it in the first step of a two-step procedure. 
From W(s) one first constructs a completely controllable or completely 
observable realization. Then, using the technique exhibited in an earlier 
section, we construct from either of these realizations a minimal realiza- 
tion. The existence of these techniques when noted in conjunction with 
remark 1 also shows that any rational W(s) with W ( m )  < m possesses 
a minimal realizaiion. 

Example We provide a simple illustration of the preceding. Suppose that 
3.5.2 

1 2 

s+l s+l 

Evidently, p(s) = s(s + 1) and there are two matrices B,, viz., 

Following Theorem 3.5.3, we see that a completely controllablerealiza- 
tion is provided by 
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Next, we check for complete observability by computing 

[H F'H (F')ZH (F')sH] = 
1 -2 -1 2 1 -2 

2 1 -2 -1 2 1 -2 -1 

Evidently. this matrix has rank 3; therefore, the real i t ion just computed 
is not minimal, though a realization of dimension 3 will he minimal. 
Accordingly, we seek a matrix Tsuch that 

where fll is 3 x 3 and [4 ,, fi,] is completely observable. If 8, and 
are defined by 

TG - [$:I 
it will then follow that (?,I is completely controllable, and that 
[El,, e,, I?,] is a minimal realization of W(s). 

We have discussed the computation of T for the dual problem of 
eliminating the uncontrollable part of a realization. It is easy to deduce 
from this procedure one applying here. We shall take for the first three 
columns of T' a basis for the space spanned by [H, F'H, (F')=H, (F3'H) 
and for the remaining column any independent vector. This leads to 

and thus 

1 0 0 0  1 0 0 0  

0 0 1 0  
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It follows that 

and thus a minimal realization of W(s) is provided by 

Of course, we could equally well have formed a completely observable 
realization of W(s) using Theorem 3.5.3 and then eliminated the uncon- 
trollable part. 

We shall now examine a procedure for obtaining a minimal realization 
directly, i.e., without having to cast out the uncontrollable or unobservable 
part of a realization obtained in an intermediate step. 

Silverman-Ho Algorithm 

Starting with an rn X p rational matrix W(s) with W(m) =0, 
the algorithm proceeds by generating the Markov matrices (A,] via 

A A A  
W ( s ) = + + $ - k $ t -  -.. 

and the Hankel matrices X. by 

The rationality of W(8) is sufficient to guarantee existence of a reaIization, 
though, as we have noted, this is a nontrivial fact. Since realizations exist, 
so do minimal realizations. We recall that if n, is the dimension of a minimal 
realization, then rank X, = rank X, for all n 2 n,. Thus, knowing the 
Xi  but not knowing n,, we can examine rank X,, rank X,, rank X,, and 
so on, and be assured that at some point the rank will cease to increase. 
In fact, one can show that if n, is the degree of the least common denominator 
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of the entries of W(s), then n, 5 n, x min (m, p). Thus one can stop testing 
the rmtks of the Xi  at, say, i = n, x min (m, p) in the knowledge that no 
further increase in the rank is possible. 

Let r be the first integer for which rank X ,  = rank X, for all n 2 r. Let 
rank X, = n,, which turns out to be the dimension of a minimal realiur- 
tion. The remaining steps in the algorithm are as follows (for a proof, see 
[19l): 

1. Find nonsingular matrices P and Q such that 

(Standard procedures exist for this task. See, e.g., [4&) 
2. Take 

G = n, x p top left corner of PX, 

H' = m x n, top left corner of X,Q 

F -; n, x n,,, top left comer of P(aX,)Q 

where 

A, . . .  

a x ,  = 

A, A,+, . . . A,,-, 

Example Suppose that 
3.5.3 

W(s) = 
1 

It is easy to calculate that 

A2 = lim (s*[sW(s) - A, - Al/s]j = .- G 3 
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Furthermore, 

A , = A , = A , = . . .  A , = A ~ = ~  *=, . .  
Then 

Furthermore, 

rank Xi = 2 

for all i. In terms of our earlier d k p t i o n  of the algorithm, r = 1, 
and rank X, = n, = 2. [Note that the bound n~ I no x min (m,p) 
yields here that n, 1 2, so that the only matrices that need be formed 
are XI and X,.] The next task is to find matrices P and Q so that 

Such are easy to find. One pair is 

In accordance with the algorithm, 

It is quickly verified that H'(sI - F)-'G is the prescribed W(s), that 
[F, GI is completely controIlable, and [F, HI completely observable. 

Problem Prove Theorem 3.5.2. 
3.5.1 

Problem Suppose that G is an n vector and F a n  n X n matrix with [F, com- 
3.5.2 pletely controllable. Define T by 



116 STATE-SPACE EQUATIONS CHAP. 3 

where is1 - Fl =s" + adn-[ + ,.. + a , .  Show that TFT-I and TG 
have the form of the phase-variable realizaticn of Theorem 3.5.1. 

Problem Construct two minimal realizations of 
3.5.3 

by constructing first a completely controllable realization, and by 
constructing first a completely observable realization. 

Problem Prove Theorem 3.5.3. 
3.5.4 

Problem Using the fact that the eigenvalues of Fare  the same as those of TFT-', 
3.5.5 and using the theorem dealing with the elimination of uncontrollable 

states, show that any eigenvalue of the Fmatrix in any minimal realiza- 
tion of a transfer-function matrix is also a pole of some element of that 
transfer-function matrix. [Hint: See remarks following Theorem 3.5.3.1 

Problem Using the Silverman-Ho algorithm, find a minimal realization of 
3.5.6 

3.6 DEGREE OF A RATIONAL TRANSFER 
FUNCTION MATRIX 

In this section we shall discuss the concept of the degree of a  
rational transfer-function matrix W(s). If W(s) has the property W(w) < co, 

then the degree of W(s), written 6[W(s)] o r  6[W] for short, is defined simply 
as the dimension of a minimal realization of W(s); we shall, however, extend 
the definition of degree to consider those W(s) for which W(m) < m fails. 

We have already explained how the degree of a W(s) with W(co) < m may 
be determined by examining the rank of Hankel matrices derived from the 
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Markov coefficients of W(s). We shall, however, state a number of other 
properties of the degree concept, some of which offer alternative procedures 
for the computation of degree. A number of these will not be proved here, 
though they will be used in the sequel. We shall note the appropriate refer- 
ences (where proofs may be found) as we state each result. 

The history of the degree concept is interesting; the concept originated in 
a paper by McMillan 1211 dealing with a network-theory problem. McMiilan 
posed the following question: given an impedance matrix Z(s) of a network 
for which it is known that a passive synthesis exists using resistors, inductors, 
capacitors, transformers, and gyrators, what is the minimum number of 
energy storage elements, i.e., inductors and capacitors, required in a synthesis 
of Z(s)? McMillan termed this number the degree of Z(s) and gave rules for 
its computation as well as various properties. In 1201 thir network-theory-based 
definition was shown to be identical with a definition of degree os the dimension 
of a minimal realization of Z(s), in case Z(m) < m. This was an intuitively 
appealing result: in almost all cases, as we shall see, state-space equations of 
a network can be computed with the state vector entries being either a capaci- 
tor voltage or inductor current. Thus the result of [20] showed that, despite 
the evident constraints placed by passivity of a network on state-space equa- 
tions derived from that network, minimal-dimension state-space equations 
could still be obtained. 

Other network theoretic formulations of the degree concept have been 
given by Tellegen [22] and Duffin and Hazony 1231. Connection between these 
formulations and the definition of degree in terms of the dimension of a state- 
space realization appears also in [20]. 

We proceed now with a definition of the degree concept and a statement of 
some of its properties. 

Definition of Degree. Let W(s) be a matrix of real rational 
functions of s. If W(m) < m, the degree of W(s), 6[W(s)] or6[W1, 
is defined as the dimension of a minimal realization of W(s). If 
one or more elements of W(s) has a pole at s = m, write 

W(s) = W-,(s) + W,S + W2s2 + . . . + Wrsr (3.6.1) 

where W-,(s) has W-,(as) < m and W,, W2, . . . , W, are con- 
stant matrices. Set 

Then 6[W] is defined by 

6tWI = 6IW-,I + 61VI (3.6.3) 
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Though transfer-function matrices of the form of (3.6.1) with W , ,  W,, . . . , 
nonzero occur very infrequently, it is worth noting that the impedance Z(s) 
of a one-port passive network may well be of the form 

if the network comprises an inductance L in series with another one-port 
network. In this case, the degree definition yields 

More generally, the impedance matrix of an m port may be of the form of 
(3.6.4), where L is a matrix. Then we obtain d[Z] = rank L + 6[Z_, ] .  This 
depends on the result that 6[sL] = rank L, a proof of which is requested in 
the problems. 

Note also from the above definition that if p(s) is a scalar polynomial in 
s, G[p(s)] coincides with the usual polynomial degree. 

We shall now prove a number of properties. 

Property 1. If M and N are constant matrices 

Proof. For simplicity, assume that W(m) < w .  Property 1 fol- 
lows by observing that if [F, G, H, J )  is a minimal realization of 
W(s), (F, GN, HM', MJNJ is a realization of MW(s)Nof dimen- 
sion 6[m and is not necessarily minimal. V V V 

As a special case of property 1, we have 

Property 2. Let W,(s) be a submatrix of W(s). Then 

SIW,l I S[W 
Next, we have 

Property 3 

Proof. For simplicity, assume that W , ( m )  < w and W,(w) < 
w .  The right-hand inequality in property 3 follows by noting that 
if we have separate minimal realizations of W, and W,, simple 
'paralleling' of inputs and outputs of these two realizations will 
provide a realization of W, + W,, but this realization will not 
necessarily be minimal. More precisely, if (F,, G,, H,, J,) is a mini- 
mal realization for Wj(s), i = 1,2, a realization of W(s) = W,(s) 
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+ W2(s) is provided by 

Proof of the left-hand inequality in (3.6.8) is requested in the 
problems. V V V 

Example If WAS) = Il(s + I ) ,  Wz(s) = I/(s + 2), then 6[W,]  = 6[W,] = I and 
3.6.1 6[ W, + W,1 = 2. If W,(s) = W2(s) = l/(s + I), then 6[W, + W2] = 1, 

and if Wds) =- W ~ S )  = 1/(s + I), then 6[W, + W,] = 0. This exam- 
ple shows that neither inequality in (3.6.8) need be satisfied with equality, 
but either may be. 

An important special case of property 3 permitting replacement of the 
right-hand inequality in (3.6.8) by an equality is as follows. 

Property 4. Suppose that the set of poles of elements of W, is 
disjoint from the set of poles of elements of W,. Then 

In proving this property we shall make use-of a generalization of the well- 
known fact that if 

5 a,@Y = O  
*=I 

for arbitrary a, and b, (real or complex), with b, # b, for i # j, then ai = 0 
for all i. The generalization we shall use is an obvious one and is as follows: 
if 

w',dl'G, + w\eF.'G, = 0 

f6r some vectors w ,  and w, and matrices F,, GI, Fa, and G,, with no eigen- 
value of F, the same as an eigenvalue of P,, then 

Proof. Assume for simplicity that W , ( m )  < m and W2(m)  < 
-. Suppose ttiat (F,, G,, H, J,], for i = 1,2, define minimal real- 
izations of W,(s) and W,(s). Let IF, G,  H, J )  as given in(3.6.9) be 
a realization for W(s) = W,(s) + W,(s). Suppose that [F, GI is 
not completely controllable. Then there exists a constant nonzero 
vector w such that 
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Partitioning w cornformably with F, it follows that 

Now because {Fj, G,, H,, J,] is a minimal realization for W((S), 
the set of eigenvalues of F, is contained in the set of poles of 
W,(s), as we showed in an earlier section. Therefore, the set of 
eigenvalues of Fl is disjoint from the set of eigenvalues of F, and 

Because w is nonzero, at least one of w, and w, is nonzero. The 
complete controllability of [F,, GJ is then contradicted: So our 
assumption that [F, GI is not controllabje is untenable; similarly, 
[F, H] is completely observable, and the result follows. V V V 

An interesting application of this property is as follows. Suppose that 
a prescribed W(s) is written as W(s) = W_,(s) + W,s + W,s2 f . . . + 
Wrs7 for constant matrices W,, i 2 1. We can speak of a generalized partial 
fraction expansion of W(s) when we mean a decomposition of W(8) as 

Let 

A*, + . . . + Ah, Vks) = - 
(s - s,> (s - s,)" 

and 

V,(s) = w,s + . . . + w,sr 

We adopt the notation 6[W; s,] to denote 6[V,], the degree of that part of 
W(s) with a pole at s,. It is immediate then from property 4 that 

Property 5 

This property says that if a partial fraction expansion of W(s) is known, 
the degree of W(s) may be computed by computing the degree of certain 
summands in the partial fraction expansion. 
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Example Suppose that 

It is almost immediately obvious that the degree of each summand is 
one. For example, a realization of the fin1 summand is 

F=[-21 G = [ l  01 H = [ 2  11 

and it is clearly minimal. It follows that b[WI = 2. 

The next property has to do with products, rather than sums, of transfer- 
function matrices. 

Property 6 

: Proof. Assume for simplicity that W,(oo) < m and W2(oo) < m. 

The property follows by observing that if we have separate mini- 
mal realizations for W ,  and W,,  a cascade or series connection 

. . 
of the two realizations will yield a realization of W ,  W, ,  but this 
realization will not necessarily be minimal. More formally, sup- 
pose that WXs) has minimal realization IF,, G,, Hi, JJ, for i = 

. ' 1,2. Then it is readily verified that a set of stite-space equations 
with transfer-function matrix W,(s)Wz(s) is provided by 

Example If W,(s) = l / (s  + 1) and Wz(s) = I/(s + Z), then 61W1 WZI = 2 = 
3.6.3 b [ ~ , ]  + d[w,J. But if W,(s) = I/(# + 1) and Wz(s) = (s + l ) / (s  + 21, 

then SIWl W21 = 1. 

For the case of a square W(s) with W ( m )  nonsingular, we can easily prove 
the following property. Actually, the property holds irrespective of the non- 
singularity of W(W). 
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Property 7. If W(s) is square and nonsingular for almost all s, 

Proof. To prove this property for the case when W ( m )  is non- 
singular, suppose that (F, G, H, 5 )  is a minimal realization for 
W(s). Then a realization for W-' ( s )  is provided by (F - GJ-'H', 
GJ-' ,  -H(J-I)', 5-'3. To see this, observe that 

The last term on the right side is 

and we then have 

This proves that ( F  - GJ-'H', GJ'', -H(J-I)', J'') is arealiz- 
ation of W-'(s).  

Since [F, GI is completely controllable, [[F - GJ-'H', GI and 
[F - GJ-'H', GJ-'1 are completely controllable, the first by a 
result proved in an earlier section of this chapter, the second by 
a trivial consequence of the rank condition. Similarly, the fact 
that [F- GJ-'H', -H(J-')'I is completely observable follows 
from the complete observability of [F, HI. Thus the realization 
(F - GJ-'H', GJ-I,  -H(J-I)', J-I)  of W"(s) is minimal, and 
property 7 is established, at Least when W(oo) is nonsingular. 
v v v 

An interesting consequence of property 7 of network theoretic importance 
is that the scattering matrix and any immittance or hybridmatrix ofa  network 
have the same degree. For example, to show that the impedance matrix ,Z(s) 
and scattering matrix S(s) have the same degree, we have that 

Then S[S(s)] = 6MI f z) - '1  = b[(I + Z)]  = J[Z(s)]. 
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Next, we wish to give two other characterizations of the degree concept. 
The first consists of the original scheme offered in [21] for computing degree 
and requires us to understand the notion of the Smith canonical form of 
a matrix of polynomials. 

Smith canonical  f o r m  [4]. Suppose that V(s) is an m x p ma- 
trix of real polynomials in s with rank r. Then there exists a repre- 
sentation of V(s), termed the Smith canonical form, as a product 

where P(s) is m x m, r ( s )  is m x p, and Q(s) is p x p. Further, 

I. P(s) and Q(s) possess constant nonzero determinants. 
2. r ( s )  is of the form 

written in shorthand notation as 

3. The y,(s) are uniquely determined monic polynomials* with 
the property that yJs) divides y,,!(s) for i = 1,2, . . . , 
r - 1 ; the polynomial yJs) is the ratlo of the greatest com- 
mon divisor of all i x i minors of V(s) to the greatest com- 
mon divisor of aU ( i  - 1) x (i - 1) minors of V(s). By 
convention, y,(s) is the greatest common divisor of all 
entries of V(s). 

Techniques for computing P(s), r(s), and Q(s) may be found in [4]. Notice 

*A monic polynomial in s is one in which the coefficient of the highest powerof s is one. 
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that r ( s )  alone is claimed as being unique; there are always an infinity of 
P(s) and Q(s) that will serve in (3.6.15). 

In [21] the definition of the Smith canonical form was extended to real 
rational matrices W(s) in the following way. 

Smith-McMillan canonical form. Let W(s) be an m X p 
matrix of real rational functions of s, and let p(s) be the least 
common denominator of the entries of W(s). Then V(s) = 
p(s) W(s) is a polynomial matrix and has a Smith canonical form 
representation P(s)r(s)Q(s), as described above. With y,(s) as 
defined above, define cis)  and y,(s) by 

where €As) and v,(s) have no common factors and the v,(s) are 
monic polynomials. Define also 

Then there exists a representation of W(s) (the Smith-McMian 
canonical form) as 

where P(s) and Q(s) have the properties as given in the description 
of the Smith canonical form, E(s) and Y(s )  are unique, c,(s) divides 
E.-+,(s) for i = 1.2, . . . , r - 1, and yl,+,(s) divides y,(s) for i = 
1,2 ,..., r - I .  

Finally, we have the following connection with 6[W(s)], proved in 1201. 

Property 8. Let W(-) < w and let yl(s), y,(s), . . . , y,(s) be 
polynomials associated with W(s) in a way described in the 
Smith-McMillan canonical form statement. Then 

[Recall that G[y.(s)] is the usual degree of the polynomial ~ ~ ( s ) ] .  

In case the inequality W(oo) < w fails, one can write 
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From this result, it is not hard to show that if Wis invertible, b[W-'I= b[W] 
even if W(m) is not finite and nonsingular. (See Problem 3.6.6.) 

Notice that the right-hand side of (3.6.20) may be rewritten as b[n,yr,(s)l, 
and that b[W(s)] may therefore be computed ifwe know only p(s) = n, y,(s), 
rather than the individual v,(s). A characterization of yr(s) is available as 
follows. 

Property 9. With W(m) < m, with y(s) = n,yl.(s), and yi(s) 
as above, 

and yr(s) is the least common denominator of all p x p minors of 
W(s), where p takes on all values from 1 to min(m, p). 

For a proof of this result, see [ZO]; a proof is also requested in the problems, 
the result following from the definitions of the Smith and Smith-McMillan 
canonical forms together with property 8. 

Example Consider 
3.6.4 

The least common denominator of all 1 x 1 minors is (s + i)(s + 2). 
Aiso, the denominators of the three 2 x 2 minors of W(s) are 

Accordingly, .the least common denominator of all minors of W(s) is 
(s + 1)2(s + 2)l and S[W(s)l = 4. 

There is a close tie between property 9 and property 5, where we showed 
that 

m'(s)l = C b[w ; st] (3.6.10) 
I, 

Recall that the summation is over the poles of entries of W(s), and 6[W; si] 
is the degree of the sum Vks) of those terms in the partial fraction expansion 
of W(s) with a singularity at s = s,. 

Theleast common denominator of all p X p minors of V,(s) will be a power 
of s - si, and therefore the least common denominator of all p x p minors 
will simply be that denominator of highest degree. Since the degree of this 
denominator will also be the order of s, as a pole of the minor, it follows 
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that, by property 9, 6 [ W ;  s,] will be the maximum order that s, possesses as 
apole of any minor of V,(s). 

Because V,(s) for j # i has no poles in common with V,(s), it follows that 
6[W; s,] will also he the maximum order that s, possesses as a pole of any 
minor of VJs). Since W(s) = C, V,(s), we have 

Property 10 .6  [W; s,] is the maximum order that sf possesses as 
a pole of any minor of W(s). 

Example Consider 
3.6.5 

The poles of entries of W(s) are -1 and -2. Observing that 

det W(s) = 
4 1 

(s+ I n s +  - (s + I)(s + 21 

it follows that -1 has a maximum order of 1 as a pole of any minor of 
W(s), being a simple pole of two 1 x 1 minors, and of the only 2 x 2 
minor. Also, -2 has a maximum order of 2 as a pole. Therefore, 6 [ v  
= 3. 

In our subsequent discussion of synthesis problems, we shall be using many 
of the results on degree. McMiUan's original definition of degree as the 
minimum number of energy storage elements in a network synthesis of an 
impedance of course provides an impetus for attempting t o  solve, via state- 
space procedures, the synthesis problem using a minimal number of reactive 
elements. This inevitably leads us into manipulations of minimal realizations 
of impedance and other matrices, which, in one sense, is fortunate: minimal 
realizations possess far more properties than nonminimal ones, and, as it 
turns out, these properties can play an important role in developing synthesis 
procedures. 

Problem Prove that 6[sLl = rankL. 
3.6.1 

Problem Show that I6(W,) - 6(W2) I < 6(WI + Wz). 
3.6.2 

Problem Suppose that W, is square and W;' exists. Show that 6[W, W,] 2 6 [ W z ]  
3.6.3 - 6[W,]. Extend this result to the case when W, is square and W i l  

does not exist, and to the case when W, is not square. (The extension 
represents a difficult problem.) 
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Problem Prove property 9. [Hint: First fix p. Show that the greatest common 
3.6.4 divisor of all p x p minors of p(s) W(s) is y,(s&,(s) . . . y,(s). Noting 

that p(sP is a common denominator of all p x p minors of W(s), show 
that the least common denominator of all p x p minors of W(s) is the 
numerator, after common factor cancellations, of p(s)~/y,(s&,(s) . . . 
y,(s). Evaluate this numerator, and complete the proof by letting p vary.] 

Problem Evaluate the degree of 
3.6.5 

s3 - sZ f 1 I -s3 + s' - 2 
S f l  -1.5s-2 

- z + 1  s I - s - 2  . 1 
Problem Suppose that W(s) is a square rational matrix decomposed as 
3.6.6 P(X)E(J)Y(S)Q(S with P(s1 and Q(s) possessing constant nonzero deter- 

minants, and with 

Also, ci(s) divides €,+,(s) and yl,+~(s) divides y/,(s). As we know, b[W(s)] - C 8Ic,(s)ly,(s)]. Assuming W(s) is nonsingular almost everywhere 
prove that 

where P = QaR, R being a nonsingular permutation matrix and 
& = SP-1, S being a nonsingular permutation matrix, and with ?, &, I?, 
and 3 possessing the same properties as P, Q, E, and 'f'. In particular, 

a s )  -. diag [ymO). ym-ds), . . . , yl(s)l 

9 ( s )  = diag [E;'(s), ~ ; t , ( s ) ,  . . . , e;$(s)l 

Deduce that 6[W-11 = d[W]. 

Our aim in this section is to make connection between those 
transfer-function-matrix properties and those state-space-equation properties 
associated with stability. We shall also state the lemma of Lyapunov, which 
provides a method for testing the stabirity properties of state-space equations. 

As is learned in elementary courses, the stability properties of a linear 
system described by a transfer-function matrix may usually (the precise 
qualifications will he noted shortly) be inferred from the pole positions of 
entries of the transfer-function matrix. In fact, the following two statements 
should be well known. 
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1. Usually, if each entry of a rational transfer-function matrix W(s) with 
W(m) < oo has all its poles in Re [s] < 0, the system with W(s) as trans- 
fer-function matrix is such that bounded inputs will produce bounded 
outputs, and outputs associated with nonzero initial conditions will 
decay to zero. 

2. Usually, if each entry of a rational transfer-function matrix W(s) with 
W(m) < m has all its poles in ReIsJ < 0, with any pole on Re [s] = 0 
being simple, the system with W(s) as transfer-function matrix is such 
that outputs associated with nonzero initial conditions will not be un- 
stable, but may not decay to zero. 

The reason for the qualification in the above statement arises because 
the system with transfer-function matrix W(s) may have state equations 

with [F, GI not completely controllable and with uncontrollable states uu- 
stable. For example, the state-space equations 

have an associated transfer functiotl l/(s 4- I), but x,  is clearly unstable, and 
an unbounded outputwould result from an excitation u(.) commencing at 
t = 0 if x,(O) were nonzero. Even if x,(O) were zero, in practice one would 
find that bounded inputs would not produce bounded outputs. Thus, either 
on the grounds of inexactitude in practice or on the grounds that the bound- 
ed-input, bounded-output property is meant to apply for nonzero initial 
conditions, we run into difficulty in determining the stability of (3.1.1) simpIy 
from knowledge of the associated transfer function. 

It is clearly dangerous to attempt to describe stability properties using 
transfer-function-matrix properties unless there is an associated state-space 
realization in mind. Description of stability properties using state-space- 
equation properties is however quite possible. 

Theorem 3.7.1. Consider the state-space equations (3.7.1). If 
Re &[F] < 0,* then bounded u(.)  lead to bounded y(.) ,  and 
the state x(t) resulting from any nonzero initial state x(t,) will 
decay to zero under zero-input conditions. If Re ,Xi[fl 1 0, and 
pure imaginary eigenvalues are simple, or even occur only in 1 

*This notation is shorthand for "the real parts of all eigenvalues of Fare negative." 
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x 1 blocks in the Jordan form of F, then the state x(t) resulting 
from any nonzero initial state will remain bounded for all time 
under zero-input conditions. 

Proof. The equation relating x(t) to x(t,) and u(.)  is 

Suppose that Re Ai [q  < 0. It is easy to prove that if 1 1  u'(T) 1 1  I C, 

for all r and llx(t,)l( 5 c,, then IIx(t)ll 5 c,(c,, c,) for all t ;  i.e., 
bounded u(.)  lead fo bounded x(.), the bound on x(.)depending 

'purely on the bound on u ( . )  and the bound on x(t,). With x(.) 
and ut.)  bounded, it is immediate from the second equation in 
(3.7.1) that y ( . )  is bounded. With u(t) E 0, it is also trivial to see 
that x(t) decays. to zero for nonzero x(t,). 

Suppose now that Re A,[- < 0, with pure imaginary eigen- 
: values occurring only in 1 x 1 blocks in the Jordan form of F. 

(If no pure imaginary eigenvalue is repeated, this will certainly be 
the case.) Let T be a matrix, in general complex, such that 

where J i s  the Jordan form of F. Then 8 is easily computed, and 
the condition that pure imaginary eigenvalues occur only in 1 x 1 
blocks will guarantee that only diagonal entries of 8; will contain 
exponentials without negative real part exponents, and such 
diagonal entries will be of the form eip' for some real p, rather 
than tee"" for positive integer a and real p. It follows that 

will be such that the only nondecaying parts of any entry will 
be of the form cos ,uf or sin pt. This guarantees that if t i ( . )  5 0, 
x(t) will remain bounded if * to)  is bounded. O V V 

Example If F = [;: 13 the eigenvalues of F a n  -2 i j and, accordinsly, 
3.7.1 

whatever G, H, and J may be in (3.7.1), bounded u( . )  will produce 
bounded A.), and nonzero initial state vectors will decay to zero under 

zero excitations. If F = [+: -@ the eigenvalues becomi ij. m e  

solution of 2 = Fx, the homogeneous version of (3.7.1) is 

and, as expected, the effect of nonzero initial conditions will not die out. 
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Consider now for arbitrary positive 6 

l n + l l d  . Cn+L16 jn6 V d t  = -J xfHH'x df 
n6 

where Q is a matrix whose nonsingularity is guaranteed by the 
wmplete observability of [F, K J .  Since 

it follows from the existence of lim,, V(x(t)) and from the non- 
positivity of p that 

I n t l l d  J Pdt-o asn-m 
n6 

That is, 

Since Q is positive definite, it is immediate that x(t) + 0 as t - 
m and that F has eigenvalues satisfying the required constraint. 

We comment that the reader familiar with Lyapunov stability 
theory will be able to shorten the above proof considerably; V is 
a Lyapunov function, being positive definite. Also, p is non- 
positive, and the complete observability of IF, H ]  guarantees that 
p is not identically zero unless x(0) = 0. An important theorem 
on Lyapunov functions (see, e.g., [25]) then immediately guaran- 
tees that x(t) - 0. 

Next, we have to prove that if F is such that Re A,[F] < 0, then 
a positive definite P exists satisfying (3.7.3). We shall prove that 
the matrix 

exists, is positive definite, and satisfies IIF + Fi l l  = -HH'. 
Then we shall prove uniqueness of the solution P of (3.7.3). Thus 
we shall be able to identify P with II. 
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That 11 exists follows from the eigenvalue restriction on F 
which, as we know, guarantees that every entry of 8' contains 
only decaying exponentials. That II is positive deiinite follows by 
the complete observability of [F, HI. Also, 

on using the fact that 

(This follows from the eigenvalue restriction.) 
To prove uniqueness, suppose that there are two diierent solu- 

tions P, and P, of (3.7.3). Then 

It follows that 

d = - [e"(P, - P,) eq 
dt 

Since ePf(2, - P,)em is constant, it follows by taking t = 0 that 

Letting t approach infinity and using the'eigenvalue property 
again, we obtain 

PI = P, 

This is a contradiction, and thus uniqueness is established. 
' v v v  

The uniqueness part of the above proof is mildly misleading, since it 
would appear that the eigenvalue constraint on F is a critical requkement. 
This is not actually the case. In fact, the following theorem, which we shall 
have occasion to use later, is true. For the proof of the theorem, we refer 
the reader to [4]. 
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Theorem 3.7.4. Suppose that the matrices A, B, and C are n 
x n, m x m, and n x m, respectively. There exists a unique 
n x m matrix X satisfying the equation 

if and only if &[A] + &[B] # 0 for any two eigenvalues of A and 
B. 

The reader is urged to check how this theorem may be applied to guarantee 
uniqueness of the solution P of (3.7.3), under the constraint Re &[F] c 0. 

Theorem 3.7.3. does not in itself suggest that checking that Re &[a < 0 
is an easy task computationally. The only technique suggested for computing 
P i s  via the integral (3.7.6), where, we recall, II turns out to be the same as P. 
Obviously, use of this integral for. computing P would be pointless if we 
merely wished to examine whether Re &[a < 0. 

Fortunately, there is another proGdure for obtaining P, which, coupled 
with a well-known test for positive definjteness, allows ready examination 
of the stability of F. [This procedure for computing P may also be used to 
compute the solution X of (3.7.V.l Equation (3.7.3) is nothing more than 
a highly organized way of writing down tn(n + 1) linear simultaneous scalar 
equations (where n is the dimension of F), with the unknowns consisting of 
the +n(n + I) diagonal and superdiagonal entries of P. Procedures for solving 
such equations are of course well known; solvability is actually guaranteed 
by the eigenvalue constraint on F. Thus, if in a specific situation, (3.7.3) 
proves insolvable, then F is known to not have eigenvalues all with negative 
real parts. 

Once P has been found, its positivedefinite character may be checked by 
examining the signs of all leading principal minors. These are positive if and 
only if P is positive definite 141. 

Observe that in applying the test, there is great freedom in the possible 
choice of H. A simple choice that cad always be made is 

It can easily be checked that any H satisfying this equation is such that 
[F, HI is completely observable for any F. 

Example Suppose that 
3.7.2 

F = 

-2 -4 -3 



SEC. 3.7 STABlLlN 135 

(The characteristic polynomial of F is easily found in this case, as 
s3 + 3s' + 4s + 2, and can be verified to have negative real part zeros. 
However, we shall proceed via the lemma of Lyapunov.) 

We shall take HH' = I, and solve 

From these equations we have 

from which one can compute 

Tedious calculations can then be used to check that 

This establishes stability. 

A simple extension of the lemma of Lyapunov, which we shall have occa- 
sion to use, is the following. Suppose that [F, is completely observable and 
L is an arbitrary matrix with n rows, n being the dimension of F. Then 
Re ,Ii[&' i 0 if and only if there is a positive definite symmetricP satisfying 

PF + F'P = -HH' - LL' (3.7.8) 

Proof is requested in the problems. 
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As stated, the lemma of Lyapunov is concerned with conditions for 
Re Aim < 0 rather than Re 1,[F] 1 0 .  A complete generalization to cover 
this case of a nonstrict inequality is not straightforward; however, we can 
prove one result that will be of assistance. 

Theorem 3.7.5. Given an n X n matrix F, if there existsaposi- 
tive definite matrix P such that 

with H = 0 permitted, then Re AJF] SO and the Jordan form of 
F has no blocks of size greater than 1 x 1 with pure imaginary 
diagonal elements; equivalently, .? = Fx is stable, in the sense 
that for any x(O), the resulting x(t) is bounded for all t. 

Proof. Consider the function 

Observe that, as we have earlier calculated, 

Thus V is nonnegative and monotonic decreasing. It follows that 
all entries of x(f) are bounded for any initial ~ ( 0 ) .  The Jordan 
form of F has the stated property for the following reasons. Since 
x(t) = eF1x(0) is bounded for arbitrary x(O), it must be true that 
eF' is bounded. Now the entries of 8' are made up of terms a,ea~', 
where 1, is an eigenvalue of F, and terms a,tzeas': a > 0,  if a 
Jordan block associated with 1, is of size greater than 1 x 1. 
Boundedness of CL therefore implies that no Jordan block can he 
of size greater than 1 x 1 if Re 1; = 0. V V V 

As an interesting sidelight to the above theorem, notice that if F has only 
pure imaginary eigenvalues with no repeated eigenvalue, the only H for which 
there exists a positive definite P satisfying (3.7.3) is H = 0. In that instance, 
negative definite P also satisfy (3.7.31, as is seen by replacing P by -P. To 
prove the claim that H = 0, observe that F must be such that 

for some nonsingular T, with + denoting direct sum, the first block possibly 
absent, and each p, real. Then (3.7.3) gives 
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for a skew P and positive definite p. Now 

tr [AB] = tr  [B'A'] = tr  [A'B'] 

for any A and 8.  heref fore 

tr [?PI = tr  [p?] = -tr [$?I by skewness 

= -tr [@El 

Therefore tr [$PI = 0 and so tr [&?:'I = 0. This can only be so if fi = 0, 
since gf?' is nonnegative definite, and the trace of a matrix is the sum of its 
eigenvalues. With & = 0, it follows that H = 0. 

Problem Suppose that Re A,[n < 0, and that x(i) is related to x(to) and u(r) for 
3.7.1 t o  S -C < I by 

x = e - x )  + S:, ef('-'lGu(r) d? 

Show that I1 u(7) ll j: c ,  for all z and llx(to) \ I <  cz imply that il x(t)ll 
5 c,, where c, is a constant depending solely on c1 and c,. 

Problem Discuss how the equation 
3.7.2 

PF + F'P = -HH' 

. . might be solved if F is in diagonal fum and Re AIFI < 0: 
Problem Show that if H is any matrix of n rows with HH' = I and F is any 
3.7.3 n x ri matrix, then [F, HI is completely observable. 

Problem Suppose that [F, HI is completely observable and L is an arbitrarymatrix 
3.7.4 with n rows, n being the dimension of F. Prove that Re AtW < 0 if and 

only if there is a positive definite symmetric P satisfying 

Problem Determinq using the lemma of Lyapunov, whether the eigenvalues 
3.7.5 of the following matrix have negative real parts: 
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Problem Let o be an arbitrary real number, and let[F, HI be a completely observ- 
3.7.6 able pair. Prove that Re &[F] < -o if and only if there exists apositive 

definite P such that 

PF + F'P t 2 a P  = -HH' 
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Part Ill 

NETWORK ANALYSIS 

Two of the longest recognized problems of network theory are 
those of analysis and synthesis. In analysis problems, one 
generaIly starts with a description of a network in terms of its 
components or a circuit schematic, and from this description 
one deduces what sort of properties the network will exhibit 
in its use. In synthesis problems, one generally starts with a list 
of properties which it is desired that a network will have, and 
from this list one deduces a description of the network in terms 
of its components and a circuit schematic. The task of this part, 
which consists of one chapter, is to study the use of state-space 
equations in tackling the analysis problem. 

- 
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vector y evanesce, and we are left with the problem of having to formulate 
a homogeneous equation a! = Fx. 

At this point, we wish to issue a caution to the reader: given a network 
described in physical terms, and given the physical signilicance of the vectors 
u and y, i.e., the input or excitation and output or response vectors, there 
is no unique state-space equation set describing the network-in fact, as we 
shall shortly see, there may he no such set. The reason for nonuniqueness is 
fairly obvious: transformations of a state vector x according to 2 = Tx for 
nonsingular T yield as equally valid a set of state-space equations, with 
state-vector 2, as the equation set with state-vector x. Though this point is 
obvious, the older literature on the state-space analysis of networks some 
times suggests implicitly that the state-space equations are unique, and that 
the only valid state vector is one whose entries are either inductor currents 
or capacitor voltages. 

In this chapter we shall discuss the derivation of a set of state-space equa- 
tions of a network at three levels of complexity. At the fist and lowest level, 
we shall show how equations may be set up if the network is simple enough 
to wn'te down Kirchhoff voltage law or current law equations by inspection; 
this is the most common situation in practice. At the second level, we shall 
show how equations may be set up if a certain hybrid matrix exists; this is 
the next most common situation in practice. At the third and most complex 
level, we shall consider a generally applicable procedure that does not rely 
on the assumptions of the first- or second-level treatments; this is the least 
common situation in practice. 

Generally speaking, all the methods of setting up statespace equations 
that we shall present attempt to take as the entries of the state vector, the 
inductor currents and capacitor voltages, and, having identified the entries 
of the state vector in physical terms, attempt to compute from the network 
the coefficient matrices of the state-space equations. The attempts are not 
always successful. In our discussions at the first level of complexity we shall 
try to indicate with examples the sorts of difficulties that can arise in attempt- 
ing to formulate state-space equations this way. 

The fundamental source of such difficulties has been known for some 
time; there are generally one of two factors operating: 

I. The network contains a node with the only elements incident at the 
node comprising inductors and/or current generators. (More generally, 
the networks may contain a cut set,* the branches of which comprise 
inductors and/or current generators.) 

2. The network contains a loop with the only branches in the loop com- 
prising capacitors and/or voltage generators. 

*If the reader is not familiar wifh fhe notion of a cut set, this point may be skipped 
over. 
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In case (Z), for example, assuming an allicapacitor loop, it is evident that 
the capacitor voltages cannot take on independent values without violating 
Kirchhoff's voltagelaw, which demands that the sum of the capacitor voltages 
be zero. It is this sort of constraint on the potential entries of a state vector 
that may interfere with their actual use. 

The treatment of difficulties of the sort mentioned can proceed with the 
aid of network topology. However, ifthe networks concerned contain gyrators 
and transformers,' the use of nelhork ropology methods involves enormous 
complexity. Even a qualitative description of all possible difficulties becomes 
very difficult as soon as one proceeds past the two difficulties already noted. 
Accordingly, weshall avoid use of network topology methods, and pay 
little attention to trying to qualitatively and generally &escribe the difficulties 
in setting up state-space equations. We shall, however, present examples 

. . illustrating diffik~ilties. 
The earliest papers on the topic bf generating state-space equations for 

networks [I-3J dealt almost solely with the unexcited caie; i.e., they dealt 
with the derivation of the homogeneous equation 

. . 

i = Fx (4.1.1) 

[~ctuilly, [2] and [3] didpermit certain generators to be present, but the 
basic issue was still to derive (4.1.1).] More recent work [4-7j considers the 
derivation of the nonhomogeneous equation 

a = FX + GU (4.1.2) 

An extended treatment of the problem of generating the nonhomogeneous 
equation can be found in [SJ: 

There are two features of most treatments dealing with the derivation of 
state-space equations:.that should be noted. First, the treatments depend 
heavily on notions of network topology. As already noted, our treatment 
will not involve network topology. Second, most treatments have difficulty 
coping with ideal transformers and gyrators. The popular approach to deal 
with the problem is to set up procedures for dehving state-space equations 
for networks containing controlled sources, and to then replace the ideal 
transformers aad gyrators with controlled sources. Our treatment ofpassive 
networks does not require this, and by avoiding the introduction of element 
classes like controlled sources for which elements of the class may be active, 
we are able to get results that are probably sharper. 

4.2 STATE-SPACE EQUATIONS FOR 
SIMPLE NETWORKS 

Our approach in this section will be to state a general rule for the 
derivation of a set of state-space equations, and then to develop a number 
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of examples illustrating application of the rule. Examples will also show 
difficultis with its application. The two following sections will considex 
situations in which the procedure of this section is unsatisfactory. Throughout 
this section we allow only resistor, inductor, capacitor, transformer, and 
gyrator elements in the networks under consideration. 

The procedure for setting up state-space equations is as follows: 

1. Identify each inductor current and each capacitor voltage with an entry 
of the state variable x .  Naturally, different inductor currents and 

'capscitor voltages correspond to different entries! 
2. Using Kirchhoff's voltage law or current law, write down an equation 

involving each entry of k, but not involving any entry of the output 
y or any variables other than entries of x and u. 

3. Using Kirchhoffs voltage law or current law, write down an equation 
involving each entry of the output, but not involving any entry of R 
or any variables other than entries of x and u. 

4. Organize the equations derived in step 2 into the form 2 = Fx + Gu, 
and those derived in step 3 into the form y = H'x + Ju. 

Example Consider the network of Fig 4.2.1. We identify the current I with u, 
4.23 and the voltage V with y. Also, following step 1, we take 

... 
FIGURE 4.21. Circuit for Example 4.2.1. 

Next, KirchhoWs current law yields 

Note that the equation 

though correct, is no help and does not conform with the requirements 
of step 2 since it involves the output variable V. 
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An equation for Vc, is straightforward to obtain: 

An equation for the output V is now required expressing V in terms 
of I, V,,, and V., (see step 3). This is easy to obtain. 

Combining the equations for v ~ , ,  V<,, and V together we have 

Example Figure 4.2.2 shows a doubly terminated ladder network, with input vari- 
4.2.2 able V and output variable I,,. Thus u = V and y =I,,. The state 

vector x we shall takc to be 

FIGURE 4.2.2. Ladder Network Discussed in Example 
4.2.2. 

Proceeding according to step 2, we have 
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Following step 3, 

State-space equations are thus 
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The above state-space equations of course are not unique; another set is 
provided by making the transformation 

and the equations that result are 

State-space equations of these two form and their connection with 
ladder networks have been investigated in 191-1121. 
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Now we shall look at  some difficulties that can arise with this approach. 

Example Coosider the circuit of Fig. 4.2.3. By inspection we see that 
4.2.3 

V = R I + L ~  

R 

FIGURE 4.2.3. Network of Example 4.2.3 with Nonstan- 
dard Statdpaoe Equation. 

With excitation I and response V, there is obviously no way we can 
recover state-space equations of the standard form. Of course, if I were 
the response and V the excitation, we would have 

which is of the standard form; but this is not the case, and a new form 
of state equation, if the name is still appropriate, has evolved. Again, 
consider the circuit of Fig. 4.2.4. For this circuit, we have 

FIGURE 4.2.4. Second Network for Example 4.2.3. 

which is of the general form 

i = Fx + Gu 

y = H ' x + J u + E d  

Again therefore, nonstandard equations have evolved. 
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One way around the apparent difficulty raised in the above example is 
simply to recognize (4.2.1) as a valid set of state-space equations in the same 
sense that 

i = F x + G u  

y = H'x + Jtr 
is a valid set of state-space equations. Whereas the transfer-function matrix 
associated with (4.2.2) is 

J + H1(sI - F)-lG 

the transfer-function matrix associated with (4.2.1) is 

J t -  H'(s1- F)-lG + sE 

as may easily be checked. With E # 0, this transfer-function matrix has 
elements with a pole at s = m, in contrast to the transfer-function matrix 
of (4.2.2). Obviously, it must then be impossible for a set of state-space 
equations of the form of (4.2.1) to represent a transfer-function matrix 
representable by equations of the form (4.2.2), at least with E # 0. 

Notice that although there are two energy storage elements in the circuit 
of Fig. 4.2.4, the state vector is of dimension 1. However, knowledge of both 
V,(O) and I(0-) is required to compute the response V; i.e., in a sense, Iitself 
is a state vector entry. Likewise, if equations of the general form of (4.2.1) 
are derived from a circuit, it will be found that the dimension of the vector 
x will be less than the number of energy storage elements, with the difference 
equal to the rank of the matrix E. 

A systematic procedure for dealing with circuits in which input derivatives 
tend to arise in the statespace equations appears in Section 4.4. 

We return now to the presentation of additional examples suggesting 
difficulties with the ad hoc approach. 

Example Consider the circuit of Fig. 4.2.5. For this circuit, 
4.2.4 

C ~ , = I L ~  L ~ ~ ~ , = L ~ I ~ ~ + V ,  I I  v = L , ~ ~ ,  

There are no other independent equations, and therefore state-space 

FIGURE 4.2.5. Network for Example 4.2.4. 
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equations can only be constructed with these equations. After a number of 
trials, the reader will soon convince himself that with 

it is impossible to find F and G such that 

The best that can be done is 

The difficulty arises in the above instance really because of our insistence 
that the entries of the state vector correspond to inductor currents and 
capacitor voltages. As we shall see in Section 4.4, by dropping this assump 
tion we can get statespace equations of a more usual form. 

Another sort of difficulty arises when the circuit and its excitations are 
not necessarily well defined. 

Example Consider the circuit of Fig. 4.2.6. Because of the presence of the trans- 
4.2.5 former, V, and V2 cannot be chosen independently. Therefore, it is 

impossible to write down state-space equations with u a two-vector with 
entries V, and V2. 

FIGURE 4.2-6. Network for Example 4.2.5. The Inputs V, 
and Vz cannot be Chosen Independently. 

There is no real way around this sort of difficulty, a general version of which 
will be noted in Section 4.4. Essentially, all that can be done is to disallow 
independent generators at ports where the desired excitation variable cannot 
in reality be independently specified. Thus, in the case of the above example, 
this would mean ceasing to think of V ,  as an independent generator. Of 
course, the solution is not to replace V, by a short circuit-this would mean 
that V, would have to be identically zero! 
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Next we wish to consider a circuit for which no problems arise, but which 
does illustrate an interesting feature. 

Example Consider the circuit of Fig. 4.2.7. We take 
4.2.6 

FIGURE 4.2.7. Network for Example 4.2.6. 

By inspection of the circu~t, we have 

1 1 c ~ . = r - I ,  = -  & + - - I  r c 
Also, 

L i z =  v,+Rr,-RI, 

= V, + R(I - I=) - RI. 
= -2RI, + v, + R f  

or 

Further, 

Thus the state-space equations are 

Let us examine the controllability of this set of equations. We form 
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The determinant of this matrix is zero if and only if 

To check observability, we form 

and the condition for lack of obseplability, obtained by setting the deter- 
minant of the matrix equal to zero, is also 

The transfer function associated with the state-space equations is 
readily found as 

With R2 = LIC, this transfer function becomes simply R. Under this 
constraint, the network of Fig. 4.2.7 is known as a constant resistance 
network. 

The point illustrated by the above example is that the ability to set up 
state-space equations is independent of the controllability and observability 
of the resulting equations. The reader can check too that the difficulties we 
have noted in setting up stafe-space equations in earlier examples have not 
resulted from any properties associated with the controllability or observ- 
ability notions. 

Problem Write down state-variable equations for the network of Fig. 4.2.8. The 
4.2.1 sources are a voltage generator at port 1 and a current generator at port 

FIGURE 4.2.8. Network for Problem 42.1. 
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2. Compute from the state-space equations the transfer function relating 
the exciting voltage at port 1 to a response voltage at port 2, assuming 
that port 2 is open circuit. 

Problem Write down statsspace equations describing the behavior of the network 
4.2.2 of Fig. 4.2.9. Verify that the eigenvalues of the Fmatrix are simple and 

pure imaginary. (Note: There are no excitations for the network.) ' 

FIGURE 4.2.9. Network for Problem 4.2.2. 

Problem Write down state-space equations for the network of ~ i g .  4.2.10. Examine- 
4.2.3 the controllability and observability properties and comment. 

FIGURE 4.2.1 0. Network for Problem 4.2.3. 

Problem Write down statespace equations for the network of Fig. 4.2.11. If 
4.2.4 V = V, sin of for t 2 0, V = 0 for t c 0, w f 1, compute from the 

state-space equations initial conditions for the circuit that will guarantee 
that I will he purely sinusoidal, containing no transient term. 

VC 
FIGURE 4.2.11. Network for Problem 4.2.4. 

Problem Write down state-space equations for the circuit of Fig. 4.2.12. Can you 
4.2.5 show that with L = CRZ, the circuit is a constant resistance network; 

i.e., V = IR? 
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L 

FIGURE 4.2.12. Network for Problem4.2.5 

Problem Consider the network of Fig. 4.2.13, which might have resulted from a 
4.2.6 classicaI Brune synthesis [I31 of an impedance function. Obtain equations 

successively for V,, and I,,, V,, and I,,, and V,, and ZL,. Write down a 
set of statespace equations with state vector x given by 

x' = [C, v,, czv., c,v,, L LzL, LsILJ 

Note the interesting structure of the Fmatrix. 

FIGURE 4.2.13: Network for Problem 4.2.6 

4.3 STATE-SPACE EQUATIONS VIA 
REACTANCE EXTRACTION-SIMPLE 
VERSION 

In this section we outline a somewhat more systematic procedure 
than that of the previous section for the derivation of state-space equations 
for passive networks. As before, the key idea is still to identify the entries 
of the state vector with capacitor voltages and inductor currents. However, 
we replace the essentially ad hoc method of obtaining state equations by one 
in which the hybrid matrix of a memoryless or nondynamic network is wm- 
puted. (A memoryless or nondynamic network is one that contains no 
inductor or capacitor elements, but may contain resistors, transformers, and 
gyrators.) The procedure breaks down if the hybrid matrix is not computable; 
in this instance, the more complex procedure of the next sectionmust be used. 
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As before, we assume that the input u and output y of the state-space 
equations are identified physically, in the sense that each entry of u and y 
is known to be a port voltage or current. However, we shall constrain u and 
y further in this and the next section; in what proves to be an eventual 
simplification in notation and in development of the theory, we shall assume 
that if a network port is excited by a voltage source (current source), the 
current (voltage) at that port will be a response; further, we shall assume that 
if the current (voltage) at a port is a response, then the port is excited with 
a voltage (current) generator. If it turns out that we can still generate the 
state-space equations, there is no loss of generality in making this assumption. 
To see this, consider a situation in which we are given a two-port network, 
with port I excited by a voltage source and the network response (with port 2 
short-circuited) comprising the current at port 2 (see Fig. 4.3.la). In effect, 

Network v,~-rl;l 
( a )  Qj[-rG"2 

VI CL Network 

Ib) 

FIGURE 4.3.1. Introduction of Excitation at a Port where 
Response is Measured. 

all we desire is statespace equations with the input u equal to V, and 
output y equaI to the response I,. According to our assumption, instead we 
shall seek to generate statespace equations with the input u a two-vector, 
with entries V ,  and V,, and the output y a two-vector, with entries I, and 
I, (see Fig. 4.3.lb). Assuming that we obtain such equations, it is immediate 
that embedded within these equations are equations with input V, and output 
I,. Thus assume that we derive 
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Then certainly, with V, = 0, we can write 

More generally the process of inserting new excitation variables proceeds 
as follows. Suppose that at port j there is initially prescribed a response that 
is a current, but no voltage excitation is prescribed. The port will be short 
circuited and the response will be the current through this short circuit; an 
excitation is introduced by replacing the short circuit with a voltagegenerator. 
If at port j there is initially prescribed a response that is a voltage, but no 
current excitation, we note that the port must initially be open circuited. 
An excitation is introduced by connecting a current generator across the port. 
Note that if there is initially prescribed a response that is a current through 
some component, we conceive of the current as being through a short circuit 
in series with the component, and introduce a voltage generator in this 
short circuit (see Fig. 4.3.2a). Likewise, if a response is a voltage across a 
component, we conceive of an open-circuit port being in parallel with the 
component, and introduce a current generator across this open circuit (see 
Fig. 4.3.2b). 

FIGURE 4.3.2. Procedure for Dealing with Response 
Associated with a Component. 

When an excitation has been defined for every port, the definition of re- 
sponse variables at every port is of course immediate. 

What our assumption demands is that we require, at least temporarily, 
a full complement of inputs and outputs; i.e., every port current and voltage 
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is either an entry of the input u or output y ;  subsequent to the derivation 
of the state-space equations, certain inputs and outputs can be discarded if 
desired. 

We shall also assume that the ith components u, and y, are associated 
with the ith port of the network. This ensures, for example, that u'y is the 
instantaneous power flow into the network. Having identified the state-space . 
equation input rr and output y in the manner just described, the next step 
is to extract all the reactive elements, is., inductors and capacitors, from the 
prescribed network. This amounts to redrawing the prescribed network N 
as a cascade connection of a memoryless network N, terminated in inductors 
and capacitors (see Fig. 4.3.3). If N has m ports and n reactive elements, 

FIGURE 4.3.3. Illustration of Reactance Extraction. 

then N,. will have (m f n) ports, at n of which there will be inductor or 
capacitor terminations. This is the procedure of reactance extraction. 

Suppose that there are n, inductors L,, L,, . . . , L., in N, and no capacitors 
C,, C,, . . . , C,. Of course, n, + n, = n. We shall take as the state vector 

x = [ I , ,  I,, ... I ,  Vc1 V,, ... VCnJ (4.3.3) 

The sign convention is shown in Fig. 4.3.4 and is set up so that each inductor 
current is positive when the port current is positive and each capacitor voltage 
is positive when the port voltage is positive. 
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FIGURE 4.3.4. Delinition of State Vector Components. 

To deduce state equations, we form a certain hybrid matrix for N,, assumed 
stripped of its terminations. If the matrix does not exist, then the procedure 
of this section cannot he used, and a modification, described in the next 
section, is required. 

To specify the hybrid matrix for N,, we need to specify the excitation and 
response variables. The first m excitation variables coincide with the entries 
of the input vector u; i.e., the excitation variables for the left-hand m ports 
of N,  are the same as tbose for the m ports of N. The next n, excitation 
variables, corresponding to those ports of N, shown terminated in inductors 
in Fig. 4.3.3, are all currents; we shall denote the vector of such currents 
by I,. Finally, the remaining n, ports of N, will he assumed to be excited by 
voltages, the vector of which will he denoted by V,. These excitations are 
shown in Fig. 4.3.5. 

The response variables will be denoted by y, an m vector of responses 
at the first m ports; by V,, an n, vector of responses at the next n, ports, 
the ones shown as inductor terminated in Fig. 4.3.3; and by I,, an n, vector 
of responses at the remaining n, ports. Notice that with the inductor and 
capacitor terminations, Q has to he the same as y, since y is the response 
vector for N when u is the excitation, and N,  with terminations is the same 
as N. But if N, is considered alone, without the terminations, the response 
at the first m ports will not be the same as y, and so we have used a different 
symbol for the response. 

The equation relating the defined excitation and response variables for N, 
is 

(4.3.4) 

where 
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Generators 
Depend 

on u r 
FIGURE 4.3.5. ~xciGions of N,. 

is the hybrid matrix of N,, partitioned conformably with the excitations. 
In principle, the determination of M, assuming that it exists, is a straight- 

forwardcircuit analysis task. IfN, is exceedingly complex, analysis techniques 
based on topological results may be called into play if desired, although they 
are not always necessary. In this sense, the technique being presented for the 
derivation of state-space equations could be thought of as demanding notions 
of network topology for its implementation. But certainly, application of 
network topology could not be regarded as an intrinsic part of the procedure. 
We shall make no further comments here or in the examples regarding the 
computation of M, in view of the generally easy nature of the task. 

Now we can derive state-space equations from our knowledge of M. 
Recall that our aim is to describe N. We have a description of N, provided 
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by (4.3.4), and we have a definition~of thestate. vector provided by (4.3.3); 
so we need to consider what happens to our description of N, when ter- 
minations are introduced. When N, is terminated in inductors and capacitors, 
the following relation is forced between I, and V,. 

where d! = diag [L,, L,, . . . ,a and we have used the fact that termination 
of the ith port of N, in L, identifies the ith entry of I, with I,,. The minus 
sign arises because of the sign convention applying to excitations of N,. 
Similarly, the following relation holds between 1, and V3. 

where E = diag [C,, C,, . . . , CJ. The minus sign again arises because of the 
sign convention applying to excitations of N,. 

Now we substitute for V,  and I, in (4.3.4) to obtain an equation reflecting 
the performance of N, when it is terminated in inductors and capacitors. 
We can therefore replace 9 by y in this equation, which becomes 

Finally, we use the definition (4.3.3) of the state vector x. Recalling that 
each entry I, is the same as an inductor current when N, is terminated, while 
each entry of V, is the same as a capacitor voltage, we obtain from (4.3.3) 
and (4.3.8) 
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MI, Ma 2 MI  3 [:] = [-S-'M,. -S-1M2.  - C 1 M Z , ] [ : ]  (4.3.9) 
--e-'MII - -e- 'Mg2 -e - lM3,  

Now identify 

F =  [ 
- - r 1 M 3 z  -e -1M3J (4.3.10) 

H' = [MI, MIS1 J =  M l l  

Equations (4.3.9) become simply 

This completes our statement of the procedure for deducing (4.3.11). Let 
us summarize it. 

I. Ensure that every port current and voltage of N, is either an excitation 
or response, with the ith entry of u and ith entry of y denoting the 
excitation and response at the ith port. 

2. Perform a reactance extraction to generate a nondynamic network 
N, (see Fig. 4.3.3). Assign the entries of the state variable as inductor 
currents and capacitor voltages, with the sign convention shown in 
Fig. 4.3.4. 

3. Compute a hybrid matrix for N,, with excitation variables comprising 
the entries of u, together with the currents at inductively terminated 
ports and voltages at capacitively terminated ports [see (4.3.4)l. 

4. With 2 = diag [L , ,  L,, . . . ,La,] and e = diag [C,, C,, . . . , C.J, define 
the matrices of the state-space equations of N by (4.3.10). 

5. If step 3 fails, in the sense that no hybrid matrix exists with the required 
excitation and response variables, the method fails. 

Example Consider the network of Fig. 4.3.6a. This network is redrawn showing a 
4.3.1 reactand e x t r a i o n  in Fig. 4.3.6b. The associated nondynamic netyork 

N, is shown in Fig. 4.3.6~ with sources corresponding to the correct excita- 
tion variables. Notice that because no inductors are present, I2 evanesces. 
With two capacitors, V, becomes a two-vector. 

The hybrid matrix of. the network of Fig. 4.3.6~ is easily found. We 
have 

i r x l  1 o i r u i  



- - Nv' - 

@ - - - 
7 

- 

- - 

- - 
( c )  

FIGURE 4.3.6. Network for Example 4.3.1. 



STATE-SPACE EQUATIONS 1 65 

To derive, for example, the 2-3 e n 0  of this matrix, we replace u by 
an open circuit and (V,), by a short circuit (see Fig. 4.3.6d). We readily 
derive (I3), = -(V3)L/R2. 

In terms'of the block matrices of (4.3.4), we have 

MIL = RI MI3 = 11 01 M ~ I  = I-1 Ol' 

with the remaining matrices evanescing. The matrix e is of course 

and, applying the formulas of (4.3.10), we obtain 

H r = [ l  01 J = R I  

That is, the state-space equations are 

y = [l O]x + Rtu 

We obtained the same result in the last section. 
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Example We consider the circuit shown in Pig. 4.3.7a. The excitation u is a two- 
4.3.2 vector comprised of the voltage at the left-hand port and current at the 

right-hand port, while the response y consists, of course, of the input 
current at the left-hand port and the voltage at the right-hand port. The 
effect of reactance extraction is shown in Fig. 4.3.7b, and the excitation 
variables used in computing the hybrid matrix of N, are shown in Fig. 
4.3.7~. I t  is straightforward to obtain from Fig. 4.3.7~ the equation 

( b )  

FIGURE 4.3.7 Network for Example 4.3.2. 
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FIGURE 4.3.7 (cant.) 

Thelast column of the hybrid matrix is computed, for example, by forcing 
V = I = I, = 0 (see Fig. 4.3.7d) and.evaluating the resulting @)I, etc. 

In this case, the quantities M,,, MI,, etc., of Eq. (4.3.4) are 
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The matrix b: is simply [I] and e is simply [4]. Using (4.3.10), the state- 
space equations become 

Let us now consider some situations in which this procedure does not 
work. 

Example Consider the circuit of Fig. 4.3.8a. As we noted in the last section, this 
4.3.3 circuit is not describable by state-space equations of the form of (4.3.11). 

Since this is the only form of state-space equations the method of this 
section is capable of generating, we would expect that the method would 
fall down. Indeed, this is the case. Figure 4.3.8b shows the associated 

FIGURE 4.3.8. Network for Example 4.3.3. I and I, can- 
not be taken as Independent Excitations. 

nondynamic network together with the sources needed to define the 
hybrid matrix. It is obvious from the figure that 

which precludes the formation of the desired hybrid matrix. Existence of 
the hybrid matrix wouldimply that Iand I, can be selected independently. 

Example Consider the networkof Fig. 4.3.9a. Obviously, thenatural way to analyze 
4.3.4 this network is to replace the two capacitors by a single one of value 
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FIGURE 4.3.9. Network for Example 4.3.4. (V,), and 
(V,), are not Independent. 

C, + C2. Let us suppose however that we donot do this, and attempt to 
apply the technique of this section. The associated nondynamicnetwork 
is shown m Fig. 4.3.9b, together with the excitation varinblu used for 
computing the hybrid matrix. 

Evidently, the circuit forces (V3), = (V&, and so the hybrid matrix 
cannot be formed, for its existence would imply the ability to select 
(V,}, and (V,)Z independently. 

The difficulties described in Examples 4.3.3 and 4.3.4 and difficulties in 
related situations are resolvable using the techniques of the next section. 

Problem Find a homogeneous state equation for thecircuit of Fig. 4.3.10 using the 
4.3.1 procedure of this section. 

FIGURE 4.3.1 0. Network for Problem 4.3.1. 



170 NETWORK ANALYSIS VIA STATE-SPACE EQUATIONS CHAP. 4 

Problem Find state-space equations for the circuit of Fig. 4.3.1 1 using the proce- 
4.3.2 dure of this section. 

FIGURE 4.3.11. Network for Problem 4.3.2. 

Problem Any inductor of L henries is equivalent to a transformer of turns-ratio 
4.3.3 f l  : 1 terminated at its secondary port in a 1-H inductor. A similar 

statement holds for capacitors. This means that before carrying out a 
reactance extraction, one can convert all inductors to 1 Hand capacitors 
to 1 F, absorbing the transformers into the nondynamic network. What 
are the state-space equations resulting from such a procedure, and what is 
the coordinate transformation linking thestatevariable in these equations 
with the state variable in the equations derived in the text? 

Problem Find statespace equations for the circuit of Fig. 4.3.12 using the proce 
4.3.4 dure of this section. Compare the result with the worked example of the 

FIGURE 4.3.12. Network for Problem 4.3.4. 

preceding section. (Notice that the input variable is V and the output 
variable I,; an extension of the number of inputs and outputs is therefore 
required, a s  explained in the text.) 

4.4 STATE-SPACE EQUATIONS VIA 
REACTANCE EXTRACTION-THE 
GENERAL CASE' 

Our aim in this section is to present a procedure for generating 
state-space equations of an m-port network N tha t  is free from the difficulties 
associated with the two approaches given hitherto. The procedure constitutes 

*This section may be omitted at a first reading. 
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a variation of that given in Section 4.3. We retain the same assumption 
concerning the input u and output y appearing in the state-space equations: 
every port current and voltage must be an entry of either u or y, with the ith 
entry of u and of y corresponding to quantities associated with the ith port. 
Again, we carry out a reactance extraction to form a nondynamic network 
N, from the prescribed network N. Now, however, we consider the situation 
in which that hybrid matrix of N, cannot be formed which is associated with 
the particuIar set of responses and excitations described in Section 4.3. 
The technique to be used in this case is to form a new set of excitat~on and 
response variables such that the new hybrid matrix for N, does exlst. The 
passivity of N, implies an important property of this hybrid matrix that 
enables construction of the state-space equations. 

We shall break up our treatment in this section into several subsections, 
as foIlows: 

1. Proof of some preliminary lemmas, using the pass~vity of the nondy- 
namc network N,. 

2. Selection of the first m scalar excitation and response variables required 
to generate a hybrid matrix for N,. Here, m is the number of ports of N. 

3. Selection of the remaining n scalar excitation and response variables 
requ~red to generate a hybrid matrix for N,. Here, n is the number of 
reactive elements in N. 

4. Proof of hybrid-matrix existence. 
5. Construction of the state-space equations from the hybrid matrix. 

Preliminan/ Lemmas 

lemma 4.4.1. Every m-port network possesses at least one hy- 
brid matrix.* 

For the proof of this lemma, see [14]. The lemma says that there exists at 
least one choice of excitation and response variable for the network for which 
a hybrid matrix may be defined, but it does not say what this choice i s -  
indeed, choices that work in the sense of allowing definition of a hybrid 
matrix will vary from network to network. 

We shall use Lemma 4.4.1 only to prove Lemma 4.4.3. Lemma 4.4.3 will 
be of direct use in developing the procedure for setting up state-space equa- 
tions. Lemma 4.4.2 will be used both in proving Lemma 4.4.3 and in the 
course of the procedure for setting up state-space equations. 

Lemma 4.4.2. Let M(s) be the hybrid matrix of a multiport net- 
work (the usual conventions apply). Suppose that M is partitioned 
as 

*Note: This lemma does not extend to networks that may contain active elements. 



Then if M, ,(s) = 0, 

Proof. The passivity property guarantees that on the jw axis M 
+ MI* is nonnegative definite or, with M,, = 0, that 

for all w such that jw is not a pole of any element of M(s). Now 
suppose that (4.4.2) fails for s equal to some jw,. Then M,, 
+ Mi? has a nonzero element, m say, that occurs in the ith row 
and the jth column of M + M'*. Since M + M'* is nonnegative 
definite, the minor 

(M + M'*), (M + M"),; 0 
[(M + M'7r (M + M.*Ij] = [m* (M + " M'%. I = -Imlz 

is nonnegative. Hence m = 0. Therefore, (4.4.2) holds for all jw 
and therefore for all* s. V V V 
Lemma 4.4.3. Let fi bea( l+  m, + m,)-port network. Suppose 
that the input impedance and Th6venin equivalent voltage at 
port 1 are zero whatever the excitations at ports 2,3, . . . . 1 + m,, 
and whatever the terminations at ports 2 f m,, 3 + m,, . . . , 
I + m, + m,. Then the input impedance and Thevenin equi- 
valent voltage at port 1 will be zero whatever the excitations at 
ports 2,3, . . . , 1 + m, + m,. Conversely, if the input impedance 
and Thdvenin equivalent voltage at port I are zero for arbitrary 
excitations at ports 2,3, . . . , 1 + m, + m,, they will be zero for 
arbitrary terminations or excitations at these ports. 

Before proving this lemma, we shall make several comments. First, the 
lemma has to do with conditions for a port to look like a short circuit and 
to be decoupled in an obvious sense from all other ports. Second, the lemma 
is saying that if a certain performance is observed for arbitrary terminations, 
it will be observed for arbitrary excitations, and converseIy. Third, m, = 0 

*Strictly speaking, we should exclude the h i t e  set of s that are poles of elements 
of Mlz .  
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or m, = 0 are permitted. If ml = 0, the lemma says that if zero input 
impedance is observed for arbitrary terminations on ports other than the 
first, the first port is essentially disconnected from the remainder. Fourth, 
the lemma need not hold if 8 is active. Thus suppose that fi is a two port 
with an impedance matrix that is not positive real: 

It is easily checked that the impedance seen at port 1 is zero irrespective of 
the value of a terminating impedance at port 2. But if port 2 is excited, a 
nonzero ThCvenin voltage will be observed at port 1. 

Proof of Lemma 4.4.3. By Lemma 4.4.1, fipossesses a hybrid 
matrix, which we shall partition as 

where M I ,  is 1 x 1, M,, ism, x m,, and M 3 ,  is m, x m,. Each 
M,, in general will be a function of the complex variable s, but 
this fact is irrelevant here. 

We do not require knowledge of whether voltage or current 
excitations are applied at ports beyond the first in defining M. 
However, we do need the fact that M  can be defined assuming 
a current excitation at port 1. To see this, we argue as follows. 
By Lemma 4.4.1, there exists an M with either a voltage or current 
excitation assumed at port 1. Suppose that it is a voltage excita- 
tion. Set excitations at ports 2 through I $- m, to zero, and-by 
the use of short-circuit or open-circuit terminations, as appro- 
priate-set all excitations at ports 2 + in, through I + m, f m, 
to zero. Then M,, will be the input admittance at port 1. By the 
lemma statement, M,, = m, which is not allowable. Hence M 
exists only with a current excitation assumed at port 1. 

Suppose now that M in (4.4.3) is derived on the basis of there 
being a current excitation at port 1: then the above argument 
shows that Mll = 0. It follows by Lemma 4.4.2 that 

Since the ThCvenin equivalent voltage at port 1 is zero irrespective 
of the excitations at ports 2 through 1 4- m,, it follows that 
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M I ,  = 0. Thus M  looks like 

and we have 

as the equation describing fi (with E standing for excitation, R 
for response). Let us set E, = 0, and terminate ports 2 + m, 
through 1 + m, 4- m, so that 

R, = -kE3 

for some arbitrary positive constant k. (This amounts to passive 
termination of each port in k ohms or k mhos.) Then (4.4.4) 
implies that 

The inverse always exists because M,, is a passive hybrid matrix 
in its own right and kI is positive definite. By the lemma state- 
ment, the input impedance is zero, and so M ,  , = 0. Therefore, 
fi is described by 

(4.4.5) 

From this equation it is immediate that for arbitrary E, and E,, 
the input impedance and Thivenin equivalent voltage at port 1 
are zero; i.e., port 1 is internally short circuited and decoupled 
from the remainder of the network. 

The converse contained in the lemma statement follows easily. 
We argue as before that M can only be defmed with a current 
excitation at port 1 and that M,,  = 0. That M,,  and M I ,  are 
zero follows from the fact that arbitrary excitations at all ports 
lead to zero Th6venin voltage, and that M,, and M,, are zero 
follows from M I ,  = -Mi? and M I ,  = -M',?. Thus (4.4.5) is 
valid. It is immediate from this equation that replacement of any 
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number of arbitrary excitations by arbitrary terminations will 
not affect the zero input impedance and zero Tkbvenin voltage 
properties. V V V 

The dual of Lemma 4.4.3 is easy to state; the proof of the dual lemma 
requires but simple variations on the proof of Lemma 4.4.3 and will not be 
stated. 

Lemma 4.4.4. Let 3 be a (1 + m, + m,)-port network. Suppose 
that the input admittance and Thkvenin equivalent current at 
port 1 are zero whatever the excifafionsat ports 5 3 ,  . . . , 1 + m,, 
and whatever the terminalions at ports 2 + m,, . . . , 1 + m, + m,. 
Then the input admittance and Th6venin equivalent current are 
zero whatever the excitations at ports 2,3, .  . . , 1 + m, + m,. 
Conversely, if the input admjttance and Th6venin equivalent cur- 
rent at port I are zero for arbitrary excitations at ports 2,3, . . . , 
I + m, + m,, they will be zero for arbitrary excitations or 
terminations at these ports. 

The final lemma we require is a generalization of Lemmas 4.4.3 and 4.4.4. 

Lemma 4.4.5. Let @be a @ + m, + ma-port network, andlet 
w,, w,, . . . , w, be variables associated with ports 1 through 
p; each w, can be either a current or voltage. Let v = xp=, aJw. 
for some constants a,. Then if the network 3 constrains* v = 0 
whatever the excitations at ports p + I,p + 2, . . . , p  f- nr, and 
whatever the tem'nations at ports p + m, + 1, p + m, + 2, 
. . . , p  + m, + m,, then v = 0 for arbitrary excitations or 
terminations at thee ports. 

Proof. We reduce the problem to one permitting application of 
Lemma 4.4.3. From 8 we construct a network H a s  follows. If 
w, is a current, we cascade a unit gyrator with port i of fi. For 
the network flcomprising 3 with gyrators at some of its ports, 
every w, will be a port voltage. Next, connect the secondary ports 
of a 1 x p multipart transformer to the first p ports of the net- 
work #, with the turns-ratio matrix of the transformer chosen so 
that the primary voltage v is C a,w,. The network i? with the 

'The word constmm here is used roughly in the following sense. Some internal feature 
of the network forces a condition to hold, and if sources are connected in such a way as 
to apparently prevent the condition from holding, the responses will not be well defined. 
Examples of constraints are: a shoR circuit, which constrains a port voltage to be zero, 
and the constraint on the port voltages of a two-port transformer, expressible in terms of 
the turns ~atio. 
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transformer connected will be denoted by #. Then 8 is a (1 f m,  
+ m,)-port network such that the voltage at port 1 is constrained 
to be zero by 3, for arbitrary excitations at ports 2, . . . , 1 + m ,  
and arbitrary terminations at ports 2 f m,, 3 f m,, . . . , 1 f m, 
+ m,. To say that the voltage is constrained to be zero is the 
same as to say that both Thkvenin voltage and input impedance 
are zero under the stated conditions. By Lemma 4.4.3, it follows 
that v = 0 for arbitrary excitations at all ports of past the first, 
and thus at all ports of fi past the pth. The first part of Lemma 
4.4.5 is therefore proved The second part follows similarly. 

V V V  

Now we return to the development of statespace equations for aprescribed 
m-port network N. The associated nondynamic network is N, and is an 
(m + n) port. The first order of business is to define excitation and response 
variables for N, that wil) enable definition of a hybrid matrix for N,. 

Selection of the First m Excitation and Response 
Variables 

Suppose that there are m network ports at which excitations 
for theprescribed network N are applied and responses are measured. As in 
the previous section, we suppose that if initially excitation and response 
variables are not both associated with each one of the m ports, then the set 
of excitation and response variables is expanded so that one of each sort of 
variable is associated with each port. Suppose that before the number of 
exciting variables is expanded to one at each port, and likewise for the 
number of response variables, there are m' ports at which exciting variables 
are present. By renumbering the ports if necessary, we may suppose that these 
m' ports are port 1, port 2, . . ;,port. m'. The initially prescribed exciting 
variables areu,, u,, . . . , u,.. The quantities y,.,,, . . . , y, must all beinitially 
prescribed as response variables, as well as possibly some of y,, . . . , y,.. 
(If not, then one or more of ports m' + 1 through m would have initially 
prescribed neither an excitation nor a response variable, and we could there- 
fore avoid consideration of this port.) Note also that, for the moment, the 
variables inentioned are associated with N, not the network N, obtained 
from N by reactance extraction. 

As earlier described, we expand- the exciting variables of N to become 
u,, u,, . . . , u, and the response variables to become y,, y,, . . . , y,. Thus if 
y,,, is a current, it will be a current through a short-circuited port; in place 
of the short circuit, we place a voltage generator u,.,,. Or, if y,.,, is a volt- 
age, it wiU be a voltage at an open-circuited port,. and at this port we connect 
a current generator urn.+,. We proceed similarly for y,.,,, . . . , y,. 

Now we commence the selection process for the excitation and response 
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variables for N,. We shall denote excitation variables for N, by e,, e,, . . . , 
and response variables by r,,  r,, . . . , where each e, and r, is a scalar. In 
general, we shall identify each e, with one of u , ,  u,, . . . , u, and each r, with 
one of y , ,  y,, . . . , y,. The reasoning suggesting these identifications and an 
indication of when the identifications cannot be made will occupy our atten- 
tion for the remainder of this subsection. 

The reader is warned that the subsequent arguments concerning the choice 
of excitation and response variables are lengthy and intricate; however, 
they are not deep conceptually. 

We first choose 

subject to one proviso. The network N,  must not be such that it constrains 
u, to be identically zero irrespective of the terminations (or, by Lemmas 
4.4.3 and 4.4.4, excitations) at the ports of N, other than the f k t  port. If u, 
is a voltage, the constraint u, E 0 irrespective of terminations on ports of 
N, is equivalent to the input impedance at port 1 being zero, i.e., port 1 
looking like a short circuit; if u, is a current, the constraint is equivalent to 
port 1 looking like an open circuit.* By Lemmas 4.4.3 and 4.4.4, the con- 
straint would then apply irrespective of excitations at the remaining ports of 
N,, and port 1 of N, would be decoupled from the remaining ports, either as 
a short circuit or an open circuit. In eirher case, we could never obtain a non- 
zero response a1 the port. 

In other words, the network N, essentially constrains not just the per- 
missible excitation to be zero, but also the achievable responses to be zero, 
irrespective of the excitations at other ports of N,. In this case, the port is 
not worth worrying about for further calculations. We can forget about its 
presence, assigning neither excitation nor response variables to it for the 
purpose of computing a hybrid matrix of N,. We note too that the originally 
posedproblem offinding state-space equations for N was illposed in the sense 
that the exciting variable u, could not be freely chosen; thus, to state-space 
equations derived for Non the basis of neglect of the offending port, we need 
to append the constraint equations u, -- y ,  =_ 0. 

As a notational convention, we shall assume that if now, or at any stage 
in the procedure, we agree to neglect a port, then we shall renumber the 
ports, advancing their numbering (and the numbering of their excitation and 
response variables) by 1. Thus if it turned out that u, 0, we would re- 
number port 2 as port 1, port 3 as port 2, . . . . Normally, port 772' would be 

*One could perhaps argue that if port 1 looks l i e  an open circuit,onemuldailow ul 
to be a nonzero current if infinite responw are permitted. To avoid this sort of problem, 
weare adopting theconvention that finite excitations that produce infinite responm are not 
permitted. 
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renumbered as port m' - 1 and port m as port m - 1. We shall, however, 
assume that the numbers m', m, and n are always redefined- in any port re- 
numbering so that m' is the number of exciting variables originally prescribed 
for N after deletions, m is the number of exciting variables in N after the 
initial expansion and after deletions, and n is the number of ports of N,  that 
are reactively terminated in constructing N, again after deletions. 

With this convention it follows that (4.4.6) will always be used to assign 
the fist exciting variable of N,, though perhaps after a number of port. 
deletions. 

Next we consider u, and u, and ask the question: Is there a relation of the 
form 

a ,e , ( . )  + a,u,(.) = 0 a, f 0 (4.4.7) 

that holds for arbitrary e.,(.) independently of the terminations on all but the 
first two ports of N,? Note that. the existence of a relation like((4.4.7) can be 
checked by analysis of N,. Note also that a relation like (4.4.7). for. a , =  0 
has already been ruled out; for if a, = 0,then u,(.) is. unconstrained, and 
we would have u , ( . )  identically zero for arbitrary excitations pr terminations 
at ports of N ,  past the first. 

Two possibilities exist in (4.4.7); either a ,  = 0 or a, # 0. In the former 
case, we have u, = 0 for arbitrary excitation on port 1 and arbitrary ter- 
minations on ports of N, other than the fist and second. Lemmas 4.4.3 and 
4.4.4 then allow us to conclude by an argument already noted that port 2 is 
either an open circuit or a short ciicuit, discomated from the remainder of 
the network, and that y, = 0 is the only possible response. In this case we 
delete port 2 from those under consideration. If a ,  f 0, suppose that N, is 
terminated so as to produce the original network N. Then for the original 
network N we would have Eq. (4.4.7) holding; this would imply that for 
the original network N, u, and u, could not reasonablybe taken as independent 
excitations, and the problem of generating state-space equations would be ill 
posed. Rather than bothering with a technique to deal with this situation, 
let us, quite reasonably, disallow it. (Of course, if u, i 0 is constrained, this 
too implies that the original problem is ill posed. This constraint is however 
slightly easier and perhaps worth taking the trouble to deal with, since it is 
probably more likely to occur than the second sort of ill-posed problem just 
noted.) 

Thus, either (4.4.7) does not hold, or, after deletion of one or more ports, 
it does not hold. We take 

e2 = uz (4.4.8) 

and recognize that no relation of the form 

a,e,( . )  + a,e,(.) = 0 (4.4.9) 
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is forced to hold for some a, ,  a, (not both zero) and arbitrary terminations 
at ports past the first two. By Lemma 4.4.5, no relation of this form is forced 
to hold for arbitrary excitations at ports past the first two.* 

Next, we consider u, and ask if a relation of the form 

can hold for arbitrary e , ,  e ,  and arbitrary terminations on ports past the first 
three. [Note that a,  = 0 is impossible, by the remarks associated with (4.4.9).1 
We conclude that either port 3 is a decoupled short circuit or open circuit, in 
which case we reject it from consideration; or that the problem of finding 
statespace equations foc' N is ill posed, and we disallow this; or that (4.4.10) 
does not hold. In this case, we set 

secure in the knowledge that no relation of the form 

is forced to hold for some a, ,  a,, a,, not all zero, irrespective of terminations 
(or, by Lemma 4.4.5, excitations) on ports past the first three. 

Clearly, we can proceed in this manner and set 

e, = w,  . . . em, = u,. (4.4.13) 

with the obvious generalizations of (4.4.12) and the associated remarks. 
If m' = m, we are through with this part of the procedure. But if not, we 

now consider e , ,  e,, . . . , em .  and u,.,, and ask the question: Is there a 
relation of the form 

that holds for arbitrary e,( .) ,  . . . , em.(.) independently of the terminations 
on all but the first m' + 1 ports of N,? There are two answers to this question, 
depending whether cc,, . . . , a ,  are all zero or not. If a, ,  . . . , a ,  are all zero, 
the equation becomes 

and, by a familiar argument, we can dispense with further consideration of 
this port. So we now consider what happens when one or more of a,,  . . . , a ,  
are nonzero. In this case, we can still argue that the problem of generating 

*The fact that (4.4.9) is not forced to hold means that y,( . )  and yl( . )  are finite when 
ell.) and e~ ( . )  are finite, by our earlier convention. 
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state-space equations for N is ill posed. For from (4.4.14), it follows that 
urn.,,(.) is uniquely determined by ul(-), u,(.), . . . , u,,(.). An independent 
generator, for the sake of argument a voltage generator if u,,, is a voltage, 
cannot be connected at port m' $ 1, since the voltage at this port is required 
to be 

Because of structural features of N, a voltage equal to the right-hand aide 
of (4.4.16) must be developed at port m' + 1, irrespective of the excitations 
at ports 1 through m' and the terminations at ports after the first m' + I. 

If port m' + 1 of N, is short circuited, we see from (4.4.16) that the relation 

will hold with not all of a,, . . . , a,, nonzero. Equation (4.4.17) holds irre- 
spective of the terminations on ports of N, past the first m' + 1. Accordingly, 
suppose that the inductor and capacitor terminations are used that will 
yield the original network N. Equation (4.4.17) will then apply for N, under 
the conditions that port m' + 1 is short circuited, that excitations a t  ports 
past the first m' + 1 are arbitrary, and that y,,, is a current. 

Now recall that y,.,, is the first response variable for which u,,, was not 
originally listed as an excitation variable for N; u,, . . , urn. were the original 
excitation variables, urn.,,, . . . , u, were added ones. It follows, as explained 
in more detail in the previous section, that the originally posedproblem corre- 
sponh to forcing u,, ,  = . . . = u , = 0 in theproblem with the added excitation 
varinbles. Therefore, Eq. (4.4.17) holds when u,, . . . , u,, are the only excita- 
tion variables for N, since it holds under the conditions of urn.+, = 0 and 
arbitrary urn.+,, . . . , u,.. Since the equation says that the originally listed 
excitations of N, naturally desired independent, are not really independent, 
it means that the orighally posed problem offinding state-space equations for 
N relating prescribed excitations and responses is not well posed. Again, we 
shall disallow this situation, on reasonable grounds. 

Thus either (4.4.14) does not hold, or after deletion of one or more ports, 
it does not hold. We take 

e,+ I = urn,+ I (4.4.18) 

and we are guaranteed that there exist no constants a,, a,, . . . , ad+,, not 
all zero, such that the equation 

a,e,(.)+a,e,(.)+ ... +am.+,e..,,(~)=O (4.4.19) 

is forced to bold irrespective of the terminations or excitations at ports 
beyond the first m' + 1. 
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Next we ask if it is possible for a relation of the following form to hold: 

ale , ( . )  + a,e,(.)  4- ... + ud+pm,+,(.) = 0 umr+, st 0 (4.4.20) 

The relation of course is supposed to hold for arbitrary e,(.) through em.+,(.) 
independently of the terminations on all but the first m' + 2 ports of N,. 

Following an earlier argument, we can show that if any of a,, a,, . . . , a,. 
is nonzero, then the original problem of finding state-space equations for N 
with the initially given excitations u , ,  u,, . . . , urn, is ill posed. Accordingly, 
we suppose that a, = a, = . . . = a,, = 0. Also, if a , , ,  = 0, it is easy to 
argue that both u , , ,  and y , , ,  must be identically zero, and port m' + 2 
can be omitted from further consideration. Hence we are left with the pos- 
sibility 

uM,+,e,,+,(.) + a..+,u,,+,(.) = 0 (4.4.21) 

for nonzero a,,, and g,.,,. We can show that now port m' + 1 and port 
m' + 2 should both be neglected; the argument is as follows. Consider N, with 
excitations u,, uz, . . .', v,, but with zero excitations applied at ports m' + 1, 
m' + 3, .  . . , m. (If there were also zero excitation applied at port m' f 2, 
this would correspond to the initially given situation before the list of excita- 
tion variables was expanded to include u,.,,, . . . , u,.) Equation (4.4.21) 
implies that urn,+, E 0; i.e., if u,,, is a voltage, the voltage at port m' + 2 
of N (in fact N,) is constrained to be zero if u,.,, = em.+, is zero-irrespective 
of the presence of any external short circuit at port m' $- 2.  The voltage u,.,, 
will be zero whatever termination is employed at port m' $ 2, and therefore 
the current y,.,, = 0. Likewise, if urn.+, is a current, the voltage y,,+= at 
port m' $ 2 will be zero irrespective of the termination at port m' + 2, so 
long as u,.,, is identically zero. 

Summing up, if N is terminated so as to force urn.+,, . . . , u, to equal zero, 
then y,,+, will equal zero. 

Accordingly, we can drop port m' + 2 from further consideration. As far 
as  N,  is concerned, no excitation or response will be prescribed for port 
m' + 2, and the port will not even be thought of as a port of N,. Then, 
when state-space equations are derived for N ,  we can adjoin to them the 
equation y,.,, = 0. 

The above argument is symmetric with respect to ports m' + 1 and m' + 2. 
It follows that when N is excited with only the originally specified set of vari- 
ables, y,,, = 0. Again, we drop port m' + 1 of N, from further considera- 
tion* and simply adjoin the equation y,.,, 5 0 to the state-space equations 
of N. 

*It might be thought that one could drop either porl m' + 1 or m' f 2 from considera- 
tion, but not both. However, the fact that N is excited with only the originally specified 
set ofvariables implies thate,.+~= Oand em*+,= 0, which imply y,,+t = 0 andy,.,~ = 0, 
independently of all other excitations. 
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Conditions under which (4.4.20) can hold are, in summary, 

1. When N is excited only by its originally specified excitation variable 
ul, uz,. . . , u,,, then y,.,, - y,,, G 0 and ports m' +- 1 and m' + 2 
need be given no further consideration, or 

2. The problem of finding state-space equations for N is ill posed. 

We proceed as before, ruling out case 2, rejecting ports m' + 1 andm' + 2 
in case 1, and renumbering the ports, but retaining the number m. to denote 
the number of ports at which excitations are applied or responses measured 

When this is done, we choose 

In a similar manner, ruling out the possibility of the original problem 
being ill posed and rejecting from consideration ports of N at which the 
response will be identically zero (with consequential renumbering of the ports 
and redefinition of m), we take 

Of course, we also take 

In addition, we know that e l ,  e,, . . . , e, are independent in the following 
sense: there exist no constants a,, . . . . a,, not all zero, such that a relation of 
the form 

LY forced to hold independently of the terminations or, by Lemma 4.4.5, the 
excitations at ports of N, beyond the first m. 

The rule for assigning excitation and response variables to the first m 
ports of N, is simple, the only complication being that some ports are rejected 
from consideration. Excluding this complication, excitation variables for N, 
are chosen to agree with the extended set ofexcitationvariables u,, u,, . . . , u, 
of N, and response variables are assigned in the obvious way. 

Example Consider the network of Fig. 4.4.la. The initially prescribed excitation 
4.4.1 variable is V, and the initially prescribed response variable is IE. The 

circuit is redrawn in Fig. 4.4.lb to exhibit the effect of reactance extrac- 
tion and the effect of assigning each response variable to a port. 

We take first 
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FIGURE 4.4.1. Network for Example 4.4.1: 

Next, we introduce a voltage generator LIZ at the shortcucuited port 
with current I, = y,. It is easy to check that u,  and u, are independent, 
so we take 

e2 = u2 

Figure 4.4.2 shows a circuit for which the excitations u, and uz cannot 
be chosen independently. The problem of finding state-space equations 
for the circuit with these excitations is therefore ill posed. 

FIGURE 4.4.2. State-Space Equations Cannot Be Found 
with 11, and u2 as Excitations. 
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Selection of Remaining Excitation and Response 
Variables 

The nondynamic network N, resulting from reactance extraction 
will be assumed to have rn + n ports, with inductor and capacitor termina- 
tions at the last n ports yielding N. We assume that excitation variables 
e, ,  e,, . . . , em have been chosen for the first m pons of N, to agree with the 
(extended) set of excitation variables of N, viz., I!,,  u,, . . . , u,. We shall 
now explain how to choose em+,, e ,,,, . . . , etc. 

In our procedure, we shall have occasion to renumber the ports and 
perhaps to eliminate some from consideration. If some are eliminated, we 
assume, as explained earlier, that n is redefined. 

Selection of em, ,  begins by choosing any port from among the remaining 
n ports of N,; suppose that in producing N from N, this port is inductively 
terminated. Let ;denote the current at this port and 6 the voltage. 1f there is 
no relation of the form 

a t e , ( . )  S- ... + amem(.) +a,, ,;( .)  = o a,,, # O  (4.4.26) 

that holds independently of e,,  e,, . . . , em and of the terminations on ports 
other than the first m and the port under consideration, we select 

A similar procedure is followed in case the port is capacitively terminated. 
The quantities ?and fi are as before, but now we vary (4.4.26). If there is 
no relation of the form 

a l e , ( . )  -5 . . . + amem(.) + am,,5(-) - 0 a,,, # 0 (4.4.28) 

that holds independently of e,,.e2, . . . . e, and of the terminations on ports 
other than the first rn and the port under consideration, we select 

Several points should be noted. First, in (4.4.27) and (4.4.29). em+, agrees 
with the excitation that we chose in the last section. Second, as the notation 
implies, in case (4.4.26) or (4.4.28) do not hold, the port under consideration 
becomes the (m + 1)th port. Third, in the event that em+, is selected as 
described above, we are assured that there do not exist constraints a , ,  a,, . . . , 
a,,,, not all zero, for which a relation 

a , e , ( . )  + a 2 e , ( . )  + .. .  + a , + , e , + , ( ~ ) = O  (4.4.30) 

is forced to hold irrespective of the terminations or excitations on all but the 
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first m + I ports of N,. [Failure of (4.4.26) or (4.4.28) assures us of the 
nonexistence of the a, if a,,, f 0. If a,,, = 0, ern+, is free, and the termina- 
tion on port m f 1 can be considered arbitrary. In that case, the material 
of the last subsection guarantees nonexistence of the a,.] 

Now let us consider what happens if (4.4.26) or (4.4.28) holds. For the 
moment, we shall leave the excitation variable of the port under considera- 
tion unassigned and select a different port from those to which excitation 
variables have not been assigned-always assuming that we have not 
exhausted the number of ports. Thus we obtain a new candidate for port 
(m f 1). We treat it just like the first candidate; if in constructing N i t  is 
inductively terminated, we ask whether there is a relation like (4.4.26), and, 
if not, we assign em+, as the port current. Likewise, if in wnstructing.N the 
port is capacitively terminated, we ask whether there is a relation like (4.4.28). 
If not, then we assign em+, as the port voltage. 

If the equivalent of (4.4.26) or (4.4.28) is satisfied, then we select another 
candidate port from among those not yet considered and proceed as for the 
6rst two candidates. 

Eventually, one of two things happens. 

1. One candidate is successful, and the excitation em+, is assigned as a 
current in the case of a port terminated in an inductor when N is 
constructed, and a voltage in the contrary case. 

2. No candidate is successful. 

Let us leave case 2 for the moment, and assume that case 1 applies. Note 
that no reIation of the form (4.4.30) is forced to hold for constants a,, not 
all zero, and arbitrary terminations (or excitations) on the remaining ports. 
If case 1 applies, we again go through the candidate selection process and 
attempt to locate a port with the following properties. If the port is induc- 
tively terminated when N is constructed from N,, there must not exist a 
relation of the form 

(where ?is the port current) holding for all el(.) through em,,(.) independ- 
ently of the terminations on ports other than ports 1 through (m + 1) and 
the port under consideration. If (4.4.31) does not hold, we select 

If the candidate port is capacitively terminated in the construction of N, 
the property desired is that there exist no relation of the form 

a,e,(.)+ ... + a,+,e,+,(.) +a ,+, f j ( - )~O am+,+ 0 (4.4.33) 
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(where O is the port voltage) holding for all e , ( . )  through em+,( . )  independ- 
ently of the terminations on ports other than ports 1 through (m + 1) and 
the port under consideration. If (4.4.33) does not hold, of course we select 

Assuming that we find a successful candidate, we number this port as 
m + 2. We note that em+, agrees with the excitation chosen in the last 
section, and that there cannot exist constants a, through a,,,, not all zero, 
for which a relation of the form 

is forced to hold irrespective of terminations (or excitations) on ports beyond 
the first m + 2. 

Obviously in this search procedure, one of two things again must happen: 

1. One candidate is successful, and the excitation em,, is assigned appro- 
priately. 

2. No candidate is successful. 

Assuming case 1 again, we could proceed to try to assign em+,, em+,, etc. 
At some step we shall have assigned all possible porrs, o r  i f  will be impossible 
to find a successful candidate. 

Now suppose that after combining together the first m ports to which 
excitation and response variables, were assigned and the ports to which 
excitation and response variables are assigned by the procedures just de- 
scribed, a total of I < m + n ports has assigned variables. [Thusthere will 
exist no constants a,, a,, : . . , &,,'not all zero, such that 

is forced to hold irrespective of the terminations or excitations at those 
m + n - I ports for which no excitation variables have been specified.] 
Moreover, let f and O denote the current and voltage at any. one of these 
remaining m + n - 1 ports.1f the port is inductively terminatedin con- 
structing N, there will exist constants a,, . . . , a,,, such that for arbitrary e ,  
through e, 

irrespective of the terminations or excitations at the other of the last 
m + n - 1 ports. (If this were not the case, then this port would be a suc- 
cessful candidate in the sense already described.) Likewise, if the port is 
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capacitively terminated in the construction of N, there will exist constants 
I,, . . . , Blrl such that for arbitrary el  through e, 

irrespective of the terminations or excitations at the other of the last 
m f  n -  [ports. 

Suppose for the sake of argument that (4.4.37) applies. We claim that one 
of two things can happen: 

I. f(.) = B(.) -- 0 for all e,(.) through ek.) and all terminations on the 
remaining ports. In this case, we give no further consideration to the 
port and do not assign excitation and response variables to it. 

2. Equation (4.4.38) will not hold. In this case, we assign 

To establish the claim, let us suppose that (4.4.37) and (4.4.38) do hold 
simultaneously; we shall prove that ? % O r  0. Suppose that the port is 
terminated in a resistance R, forcing B = -R?. Then we must have 

This equation holds for all e,(-) through ek,) and all terminations on ports 
other than the first 1 and that port terminated in R; the equation also holds 
for all R, which implies that 

This equation holds for aU el(.) through e i . ) ,  811 terminations 6n ports 
other than the' first I and that port terminated in R, and for all resistive (and 
therefore all) terminations on the port terminated in R; i.e., the equation 
holds for all terminations on ports other than the first I. This is a contradic- 
tion unless Pi = aj = 0 for all i, j [see (4.4.36) and associated remarks]. 
Thus (4.4.37) and (4.4.38) will only hold simultaneously if 

irrespective of el(.) through e,(.) and port terminations on other than the 
first I ports and the port under consideration. The claim is therefore estab- 
lished. 

If (4.4.42) holds, the reason for rejecting consideration of the port with 
these constraints is obvious. Notice that the presence of a terminating 



188 NETWORK ANALYSIS VIA STATE-SPACE EQUATIONS CHAP. 4 

inductor at the port when N is constructed is irrelevant; if the inductor were 
removed, or replaced by any other component, the relation between the input 
and output variables of N would be unchanged. 

The above arguments have been based on an assumption that the port 
under consideration is inductively terminated in the construction of N. 
Obviously, the only variation in the case of capacitor termination is to say 
that either (4.4.42) holds (in which case the port is rejected from consider- 
ation) or (4.4.38) holds but (4.4.37) does not hold, and we set 

* 
el+, = i (4.4.43) 

Clearly, if not all ports are rejected through condition (4.4.42), we will 
assign el+,(.). Further, since if el+, = 6, Eq. (4.4.38) does not hold, and if 
el+, = f, Eq. (4.4.37) does not hold, it follows that there do not exist constants 
a,, a,, . . . ,a,+,, not all zero, such that 

a,e,(.) + . . . + a,+,e,+,(.) - 0 (4.4.44) 

[Of course, (4.4.37) only guarantees nonexistence with a,,, # 0. But the 
nonexistence of constants a,, . . . , a, satisfying (4.4.36) for arbitrary excita- 
tion at port I +  1 means that (4.4.44) cannot hold if a,,, = 0.1 

Next we must select el+,. The procedure is much the same. Select a port 
from those for which no excitation variables have been assigned, and suppose 
for the sake of argument that it is inductively terminated when N is con- 
structed from N,. Suppose that the port current is I* and port voltage 6. 
There exist constants a, ,  . . . ,a,+, such that a relation of the form 

+ ... + a,+,e,+,(.) + a,+,$.)= 0 a,,, f 0 (4.4.45) 

is forced to hold for arbitrary terminations on ports other than the first 
I + 1 and the port under consideration. [Actually, a,,, = 0 in (4.4.49, for 
the port under consideration must have failed to be a "successful candidate" 
for port I  + 1, and the way it would have failed would have been through 
(4.4.45) holding without the a,+,e,+,(.) term.] One of two possibilities must 
be true: 

1. i*(-) = 6(.) = 0 for all.e,(.) through el+, ( - )  and all terminations on the 
remaining ports. In this case, we give no further consideration to the 
port and do not assign excitation and response variables to it. 

2. There do not exist constants p, ,  j , ,  . . . ,pi+,, not all zero, such that 
a relation of the form 

B,e,(-) + . . . + B,+,e,+,(.) + Blrzo(,) - 0 (4.4.46) 

is forced to hold irrespective of the terminations or excitations on ports 
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other than the first 1 + 1 and the port under consideration. In this 
case, we take 

The argument establishing this claim is the same m the argument estab- 
lishing the claim in respect of the selection of an excitation variable for port 
I+  I. 

Of course, if the port under consideration is capacitively terminated in 
forming N, either possibility 1 above holds or we can take 

For either sort of termination, so long as possibility 1 does not hold, it is 
guaranteed that there do not exist constants a,,  a,, . . . , al+, such that the 
relation 

is forced to hold independently of the terminations or excitations on ports 
past the first I + 2. 

Clearly, we can continue in this fashion and assign response and excitation 
variables to all the remaining ports (other than those rejected from consider- 
ation). 

Notice that thefirsf I - m of the last n ports of N,, i.e., those terminated in 
reactances to yield N,  will have excitation variables agreeing with those chosen 
in the lost section--in fact they will have "natural" excitation variables. The 
last tn -+ n - ( p o r t ~  will have the opposite excitation variables to those which 
the last section suggested slrould have been chosen. 

Notice also that the response variable r,,, 1 i m f n - I, of any of 
the last 111 + n - 1 ports would have been the natural excitation variable bu! 
for the fact that after the selection of em+,, . . . , e,, we were faced with equations 
of the form 

a,e,(.) -k . . . + se,(.) + a,+,,+,(.) = 0 a,,, # o (4.4.50) 

[Equations (4.4.37) and (4.4.49, where in the latter equation a,,, = 0 as 
we noted, are examples of this equation.] Equation (4.4.50) of course holds 
for all terminations and therefore all excitations at ports other than ports 1 
through land port I $ i, so it still holds after the selection of e,,,, el+,, . . . , 
em+,. 

The last point to note (which is the whole point of the preceding develop 
ment) is that e,(.) through em,,(.) have the property that there do not exist 
constants a , ,  al ,  . . .,u,+~, not all zero, such that the relation 
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is forced to hold. In other words, e,(.) through em+,(-) may always be arbitrary 
and independently assigned. 

Example Consider the circuit of Fig. 4.4.3a with excitation Vand response I. This 
4.4.2 is redrawn to exhibit a reactance extraction in Fig. 4.4.3b, and port 

variables for the associated nondynamic network are shown in Fig. 
4.4.3~. 

We would first assign e, = V, then ez = VZ (this being the desirable 
excitation, as a capacitor termination is used to form the circuit of Fig. 
4.4.3aj. Next, we would take e3 = V3 (this also being the desirable excita- 
tion). We would l i e  to take e4 = V4, but we observe the relation 

which holds independently of e,, e,, and e,. Therefore, we must take 

( b )  

FIGURE 4.4.3. Network for Example 4.4.2. 
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( c l  
FIGURE 4.4.3. (cont.) 

Notice that there is no constraint relation of the form 

Hybrid-Matrix Existence 

We have so far shown how to select excitation variables e,(.) 
through em+,(-) and corresponding response variables r , ( . )  throughr,+,(.) 
for the nondynamic network N,. We claim that with the choice of variables 
made, a hybrid matrix M exists for N,. The argument establishing existence 
is based on the nonexistence of constants cl,, a,, . . . , a,,, suchthat arelation 
of the form 

is forced to hold. This nonexistence implies that arbitrary choice of (finite) 
e,(.) through em,,(-) lead to fmite r , ( . )  through r,+.(.). It is then clear how 
to define the hybrid matrix M; we take 

and m, is guaranteed to be finite; i.e., the hybrid matrix exists. 
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Example Consider the network discussed in Example 4.4.2 and depicted in Fig. 
4.4.3 4.4.3. In Example 4.4.2 we identified 

e l = V l  e,=V2 e 3 = V 3  e , = 1 4  

Obviously 

and it is easy to verify that 

Ri' -RT' 0 [ ]  = [-ti1 Ri:iG1 

v, 0 0 1 

Key Property of the Hybrid Matrix 

Now we prove a property of the hybrid matrix that is essential 
in establishing the state equations. We make use of the passivity of the 
nondynamic network N, in proving the property. 

We shall define a partitioning of the hybrid matrix in a fairly natural way. 
(This partitioning will differ from a more complex one to be used in setting 
up the state-space equations.) The hybrid matrix is (m $ n) x (m + n); 
roughly speaking, the first I excitation variables are desirable, and the last 
m + n - I are not. Let us partition the hybrid matrix Mas 

where M,,  is I X I, and write 

where Ed is the vector (el, e,, . . . , e,)', etc. From (4.4.50) we see that each 
entry of Xu is a linear combination only of entries of Ed; i.e., 

Since M is the hybrid matrix of a passive network, it follows by Lemma 
4.4.2 that 

MI, = -Ma: (4.4.55) 

Notice that (4.4.54) and (4.4.55) hold for Example 4.4.3. 
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Generation of State-Space Equations from the 
Hybrid Matrix 

Finally, we are in sight of our goal. To set up the statespace 
equations, a somewhat complicated partitioning of the hybrid matrix M is 
required. This is best described in terms of the partitioning of the excitation 
vector (e,, e,, . . . , em,,)', the end result of the partitioning being illustrated 
in Fig. 4.4.4. The first m entries of this vector are, and will now be denoted 

(inductor 
terminations 
e2 yie1d.N) 

[capacitor 
terminations 
e, yield N) 

(inductor 
terminations 
e4yield N) 

+ (capacitor 
terminations 
e5 yield N) 

FIGURE 4.4.4. selection of Excitation Variables Prior to 
Generating StateSpace Equations. 

by, u, where u is the vector of (the extended set of) inputs of N. It will be 
recalled that the next 1 - m entries correspond to "desirable" selections of 
excitations, so that in the case of an inductively terminated port of N,, the 
excitation is a current. Without loss of generality, suppose that the I - m 
ports under consideration are renumbered so that all those ports that are 
inductively terminated in constructing N from N, occur first, i.e., as ports 
m + 1, m + 2, . . . ,and that those ports which are capacitively terminated 
in constructing N from N, occur second, i.e., as ports. . . 1 - 1, I. The 
excitation variables for the first group of ports will be denoted by the vector 
E, and for the second group by E,. Note that E, is a vector of currents and 
E, a vector of voltages. 

There remain m + n - 1 ports-those where the excitations were "unde- 
sirable" selections. Without loss of generality, suppose that the ports are 
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renumbered so that all those ports inductively terminated in constructing N 
from N, occur first, and those capacitively terminated occur second. The 
excitation variables for the first group of ports will be denoted by the vector 
E, ahd for the second group by E,. Note that E, is a vector of voltages and 
E, a vector of currents. 

Suppose that the response vectors corresponding to u and E, through E, 
are9 and R, through R,; Thehybrid matrix M is partitioned conformably 
with e and r, so that 

Notice that we have used the structural property of the hybrid matrix 
M proved in the last subsection and summarized in (4.4.54) and (4.4.55). 
Note, however, that the partitioning of M applying in these equations differs 
from the new partitioning of M. 

Now we define S,, e,, S,, and C?, as diagonal matrices whose diagonal 
entries are the values, respectively, of the inductors in N terminating the ports 
of N, with excitation E,, the capacitors in N terminating the ports of N,  
with excitation E,, the inductors in N terminating the ports of N, with 
excitation E,, and the capacitors in N terminating the ports of N, with 
excitation E,. 

When N is formed from N,, the following constraints on the port voltages 
and currents of N, are forced. (Note the sign conventions shown in Fig. 
4.4.4.) 

When theseare combined with (4.4.56) and 3 is identified with y, the output 
of N, we have . .  . 
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and 

Using (4.4.59) in (4.4.581, it follows that 

and 

Equations (4.4.60) and (4.4.61) are almost, but not quite, the final state 
equations. We wish to note several points concerning these equations. 

First, the coefficient matrix of [I!?* E3J' in (4.4.60) is ofthe form A + BCB', 
where A and Care positive definite. Therefore, this matrix is invertible, and 
we can solve (4.4.60) for [p2 .&",I' 

Second, the input u enters into (4.4.60) both directly and in differentiated 
form. Equation (4.4.60) is not therefore the usual form of the state-space 
equation, even if solved for [I!?= &]'. 

Third, the entries of E, are inductor currents and the entries of E, are 
capacitor voltages in N. Also, the entries of R, are inductor currents and those 
of R, are capacitor voltages, though R, and R,  do not appear explicitly in 
(4.4.60). We see from (4.4.59), though, that R, and R, are linear combinations 
of u, E,, and E,. 

Fourth, (4.4.61) shows that, in general, y depends linearly on E,, E,, u, 
and ti. [From (4.4.60) it follows that the apparent dependence of y on E= and 
E, in (4.4.61) can be eliminated, since Ez and E~ depend on El, E,, u, 
and ti.] 

To simplify notation, let us now rewrite (4.4.60) in the form 
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Dl* = D,x + D,u - D4D,zi (4.4.62) 

where the definition ofall quantities is obvious, save D,, which is [M,, MI J. 
We rewrite Eq. (4.4.61) in the form 

y = D,x + D,u + D:D,D,li 3. DJY42 (4.4.63) 

Now define a new variable 

3 = x + D;'D,D,u (4.4.64) 

The reason for introducing this variable is to eliminate the zi terms in (4.4.62). 
Of course, 2 is the new state variable. When (4.4.64) is substituted into 
(4.4.62) and (4.4.63), there results 

2 = D;'D13 f D;l(D3 - D,D;'D,D,)u 

y = (D6 + f f 5 D h D i 1 D 3 3  
(4.4.65) + [ D ,  - D,D;'D,D, $- f f ;D;D; l (D,  - D2Di1D,D,)]u 

+ (D;D,D,  - D5PbD;'D,D,)ti 

Equations (4.4.65) constifufe a set of state-space equations for N. As noted 
in an earlier section, a term involving 5 in the second of (4.4.65) may be 
inescapable. 

Example Consider the circuit of Fig. 4.4.5a with I as the input and Vas the output 
4.4.4 variable. A reactance extraction is exhibited in Fig. 4.4.5b. The exciting 

variables for the hybrid matrix of the nondynamic network are chosen 
as follows. First, e, = I. This is obvious. Second, el = V2. Next, we 
might trye3 = I 3 ,  the inductor current, but rhea we would have e, + e, 

0. Also, we might try e3 = V,, but then we would have e,  - e3 = 0. 
So we take e, = V,, an "undesirable" selection since port 3 is terminated 
in an inductor in constructing the circuit of Fig. 4.4.5a. Also, we make the 
"undesirable" selection el = I,. 

The hybrid mamx is readily found, and 

0 1 1  0 I 

[;]=[I; 0 1 0  : : -:][;I 0 I, 

As required, the bottom right 2 x 2 submatrix is zero, and the lower left 
and upper right 2 x 2 submatrix are the negative transpose ofeach other. 

The appropriate version of Eq. (4.4.58) is derived by setting V3 =; 

-2i3, I1 - -pl .  and I ,  = - 3,. The result is 



FIGURE 4.4.5. Network for Example 4.4.4. 
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Similarly, from (4.4.59) we obtain 

(These equations are self-evident from Pig 4.45c.) Combining these two 
equations and replacing I by 11 and V by y, we have 

Propertiesof the State-Space Equations 

Now we wish to note some important points arising out of the 
development of (4.4.65). In the problems of this section, proof is requested 
of the following fact. 

Theorem 4.4.1. With the definitions 

and with g,, B,, S,, and B, positive definite, the matrix 

is positive definite symmetric. 

Notice that the coefficient of Ei in the expression for ~in(4.4.65)is D; D,Ds. 
Thus the following facts should be clear. 

1. The coefficient of 11 in the expression for y in (4.4.65) is nonnegative 
definite, symmetric. 

2. From (4.4.65), y is independent of ti if and only if D, = [M,, M,,r  =O. 
3. If D,  = 0, no change of variable from x to i is necessary [see (4.4.6411; 

Eq. (4.4.62) for x contains no z i  term; MI, and M , ,  are zero by definition 
of D,; and the inductor currents R, and capacitor voltages R, depend 
[see (4.4.59)l on1y.on E2 and E3 andnot on zt. 

4. It is'idvalid to attempt to define the response of N for initial conditions 
E,, E,, R,, and R, and excitation u ( . )  which do not satisfy (4.4.59). 
The iniiial valuesof the inductor currents E, and capacitor voltages 
E, can be arbitrary. The initial values of R,  and R, depend only on 
E, and E, and not on u if D, = 0. 

The following theorem isan interesting consequence of points 2 and 3. 
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Theorem 4.4.2. Consider an m-port network N with port ex- 
citation vector u and port response vector y defining a hybrid 
matrix M(s) of N via 

Y(s) = M(s)U(s) 

Then if M ( m )  < m, there exists a set of state-space equations 
for N with the state vector consisting of inductor currents and 
capacitor voltages. 

Proof. If M ( m )  < m ,  then we can set up equations of the form of 
(4.4.62) and (4.4.63) with the entries of x, being entries of E, 
and E,, consisting solely of inductor currents and capacitor 
voltages. Using the transformation (4.4.64), we may obtain 
(4.4.65). Bur with M ( m )  < 03 it follows that ymust be independ- 
ent of z i  and thus that D, = 0. Hence 2 = x and 2 is a state 
vector of the required form. V V V 

From the mere existence of statevariables equations of the form of (4.4.65), 
which is a nontrivial fact, we can also establish the following important 
resutt. 

Theorem 4,4.3. Let M(s) be a passive hybrid matrix, and let N 
be any passive network with M(s) as hybrid matrix, perhaps 
obtained by synthesis.Then the sum of the number of inductors 
and capacitors in N is at least 6[M(s)]. 

Proof. Let (4.4.65) be state-space equations derived for N. 
Reference to the way these equations werederived will show that 
the dimension of x is the sum of the dimensions of E, and'E, in 
(4.4.58), and that D; = [ M I ,  M I , ]  has a numbei of columns equal 
to the sum of the dimensions of E, and E,. Since the sum of the 
dimensions of E,, E,, E,, and E, is the number of reactive ele- 
ments in N (excluding perhaps some associated with deleted ports 
of N,), the number of reactive elements in N is bouniled belowby 

dimension of x + number of columns of D; 

Now observe, using (4.4.65) and the definition of D,, that the 
residue matrix associated with any pole at infinity of elements 
of M(s) is D,D,D,. By the definition of degree, it follows that 

6[M(s)] 5 dimension of x + rank LY,D,D, 

5 dimension of x + number of columns of D; 

and the result follows. V V V 
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Problem Prove Theorem 4.4.1. 
4.4.1 

Problem Let N be a passive network synthesizing a prescribed passive scattering 
4.4.2 matrix S(s). Show that the number of capacitors and inductors in N is 

at least 6[S(s)l. 

Problem Let N be a passive network of m ports, with the transfer-function matrix 
4.4.3 relating excitations at m, of these ports to responses at m2 of these ports 

denoted by W(s). Show that the number of capacitors and inductors in 
N is at least 6[W(s)l. 

Problem Find state-space equations for the network of Fig. 4.4.6. Take all com- 
4.4.4 ponents to have unit values. 

FIGURE 4.4.6. Network for Problem 4.4.4. 

Problem Suppose that in a prescribed networkwith external sources each capacitor 
4.4.5 and ideal voltage source is revlaced bv a like element with 6-ohms series - 

resistance, and each inductor and ideal current source is replaced by a 
like element with E-mhos shunt conductance. Show that state-space 
equations can be derived by the method of this section with all excitation 
variables of the hybrid matrix being assigned "dtsimbly." What hapgcns 
when E -. 07 

4.5 STATE-SPACE EQUATIONS FOR 
ACTIVE NETWORKS 

Up to this point of the chapter, our aim has been to derive state- 
space equations of passive networks, the elements in which are resistors, 
capacitors, inductors, transformers, and gyrators. Now we wish to extend 
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this set of elements to include contraNed sources; any of the four types, 
current-to-current, current-to-voltage, voltage-to-current, or voltageto- 
voltage are permitted. 

The reader will have observed, particularly in Section 4.4, how much 
passivity has been used in the schemes described hitherto for setting up 
statespace equations. It should therefore come as no surprise that while 
state-space equations can always be set up for a passive network (unless there 
is some fairly obvious form of ill posing), this is not the case for networks 
containing active elements. One startling illustration of this point is provided 
with the aid of the nullator. A nullator is a two-terminal device that may be 
constructed with controlled sources, as shown in Fig. 4.5.la. (Note that a 
negative resistor is constructible with controlled sources, as in Fig. 4.5.1b.) 

FlGURE4.5.1. (a) The Nullator and (b) the Simulation 
of a Negative Resistor. 

Its port current and port voltage are simultaneously always zero [15], which 
means that it looks simultaneously like an open circuit and a short circuit. 
Now consider the circuits of Fig. 4.5.2. These circuits can support neither a 
nonzero or independent voltage nor a nonzero or independent current source, 
and it is obvious that state-space equations cannot be found. 

Results on the existence of state-space equations of active networks are 
not extensive, though some are available (see, e.g., [16]). In this section we 
shall avoid the existence question largely, concentrating on presenting ad 
hoc approaches to the development of equations. We can attempt a state- 
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FIGURE 4.5.2. Circuits for which no Statespace -Equa- 
tions Exist 

. . 

space equation 'derivation. at any of the three levels of complexity applicable. 
for passive networks, Thus if the network is particularly simple, straight- 
forward inspection and application of Kirchhoff's laws will enable us to 
write down a differential equation for e&h indu.ctor current and capacitor 
voltage and an equation relating the output to the inductor currents, capacitor 
voltages, and the input. A simple illustration follows. 

Example Consider the circuit of Fig. 4.5.3. The input variable is V, the output 
4.5.1 variable V.. Notice that I, is neither an input nor a state variable; so it 

FIGURE 4.55. Network for Example 4.5.1. 

is necessary to express it in terms of the input and state. The state x is 
obviously the capacitor voltage V,, which we can choose to have the 
same sign as V.. It is immediate from the circuit that 

Also, 

v. = x 

State-space equation derivation at the second level of complexity, if pos- 
sible, proceeds in the same way for active networks as passive networks, 
the nondynamic network containing resistors, transformers, gyrators, and 
controlled sources. Rather than spelling out the procedure in detail, we shall 
describe state-space equation derivation at the third level of complexity. This 
includes derivation at the second level of complexity as a special case. 
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Equation Derivation at the Third. Levelof'Complexity 

The procedure we shall describe may or may not' work; never- 
theless, if the procedure does not work, it is unlikely that state-space equa- 
tions can be found. The procedure falls into three main steps: 

. . 

1. A reactance extraction is performed on a prescribednetwork N to 
obtain a nondynamic network N,, which contains resistors, trans- 
formers, gyrators, and controlled sources. 

2. A modified form of hybrid matrix is constructed for N,. (The modifiea- 
tion will be noted shortly.) 

3. State-space equations for N are constructed using the modified hybrid 
matrix of N,; 

Step 1 is of course quite straightforward. It is at step 2 that we run into the 
first set of difficulties. For example, because N, is not passive it may possess 
no hybrid-matrix description at all. Let us however point out how we try to 
form a hybrid matrix for N,. AS we shall see, it sometimes proves convenient 
to form only a submatrix of a hybrid matrix, this being the modification 
referred to in step 2. 

Suppose that N is an m port, and that the originally prescribed set of 
excitations is u,, u,, . . . , u,, and the originally prescribed set of responses 
is ym2+,,ym2+,, . . . , y,. Notice that m, m,, for otherwise port m, + 1 
and perhaps other ports as well would have neither response nor excitation 
assigned to them, and therefore they would be dropped from further con- 
sideration. 

If N were passive, we would assign, or attempt to assign, the first m 
excitation variables for N,  by extending the m, excitations of N to a full m, 
and then identifying e,, the excitation at the ith port of N,, with u,. However, 
here we merely set 

e ,=u ,  i = 1 , 2  ,..., m, (4.5.1) 

with the response ri at the ith port of N, defined by 

Instead of seeking a full hybrid matrix for N,, we seek a submatrix of it only; 
disallowing consideration of excitations em,+, through em means that we 
delete columns m,  + 1 through m of the full hybrid matrix of N,, and disal- 
lowing consideration of responses r, through r,, means that we delete rows 
1 throughm, of the full hybrid matrix of N,. The remaining rows and columns 
define the appropriate submatrix. 

Now suppose that N contains n reactive elements. We follow the pro- 
cedures of the last section in attempting to assign excitation and response 
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variables to N,.* Thus, for as many ports as possible, we attempt to identify 
the excitation of the port with a current if the port is inductively terminated 
and with a voltage if the port is capacitively terminated in forming N from 
N,. Of course, the identification is not permitted should there exist a relation- 
ship of linear dependence between the proposed excitation variable and those 
already selected, the relationship holding independently of the terminations 
at ports with unassigned excitation variables. 

In the event that no further excitation variables can be assigned in the 
desired way, we then attempt to assign them in the opposite of the desired 
way; for example, if a port of N, is inductively terminated when N is con- 
structed and independent current excitation is not possible, then we try an 
independent voltage excitation. For passive networks, this procedure, as we 
have shown, will always result in an appropriate excitation. For active 
networks, it may not. Not every active network possesses a hybrid matrix, 
which implies that for some active networks neither a voltage nor current 
excitation will be acceptable at one or more ports. 

If neither the desirable nor undesirable allocation of excitation variables 
is possible, we must abandon our goal of forming a hybrid matrix or of 
forming state-space equations by the method being described. 

Assume therefore that all excitation variables can be assigned; response 
variables for the last n ports of N, are assigned in the obvious manner as the 
duals of the excitation variables. The excitation variables are assumed to be 
free of any constraints, so that we can argue the existence of a modified 
hybrid matrix M, actually a submatrix of a hybrid matrix, for which 

'For the reader who has not studied the last section, the short summary hen  will proba- 
bly suffice. 
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In  this equation, M is shown in partitioned form with the partitioning 
conforming with that shown in the excitation and response variables. The 
integer 1 defines the last port at which assignation of an excitation variable 
as a desired variable is permissible. Notice that M,, is zero, the argument 
being the same as in the last section: at ports I + I through m + n the 
desirable excitation depends on the excitations e, through e,. This desirable 
excitation becomes an actual response, and so each of r,,, through r,,, 
depends only on e ,  through el. Note also that because N, is not passive, we 
cannot conclude that M I ,  = - M,; or M,, = -hi,:. 

Example Consider the circuit of Fig. 4.5.4a. The circuit is redrawn in Fig. 4.5.4b 
4.5.2 to exhibit a reactance extraction. We describe the generation of M with 

the aid of Fig. 4.5.4~. 
Obviously, we identify e, = V, and r2 = V.. We do not assign e ,  

or r,. Next we assign excitation variables at the ports of N, which are 
reactively terminated in forming the original circuit. 

Assignation of el = V,  and e ,  = V4 causes no problems, and these 
are desirable assignations. We would like to set e ,  = V,, but this is not 
possible since 

e3 = e, + V, 

So we try to set e, = I,. This works; i.e., there is no linear relation 
involving el ,  el, el, and the new e,. The response variables are r3 = I,, 
r. = I 4 ,  and r, = V5. Conventional analysis yields 

Step 3 of the procedure for obtaining statespace equations requires us to 
proceed from the hybrid matrix to the equations. The technique follows 
that of the last section; since some differences arise, including possible inabil- 
ity to form the equations, we shall now outline the procedure. 

The starting point is (4.5.3), which we shall rewrite in the form 

where the definitions of R,, R,, etc., should be obvious from (4.5.3). 
We reiterate the following points: the entries of El and R, do not neces- 

sarily correspond to the same set of ports, and the entries of E, constitute 
"desirable" excitation variables, while those of E3 constitute "undesirable" 
excitation variables. 
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Nr 

(b) 

FIGURE 4.5.4. Network for Examples 4.5.2 and 4.5.3. 
The Network Models a Transistor. 
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When N, is terminated in the appropriate reactive elements that yield N, 
this amounts to demanding . . 

where 63, is a diagonal matrix of inductor or capacitor values, and also 

where 63, is the same sort of matrix a.i a,. Using (4.5.5) and (4.5.6), (4.5.4) 
becomes 
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In particular, 

R3 = M,iE, + M32Ez (4.5.8) 

so that, again from (4.5.7), 

- (B,E~ = M,,E, + M,,E, - M,,(B,M,,~,  - M , , ( B , M , , ~ ,  
(4.5.9) 

R, = M,,EI + M,2E2 - M , 3 @ 3 ~ 3 , 2 1  - ML3@,M3z& 

Consider the first equation in (4.5.9). This can be "solved" for El if and 
only if (8, - M,,(B,M,z is nonsingular. ~ o r ~ a s s i v e  N,, this is guaranteed 
by the fact that 63, and a, are positive definite and that M,, = -MA 
(the latter following because M,, = 0). No such guarantee applies ijC N, is 
active. 

Notice that if @, - M,3(83M,, is singular, a perturbation of (8, to, say, 
(B, + d f o r  an arbitrary smalle will render the matrix nonsingular. I n  other 
words, (4.5.9) fails to have a solution for k, only for pt?rticular values of the 
inductors and capacitors. 

Of course, if (4.5.9) is solvable fork,, then there is no difficulty in construct- 
ing state-space equations for N. The input vector ic agrees with E,, the output 
vector y with R, .  Terms in E, may be eliminated from the differential equation 
for the state vector by appropriate redefinition of the state vector, if necessary. 
Terms in 8, may occur in the equation for R , ,  but of course these may not 
be eliminated. 

If 63, - M,,(B!M,, is singular, it may or may not be possible to obtain 
state-space equahons in which each entry of E,, i.e., each excitation, can be 
selected independently. Examination of this point is requested in the prob- 
lems. 

Example We return to the circuit of Fig. 4.5.4a. With quantities as defined in 
4.5.3 Fig. 4.5.4~; we found 

1 -1 

0 1 -1 

Using Fig. 4.5.4b, we see that 

f 3  = c I, = -C2d 4 z5=-C3V5 

It is then easy to derive 
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and then 

The wefficient matrix multiplying [v, v4r is nonsingular, and so 
we can rewrite this equation in the standard form 3 = Fx + Gu. The 
equation for V. easily follows from the modified hybrid matrix as 

LJ'dJ 

The characterization in topoIogical terms of the difficulties that can be 
encounted in setting up state-space equations'for active networks is very 
diffidt. More topologically based approaches to setting up the equations 
therefore tend to be ad hoc (more so, in fact, than the present procedure), 
relying on presenting sufficient conditions for the generation of equations, 
or on presenting algorithms that may or may not work (see, e.g., [S]). We 
prefer the procedure given here on the grounds that topological ideas do not 
play a key role in the formation of the equations-of course they may or 
may not be employed in generating the modified hybrid matrix of N,. 

There is one additional danger that the reader should be aware of in 
analyzing active networks. If the networks have some form of instability, 
they may not behave like linear networks because some elements-generally 
active ones-may be forced into nonlinear operation. This movement into 
the nonlinear regime is in fact the basis of operation of such circuits as the 
multivibrator. Many active networks do not exhibit this kind of instability 
of course, and the methods of this section are applicable to them 

Problem Develop controlled source models for the transformer and the gyrator 
4.6.1 to conclude that the basic elements allowed in networks (active or 

passive) can all be assumed two terminal. (This is the approach adopted 
in many cases, e.g., 181, in applying topological methods to circuits 
containing gyrators and transformers.) 

Problem Figure 4.5.5 shows a circuit model of a transistor tuned amplifier based 
4.5.2 on they-parameter model of the transistor. Develop statespaceequations 
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FIGURE 4.5.5. Network for Problem 4.5.2. 

for the circuit. Assume fint that y , ~  and y l ,  are real constants. What 
happens if y , ,  and y,, are complex and frequency dependent? 

Problem Develop procedures for forming statespace equations from (4.5.9) for 
4.5.3 the case when as - M23@1M32 is singular. 

Problem Suppose that an active network possesses statespace equations derivable 
4.5.4 via the procedure of this section. Let W(s) be the associated transfer- 

function matrix. Show that 6[W(s)l is a lower bound on the number of 
capacitors or inductors in the network. 
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Part IV 

THE STATE-SPACE 
DESCRIPTION O F  PASSIVITY 
A N D  RECIPROCITY 

The major task in this part is to state and prove the posittve 
real lemma. This is a statement in state-space terms of the positive 
real constraint and is fundamental to the various synthesis 
procedures. 

We break up this part into five segments: 

1 .  Statement and partial proof of the positive real lemma. 
2. Various proofs of the positive real lemma, completing the 

partial proof mentioned in 1. 
3. Computation of certain matrices occurring in the positive 

real lemma. 
4. The bounded real lemma. 
5. The reciprocity constraint in state-space terms. 

Part IV can be read in three degrees of depth. For the reader 
who is interested in how to synthesize networks, with scant 
regard for computations, 1,4, and 5 above will suffice. This 
material is covered in Sections 5.1 and 5.2 and Sections 7.1, 7.2, 
7.4, and 7.5. For information regarding computation, see 
Chapter 6 and Section 7.3. For the reader who desires the full 
story, all of Part IV should be read. 



Positive Real Matrices 

and the Positive Real Lemma 

In this chapter our aim is to present an interpretation of the posi- 
tive real constrain-usually viewed as a frequency-domain constraint-in 
terms of the matrices of a state-space realization of a prescribedpositive real 
matrix. In this introductory section we restate the positive real definition and 
note several minor wnsequences of it. Then we go on h the next section to 
state the positive real lemma, a set of constraints on the matrices of a state- 
space realization guaranteeing that the associated transfer-function matrix 
is positive real. We also prove that the stated conditions are sufficient to 
guarantee the positive real property. 

The proof that the conditions on the matrices of a state-space realiiation 
statedin the positive real lemma are in fact necessary to guarantee the positive 
real property is quite difficult. In later sections we tackle this problem from 
different points of view. In fact, we present several proofs, each relying on 
different properties associated with a positive real matrix. One's familiarity 
with these properties is a function of background; therefore, the degree of 
acceptability of the different proofs'is also a function of background. It is not 
necessary even to read, let alone understand, any of the proofs for later 
chapters (though of wnrse an understanding of the positive real lemma 
statement is required). So we invite the reader to omit, s k i ,  or study in 
detail as much or as little of the proofs as he wishes. For those unsure as to 
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which proof may be of interest, we suggest that they be guided by the section 
titles. 

As we know, an m x m matrix Z(s) of real rational functions is positive 
.... 

real if . . 

> .  

1. All elements of Z(sj are analytic in Re [s] > 0. 
2. Any pure imaginary pole jw, of any element of Z(s) is a simple pole, 

and the associated residue matrix of Z(s) is nonnegative definite Her- 
mitian. 

3. For all real w for which jw is not a pole of any element of Z(s), the 
matrix Zf(jw) + Z(jw) is nonnegative definite Hennitian. 

Conditions. 2 and 3 may ,alternatively' be replaced by .. 

4. The matrix Z'*(s) + Z(s) is nonnegative definite Hermitian in Re[s] > 0. 

These conditions for positive realness are essentially analytic rather than 
algebraic; the positive real lemma, on the other hand, presents algebraic 
conditions on the matrices of a state-space realization of Z(s). Roughly 
speaking, the positive real lemma enables the translation of network synthe- 
sis problems from problems of analysis to problems of algebra. 

In the remainder of this section we shall clear two preliminary details out 
of the way, both of which will be helpful in thesequel. These details relate to 
minor decompositions of Z(s) to isolate theeffect of pure imaginary poles. 

We can conceive a partial fraction expansion of each elementof Z(s) [and 
thus of Z(s) itself] being made, with a subsequent grouping together ofterms 
withpol& on the jw axis, is., poles ofthe f o ~ & ~ ~  for some real o,, and 
polesip the half-planeRe [s] < 0. (Such'a grouping together is characteristic 
of the ~ o s t e r  preamble of classical network synthesis procedures, which may 
be'fimiliar to some readers.) This allows us to write Z(s) in the form 

where L, C, and the K, are nonnegative definite Hermitian, and the poles 
of elements of Z,(s) all lie in Re [s] < 0. We have already argued that L 
must be real and symmetric, and it is easy to argue that C must be real and 
symmetric. The matrix Kt, on the other hand, will in general be complex. 
However, if jw, for a, f 0 is a pole of an element of Z(s), -jw, must also 
be a pole, and the real rational nature of Z(s) implies that the associated 
residue matrix is KT. This means that terms in the summation 

A 
F s -  jw, 

occur in pairs, a pair being 

Kt K" A$ + B, 
s - - * + = s i w , = + w ~ f  
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where A, and I f ,  are real matrices; in fact, A, = K. i- KT and is nonnegative 
definite symmetric, while B, = jw,(K, - K?) and is skew symmetric. So we 
can write 

if desired. We now wish the reader to carefully note the following points: 

I .  sL, s-'C, and (A,s + If,)(? + are LPR. The fact that they are 
PR is.immediate from the definitions, while the lossless character fol- 
lows, for example, by observing that . . 

is LPR. This is immediate from 1. 
3. Z,(s) is PR! To see this observe that all poles of eiements of Z,(s) lie in 

Re Is] < 0, while Z'?(jw) + Zi-(jo) = Z!*(jm) + ZL(jo) t %*(jw) 
+ Z,(jw) = Z1*(jw) t Z(jw) 2 0 on using the lossless character of 
ZL(J). 

Therefore, we are able [by identifying the jo-axis poles of elements of Z(s)] 
to decompose an arbitrary PR Z(s) hto the sum of a LPR matrix, and a PR 
marrix such that all poles of all elements lie in Re [s] < 0. 

Also, it is clear that Z,(s) = Z(s) - sL is PR, being the sum of Z,(s), 
which is PR, and 

which is LPR. Further, Z,(w) < co. So we are able to decompose an arbi- 
trary PR Z(s) into the sum of a LPR matrix sL, and a PR matrix Z,(s) with 
Z,(M) < m. 

In a similar way, we can decompose an arbitrary PR Z(s) with one or more 
elements possessing a poIe at s = jw, into the sum of two PR matrices 

with the first matrix LPR and the second matrix simply PR, with no element 
possessing a pole at jo,. 
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Problem Show that Z(s) is LPR if and only i fZ(s )  has the form 
5.1.1 

Als+Br +s - jC  
Z ( s ) = s L + J f  F m  

where L  = L' 2 0, J + J' = 0, C  = C' 2 0, A, and B, are real, and 
Ai + Bfiw, is nonnegative definite Hermitian. 

5.2 STATEMENT AND SUFFICIENCY PROOF 
OF THE POSITIVE REAL LEMMA 

In this section we consider a positive real matrix Z(s) of iational 
functions, and we assume from the start that Z ( w )  < w .  As we explained 
in Section 5.1, in the absence of this condition we can simply recover from 
Z(s) a further positive real matrix that does satisfy the restriction. The lemma 
to be stated will describe conditions on matrices appearing in a minimal 
state-space realization that are necessary and sufficient for Z(s) to be positive 
real. We shall also state a specialization of the lemma applying to lossless 
positive real matrices. 

The first statement of the lemma, for positive real functions rather than 
positive real matrices, was given by Yakubovic [l] in 1962, and an alternative 
proof was presented by Kalman [2] in 1963. Kalman conjectured a matrix 
version of the result in 1963 [3], and a proof, due to Anderson [4], appeared 
in 1967. Related results also appear in [5]. 

In the following, when we talk of a realization {F, G, H, J) of Z(s), we 
shall, as explained earlier, imply that if 

then 

where S b ( . ) ]  = Y(s), S[u(,)] = U(s). If now an m x m Z(s) is the imped- 
ance of an m-port network, we understand it to be the transfer-function 
matrix relating them vector of port currents to them vector of port voltages. 
In other words; we ideirtfy the vector u of the state-space equations with 
the port current and the vector y with the port voltage of the petwork. 

The formal statement of the positive real lemma now follows. 

Positive Real Lemma. Let Z(.) be an m x m matrix of real 
rational functions of a complex variable s, with Z ( w )  < m. Let 
[F, G, H, J) be a minimal realization of Z(s). Then Z(s) is positive 
real if and only if there exist real matrices P, L, and W, with P 
positive definite symmetric, such that 



POSITIVE REAL LEMMA 21 9 

PF + F'P = -LL' 

(The number of rows of Wo and columns of L are unspecified, 
while the other dimensions of P, L, and W ,  are automatically 
iixed.) 

In the remainder of this section we shall show that (5.2.3) are suficient 
for the positive real property to hold, and we shall exhibit a special factoriza- 
tion, actually termed a spectral factorization, of Zi(-s) + Z(s). Finally, we 
shall state and prove a positive real lemma associated with lossless positive 
real matrices. 

Sufficiency Proof of the Positive Real Lemma 

First, we must check analyticity of elements of Z(s) in Re [s] > 0. 
Since Z(s) = J + H'(sI - F)-lG, an element of Z(s) will have a pole at s 
= s, only if s, is an eigenvalue of F. The first of equations (5.2.3), together 
with the positive definiteness of P, guarantees that all eigenvalues of F have 
nonpositive real part, by the lemma of Lyapunov. Accordingly, all poles of 
elements of Z(s) have nonpositive real parts. 

Finally, we must check the nonnegative character of Z'*(s) + Z(s) in 
Re [s] > 0. Consider the following sequence of equalities-with reasoning 
following the last equality. 

Z1*(s) i- Z(s) 

= J' + J + G1(s*I - P')-'H + H'(sI - f l - 1 ~  

= WbW, + G1[(s*I - F1)'lP + P(sI - fl-I]G 

+ G'(s*I - F')-'LW, + WbL1(sI - F)-'G 

= WbWa + G'(s*I - Fp?-l[P(s + s*) - PF - F 'p] ( s~ -  F)-IG 

+ G1(s*I - F)-'LW, f WLL'(sl- F)-'G 
= WLwo + G'(s*~-- F)-'LL'(sI - F)-'G + G'(s*I- F1)-lLWo 

+ WLLr(sI - F)-'G + G'(s*I - F')- 'p(s~ - F) - 'G(~  + s*) 

= [wb + G'(s*I - f l- 'L][W, + L'(sI - 9 - 1  G] 

i- G'(s*I - F')-'P(sI - F)-lG(s + s*) 

The second equality follows by using the second and third equation of (5.2.3), 
the third by manipulation, the fourth by using the first equation of (5.2.3) 
and rearrangement, and the final equation by manipulation. 
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Now since any matrix of the form A'*A is nonnegative definite Hermitian, 
since s + s* is real and positive in Re [s] > 0, and since P is positive definite, 
it follows, as required, that 

To this point, sufficiency only is proved. As remarked earlier, in later 
sections proofs of necessity will be given. Also, since the quantities P, L, and 
Wn prove important in studying synthesis problems, we shall be discussing 
techniques for their computation. (Notice that the positive real lemma state- 
ment talks about existence, not construction or computation. Computation 
b a separate question.) 

Example It is generally difficult to compute P, L, and W. from F, G, H, and J. 
5.2.1 Nevertheless, these quantities can be computed by inspection in very 

simple cases. For example, z(s) = (s f I)-' is positive real, with realiza- 
tion (-1.1. 1.0). Observe then that 

is satisfied by P = [I], L = [ d l ,  and W, = [O]. Clearly, P is positive 
definite. 

A Spectral Factorization Result 

We now wish to note a factorization of Z'(-s) f Z(s). We can 
carry through on this quantity essentially the same calculations that we 
carried through on Z"(s) + Z(s) in the sufficiency proof of the positive real 
Iemma. The end result is 

where W(s) is a real rational transfer-function matrix. Such a decomposition 
of Z' ( -s)  + Z(s) has been termed in the network and control literature 
a spectral factorization, and is a generalization of a well-known scalar result: 
if z(s) is a positive real function, then Rez(jw) 2 0 for all w (save those w 
for which jw is a pole), and Re z(jw) may be factored (nonuniquely) as 

Re z(jw) = I w( jo) jZ = w(- jw)w( jw) 

where w(s) is a real rational function of s. 
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Essentially then, the positive real lemma says something about the ability 
to do a spectral factorization of Z'(-s) + Z(s), where Z(.) may be a matrix. 
Moreover, the spectral factor W(s) can have a slate-space realization with 
the same F and G matrices as Z(s). [Note: This is not to say that all spectral 
factors of Z'(-s) + Z(s) have a state-space realization with the same Fand 
C matrices as Z(s)-indeed this is certainly not true.] Though the existence 
of spectral factors of Z'(-s) + Z(s) has been known to network theorists 
for some time, the extra property regarding the state-space realizations of 
some spectral factors is, by comparison, novel. We sum up these notions as 
follows. 

Existence of a Spectral Factor. Let Z(s) be a positive real 
matrix of rational functions with Z(m) < m. Let IF, G, H, J) be 
a minimal realization of Z(s), and assume the validity of the 
positive real lemma. In terms of the matrices L and W ,  men- 
tioned therein, the transfer-function matrix 

W(s) = W ,  + L'(sI - F)-'G (5.2.5) 

is a spectral factor of Z'(-s) f Z(s) in the sense that 

Example For the positive real impedance (s + I)-', we obtained in Example 5.2.1 
5.2.2 a minimal realization 1-1,1, 1, Oh together with matrices P, L, and WO 

satisfying the positive real Iernma equations. We hadL = [a] and W, 
= [O]. This means that 

and indeed 

as predicted. 

Positive Real Lemma in the Lossless Case 

We wish to indicate a minor adjustment of the positive real 
lemma, important for applications, which covers the case when Z(s) is loss- 
less. Operationally, the matrices L and W,  become zero. 

Lossless Positive Real Lemma. Let Z( . )  be an m x m ma- 
trix of real rational functions of a complex variable s, with Z(m) 
< m. Let (F, G, H, J )  be a minimal realization of Z(s). Then 
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Z(s) is lossless positive real if and only if there exists a (real) 
positive definite symmetric P such that 

If we assume validity of the main positive real lemma, the proof of the 
lossless positive real lemma is straightforward. 

Sufficiency Proof. Since (5.2.6) are the same as (5.2.3) with L 
and We set equal to zero, it follows that Z(s) is at least positive 
real. Applying the spectral factorization result, it follows that 
Z(s) + Z'(-s) 3 0. This equation and the positive real condition 
guarantee Z(s) is lossless positive real, as we see by applying the 
definition. 

Necessity Proof. If Z(s) is lossless positive real, it is positive 
real, and there are therefore real matrices P, L, and Wo satisfying 
(5.2.3). From L and Wo we can construct a W(s) satisfyingZ1(-s) 
+ Z(s) = W'(-s)W(s). Applying the lossless constraint, we see 
that W'(-s)W(s) = 0. By setting s = jw, we conclude that 
W'*(jo)W(jo) = 0 and thus W(jw) = 0 for all real o. Therefore, 
W(s) = W, + L'(s1- n - ' G  = 0 for all s, whence Wo = 0 and, 
by complete controllability,* L = 0. V V V 

Example The impedance function z(s) = s(s2 + 2)/(s2 f l)(sz + 3) is lossless 
5.2.3 positive real, and one can check that a realization is given by 

A matrix P satisfying (5.2.6) is given by 

r6 0 3 01 

(Procedures for Computing P will be given subsequently.) It is easy to 

*If L'(sI - F)-'G = 0 for  all.^, then L' exp (F1)G = 0 for all t. Complete controllability 
of IF, G] jmplics that L' = 0 by one of the complete controlIability properties. 
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establish, by evaluating the leading minors of P, that P is positive 
definite. 

Problem Prove via the positive real lemma that positive realness of Z(s) implies 
5.2.1 positive realness of Z'(s), [301. 

Problem Assuming the positive real Jemma as stated, prove the following exten- 
5.2.2 sion of it: let Z(s) be an m x m matrix of real rational transfer functions 

of a complex variables, with Z(m) < w. Let IF, G, H, J )  be a completely 
controllable realization of Z(s), with [F, HI not necessarily compIetely 
observable. ThenZ(s) is positive real if and only if thereexist real matrices 
P, L, and WO, with P nonnegative definite symmetric, such that PF + F'P 
= - L C  PO = H- LW,, J + J' = W k K .  [Hinl: Use the fact that 
if [F, HI is not completely observable, then there exists a nonsingular T 
such that 

with [F, ,, H I ]  completely observable.] 

Problem With Z(s) pqsitive real and [F, G, H, J f  a minimal realization, establish 
5.2.3 the existence of transfer-function matrices V(s) satisfying Z'(-s) f Z(s) 

= V(s)V'(-s), and possessing realizations with the same F and ff 
matrices as Z(s). [Hint: Apply the positive real lemma to Z'(s), known 
to be positive real by Problem 5.2.1.1 

Problem Let Z(s) be PR with minimal realization [F, G, H, J ) .  Suppose that J 
5.2.4 is nonsingular, so that Z-l(s) has a realization, actually minimal, 

( F -  CJ- 'N:  GJ-I, -H(J-I): J-I) .  Use the positive real lemma to 
establish that Z-'(s) is PR. 

Problem Let Z(s) be an m x m matrix with realization {F, G, H, Jf, and suppose 
5.2.5 that there exist real matrices P, L, and Wo satisfying the positive real 

Jemma equations, except that P is not necasarily posifive definite, 
though it is symmetric. Show that Z'*( jo )  + Z( jw)  2 0 for all real 
o with j o  not a pole of any element of Z(s). 

5.3 POSITIVE REAL LEMMA: NECESSITY 
PROOF BASED ON NETWORK THEORY 
RESULTS* 

Much of the material in later chapters wiU be concerned with 
the synthesis problem, i.e., passing from a prescribed positive real impedance 
matrix Z(s) of rational functions to a network of resistor, capacitor, inductor, 
ideal transformer, and gyrator elements synthesizing it. Nevertheless, we shall 

*This section may be omitted at a first, and even a second, reading. 
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base a necessity proof of the positive real lemma.(i.e., a proof of the existence 
of P, L, and W, satisfying certain equations) on the assumption that given 
a positive real impedance matrix Z(s) of rational functions, there exist net- 
works synthesizing ~(s ) .  In fact, we shall assume more, viz., that there exist 
networks synthesizing Z(s) wing precisely 6[Z(s)] reactive elements. Classical 
network theory guarantees the existence of such minimal reactive el&t 
syntheses [q. The reader may feel that we are laying the foundations for 
acircular argument, in the sense that we are Gsuming a result is true in order 
to prove the positive real lemma, when we &e planning to use the positive 
real lemma to establish the result. In this restricted context, it is true that 
a circular argument is being used. However,.we note that 

I. There are classical synthesis procedures that establish the synthesis 
result. 

2. There are other procedures for proving the positive real lemma, pres- 
ented in following sections, that do not use the synthesis result. 

Accordingly, the reader can regard this section as giving fresh insights into 
properties and results that can be independently established. 

In this section we give two proofs dueto Layton [7] and Anderson 181. 
Alternative proofs, not relying on synthesis results,. will be found in later 
sections. . . . . 

Proof Based o n  Reactance Extraction 

Layton's proof proceeds as follows. Suppose that Z(s) has Z(w) 
< oo, and that Nis a network synthesizing Z(s) with 6[Z(s)] reactive elements. 
Suppose also that Z(s) is m x m, and G[Z(s)] = n. 

In general, both inductor and capacitor elements may beused in N. But 
without altering the total number of suchelements, we can conceive first 
that all reactive elements have values of 1 H or 1 F as the case may be (using 
transformer normalizations if necessary), and then that all 1-F capacitors are 
replaced by gyrators of unit transimpedance terminated in 1-H inductors, as 
shown in Fig. 5.3.1. 

This means that N is composed of resistors, transformers, gyrators, and 
precisely n inductors. . . 

FIGURE 5.3.1. Elimination of Capacitors. 
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+ 
Resistors 

Transformers 

FIGURE 5.3.2. Redrawing of Network as Nondynamic 
Network Terminated in Inductors. 

In Fig. 5.3.2 N is redrawn to emphasize the presence of the n inductors. 
Thus N is regarded as an (m + n) port No-a coupling network of non- 
dynamic elements, i.e., resistors, transformers, and gyrators-terminated in 
unit inductors at each of its last n ports. Let us now study N,. We note the 
following preliminary result. 

Lemma 5.3.1. With N, as defined above, N, possesses an im- 
pedance matrix 

the partitioning being such that a,,, is m x m and I,, is n x n. 
Further, a minimal statespace real~zation for Z(s) is provided by 
I - Z ~ ~ .  at,. -zlZ, zI13; i.e.. 

Proof. Let i, be a vector whose entries are the instantaneous 
currents in the inductors of N (see Fig. 5.3.2). As established in 
Chapter 4, the fact that Z(w) < m means that if works as a state 
vector for a state-space description of N. It is even a state vector 
of minimum~ossible dimension, viz., 6[Z(s)]. Hence N has a 
description of the form 

where i and v are the port current and voltage vectors for N. 
Let v, be the vector of inductor voltages, with orientation chosen 
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so that v, = di,]dt (see Fig. 5.3.2). Thus 

These equations describe the behavior of N ,  when it is terminated 
in unit inductors, i.e., when v, = dil/dt. We claim that they also 
describe the performance of N ,  when it is not terminated in unit 
inductors, and v, is not constrained to be di,/dt. For suppose that 
i,(O) = 0 and that a current step is applied at the ports of N. 
Then on physical grounds the inductors act momentarily as open 
circuits, and so v, = GNi(O+) and v = JNi(O+) momentarily, in 
the presence or absence of the inductors. Also, suppose that 
i(t) = 0 ,  i@) # 0 .  The inductors now behave instantaneously 
like current sources i,(O) in parallel with an open circuit. So, 
irrespective of the presence or absence of inductors, i.e., irrespec- 
tive of the mechanism producing i f l ) ,  v, = F,i,(O) and v = 
Hhi,(O) momentarily. 

By superposition, it follows that (5.3.3) describes the perfor- 
mance of N, at any fixed instant of time; then, because N ,  is 
constant, the equations describe N, over all time. Finally, by 
observing the orientations shown in Fig. 5.3.2, we see that N ,  
possesses an impedance matrix, with z,, = JN, z,, = -Hh, z,, 
= GN, and z,, = -FN. V V \7 

With this lemma in hand, the proof of the positive real lemma 
is straightforward. Suppose that {F, G, H, J ]  is an arbitrary mini- 
mal realization of Z(s). Then because (-z,,, z,,, -z',,, z,,) is 
another minimal realization, there exists a nonsingular matrix T 
such that z,, = -TFT-' ,  z,, = TG, z',, = -(T-')'H, and I,, = 

J. The impedance matrix 2, of N,  is thus 

Now N. is a passive network, and a necessary and sufficient 
condition for this is that 

z , + z : 2 0  

or equivalently that 

( I ,  4- T'XZ, t Z:)(I, i T )  2 0  (5.3.4) 

where -k denotes the direct sum operation. Writing (5.3.4) out in 
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terms of F, G, H, and J, and setting P = TT, there results , ' 

(Note that because T is nonsingular, P will be positive definite.) 
Now any nonnegative definite matrix can be written in the form 
MM', with the number of columns of M greater than or equal to 
the rank of the matrix. Applying this result here, with the parti- 
tion M' = [-W, i El, we obtain 

JtJ' (-H+PG)'] - - [WOWo 

[-H + PD -(PF + PP) L W .  

or 

PF + F'P = -LC 

P G = H - L W ,  

J +  J ' =  WLW, 

These are none other than the equations of the positive real 
lemma, and thus the proof is complete. V V V 

We wish to stress several points. First, short of carrying out a synthesis of 
Z(s), there is no technique suggested in the above proof for the computation 
ofP, L, and W,, given simply F, G, H, and J. Second, classical network theory 
exhibits an infinity of minimal reactive element syntheses of aprescribed Z(s); 
the above remarks suggest, in a rough fashion, that to each such synthesis 
will correspond a P, in general differing from synthesis to synthesis. There- 
fore, we might expect an infinity of solutions P, L, W ,  of the positive real 
lemma equations. Third, the assumption of a minimal reactive synthesis 
aboveis critical; without it, the existence of T(and thusP)camot be guaran- 
teed. 

Proof Based on Energy-Balance Arguments 

Now we turn to a second proof that also assumes existence of a minimal 
reactive element synthesis. 

As before, we assume the existence of a network N 
synthesizingZ(s). Moreover, we suppose that Ncontains precisely 
S[Z(s)] reactive elements (although we do not require that all 
reactive elements be inductive). Since Z(m) < m, there is a state- 
space description of N with state vector x, whose entries are all 
inductor currents or capacitor voltages; assuming that all induc- 
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tors are 1 H and capacitors 1 F (using transformer normalizations 
if necessary), we observe that the instantaneous energy stored in 
N is $YNxw 

Now we also assume that there is prescribed a state-variable 
description i = Fx + Gu, y = H'x + Ju, of minimal dimension. 
-Therefore, there exists a nonsingular matrix Tsuch that Tx = x,, 
and then, with P = T'T, a positive definite symmetric matrix, we 
have that 

. . 
energy itoredin N ='$fix (5.3.5) 

We shall also compute the power flowing into Nand the rate 
of energy dissipation in N. These quantities and the derivative of 
(5.3.5) satisfy an energy-balance (more properly, a power-balance) 
equation from which we shall derive the positivereal lemma equa- 
tions. Thus we have, first, 

power flowing into N = (H'x + Jlc)'u 

= x'Hu + &'(J + J')u (5.3.6) 

(Recall that u is the port current and y = H'x + Ju is the port 
voltage of N.) Also, consider the currents in each resistor of N. 
At time t these must be linear functions of the state x(t) and input 
current u(t). With i,(t) denoting the vector of such currents, we 
have therefore 

for some mairices A and B. Let R be a diagonal matrix, the 
diagonal entries of which are the values of the network resistors. 
These values are real and nonnegative. Then 

rate pf energy dissipation in N = (Ax + Bu)'R(Ax + Bu) (5.3.7) 

Equating the power inflow with the sum of the rate of dissipa- 
tion and rate of increase of stored energy yields 

1 
Tu'(J + J')U + x'Hu = (Ax + Bu)'R(Ax + Bu) + d(Lxjpx) dt 2 

We compute the derivative using f = Fx + Gu and obtain 
. . 

Since this equation holds for all x and u, we have 
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By setting W, = f l R " l B  and L = ,/TA'R''Z, the equations 
P F + F ' P = - L L ' , P G = H - L W , , a n d J + J ' = W k W , a r e  
recovered. V 'i7 7 

Essentially the same comments can be made regarding the second proof 
of thissection as were made regarding the first proof. There is little to choose 
between them from the point of view of the amount ofinsight they offer into 
the positive real lemma, although the second proof does offer the insight of 
energy-balance ideas, which is absent from the first proof. Both proofs~assume 
that Z(s) is a positive real impedance matrix; Problem 5.3.2 seeks a straight- 
forward generalization to hybrid matrices. 

Problem. Define a lossless nehvork as one containing no resistors. Suppose that 
5.3.1 

' 

Z(s) is positive real and the impedance of a lossless network. Suppose that 
Z(s) is synthesizable using S[Z(s)] reactive elements. Show that if [F, G, 
H, J )  is a minimal realization of Z(s), there exists a real positive definite 
symmetric P such that 

P F + F ' P = O  

P G = H  

J + J ' = O  

(Use an argument based on the second proof of this section.) This proves 
that Z(s) is a lossless positive real impedance in the sense of our earlier 
definition. 

Problem Suppose that M(s) is an n X n hybrid matrix with minimal realization 
5.3.2 (F, G, H, J ] .  Prove that if M(s) is synthesizable by a network with 

6[M(s)l reactive elements, then there exist a positive definite symmetric 
P  and matrices L and Wo, all real, such that PF + F'P = - L C  PG 
= H - L W o , a n d J f J ' = W ~ W O .  

5.4 POSITIVE REAL LEMMA: NECESSITY 
PROOF BASED ON A VARIATIONAL 
PROBLEM* 

In this section we present another necessity proof for the positive 
real lemma; i.e., starting with a rational positive real Z(s) with minimal 

'This section may be omitted at a first, and even a second, reading. 
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realization (F, G, H, J), we prove the existence of a matrix P = P' > 0 and 
matrices L and W ,  for which 

PF + F'P = -LL' 
PG=H-LW. (5.4.1) 

J + J ' =  WbW, 

Of course, Z(oo) < 03. But to avoid many complications, we shall impose 
the restriction for most of this section that J + J' be nonsingular. The assump- 
tion that J + J' is nonsingular serves to ensure that the variational problem 
we formulate has no singular solutions. When J +  J' is singular, we are 
forced to go through a sequence of manipulations that effectively allow us 
to replace J +  J' by a nonsingular matrix, so that the variational procedure 
may then be used. 

To begin with, we shall pose and solve a variational problem with the 
constraint in force that J +  J' is nonsingular; the solvability of this problem 
is guaranteed precisely by the positive real property [or, more precisely, 
a time-domain interpretation of it involving the impulse response matrix 
JS(t) + H'ePrGl(t), with S(.) the unit impulse, and 1(t) the unit step func- 
tion]. The solution of the variational problem will involve a matrix that essen- 
tially gives us the P matrix of (5.4.1); the remaining matrices in (5.4.1) then 
prove easy to construct once P is known. Theorem 5.4.1 contains the main 
result used to generate P, L, and W.. 

In subsequent material of this section, we discuss the connection between 
Eq. (5.4.1) and the existence of a spectral factor W(s) = W, -+ L'(sI - F)"G 
of Z'(-s) + Z(s). We shall note frequency-domain properties of W(.) that 
follow from a deeper analysis of the variational problem. In particular, we 
shall consider conditions guaranteeing that rank W(s) be constant in Re [s] 
> 0 and in Re [s] 2 0. Finally, we shall remark on the removal of the non- 
singularity constraint on J + J'. 

Time-Domain Statement of the Positive Real 
Property 

The positive real property of Z(s) is equivalent to the following 
inequality: 

for all to, t , ,  and u ( - )  for which the integrals exist. (It is assumed that t,  
> to.) We assume that the reader is capable of deriving this condition from 
the positive real condition on Z(s). (It may be done, for example, by using 
a matrix version of Parseval's theorem.) The inequality has an obvious 
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physical interpretation: Suppose that a system with impulse response JS(t) 
$ H'emGl(t) is initially in the zero state, and is excited with an input u(.). 
If y( . )  is the corresponding output, s' yr(t)u(t) dt is the energy fiow into - ro 

the system up to time t,. This quantity may also be expressed as the integral 
on the left side of (5.4.2); its tlonnegativity corresponds to passivity of the 
associated system. 

In the following, our main application of the positive real property will be 
via (5.4.2). We also recall from the positive real definition that Fcan have 
no eigenvalues with positive real part, nor multiple eigenvalues with zero 
real part. 

Throughout this section until further notice we shall use the symmetric 
matrix R, assumed positive definite, and defined by 

(Of course, the positive real property guarantees nonnegativeness of Jf J'. 
Nonsingularity is a special assumption however.) 

A Variational Problem. Consider the followtng minimization 
problem. Given the system 

find u(-) so as to minimize 

[Of course, u(.) is assumed constrained a priori to be such that 
the integrand in (5.4.5) is actually integrable.] 

The positive reaI property is related to the variational problem in a simple 
way: 

Lemma 5.4.1. The performance index (5.4.5) is bounded below 
for all x,, u(-), t, independently of u(-) and t, if and only if Z(s) 
= J $. W(sI - F)-'G is positive real. 

Proof First, suppose that Z(.) is not positive real. Then we can 
prove that V is not bounded below, as follows: Let u,(.) be a con- 
iro1 defined on [0, t.] taking (5.4.4) to the zero state at an arbitrary 
fixed time r. 2 0. Existence of u.(.) follows from complete con- 
trollability. Let up(.) be a control defined on [t,, t#], when tp and 
up(.) are chosen so that 
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Existence oft, and ua(-) follows by failure of the positive real 
property. Denoting the above integral by I, we observe that 

Now define u,(-) as the concatenation of u, and kus, where k is 
a constant, and set t ,  = t,. Then 

The first term on the right side is independent of k, while the 
second can be made as negative as desired through choice of 
appropriately large k. Hence V(x,, u,(.), t,) is not bounded below 
independently of k, and V(x,, u(.), t,) cannot be bounded below 
independently of u(-) and t , .  

For the converse, suppose that Z(s) is positive real; we shall 
prove the boundedness property of the performance index. Let 
t, < 0 and u,(.) defined on [t,, 01 be such that u,(.) takes the zero 
state at time t, to the state xo at time zero. Then if u(-) is defined 
on It,, t , ] ,  is equal to u, on It,, 01, and is otherwise arbitrary, we 
have 

since, by tlie constraint (5.4.2), the firstintegral o n  the right of 
the equality is nonnegative for all u(.) and t,. The integral on 
the right of the inequality is independent of u(-) on [0, t,] and 
of t,, but depends on x,.since uy(.) depends on x,. That is, 
V(xo; u(.); t,) 2 k(x,) for some scalar function k taking finite 

. values. V T) V 

Although the lemma guarantees a lower bound on any performance index 
value, including therefore the value of the optimal performance index, we 
have not obtained any upper bound. But such is easy to obtain; Reference to 
(5.4.5) shows that V(x,, u(t) = 0, t,) = 0 for all x, and t , ,  and so the optimal 
performaice index is bounded above by ziro for all x, and t,. 

Calculation of the optimal performance index proceeds much as in the 
standard quadratic regulator problem (see, e.g., [9, 101). Since a review of 
this material could take us too far afield, we merely state here the conse- 
quences of carrying through a standard argument. 
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The optimal performance index associated with (5.4.5), i.e., min.,., 
V(x,, u(.), t,) = Vo(x,, t,), is given by 

vO(xo,  t , )  = i 0 n ( 0 ,  t l )x0 (5.4.6) 

where II(., t , )  is a symmetric matrix defined a$ the solution of the Riccati 
equation 

-fi = II(F - GR-1H') + (F' - HR-'G')II 

- IIGR-'G'II - HR-'H' (5.4.7) 

n ( t , ,  t,) = O  .'. 

The associated optimal control, call it uO(.), is given by 

since (5.4.7) is a nonlinear equation, the questionarises as to whether it has 
a solution outside a neighborhood o f t  ,. The answer is yes; Again the reason- 
ingis similar to the standard quadratic re'gulator problem. Because we know 
that 

k(x,) l v'(&, t ,)  = x'JI(0, t l )x ,  < 0 

for some scalar function k(.) of x,, we can ensure that as t ,  increases away 
from the origin, II(0, t , )  cannot have any element become unbounded; I.e., 
n(0 ,  t,) exists for all t ,  2 0. Since the constant coefficient matrices in (5.4.7) 
guarantee II(t, t , )  = II(0, t ,  - t), it follows that if t ,  is fixed and (5.4.7) 
solved backward in time, H(t, t , )  exists for all t 5 t,, since n(0 ,  t ,  - t )  
exists for aU t ,  - t 2 0. 

Having now established the existence of n ( t ,  t,), we wish to establish the 
limiting property contained in the following lemma: 

Lemma 5.4.2 [Limiting Property of n ( t ,  t,)]. Suppose that Z ( . )  
is positive real, so that the matrix II(t, t , )  defined by (5.4.7) 
exists for all t $ t,. Then 

Iim n ( t ,  t , )  = fi 
I,-- 

exists and is independent of t ;  moreover, fi satisfim a limiting 
version of the differential equation part of (5.43, viz., 

i i (F  - GR-'H') + (F' - H R - ~ G ' ) ~  

- ~ G R - I G ' R  - HR-'H' = o (5.4.9) 
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Proof. We show first that II(0, t , )  is a monotonically decreasing 
matrix function oft , .  Let u; be a control optimum for initial 
state x,, final time t , ,  and let u(.) equal uz on [0, t,], and equal 
zero after t,. Then for arbitrary t ,  > t,, 

The existence of the lower bound k(x.) on x''n(0, t,)x,, indepen- 
dent of t , ,  and the just proved monotonicity then show after 
a slightly nontrivial argument that lirn,,,, n ( 0 ,  t , )  exists. Let this 
limit be fl. Since II(t, t , )  = II(0, t ,  - t), as noted earlier, lim ,,,, 
XI(& t , )  = I7 for arbitrary k e d  t .  This proves the first part of 
the lemma. 

Introduce the notation n ( t ,  t , ,  A) to denote the solution of 
(5.4.7) with boundary condition II(t,, t , )  = A, for any A = A'. 
A standard differential equation property yields that 

Also, solutions of (5.4.7) are continuous in the boundary condi- 
tion, at least in the vicinity of the end point. Thus for t close to 
f1, 

lim n ( t ,  t , ,  n ( t , ,  t,)) = n ( t ,  t , ,  lim W t , ,  t,)) ,,-- t e - m  

But also 

l i i  n ( t ,  t , ,  II(t,, t,)) = lim n ( t ,  t2) 
It- 1 e -  

So the boundary condition II(t,, t , )  = n leads, in the vicinity of 
I , ,  to a constant solution n. Then n must be a global solution; 
i.e., (5.4.9) holds. V V V 

The computation of n via the formula contained in the lemma [i.e., com- 
pute U ( t ,  t , )  for fixed t and a sequence of increasing values o f t ,  by repeated 
solutions of the Riccati equation (5.4.711 would clearly be cumbersome. But 
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since.lI(t, t , )  = II(0, t ,  - t), i t  follows that 

lim n ( t ,  t l )  = lim n(t, f 
It-- I+__ 

and so in practice the formula 

n = lim n(t, t , )  ,--- (5.4.10) 

would be more appropriate for computation of h. 

Example Consider the positive real function zfs) = & + (s + I)-', for which a 
5.4.1 minimal realization is provided by (-1, 1, I,&). The Riaati equation 

(5.4.7) becomes, with R = 1, 

of which a solution may be found to be 

Observe that n ( t ,  t l )  exists for all t  < 21, because the denominator 
never becomes zero. Also, we see that U(t, t l )  .= II(0, t ,  - r), and 

lim n(t, 1,) = lim n(t, 2,) = f i  - 2 
I,-- ,-.-- 

Finally, notice that n = ,,A - 2 satisfies 

Before spelling out the necessity proof of the positive real lemma, we need 
one last fact concerning A. 

Lemma 5.4.3. If is defined as described in Lemma 5.4.2, then 
n is negative definite. 

Proof Certainly, is nonpositive definite. For as remarked 
before, x'JI(0, t,)x, < 0 for all x,, and we found it 2 l'l (0, t , )  
in proving Lemma 5.4.2. Suppose that R is singular. We argue 
by contradiction. Let x, be a nonzero vector such that x',nx, 
= 0. Then x',Il(O, t , )x,  = 0 for any t , .  Now optimaEcontro1 
theory tells us that the minimization of IT(x,, u(.), r , )  is achieved 
with a unique optimal control 19, 101. The minimum value of the 
index is 0, and inspection of the integral used in computing the 
index shows that u(r) z 0 leads to a value of the index of zero. 
Hence u(t) = 0 must be the optimal control. 
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By the principle of optimality, u(t) E 0 is optimal if we restrict 
attention to a problem over the time interval [t,, t , ]  for any t ,  
> t, > 0, provided we take as x(t.) the state at time t, that arises 
when the optimal control for the original optimal-control prob- 
lem is applied over [O, t.]; i.e., x(t.) = exp (&)x,. Therefore, by 
stationarity, u(t) r 0 is the optimal control if the end point is 
t ,  - t. and the initial state exp (Ft.)x,. The optimal performance 
index is also zero; i.e., 

x; exp (Frt,)II(O, t ,  - t,) exp (Ft,)x, 

= 4 exp (F't.)Wt,, t , )  exp ( F t . 2 ~ ~  
= 0 

This implies that II(t., t , )  exp (FtJx, = 0 in view of the non- 
positive definite nature of n(t. ,  t,). 

Now consider the original problem again. As we know, the 
optimal control is given by 

and is identically zero. Setting x(t) = exp (Ft)x, and using the 
fact that II(f., t , )  exp (Fi.)x, = 0 for all 0 < t ,  t , ,  it follows 
that H' exp (Ft)x, is identically zero. This contradicts the mini- 
mality of {F, G, H, J ) ,  which demands complete observability of 
[F, HI. v 0 v 

Let us sum up what we have proved so far in a single theorem. 

Theorem 5.4.1. (Existence, Construction, &Properties of li) 
Let Z(s) be a positive real matrix of rational functions of s, with 
Z(m) < m. Suppose that {F, G, H, J }  is a minimal realization of 
Z(.), with J + J' = R nonsingular. Then there exists a negative 
definite matrix jl satisfying the equation 

n(F - GR-'HI) + (F' - H R - I G ' ) ~  

- nGR-lG'n - HR-1H' = 0 (5.4.9) 

Moreover, R = lim,,, II(t, t , )  = lim ,--, n(t, t , ) ,  where II(., 1,) 
is the solution of the Riccati equation 

-fI = II(F - GR-'H') 4- (F' - HR-'G')II 

- IIGR-'G'II - HR-IH' (5.4.7) 

with boundary condition l l( t , ,  t , )  = 0. 
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Necessity Proof of the Positive Real Lemma 

The summarizing theorem contains all the material 
we need to establish the positive real lemma equations (5.4.1), 
under, we recall, the mildly restrictive condition of nonsingularity 
o n J f J ' = R .  

We define 

Observe that P = P' > 0 follows by the negative definite property 
of n .  The first of equations (5.4.1) follows by rearranging (5.4.9) 
as 

~ T F  + ~ ' n  = ( ( n ~  + H)R-'(FIG + HY 

and making the necessary substitutions. The second and third 
equations follow immediately from the definitions (5.4.1 1). We 
have. therefore constructed a set of matrices. P, L, and W, that 
satisfy the positive real lemma equations. VV V 

Example For z(s) = & + (s + If-' in Example 5.4.1, we obtained a minimal 
5.4.2 realization [-I, 1, 1, $1 and found the associated a to be JT - 2. 

According to (5.4.11), we should then take 

Observe then that 

PF + F'P = -4 + 2 4 7  = -(+n - 1)2 = -LL' 

P C = 2 - J 3 = 1  - ( a - 1 ) = H - L W ,  

and 

In providing the above necessity proof of the positive real lemma, we have 
also provided a constructive procedure leading to one set of matrices P, L, 
and W, satisfying the associated equations. As it turns out though, there are 
an infinity of solutions of the equations. Later we shall study techniques for 
their computation. 

One might well ask then whether the P, L, and W, we have constructed 
have any distinguishing properties other than the obvious property of con- 
structability according to the technique outlined above. The answer is yes, 
and the property is best described with the aid of the spectral factor R1/' 
+ C(sI - F)-'G of Z'(-s) +- Z(s). 
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spectral- actor Properties 

It will probably be well known to control and network theorists 
that in general the operation of spectral factorization leads to nonunique 
spectral factors; i.e., given a positive real Z(s), there will not be a unique 
W(s) such that 

Z1(-s) + Z(s) = W'-s)W(s) (5.4.12) 

Indeed, as we shall see later, even if we constrain W(s) to have a minimal 
realization quadruple of theform IF, G, L, W,] i.e., one with the same Fand 
G matrices as Z(s), W(s) is still not uniquely specified. Though the poles of 
elements of W(s) are uniquely specified, the poles of elements of W-'(s), 
assuming for the moment nonsingularity of W(s), turn out to be nonuniquely 
specified. 

In both control and network theory there is sometimes interest in constrain- 
ing the poles of elements of W-'(s); typically it is demanded that entries of 
W-l(s) be analytic in one of the regions Re [s] > 0, Re [s] 2 0, Re [s] < 0, or 
Re [s] 5 0. In the case in which W(s) is singular, the constraint becomes one 
of demanding constant rank of W(s) in these regions, excluding points where 
an entry of W(s) has a pole. 

Below, we give two theorems, one guaranteeing analyticity in Re [s] > 0 
of the elements of the inverse of that particular spectral factor W(s) formed 
via the procedure spelled out earlier in this section. The second theorem, by 
imposing extra constraints on Z(s), yields a condition guaranteeing analyt- 
icity in Re [s] 2 0. 

Theorem 5.4.2. Let Z(s) be a positive real matrix of rational 
functions of s, with Z(w) < m. Let IF, G, H, J )  be a minimal 
realization with J + J' = R nonsingular. Let be the matrix 
whose construction is described in the statement of Theorem 
5.4.1. Then a spectral factor W(s) of ZC(-s) + Z(s) is defined by 

W(s) = RI1' + R-'ff(fiG + H)'(sI - F)-'G (5.4.13) 

Moreover, W-'(s) exists in Re [s] > 0; i.e., all entries of W-'(s) 
are analytic in this region. 

The proof will follow the following lemma. 

Lemma 5.4.4. With W(s) defined as in (5.4.13), the following 
equation holds: 

det [sZ - L: + GR-'(RG + H)1 

= det R-''2 det (sI - F) det W(s) (5.4.14) 
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Proof* 

det [sZ - F + GR-'(ilG + H)'] 

= det (sZ - F)  det [I + (sI - F)-'GR-'(nG + H)'] 

= det (sI - F)  det [I + R-'(nG + H)'(sZ - F)-'GI 

= det (sI - F) det R-'I2 det [R'12 f R-112(i%G + H)'(sZ - F)-'GI 

= det R-l/Z det (sI - F) det W(s) V V V 

This lemma will be used in the proofs of both Theorems 5.4.2 and 5.4.3. 

Proof of Theorem 5.4.2. First note that the argument justify- 
ing that W(s) is a spectral factor of 2 ' - s )  + Z(s) depends on 

1. The definition of matrices P, L, and W ,  satisfying the posi- 
tive real lemma equations in terms of F, G, H, R, and il, as 
contained in the previous subsection. 

2. The observation made in an earlier section that if P, L, and 
W. are matrices satisfying the positive real lemma equations, 
then Wo + L1(sI - flF3-IG is a spectral factor of Z'(-s) 
+ Z(s). 

In view of Lemma 5.4.4 and the fact that F can have no eigen- 
values in Re [s] > 0, it foILows that we have to prove that all 
eigenvalues of F - GRW'@G + H)' lie in Re [s] < 0 in order to 
establish that W-'(s) exists throughout Re [s] > 0. This we shall 
now do. For convenience, set 

From (5.4.7) and (5.4.9) it follows, after a IiLLla manipulation, and 
with the definition V(t) = n ( t ,  t,) - R, that 

The matrix V(t) is defined for all t 5 I , ,  and by definition of ii as 
lim ,,_, II(t, t,), we must have lim ,-_, V(t) = 0. By the muno- 
tonicity property of n ( 0 ,  t,), it is easily argued that V(t) is non- 
negative definite for all t. Setting X(t) = V(t ,  - t), it follows that 
lim,-, X(t) = 0, and that 

*This proof uses the identity det [I + ABI = det [ I  + BA]. 
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with X(t) nonnegative definite for all t. 
Since n is nonsingular by Theorem 5.4.1, X-'(t) exists, at least 

near t = 0. Setting Y(t) = X-'(t), it is easy to check that 

Moreover, since this equation is linear, it follows that Y(I) = 

X-'(t) exists for all t 2 0 .  The matrix Y(t) must be positive defi- 
nite, because X(t) is positive definite. Also, for any real vector m, 
it is known that [m'X-l(tjm][m'X(t)m] r(m'rn)=, and since 
lirn,?.,, X(t) = 0, m'Y(t)m must diverge for any nonzero m. 

Using these properties of YO), we can now easily establish that 
P has no eigenvalue with positive real part. Suppose to the con- 
trary, and for the mo+t suppose that E has a real positive 
eigenvalue 1. Let m be the associated eigenvector of P. Multiply 
(5.4.16) on.the left by m' and on the right by m ;  set y(t) = 
m'Y(t)m and q = m'GR-'G'm. Then 

j = -2ny + q 

with y(0) = -rn'n-'h f 0 .  The solution y(t) of this equation is 
obviously bounded for all t ,  which is a contradiction. If E has no 
real positive eigenvalue, but a complex eigenvalue with positive 
real part, we can proceed similarly to show there exists a complex 
nonzero m = m ,  + jm,, m ,  and m, real, such that m',Y(t)m, and 
m',Y(t)rn, are bounded. Again this is a contradiction. V V V 

k t  us now attempt to improve on this result, to the extent of guaranteeing 
existence of W-'(s )  in Re Is] 2 0, rather than Re [s] > 0. The task is a simple 
one, with Theorem 5.4.2 and Lemma 5.4.4 in hand. Recall that 

Z(s) + Z'(-s) = W'(-s)W(s) (5.4.12) 

and so, setting s = jw and noting that W(s) is real rational, 

Z(jw) + Z'(-jco) = W'*(jw)W(jw) (5.4.17) 

where the superscript asterisk denotes as usual complex conjugation. 
If jw is not a pole of any element of Z(.) ,  W( jw)  is nonsingular if and only 

if Z(jw) + Z'(-jw) is positive definite, as distinct from merely nonnegative 
definite. 
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Ifjw is a pole of some element ofZ(.) for w = o , ,  say, i.e., jw, is an eigen- 
value of F, we would imagine from the definition W(s) = W, + L'(s1- E'-'G 
that W(s) would have some element with a pole at jo., and therefore care 
would need to be exercised in examin~ng W-'(s). This is slightly misleading: 
As we now show, there is some sort of cancellation between the numerator 
and the denominator of e&h element of W(s), which means that W(s) 
does not have an element with a pole at s = jw,. 

As discussed in Section 5.1, we can write 

where no element of Z,(s) has a pole at jo. ,  Z,(s) is positive real, A is real 
symmetric, and B is real and skew symmetric. Immediately, 

Therefore, a i s  - jo, ,  though elements of each summand on the left side 
behave unboundedly, the sum does not--every element of Z,(s) and Z;(-s) 
being analytic at s = jw,. Therefore [see (5.411711, no  element of W(s) can 
have a pole at s = jw,, and W-'( jo)  exists again precisely when Z(jw) + 
Z'(-jw), interpreted us in (5.4.18), is nonsingular; 

We can combine Theorem 5.4.2 with the above remarks to conclude 

Theorem 5.4.3. Suppose that the same hypotheses apply as in 
the case of Theorem 5.4.2, save that alsoZ(jw) + Z'(-jm) is 
positive definite for all o ,  including those w for which jw is a pole 
of an element of Z(s). Then the spectral factor W(s) defined in 
Theorem 5.4.2 is such that W-'(s) exists in Re [s] 2 0; i.e., all 
entries of W-'(s) are analytic in this region. . . . 

Example We have earlier found that for the impedance & + (s + I)-', a spectral 
5.4.3 factor resulting from computing n is, 

We observe that W-'(s) is analytic in Re [s] > 0, as required, and in 
fact in Re [sI> 0. The fact that W-'(s) has no pole on Re [s] = 0 results 
from the positivity of z(jw) f z(-jw), verifiable as follows: 
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Extension to Case of Singular J + J' 
In the foregoing we have given a constructive proof for the exist- 

ence of solutions to the positive real lemma equations, under the assumption 
that J +  J' is nonsingular. We now wish to make several remarks applying 
to the case when J + J' is singular. These remarks will he made in response 
to the following two questions: 

I .  Given a problem of synthesizing a positive real Z(s) for which Z(-) 
+ Z'(-co) or J -+ J' is singular, can simple preliminary synthes~s steps 
be carried out to reduce the problem to one of !ynthesizing another 
positive real impedance, 2(s) say, for which ..f + J' is nonsingular? 

2. Forgetting the synthesis problem for the moment, can we set up a varia- 
tional problem for a matrix Zfs) with J +  J' singular along the lines of 
the case where J 3. J' is nonsingular, compute a P matrix via this pro- 
cedure, and obtain a spectral factor W(s) with essentially the same 
properties as above? 

The answer to both these questions is yes. We shall elsewhere in this book 
give a reasoned answer to question 1 ; the preliminary synthesis steps require 
techniques such as series inductor and gyrator extraction, cascade transform- 
er extraction, and shunt capacitor extraction-all operations that are stan- 
dard in the (multiport generalization of the) Foster preamble. 

We shall not present a reasoned answer to question 2 here. The reader 
may consult [LII. Essentially, what happens is that a second positive real 
impedance Z,(s) is formed from Z(s), which possesses the same set of P 
matrix solutions of the positive real lemma equationd. The matrix Z,(s) has 
a minimal realization with the same F and G as Z(s), but different H and J. 
Also, Z,(-) + Z,(-w) is nonsingular. 

The Riccati equation technique can be used on Z,(s), and this yields a P 
matrix satisfying the positive real lemma equations for Z(s). This matrix P 
enables a spectral factor W(s) to be defined, satisfying Z(s) + Z' ( -s )  = 
W'(-s)W(s), and with W(s) of constant rank in Re [s] > 0. 

The construction of Z,(s) from Z(s) proceeds by a sequence of operations 
on Z(s) + Z'(-s), which multiply this matrix on the left and right by con- 
stant matrices, and diagonal matrices whose nonzero entries are powers of s. 
The algorithm is straightforward to perform, but can only be stated wrth 
a great deal of algebra~c detail. 

A third approach to the singular problem appears in Problem 5.4.3. This 
approach is of theoretical interest, but appears to lack any computational 
utility. 

Problem The impedance z(s) = I - I/(s + 1) is positive real and possesses a 
5.4.1 minimal realization (-I,], -1, 1). Apply the technique outl~ned in the 

statements of Theorems 5.4.1 and 5.4.2 to find a solution of the posltlve 
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real lemma equations and a spectral factor with "stable" inverse, i.e., 
an inverse analytic in Re [sl > 0. Is the inverse analytic in Re [s] 2 O ?  

Problem Suppose that a positive real matrix Z(s) has a minimal real~zation 
5.4.2 [F, G, H, J )  with J + J'nonsingular. Apply the techniques ofthis section 

to Z'(s) to find a V(s) satisfying Z'(-s) + Z(s) = V(s)V'(-s), with 
V(s) = J, + H'(sI - F)-'L, and V-'(s) existing in Re [s] > 0. 

Problem Suppose that a positive real matnx Z(s) has a minimal realization 
5.4.3 (F, G, H, J] with J + J' singular. Let 6 be a positive constant, and let 

Z,(s) = Z(s) + €1. Let n, be the matrix associated with Z,(s) in accor- 
dance with Theorem 5.4.1, and let P,, L,, and Woe be solutions of the 
positive real lemma equations for Z,(s) obtained from n, m accordanm 
with Eq. (5.4.11). Show that P, varies monotonically with E and that 
lim,,, P, exists. Show also that 

lim 
e-0 [ W k L :  WLeWoc Lcwk I 

exists; deduce that there exist real matricesp, Land W, which satisfy the 
positive real lemma equations for Z(s), with P positive dekite symmetric. 
Discuss the analyticity of the inverse of the spectral factor associated with 
as). 

Problem Suppose that Z(s) has a minimal realization [F, G, H, J )  with R = J+J' 
5.4.4 nonsingular. Let (Q, M, Ri") be a solution of the positive real lemma 

equations for Z'(s), obtained by the method of this section. Show 1301 
that {Q-1, Q-'M, R"Z} is a solution of the positive real lemma equations 
for Z(s), with the property that all eigenvalues of F - GR-'(H' - G'Q-') 
lie in Re [s] > 0, i.e. that the associated spectral factor W(s) has W-'(s) 
analytic in Re[sl < 0. (Using arguments like those of Problem 5.4.3, 
this result may be extended to the case of singular R). 

5.5 POSITIVE REAL LEMMA: NECESSITY 
PROOF BASED ON SPECTRAL 
FACTORIZATION* 

In this section we prove the positive real lemma by assuming the 
existence of spectral factors defined in transfer-function matrix form. In 
the case of a scalar positive real Z(s), it is a simple task both to exhibit spec- 
tral factors and to use their existence to establish the positive real lemma. 
I n  the case of a matrixZ(s), existence of spectral factors is not straightforward 
to establish, and we shall refer the reader to the literature for the relevant 
proofs, rather than present them here; we shall prove the positive real lemma 
by taking existence as a starting point. 

'This section may be omitted at a first, and even a second, reading. 
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Although the matrix caseZ(s) obviously subsumes the scalar case, and thus 
a separate proof for the latter is somewhat supefiuous, we shall nevertheless 
present such a proof on the grounds of its simplicity and motivational wn- 
tent. For the same reason, we shall present a simple proof for the matrix 
case that restricts the F matrix in a minimal realization of Z(s). This will be 
in addition to a general proof for the matrix case. 

Finally, we comment that it is helpful to restrict initially the poles of 
elements of Z(s) to lie in the half-plane Re [s] < 0. This restriction will be 
removed at the end of the section. 

The proof to be presented for scalar impedances appeared in [2], the proof 
for a restricted class of matrix Z(s) in [12], and the full proof, applicable for 
any Z(s), in [4]. 

Proof for Scalar Impedances 

We assume for the moment that Z(s) has a minimal realization 
{F, g, h, j }  (lowercase letters denoting vectors or scalars). Moreover, we 
assume that all eigenvalues of Flie in Re [s] < 0. As noted above, this restric- 
tion will be lifted at the end of the section. Let p(s) and q(s) be polynomials 
such that 

and 
p(s) = det (sl- F )  

As we know, rninimality of the realization (F,g, h, j )  is equivalent to the 
polynomials p(s) and q(s) being relatively prime. Now* 

It follows from the positive real property that the polynomial ?.(w) = 
q(jw)p(-jco) i-p(jwlg(-jw), which has real coefficients and only even 
powers of w, is never negative. 

Hence &IJ), regarded as a polynomial in w, must have zeros that are either 
complex conjugate or real and of even multiplicity. I t  follows that the poly- 
nomial p ( ~ )  = q(s)p(-s) +p(s)q(-s) has zeros that are either purely imagi- 
nary and of even multiplicity or are such that for each zero so in Re [s] > 0 
there is a zero --so in Re [s] < 0. Form the polynomial i (s)  = (s - so), 
where the product is over (1) all zeros so in Re [s] > 0, and (2) all zeros on 
Re [sl = 0 to half the multiplicity with which they occur in p(s). Then i(s) 

*When j appears as j,, i i  denotes m, and when i t  appears by itself, it denotes Z(m). 
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will be a real polynomial and p(s) = ai(s)i(-s) for some constant a. Since 
A(-) = a ( f ( j ~ ) ( ~ ,  it follows that a > 0; set r(s) = f i P ( s )  to conclude 
that 

q(s)p(-s) + p(s)q(-s) = r(-s)r(s) (5.5.3) 

and therefore 

Equation (5.5.4) yields a spectral factorization of Z(s) + Z(-s).  From it we 
can establish the positive real lemma equations. 

Because [F, g] is completely controllable, it follows that for some non- 
singular T 

r o 1 . . . .  0 1 

where the a, and b, are such that 

q(s)  - + b g - I  + b._,sm-' + . . . + 6, -- (5.5.5) 
P(S) sn + a,P-' + - . - + a ,  

From (5.5.4) and (5.5.5) we see that lim,,, r(s)/p(s) = f i ,  and thus 

-- l " ~ n - 1  + i . - ,~ ' - l  + . . . + i, 

for some set of coefficients i,. Now set i = [I, i, - . . i J ,  to obtain 

-- '(s)  - f i  + ?[$I - TFT- l ] - l (Tg)  
P(S)  
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Therefore, with I = T'f, it follows that {F, g, I, a) is a realization for 
~(s)/P(s). 

This realization is certainly completely controllable. It is also completely 
observable. For if not, there exists a polynomial dividing both r(s) and p(s) 
of degree at least 1 and with all zeros possessing negative real part. From 
(5.5.3) we see that this polynomial must divide q(s)p(-s), and thus q(s), 
since all zeros of p(-s) have positive real part. Consequently, q(s) and p(s) 
have a common factor; this contradicts the earlier stated requirement that 
p(s) and q(s) be relatively prime. Hence, by contradiction, IF, I] is completely 
observable. 

Now consider (5.5.4). This can be written as 

Define P as the unique positive definite symmetric solution of 

PF + F'P = -11' (5.5.7) 

The fact that P exists and has the stated properties follows from the lemma 
of Lyapunov. This definition of P allows us to rewrite the final term on the 
right side of (5.5.6) as follows: 

g'(-sl - F')-'lZ'(s1- F)-'g 

= g'(-s1 - F')-l[P(sI - F) + (-sI - F')P](sI - F)-Ig 

= g'(-sl- F')-'Pg 4- g'P(s1- F)-'g 

Equation (5.5.6) then yields 

Because all eigenvalues of F are restricted to Re [s] < 0, it follows that the 
two terms on the left side of this equation are separately zero. (What is the 
basis of this reasoning?) Then, because [F, g] is completely controllable, it 
follows that 

Equations (5.5.7), (5.5.8), and the identification W, = f i  (so that 2j = 
W6 W,) then constitute the positive real lemma equations. V V V 
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Example Let z(s) = 4 + (s + I)-', so that a minimal realization is [-I, I ,  1, il. 
5.5.1 Evidently, 

so that a spectral factor is given by w(s) = (s + JTXs + I)-'. A mini- 
mal realization for w(s) is [-1,1, ,JT - 1, I), which has the same F 
matrix and g vector as the minimal realization for z(s). The equation 
PF + F'P = -/I' yields simply P = 2 - +/T. 

Alternatively, we might have taken the spectral factor w(s) = 
(-s + +/T)(s + I)-'. This spectral factor has minimal realization 
(-1, 1, ,/3 + 1, -1). It still has the same Fmatrixandg W o r  as the 
minimal realization for z(s). The equation PF + F'P = -Il' yields now 
P = 2 + a. So we see that the positive real lemma equations do not 
yield, in general anyway, a unique solution. 

Before proceeding to the matrix case, we wish to note three points concern- 
ing the proof above: 

1. We have exhibited only one solution to the positive real lemma equa- 
tions. Subsequently, we shall exhibit many. 

2. We have exhibited a constructive procedure for obtaining a solution to 
the positive real lemma equations. A necessary part of the computation 
is the operation of spectral factorization of a transfer function, per- 
formed by reducing the spectral factorization problem to one involving 
only polynomials. 

3. We have yet to permit the prescribed Z(s) to have elements with poles 
that are pure imaginary, so the above does not constitute a complete 
proof of the positive real lemma for a scalar Z(s). As earlier noted, 
we shall subsequently see how to incorporate jw-axis, i.e., pure imagi- 
nary, poks. 

Matrix Spectral Factorization 

The problem of matrix spectral factorization has been considered 
in a number of places, e.g., [13-11. Here we shall quote a result as obtained 
by Youla [14]. 

Youla's Spectral  Factorization Statement. Let Z(s) be an 
m X m positive real rational matrix, with no element of Z(s) 
possessing a pure imaginary pole. Then there exists an r x nz 
matrix W(.) of real rational functions of s satisfying 

Z(s) + z y - s )  = w'(-s)W(s) (5.5.9) 
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where r is the normal rank ofZ(s) + Z'(-s), i.e., the rank almost 
everywhere.* Further, W(s) has no element with a pole in Re [s] 
2 0, W(s) has constant, as opposed to merely normal, rank in 
Re Is] > 0, and W(s) is unique to within left multiplication by 
an arbitrary real constant orthogonal matrix. 

We shall not prove this result here. From it we shall, however, prove 
the existence, via a const~ct ive procedure, of matrices P;L, and W, satisfy- 
ing the positive real lemma equations. This constructive procedure uses as 
its starting point the matrix W(s) ,above; inreferences [14-16];techniques 
for the construction of W(s) may be found. Elsewhere in the book, construc- 
tion of P, L, and We' willbe require% Hawever,. other than & this section, 
the procedure of r1.4-161 will almostnever be needed to carry out this con- 
struction, and this is whywe omit presentation of these procedures. 

Example Suppose that Z(s) is the 2 x 2 matrix 
5.5.2 

.. , . . . .  . 

The positive real nature of Z(s) is not hard t o  check. Also, : 

Thus we take as W(s) the matrix 12 2(s - I)/(s.+ I)]. ~ o t i c e  that W(s) 
has the correct size, viz., one row and-two columns, 1 being liormal rank 
of Z ' ( - s )  + Z(s). Further, W(s) has no element with a pole in Re [s] > 0, 
and rank W(s) = 1 throushout Re [sl > 0. The only 1 x I real constant 
orthogonal matrim are +1 and -1, and so W(s) is unique up to a &I 
multiplier. 

Before using Youla's result to prove the positive real lemma, we shall 
isolate an important property of W(s). 

Important Properiy of Spectral Factor Minimal 
Realizations 

In this subsection we wish to establish the following result. 

*For example, the 1 x 1 matrix [(s - l)/(s + 111 has normal rank 1 throughout Re Is] 
> 0, but not constant rank throughout Re [s] > 0;  that is, it has rank 1 almost everywhere, 
but not at s = 1. 
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Lemma 5.5.1. Let Z(s) be an m X m positive real matrix with 
no element possessing a pure imaginary pole, and let W(s) be 
the spectral factor of Z(s) + Z'(-s) satisfying (5.5.9) and fulfill- 
ing the various conditions stated in association with that equation. 
Suppose that Z(s) has a minimal realization {F, G, H, J ] .  Then 
W(s) has a minimal reahation (F, G, L, W,]. 

We comment that this lemma is almost, but not quite, immediate when 
Z(s) is scalar, because of the existence of a companion matrix form for F 
with g' = [0 0 . . . 0 11. In our proof of the positive real lemma for scalar 
Z(s), we ~0II~tmcted a minimal realization for W(s) satisfying the constraint 
of the above lemma, with the aid of the special fonns for F and g. Now we 
present two proofs for the lemma, one simple, but restricting F somewhat. 

Simple proof for restricted F [I 21. We shall suppose that all 
eigenvalues of F are distinct. Then 

( I -  - 1  = 2%- 
k = r S  - Sk 

where the s, are eigenvalues of F and all have negative real part. 
It is immediate from (5.5.9) that the entries of W(s) have only 
simple poles, and so, for some constant matrices W,, k = 0,  1, 
..., n, 

Equation (5.5.9) now implies that 

J + J ' =  W i W ,  

and 

HIFkG = Wf(-sk)W, 

We must now identify L. The constraints on W(s) listed in asso- 
ciation with (5.5.9) guarantee that W'(-sk) has rank r, and thus, 
being an n X r matrix, possesses a left inverse, which we shall 
write simply as W ( - s k ) ] - ' .  Define 

H i  = [Wf(-sk)]-'H' 

so that 

Now suppose T is such that TFT-I = diag Is,, s,, . . . , s,]. Then 
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F, = T-'E,T, where E, is a diagonal matrix whose only nonzero 
entry is unity in the (k, k )  entry. Define 

It follows, on observing that &.El = O,, if  j, and E: = .E., 
that 

and so 

Finally, 

Actually, we should show that [F, L] is completely observable to complete 
the proof. Though this is not too difficult, we shall omit the proof here since 
this point is essentially covered in the fuller treatment of the next subsection. 

Proof for arbitrary F. The proof will fall into three segments: 

1. We shall show that G[W'(-s)W(s)] = 2S[W(s)]. 
2. We shall sliow that d[Z(s)] = d[W(s)] and d[Z(s) + Z'(-s)] 

= S[W'(-s)W(s)] = 2S[Z(s)]. 
3. We shall conclude the desired result. 

First, then, part (1). Note that one of the properties of the degree 
operator is that 6[AB] < 6[A] + 6[B]. Thus we need to conclude 
equality. We rely on the following characterization of degree, 
noted earlier: for a real rational X(s) 

where the s, are poles of X(s), and where 6[X(s); sk] is the maxi- 
mum multiplicity that s, possesses as a pole of any minor of X(s). 

Now let s,  be a pole of W(s), so that Re [s,] < 0, and consider 
6[W'(-s) W(s); s,]. We claim that there is a minor of W'(-s)W(s) 
possessing sk as a pole with multiplicity 6[W(s); s,]; i.e., we claim 
that 6 v ' ( - s )  W(s); sk$ 2 6[W(s); s,]. The argument is as follows. 
Because W(s) has rank r throughout Re [s] > 0, W'(-s) has rank 
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r throughout Re [s] < 0 and must possess a left inverse, which 
we shall denote by .[W'(-s)]-'. Now 

[w'(-s)]-'wy-s) W )  = W(s) 

and so 

Therefore, there exists a minor of [W'(-$1-W'(-s)W(s) that 
has s, as a pole of multiplicity S[W(s); s,]. By the Binet-Cauchy 
theorem [IS], such a minor is a sum of products of minors of 
[W'(-s)]-' and W'(-s)W(s). Since Re Is,] < 0, s, cannot be 
a pole of any entry of [w'(-s)]-I, and it follows that there is at 
least one minor of W'(-s)W(s) with a pole at s, of multiplicity 
at least b[W(s); s,]; i.e., 

If sk is a pole of an element of W(s), -s, is a pole of an element of 
W(-8). A similar argument to the above shows that 

Summing these relations over all s, and using (5.5.1 1) applied to 
W'(-s)W(s), W'(-s) and W(s) yields 

But as earlier noted, the inequality must apply the other way. 
Hence 

S[W'(-~)W(~)l = m'(s)l + SW(-s)I 
= 2S[W(s)] (5.5.12) 

since clearly S[W(s)] = S[W'(-s)]. 
Part (2) is straightforward. Because no element of Z(s) can have 

a pole in common with an eIement of Z'(-s), application of 
(5.5.11) yields 

Then (5.5.12). (5.5.13), and the fundamental equality Z(s) + 
Z(-s) = W'(-s)W(s) yield simply that S[Z(s)] = S[W(s)] and 
S[Z(S) + zl(-s)i = a[wy-~)w(~)l= S[Z(S)I. 
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Now let {F,, G,, H,, W,} be a minimal realization for W(s). 
It is straightforward to verify by direct computation that a real- 
ization for W'(-s) W(s) is provided by 

(Verification is requested in the problems.) 
This realization has dimension 26[W(s)] and is minimal by 

(5.5.12). With {F, G, H, 3) a minimal realization of Z(s), a real- 
ization for Z'(-s) + Z(s) is easily seen to be provided by 

By (5.5.13), this is minimal. Notice that (5.5.14) and (5.5.15) 
constitute minimal realizations of the same transfer-function 
matrix. From (5.5.14) let us construct a further minimal realiza- 
tion. Define P,, existence being guaranteed by the lemma of 
Lyapunov, as the unique positive definite symmetric solution of 

PwF, + FLPv = -H,H; (5.5.16) 

Set 

and define a minimal realization of W'(-s) W(s) by F, = TF,T-', 
etc. Thus 

Now (5.5.15) and (5.5.17) are minimal realizations of the same 
transfer-function matrix, and we have 
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Now Fw and F both have eigenvalues restricted to Re [s] < 0 and 
therefore 

The decomposition on the left side of (5.5.18) is known to be 
minimal, and that on the right side must be minimal, having the 
same dimension; so, for some T,, 

Consequently, W(s), which possesses a minimal realization 
{Fw, G,, H,, W,], possesses also a minimal realization of the form. 
IF, G, L, W,] with L = (T:)-'Hw. V V V 

Positive Real Lemma Proof-Restricted Pole 
Positions 

With the lemma above in hand, the positive real 
lemma proof is very straightforward. With Z(s) positive real and 
possessing a minimal realization {F, C, H, J) and with W(s) an 
associated spectral factor with minimal realization {F, G, L, W,], 
define P as the positive definite symmetric solution of 

PF + F'P = -LL' (5.5.20) 

Then 

Equating this with Z(s) + Z'(-s), it follows that 

and 
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By complete controllability, 

Equations (5.5.20) through (5.5.22) constitute the positive real 
lemma equations. V V V 

We see that the constructive proof falls into three parts: 

1. Computation of W(s). 
2. Computation of a minimal realization of W(s) of the form (F, G, L, W,]. 
3. Calculation of P. 

Step 1 is carried out in references 1141 and [15]. For step 2 we can form any 
minimal realization of W(s) and then proceed as in the previous section to 
obtain a minimal realization with the correct F and G. Actually, all that is 
required is the matrix T, of Eq. (5.5.19). This is straightforward to compute 
directly from F, G, F,, and G,,, because (5.5.19) implies 

as direct calculation will show. The matrix [G, F,G, . . . F;-'G.] possesses 
a right inverse because [F,, G,] is completely controllable. Thus T, follows. 

Step 3 requires the solving of (5.5.20) [note that (5.5.21) and (5.5.22) will 
be automatically satisfied]. Solution procedures for (5.5.20) are discussed in, 
e.g., [IS] and require the solving of linear simultaneous equations. 

Example Associated with the positive real matrix 
5.5.3 

we found the spectral factor 

Now a minimal realization for Z(s)  is readily found to be 

A minimal realization for W(s) is 

F, = [-l] G, = [0 -41 L, = [I] Wo = 12 21 

We are assured that there exists a realization with the same F and G 
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matrices as the realization for Z(s). Therefore, we seek T. such that 

whence T, = -f. It follows that L = (T;)-lL, - -4 so that W(s) has 
a minimal realization {-I, [O I],[-41, [2 211. The matrix P is given 
from (5.5.20) as P = 8 and, as may easily be checked, satisfies PC = 
H - LW,. Also, Wk WO - J + J' follows simply. 

Positive Real Lemma Proof-Unrestricted Pole 
Positions 

Previously in this section we have presented a constructive proof 
for the positive real lemma, based on spectral factorization, for the case 
when no entry of a prescribed positive real Z(s) possesses a purely imaginary 
pole. Our goal in this section is to remove the restriction. A broad outline of 
our approach will be as follows. 

I. We shall establish that if the positive real lemma is proved for a particu- 
lar state-space coordinate basis, it is true for any coordinate basis. 

2. We shall take a special coordinate basis that separates the problem of 
proving the positive real lemma into the problem of proving it for two 
classes of positive real matrices, one class being that for which we have 
already proved it in this section, the other being the class of losslss 
positive real matrices. 

3. We shall prove the positive real lemma for lossless positive real matrices. 

Taking 1, 2, and 3 together, we achieve a full proof. 

1. Effect of Different Coordinate Basis: Let {F, ,  G,, H , ,  J ]  and (F2, G,, H,, 
J )  be two minimal realizations of apositive real matrixZ(s). Suppose that we 
know the existence of a positive definite PI and matrices L ,  and W, for which 
P,F, +$-P, = -LIL: ,  P I G ,  =HI - L, Wo, J $  J' = WLW,. Thereexists 
T such that TF,T-' = F,, TG, = G , ,  and (T-')'Hz = H I .  Straightforward 
calculation w~ll show that if P, = TfP,T  and L, = T'L,, then P,F, + F;P, 
= -L,L;, P,G, = H, -L,W,, andagain J + J ' =  WLW,. 

Therefore, if the positive real lemma can be proved in one particular 
coordinate basis, i.e., if P, L, and Wo satisfying the positive real lemma equa- 
tions can be found for one particular minimal realization of Z(s), it is trivial 
to observe that the lemma is true in any coordinate basis, or that P, L, and 
W, satisfying the positive real lemma equations can be found for any mini- 
mal realization of Z(s). 
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2. Separation of the Problem. We shall use the decomposition property 
for real rational Z(s), noted earlier in this chapter. Suppose that Z(s) is posi- 
tive real, with Z(-) < w. Then we may write 

A s  + B, z(s) = zo(s) + F (5.5.23) 

with, actually, 

(5.5.24) 

The matrix Z,(s) is positive real, with no element possessing a pure imaginary 
pole. Each A, is nonnegative definite symmetric and B, skew symmetric, with 
IA,S + B,)(si + lossless and, of course, positive real. Also, A, and B, 
are related to the residue matrix at a,. Equation (5.5.24) results from the fact 
that the elements of the different, summands in (5.5.23) have no common, 
poles. 

Suppose that we find a minimal realization (Fo, G,, H,, J,] for Zo(s) and 
minimal realizations [F,, G,, HI} for each Zj(s) = (A,s + B,)(s2 + a:)-'. 
Suppose also that we find solutions Po, Lo, and W, of the positive real lemma 
equations in the case of Z,(s), and solutions P, (the L, and W,, being as we 
shall see, always zero) in the case of Z,(s). Then it is not hard to check that 
a realization for Z(s), minimal by (5.5.24), is provided by 

and a solution of the positive real lemma equations is provided by W, and 

Because the P, are positive definite symmetric, so is P. 
Consequently, choice of the special coordinate basis leading to (5.5.25) 

reduces the problem of proving the positive real lemma to a solved problem 
[that involving Zo(s) alone] and the so far unsolved problem of proving the 
positive real lemma for a lossless Z,(s). 
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3. Proof of Positive Real Lemma for Lossless Z,(s). Let us drop the sub- 
script i and study 

Rewrite (5.5.27) as 

where KO is nonnegative definite Hermitian. Then if k = rank KO, Z(s) has 
degree 2k and there exist k compIex vectors xi such that 

By using the same decomposition technique as discussed in 2 above, we can 
replace the prohIem of finding a solution of the positive real lemma equations 
for the above Z(s) by one involving the degree 2 positive real matrix 

Setting y,  = (x + x * ) / f i ,  y, = (x  - x * ) / f l ,  it is easy to verify that 

Therefore, Z(s) has a minimal realization 

For this special realization, the construction of a solution of the positive real 
lemma equations is easy. We take simply 

Verification that the positive real lemma equations are satisfied is then imme- 
diate. 

When we build up realizations of degree 2 Z(s) and their associated P to 
obtain a realization for Z(s) of (5.5.27), it follows still that P is positive defi- 
nite, and that the L and Wb of the positive real lemma equations for the Z(s) 
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of (5.5.27) are both zero. A further building up leads to zero L and W, for 
the lossless matrix 

where the A, and B, satisfy the usual constraints, and J is skew. Since (5.5.28) 
constitutes the most general form of lossless positive real matrix for which 
Z(w) < w, it follows that we have given a necessity proof for the lossless 
positive real lemma that does not involve use of the main positive real lemma 
in the proof. V V 

Problem Let Z(s) be positive real, Z(m) < m, and let V(s) be such that 
5.5.1 

Z(s) + Z'(-s) = V(s)V'(-s) 

Prove, by applying Youla's result to Z'(s), that there exists a V(s), with 
all elements analytic in Re [s] 2 0, with a left inverse existing in Re [sl 
2 0, with rank [Z(s) f Z'(-s)] columns, and unique up to right multi- 
plication by an arbitrary real constant orthogonal matrix. Then use the 
theorems of the section to conclude that b[V(s)] = S[Z(s)] and that V 
has a minimal realization with the same Fand H matrix as Z(s). 

Problem Let Z(s) = 1 + l/(s + 1). Find a minimal realization and a solution of 
5.5.2 the positive real lemma equations using spectral factorization. Can you 

h d  a second set of solutions to the positive real lemma equations by 
using a different spectral factor? 

Problem Let P be a solution of the positive real lemma equations. Show that if 
5.5.3 elements of Z(s) have poles strictly in Re [s] < 0, x'Px is a Lyapunov 

function establishing asymptotic stability, while if Z(s) is lossless, x'Px 
is a Lyapunov function establishing stability but not asymptotic stability. 

Problem Let (Fw, G., H,, Wo] be a minimal realuatiog of W(s). Prove that the 
5.5.4 matrices FI, GI, HI, and J1 of Eq. (5.5.14) constitute a realization of 

W'(-s)W(s). 

5.6 THE POSITIVE REAL LEMMA: OTHER 
PROOFS AND APPLICATIONS 

In this section we shall briefly note the existence of other proofs 
of the positive real lemma, and then draw attention to some applications. 

Other Proofs of the Positive Real Lemma 

The proof of Yakubovic [I] was actually the first proof ever to be 
given of the lemma. Applying only to a scalar function, it proceeds by induc- 
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tion on the degree of the positive real function Z(s), and a key step in the 
argument requires the determination of the value of w minimizihg Re [Z(jw)]. 
The case of a scalar Z(s) of degree n is reduced to the case of a scalar Z(s) of 
degree n - 1 by a procedure reminiscent of the Brune synthesis procedure 
(see, e.g., [19]). To the extent that a multipart Brune synthesis procedure is 
available (see, e.g., [6D, one would imagine that the Yakubovic proof could 
be generalized to positive real matrices Z(s). 

Another proof, again applying only to scalar positive real Z(s), is due to 
Faurre 1121. It is based on results from the classical moment problem and 
the separating hyperplane theorem, guaranteeing the existence of a hyper- 
plane separating two disjoint closed convex sets. How one might generalize 
this proof to the matrix Z(s) case is not clear; this is unfortunate, since, as 
Section 5.5 shows, the scalar case is comparatively easily dealt with by other 
techniques, while the matrix case is difficult. 

The Yakubovic proof implicitly contains a constructive procedure for 
obtaining solutions of the positive real lemma equation, although it would 
be very awkward to apply. The Faurre proof is essentially an existence proof. 

Popov's proof, see [5], in rough terms is a variant on the proof of Section 
5.5. 

Applications of the Positive Real Lemma 

Generalized Positive Real Matrices. There arise in some systems 
theory problems, including the study of instability [20], real rational func- 
tions or square matrices of real rational functions Z(s) with Z(m) < co for 
which 

for all real o with jw not a pole of any element of Z(s). Poles of elements of 
Z(-) are unrestricted. Such matrices have been termed generalized posifive 
real matrices, and a "generalized positive real lemma" is available (see [Zl]). 
The main result is as follows: 

Theorem 5.6.1. Let Z(.) be an m x m matrix of rational func- 
tions of a complex variables such that Z(m) < m. Let (F, C,  H, J ]  
be a minimal realization of Z(s). Then a necessary and sufficient 
condition for (5.6.1) to hold for all real w with jw not a pole of 
any element of Z(.) is that there exist real matrices P = P', L, 
and Wo, with P nonsingular, such that 



260 POSITIVE REAL MATRICES CHAP. 5 

Problem 5.2.5 required proof that (5.6.2) imply (5.6.1). Proof of the con- 
verse takes a fair amount of work (see [211). Problem 5.6.1 outlines a some- 
what speedier proof than that of [21]. 

The use of Theorem 5.6.1 in instability problems revolves around con- 
struction of a Lyapunov function including the term x'Px; this Lyapunov 
function establishes instability as discussed in detail in [20]. 

In~yerse Problem of Linear Optimal Control. This problem, treated in 19, 
22,231, is stated as follows. Suppose that there is associated a linear feedback 
law u = -K'x with a system f = ET + Gu. When can one say that this 
law arises through minimization of a performance index of the type 

where Q is some nonnegative definite symmetric matrix? Leaving aside 
the inverse problem for the moment, we recall a property of the solution of 
the basic optimization problem. This is that if [F, G] is completely controll- 
able, the control law K exists, and i = (F - GK')x is asymptotically stable. 
Also, 

The inequality is known as the return difference inequality, since I+ 
K'(s1- F)-'G is the return difference matrix associated with the closed-loop 
system. The solution of the inverse problem can now be stated. The control 
law K results from a quadratic loss problem if the inequality part of (5.6.4) 
holds, if [F, GI is completely controllable, and if t = (F - GK')x is asymp 
totically stable. 

Since the inequality part of (5.6.4) is essentially a variant on the positive 
real condition, it is not surprising that this result can be proved quite effi- 
ciently with the aid of the positive real lemma. Broadly speaking, one uses 
the lemma to exhibit the existence of a matrix L for which 

(Problem 5.6.2 requests a proof of this fact.) Then one shows that with Q 
= LL' in (5.6.3), the associated control law is precisely K. It is at this point 
that the asymptotic stability of i = (F - GK')x is used. 

Circle Criterion 124,251. Consider the single-input single-output system 

.t = Fx + gu y = h'x (5.6.6) 
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and suppose that u is obtained by the feedback law 

The circle criterion is as follows 1251: 

Theorem 5.6.2. Let [F,g, h] be a minimal realization of W(s) 
= h'(s1- F)-'g, and suppose that F has p eigenvalues with posi- 
tive real parts and no eigenvalues with zero real part. Suppose 
that k(.) is piecewise continuous and that u + E < k(t) < - E 

for some small positive 6. Then the closed-loop system is asymp 
totically stable provided that 

1. The Nyquist plot of W(s) does not intersect the circle with 
diameter determined by (-a-', 0) and (-p-',  0) and encir- 
cles it exactly p times in the counterclockwise direction, or, 
equivalently, 

is positive real, with Re Z(jw) > 0 for all finite real w and 
possessing all poles in Re [s] < 0. 

Part (1) of the theorem statement in effect explains the origin of the term 
circle criterion. The condition that the Nyquist plot of W(s) stay outside 
a certain circle is of course a nonnegativity condition of the form I W(jw) - c 1 
2 p or [W(-jw) - c][W(jw) - c] - ppZ 2 0, and part (2) of the theorem 
serves to convert this to apositive real condition. Connection between(1)and 
(2) is requested in the problems, as is a proof of the theorem based on part (2). 
The idea of the proof is to use the positive real lemma to generate a Lyapunov 
function that will establish stability. This was done in [25,26]. It should be 
noted that the circle criterion can be applied to infinite dimensional systems, 
as well as finite dimensional systems (see [24]). The easy Lyapunov approach 
to proving stability then fails. 

Popov Criterion [24,27,28]. The Popov criterion is a first cousin to the 
circle criterion. Like the circle criterion, it applies to infinite-dimensional as 
well as finite-dimensional systems, with finite-dimensional systems being 
readily tackled via Lyapunov theory. Instead of (5.6.6). we will, however, 
have 

i = F x + G u  y = H ' x  (5.6.9) 

We thereby permit multiple inputs and outputs. We shall assume that the 
dimensions of u and y are the same, and that 
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with 

E ~ & < k , - E  - (5.6.1 1) 
Y* 

for some set of positive constants k,, for some small positive 6, and for all 
nonzero y,. The reader should note that we are now considering nonlinear, 
but not time-varying feedback. In the circle criterion, we considered time- 
varying feedback (which, in the particular context, included nonlinear feed- 
back). 

The basic theorem, to which extensions are possible, is as follows [28]: 
' Theorem 5.6.3. Suppose that there exist diagonal matrices A = 

diag (a,, . . . , a,) and 3 = diag (b,, . . . , b,), where m is the 
dimension of u and y, a, 2 0, b, 2 0, a, + b, > 0, -a./b, is not 
a pole of any of the ith row elements of H'(sI - flF'C, and 

is positive real, where K =  diagik,, k,, . . . , k,}. Then the 
closed-loop system defined by (5.6.9) and (5.6.10) is stable. 

The idea behind the proof of this theorem is straightforward. One obtains 
a minimal realization for Z(s), and assumes that solutions (P, L, W,,) of 
the positive real lemma equations are available. A Lyapunov function 

V(x) = xlPx + 2 C rflj@,)b, dp, (5.6.13) 
i 0 

is adopted, from which stability can be deduced. Details are requested in 
Problem 5.6.5. 

Spectral Factoruation by Algebra 1291. We have already explained that 
intimately bound up with the positive real lemma is the existence of a matrix 
W(s) satisfying Z'(-s) + Z(s) = W'(-s) W(s). Here, Z(s) is of course posi- 
tive real. In contexts other than network theory, a similar decomposition is 
important, e.g., in Wiener filtering [IS, 161. One is given an m x m matrix 
@(s) with W(-s) = 9(s) and 9(jw) nonnegative definite for all real w. It is 
assumed that no element of @(s) possesses poles on Re Is] = 0, and that 
@(m) < m. One is required to find a matrix W(s) satisfying 

Very frequently, W(s) and W-'(s) are not permitted to have elements with 
poles in Re [s] 2 0. 

When @(s) is rational, one may regard the problem of determining W(s) 
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as one of solving the positive real lemma equations-a topic discussed in 
much detail subsequently. To see this, observe that @(s) may be written as 

where elements of Z(s) are analytic in Re Is] 2 0. The writing of @(s) in this 
way may be achieved by doing a partial fraction expansion of each entry of 
@(s) and grouping those summands together that are analytic in Re Is] 2 0 
to  yield an entry of Z(s). The remaining summands give the corresponding 
entry of Z'(-s). Once Z(s) is known, a minimal realization {F, G, H, J) of 
Z(s) may be found. [Note that a(-) < m implies Z(m) < w.] The problem 
of finding W(s) with the properties described is then, as we know, a problem 
of finding a solution of the positive real lemma equations. Shortly, we shall 
study algebraic procedures for this task. 

Problem (Necessity proof for Theorem 5.6.1): Let K be a matrix such that FK = 
5.6.1 F - GK' possesses all its eigenvalues in Re[sJ < 0;  existence of K is 

guaranteed by complete controllability of [F, a. 
(a) Show that if X(s) = I - K'(sZ - FK)-'G, then Z(s)X(s) = J + 

(H - KJY(SI - FK)-'G. 
(b) Show that X'(-s)[Z(s) + Z'(-s)]X(s) = I"(-s) + Y(s), where 

Y(s) = J + Hk(s1- FK)-'G with H, defined by 

H x = H - K ( J + J ~ - P K G  

P& + F~PK = -(KH' + HK' - KJK' - KJ'K') 

(c) Observe that Y(s) is positive real. Let P,, L,., and W, be solutions 
of the positive real lemma equation associated with Y(s). (Invoke 
the result of Problem 5.2.2 if [FK, HKl is not completely observable.) 
Show that P = P, + P,, L = L, + KW,, and W, satisfy (5.6.2). 

(d) Suppose that P is singular. Change the coordinate basis to force 
P = [I,] f [-I,] + LO,]. Then examine (5.6.2) to show that certain 
submatrices of F, L, and H are zero, and conclude that F, H is 
unobservable. Conclude that P must be nonsingular. 

Problem (Inverse problem of optimal control): 
6.6.2 (a) Stan with (5.6.4) and setting FK = F - GK', show that 

I - [ I  - G'(-st - Fi)-lKI[I - K'(sI - FK)-'GI 2 0 

@> Take PK as the solution of PxFx + FLPK = -KK', and HX = 

K - PxG. Show that Hk(s1 - FK)-'G is positive real. 
(c) Apply the positive real lemma to deduce the existence of a spectral 

factor of Hh(s1- Fx)-'G + G'(-sI - Fi)-lffK of the form 
L'(s1- F,)-'G, and then trace the manipulations of (a) and (b) 
backward to deduce (5.6.5). (Invoke the result of Problem 5.2.2 if 
[FK, HK] is not completely observable.) 
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(d) Suppose that the optimal control associated with (5.6.3) when 
Q = LL' is u = -Kbx; assume that the equality in (5.6.4) is satisfied 
with K replaced by KO and that F - GKb has all eigenvalues with 
negative real parts. It follows, with the aid of (5.6.5), that 

[ I t  KXsI - IF)-'G][I + K'(sl-  E)-'GI-' 

= [I + G'(-sl - F')''KoI"[Z + C'(-SI - Fj-'KI 

Show that this equality leads to 

Conclude that K = KO. 

Problem Show the equivalence between parts (I) and (2) of Theorem 5.6.2. 
5.6.3 (You may have to recall the standard Nyquist criterion, which will be 

found in any elementary control systems textbook.) 

Problem (Circle criterion): With Z(s) as defined in Theorem 5.6.2;sbow that 
5.6.4 Z(s) has a minimal realkation (F  - flgh', g, -(@/a)@ -a)h ,  ,!?la). 

Write down the positive real lemma equations, and show that xrPx is a 
Lyapunov function for the closed-loop system defined by (5.6.6) and 
(5.6.7). (Reference [261 extends this idea to provide a result incorporating 
a degree of Stability in the closed-loop system) 

Problem Show that the matrix Z(s)  in Eq. (5.6.12) has a minimal realization 
5.6.5 [F, G, HA f F'HB, AK-I + BH'G]. Verify that V(x) as defined in 

(5.6.13) is a Lyapunov function establishing stability of the closed-loop 
system defined by (5.6.9) and (5.6.10). . . .. . .  . .. 
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Computation of Solutions 

of the Positive 

Real Lemma ~quationi* 

If Z(s) is an m x rn positive red matrix of rational functions 
with minimal realization (F, C, H, J), the positive real lemma guarantees 
the existence of a positive definite symmetric matrix P, and real matrices 
L and W,, such that 

PF+F'P= -LL' 

P C = H - L W ,  (6.1.1) 

J +  J' = W,'W, 

The logical question then arises: How may we compute all solutions 
{P, L, W,) of (6.1.1)1 

We shall be concerned in this chapter with answering this question. We 
do not presume a knowledge on the part of the reader of the necessity proofs 
of the positive real lemma~covered previously; we shall, however, quote 
results developed in the course of these proofs that assist in the computation 
process. 

In developing techniques for the solution of (6.1.1), we shall need to derive 
theoretical results that we have not met earlier. The reader who is interested 

'This chapter may be omitted at a first reading 
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solely in the computation of P, L, and W, satisfying (6.1.1). as distinct from 
theoretical background to the computation, will be able to skip the proofs of 
the results. 

A preliminary approach to solving (6.1.1) might be based on the following 
line of reasoning. We recall that if P, L, and W, satisfy (6.1.1), then the 
transfer-function matrix W(s) defined by 

W(s) = W, -1- L1(sI - F)-'G (6.1.2) 

satisfies the equation 

Z(-s) + Z(s) = W(-s) W(s) (6.1.3) 

Therefore, we might be tempted to seek all solutions W(s) of (6.1.3) that are 
representable in the form (6.1.2), and somehow generate a matrix P such 
that P, together with the L and Wo following from (6.1.2), might satisfy 
(6.1 .I). There are two potential difficulties with this approach. First, it appears 
just as difficult to generate aN solutions of (6.1.3) that have the tbrm of (6.1.2) 
as it is to solve (6.1.1) directly. Sewnd, even knowing Land Wo it is some- 
times very difficult to generate a matrix P satisfying (6.1.1). [Actually, if 
every element of Z(s) has poles lying in Re [s] < 0, there is no problem; the 
only difficulty arises when elements of Z(s) have pure Imaginary poles.] On 
the grounds then that the generation of aU W(s) satisfying (6.1.3) that are 
expressible in the form of (6.1.2) is impractical, we seek other ways of 
solving (6.1.1). 

The procedure we shall adopt is based on a division of the problem of 
solving (6.1.1) into two subproblems: 

1. Find one solution triple of (6.1.1). 
2. Find a technique for obtaining all other solutions of (6.1.1) given this 

one solutfon. This subproblem, 2, proves to be much easier to solve than 
finding directly all solutions of (6.1.1). 

The remaining sections of this chapter deal separately with subproblems 
1 and 2. 

We shall note two distinct procedures for solving subproblem 1. The first 
procedure requires that J + J' be nonsingular (a restriction discussed below), 
and deduces one solution of (6. I .I) by solving a matrix Riccati differential 
equation or by solving an algebraic quadratic matrix equation. In the next 
section we state how the solutions of (6.1.1) are defined in terms of the 
solutions of a Riccati equation or quadratic matrix equation, in Section 6.3 
we indicate how to solve the Riccati equation, and in Section 6.4 how to 
solve the algebraic quadratic matrix equation. The material of Section 6.2 
will be presented without proof, the proof being contained earlier in a neces- 
sity proof of the positive real lemma. 
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The second (and less favored) procedure for solving subproblem 1 uses 
a matrix spectral factorization. In Section 6.5 we first find a solution for 
(6.1.1) for the case when the eigenvalues of F are restricted to lying in the 
half-plane Re [s] < 0, and then for the case when all eigenvalues of F lie on 
Re [s] = 0; finally we tie these two cases together to consider the general 
case, permitting eigenvalues of F both in Re Is] < 0 and on Re [s] = 0. 
Much of this material is based on the necessity proof for the positive real 
lemma via spectral factorization, which was discussed earlier. Knowledge of 
this earlier material is however not essential for an understanding of Section 
6.5. 

Subproblem 2 is discussed in Section 6.6. We show that this subproblem 
is equivalent to the problem of finding all solutions of a quadratic matrix 
inequality: this inequality has sufficient structure to enable a solution. There 
is however a restriction that must be imposed in solving subproblem 2, 
identical with the restriction imposed in providing the first solution to sub- 
problem 1 : the matrix J + J' must be nonsingular. 

We have already commented on this restriction in one of the necessity 
proofs of the positive real lemma. Let us however repeat one of the two 
remarks made there. This is that given the problem of synthesizing a positive 
real Z(s) for which J J,- J' is singular, there exists (as we shall later see) a 
sequence of elementary manipulations on Z(s), corresponding to minor 
synthesis steps, such as the shunt extraction of capacitors, which reduces 
the problem of synthesizing Z(s) to one of synthesizing a second positive real 
matrix, Z,(s) say, for which J ,  + J: is nonsingular. These elementary mani- 
pulations require no difficult calculations, and certainly not the solving of 
(6.1.1). Since our goal is to use the positive real lemma as a synthesis tool, 
in fact as a replacement for the difficult parts of classical network synthesis, 
we are not cheating if we choose to restrict its use to a subclass of positive real 
matrices, the synthesis of which is essentially equivalent to the synthesis of 
an arbitrary positive real matrix. 

Summing up, one solution to subproblem I-the determination of one 
solution triple for (6.1.1)-is contained in Sections 6.2-6.4. Solution of a 
matrix Riccati equation or an algebraic quadratic matrix equation is required; 
frequency-domain manipulations are not. A second solution to subproblem 
1, based on frequency-domain spectral factorization, is contained in Section 
6.5. This section also considers separately the important special case of F 
possessing only imaginary eigenvalues, which turns out to correspond with 
Z(s) being lossless. Section 6.6 offers a solution to subproblem 2. Finally, 
although the material of Sections 6.24.4 and Section 6.6 applies to a r e  
stricted class of positive real matrices, the restriction is inessential. 

The closest references to the material of Sections 6.24.4 are [I] for the 
material dealing with the Riccati equation (though this reference considers 
a related nonstationary problem), and the report [2]. Reference [3] considers 
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the solution of (6.1.1) via an algebraic quadratic matrix equation. The 
material in Section 6.5 is based on 141, which takes as its starting point a 
theorem (stated in Section 6.5) from 151. The material in Section 6.6 dealing 
with the solution of subproblem 2 is drawn from [6]. 

Problem Suppose thatZ(s) t Z'(-s) = W'(-s)W(s), Z(s) being positive real with 
6.1.1 minimal realization [F, G, H, J ]  and W(s) possessing a realization 

(F, G, L, W.]. Suppose that Fhas all eigenvalues with negative'ceal part. 
Show that W; W. = J  + J' .  Define P by 

PF + F'P = -LL' 

and note that P is nonnegative definite symmetric by the lemma of 
Lyapunov. Apply this definition of P, rewritten as P(s1- F) + 
(-st - F')P = -LL', .to deduce that W'(-s)W(s) = W; W, + 
(PC + LWo)'(sl- F)-'C + G'(-sI - F')-'(PG + L W,). Conclude 
that 

Show that if L'e"xo = 0 for some nonzero xo and all t, the defining equa- 
tion for P implies that PeF'xo = 0 for all t, and then that H'ePrq, = 0 
for all t. Conclude that P is positive definite. Explain the difficulty in 
applying this procedure for the generation of P if any element of Z(s) 
has a purely imaginary pole. 

6.2 SOLUTION COMPUTATION VIA RICCATI 
EQUATIONS AND QUADRATIC MATRIX 
EQUATIONS 

In this section we study the construction of a particular solution 
triple P, L, and W, to the equations 

P F +  FIP= -LC 
PC= H-LW, . (6.2.1) 

J + J ' =  w;w, 
under the restriction that J f  J' is nonsingular. The implications of this 
restriction were discussed in the last section. 

The following theorem was proved earlier in Section 5.4. We do not assume 
the reader has necessarily read this material; however, if he has not read it, 
he must of course take this theorem on faith. 

Theorem. Let Z(s) be a positive real matrix of rational functions 
of s, with Z(m) < w. Suppose that (F,  G, H, J ]  is aminimal real- 
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ization of Z(s), with J +  J' = R, a nonsingular matrix. Then 
there exists a negative definite matrix n satisfying the equation 

n ( F  - GR-'H') + (F' - HR-'G')fi 
- fiGR-'G'fi - H R - f H  = 0 

(6.2.2) 

Moreover 

Tr = lim n ( t ,  t , )  =:elimn(t, t , )  
113- 

where II(-,  t , )  is the soIution of the Riccati equation 

-fr = II(F - GR-'H') + (F' - HR-'G1)l'I 
(6.2.3) 

- IIGR-'G'II - H K I H '  

with boundary condition n(t,, t , )  = 0. 

The significance of this result in solving (6.2.1) is as follows. We define 

where V is an arbitrary real orthogonal matrix; i.e., V'V = VV' = I. Then 
we claim that (6.2.1) is satisfied. To see this, rearrange (6.2.2) as 

and use (6.2.4) to yield the first of Eqs. (6.2.1). The second of equations 
(6.2.1) follows from (6.2.4) immediately, as does the third. 

Thus one way to achieve a particular solution of (6.2.1) is to solve (6.2.3) 
to determine Tr, and then define P, L, and W, by (6.2.4). Technical procedures 
for solving (6.2.3) are discussed in the following sections. 

We recall that the matrices L and W, define a transfer-function matrix 
W(s) via 

[Since V is an arbitrary real orthogonal matrix, (6.2.5) actually defines a 
family of W(s).] This transfer-function matrix W(s) satisfies 

Although infinitely many W(s) satisfy (6.2.6), the family defined by (6.2.5) 
has a distinguishing property. In conjunction with the proof of the theorem 
just quoted, we showed that the inverse of W(s) above with V = Iwas defined 
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throughout Re [s] > 0. Multiplication by the constant orthogonal V does 
not affect the conclusion. In other words, with W(s) as in (6.2.5), 

det W(s) f 0 Re[s] > 0 (6.2.7) 

Youla, in reference [5],  proves that spectral factors W(s) of (6.2.6) with the 
property (6.2.7), and with poles of ail elements restricted to Re [s] 2 0, are 
uniquely defined to within left multiplication by an arbitrary real constant 
orthogonal matrix. Therefore, in view of our insertion of the matrix V in 
(6.2.5), we can assert that the Riccati equation approach generates all spectral 
factors of (6.2.6) that have the property noted by Youla. 

Now we wish to note a minor variation of the above procedure. If the 
reader reviews the earlier argument, he will note that the essential fact we 
used in proving that (6.2.4) generates a solution to (6.2.1) was that fi satisfied 
(6.2.2). The fact that R was computable from (6.2.3) was strictly incidental 
to the proof that (6.2.4) worked. Therefore, if we can solve the algebraic 
equation (6.2.2) directly-without the computational aid of the differential 
equation (6.2.3)-we still obtain a solution of (6.2.1). Direct solution of 
(6.2.2) is possible and is discussed in Section 6.4. 

There is one factor, though, that we must not overlook. In general, the 
cilgebraic equation (6.2.2) will possess more thun one negative definite solution. 
Just as a scalar quadratic equation may have more than one solution, so may 
a matrix quadratic equation. The exact number of solutions will generally be 
greater than two, but will be finite. 

Of course, only one solution of the algebraic equation (6.2.2) is derivable by 
solving the Riccatidr%fe~entialequation (6.2.3). But the fact that asolution of 
the algebraic equation (6.2.2) is not derivable from the Riccati differential 
equatipn(6.2.3) does not debar it from defining a solution to the positive 
real lemma equations(6.2.1) via thedefining equations (6.2.4). 

Any solution of the algebraic equation '(6.2.2) 'will generate a spectral 
factor family (6.2.5), different members of the family resulting from different 
choices of the orthogonal V. However, since our earlier proof for the inver- 
tibility of W(s) in Re[s] > 0 relied on using that particular solution fI of 
the algebraic equation (6.2.2) that was derived from the Riccati equation 
(6.2.3), it will not in general be true ghat a spectral factor W(s) formed as in 
(6.2.5) by using any solution of the quadratic equation (6.2.2) will be invertible 
in Re[s] > 0. Only that W(s) formed by using the particular solution of the 
quadratic equation (6.2.2) derivable as the limit of the solution of the Riccati 
equation (6.2.3) wilt have the invertibility property. 

In Section 6.4 when we consider procedures for solving the quadratic 
matrix equation (6.2.2) directly, we shall note how to isolate that particular 
solution of (6.2.2) obtainable from the Riccati equation, without of course 
having to solve the Riccati equation itself. 

Finally, we note a simple property, sometimes important in applications, 
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of the matrices L and W, generated by solving the algebraic or Riccati 
equations (6.2.4). This property is inherited by.the spectral factor W(s) 
defined by (6.2.5), and is that the number of rows of L', of W,, and of W(s) 
is m, where Z(s) is an m x m matrix. 

Examination of (6.2.1) or (6.2.6) shows that the number of rows of L', 
W,, and W(s) are not intrinsically determined.. However, a lower bound is 
imposed. Thus with J +  J' nonsingular i n  (6.23); Wo must have a t  least 
m rows to ensure that the rank of W; W, is equalto m, the rank of J f  J'. 

Since L' and W(s) must have the same number of rows as W,, it follows 
that the procedures for solving (6.2.1) specged hitherto lead to L' and W. 
[and, as a consequence, W(s)] possessing the minimum number of rows. 

That there exist L' and W, with a nonminimal number of 115s is easy to 
see. Indeed, let V be,a matrix of m' > m rows and m columns satisfying V'V 
= I, (such V always exist). Then (6.2.4) now definei C and Wo with a non- 
minimal number of rows, and (6.2.5) defines ~ ( s )  also with  onmi minimal 
number of rows. This is a somewhat trivial example. Later we shall come 
upon instances in which the matrix P in (6.2.1) is such that PF + F'P has 
rank greater than m. [Hitherto, this has not been the case, since rank LL', 
with. L as in(6.2.4). and V m! x m with V'V = I,, is independent of V.] 
With PF + F'P possessing rank greater than m, it follows that L' must have 
more than m rows for (6.2.1) to hold. 

Problem Assume available a solution triple for (6.2.1), with J + J' nonsingular 
6.2.1 and W, possessing m rows, where m is the size of Z(s). Show that L and 

W. may be eliminated to get an equation for P that is equivalent to (6.2.2) 
given the substitution P = -n. 

Problem Assuming that F has all eigenvalues in Re[s] < 0, show that any solu- 
6.2.2 tion ii of (6.2.2) is negative definite. First rearrange (6.2.2) as 

-(fiF f Fn) = -(nC -t H)R-~[~=Ic + H)'. Use the lemma of Lya- 
punov to show that n is nonpositive definite. Assume the existence of a 
nonzerox, such t h a t ( n ~  + H)'errx, = Oforallt,showthat fIe~'x, = 0 
for all I, and deduceacontradiction. Conclude that ii is negative definite. 

Problem For the positive real impedance Z(s) = 4 + l/(s + I), find a minimal 
6.2.3 realization IF, G, H, J )  and set up the equation for n. This equatioa, 

being scalar, is easily Solved. Find two spectral factors by solving this 
equation, and verify that only one is nonzero throughout Re[sl> 0. 

In this section we wish to comment on techniques for solving the 
Riccati differential equation 
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where F, G, H, and R are known, n ( t ,  t , )  is to be found for t 5 t , ,  and the 
boundary condition is II(t,, t , )  = 0. In reality we are seeking link,,, lT(t, t , )  
= lim,.._, U ( t ,  f , ) ;  the latter limit is obviously mucheasier to compute than 
the former. 

One direct approach to solving (6.3.1) is simply to program the equation 
directly on a digital or analog computer. It appears that in practice the 
equation is computationally stable, and a theoretical analysis also predicts 
computational stability. Direct solution is thus quite feasible. 

An alternative approach to the solution of (6.3.1) requires the solution of 
Smear differential equations, instead of the nonlinear equation (6.3.1). 

Riccati Equation Solution via Linear Equations 

The computation of U ( . ,  t , )  is based on the following result, 
established in, for example, 17, 81. 

Constructive Procedure for Obtaining U ( t ,  t , ) .  Consider 
the equations 

where X(t) and Y(t) are n x n matrices, n being the size of F, 
the initial condition is X(t,) = I, Y(t , )  = 0, and the matrix M is 
defined in the obvious way. Then the solution of (6.3.1) exists on 
[t, t , ]  if and only if X-I exists on [t, t , ] ,  and 

We shall not derive this result here, hut refer the reader to [7, 81. Problem 
6.3.1 asks for a part derivation. 

Note that when F, G, H, and R = J + J' are derived from a positive real 
Z(s), existence of IT@, t , )  as the solution of (6.3.1) is guaranteed for all 
t < t , ;  this means that X''(t) exists for all t 2 t , ,  abd accordingly the 
formula (6.3.3) is valid for all t 5 t , .  

An alternative expression for II(t, t , )  is available, which expresses U ( t ,  t , )  
in terms of exp M(c - T). Call tllis 2n x 2rr matrix rp(t - r) and partition 
it as 

where each @,,(t - T) is n x n. Then the definitions of X(t) and Y(t) imply 
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that 

and so 

Because of the constancy of F, G, H, and R, there is an analytic formula 
available for @(t - t , ) .  Certainly this formula involves matrix exponentia- 
tion, which may be difficult. In many instances, though, the exponentiation 
may be straightforward or perhaps amenable to one of the many numerical 
techniques now being developed for matrix exponentiation. It would appear 
that (6.3.2) is computationaUy unstable when solved on a digital computer. 
Therefore, it only seems attractive when analytic formulas for the @,,(I - 1) 

are used-and even then, difficulties may he encountered. 

Example Consider the positive real Z(s)=  5 + I/(s + 1). A minimal realization 
6.3.1. is provided by F = -1, G = H = 1, and J = 2, and the equation for 

@ becomes accordingly 

Now @ is given by exponentiating [-: -:I. One way to compute the 

exponential is to diagonalize the matrix by a similarity transformation. 
Thus 

Consequently 
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From (6.3.5), 

and then 

In Section 6.4 we shall see that the operations involved in diagonalizing 
F- GR-'H' -GR-'G' 

the matrix may be used to compute 
HR'IH' -F' + HR'IG' 

iT = lim,,_, l l ( t ,  t , )  directly, avoiding the step of computing @(t - f,) 
and n(t, t,) by the formula (6.3.5). 
Problem Consider (6.3.1) and (6.3.2). Show that if X-'(t) exists for all t S ti,  
6.3.1 then n ( t ,  t , )  satisfies (6.3.3). 

Problem For the example discussed in the text, the Riccati equation becomes 
6.3.2 

-R = -4n - nz - I 
Solve this equation directly by using 

and check the limiting value. 

6.4 SOLVING THE QUADRATIC MATRIX 
EQUATION 

In this section we study three techniques for solving the equation 

n ( F  - GR"H') f (P' - H R - I G ' ) ~  - RGR-~G'I~ - HR-'H' = 0 
(6.4.1) 

The first technique involves the calculation of the eigenvalues and eigen- 
vectors of a Zn X 2n matrix, n being the size of F. It allows determination of 
all solutions of (6.4.0, and also allows us to isolate that particular solution 
of (6.4.1) that is the limit of the solution of the associated Riccati equation. 
The basic ideas appeared in [9, 101, with their application to the problem 
in hand in [3]. The second procedure is closely related to the first, but repre- 
sents a potential saving computationally, since eigenvalues alone, rather 
than eigenvalues and eigenvectors, of a certain matrix must be calculated. 
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The third technique is quite different. Only one solution of (6.4.1) is cal- 
culated, viz., that which is the limit of the solution of the associated Riccati 
equation, and the calculation is via a recursive di@erenee equation. This 
technique appeared in [I 11. A fourth technique appears in the problems and 
involves replacing (6.4.1) by a sequence of linear matrix equations. 

Method Based on Eigenvalue and Eigenvector 
Computation 

From the coefficient matrices in (6.4.1) we construct the matrix 

This can be shown to have the property that if 1 is an eigenvalue, -1 is 
also an eigenvalue, and if d is pure imaginary, 1 has even multiplicity 
(Problem 6.4.1 requests. this verification). 

To avoid complications, we shall assume that the matrix M is diagonaliz- 
able. Accordingly, there exists a matrix T such that 

where A is the direct sum of 1 x 1 matrices [Ad with 1, real, and 2 x 2 

matrices E, -P1l with &, c real. 
1, - 

Let T be partiGoied into four n x n submatrices as 

n e n  if T,, is nonsingular, a solufion of(6.4.1) irprovjded by 

If = T,,T;: (6.4.5) 

Let us verify this result. Multiplying both sides of (6.4.3) on the left by T, 
we obtain 

(F - GRW'H')T,, - GR-'G'T,, = -T, ,A 
(6.4.6) 

HR-'HIT,, - (F- HR-'G')T,, = -T,,A 

From these equations we have 

T,,T;,'(F- GR-'H') - T,,T;:GR-'G'T,,T,/ = -T,,AT;;1 

HR-'H' - (F' - HR-'G?T2,T,> = -T,,AT,,' 
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The right-hand sides of both equations are the same. On equating the left 
sides and using (6.4.5), Eq. (6.4.1) is recovered. 

Notice that we have not restricted the matrix A in (6.4.3) to having all 
nonnegative or all nonpositive diagonal entries. This means that there are 
many different A that can arise in (6.4.3). If $2 (and thus -2) is an eigen- 
value of M, then we can assign f 2 to either +A or -A; so there can be up 
to 2* different A, with this number being attained only when M has all its 
eigenvalues real, with no two the same. Of course, different A yield different 
T and thus different ii, provided Ti,! exists. 

One might ask whether there are solutions of (6.4.1) not obtainable in the 
manner specified above. The answer is no. Reference [9] shows for a related 
problem that any fl satisfying (6.4.1) must have the form of (6.4.5). 

The above technique can be made to yield that particular ii which is the 
limit of the associated Riccati equation solution. Choose A to have nonnega- 
tive diagonal entries. We claim that (6.4.5) then defies the required fl. To 
see this, observe from the first of Eq. (6.4.6) that 

F- GR-'H' - GR-'G'T,,Ti: = -T,,AT;,! 

Of 

F - GR-'(H' $ G'fl) = -T,  ,AT;,' (6.4.7) 

Since A has nonnegative diagonal entries, all eigenvaiues of F - GR"(H1 
+ G'fl) must have nonpositive real parts. 

Now the spectral factor family defined by R is, from an earlier section, 

where VV' = Y'V = I. Problem 6.4.2 requests proof that if F - GR-'(H' 
+- G'n) has all eigenvalues with nonpositive re.ai parts, W-'(s) exists in 
Re[s] > 0. (We have noted this result also in an earlier necessity proof of 
the positive real lemma.) As we know, the family of W(s) of the form of 
(6.4.8) with the additional property that W-'(s) exists in Re[s] > 0 is unique, 
and is also determinable via a fl that is the limit of a Riccati equation solu- 
tion. Clearly, different ii could not yield the same family of W(s). Hence 
the fl defined by the special choice of A is that n which is the limit of the 
solution of the associated Riccati equation. 

Example Consider Z(s) = $ + ll(s f I), for which F = -1, G = H = R = 1. 
6.4.1 The matrix M is 
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Alternatively, to obtain that fi which is the limit of the Riccati equation 
solution. we have 

0 + 2  & - 2 - '  -2 -1 ."'3+z f l - 2  C -1 1 I [ 1 d[ -1 1 

=[-" O ]  

I 
0 f l  

(Thus A = JT.) But now 

This agrees with the calculation obtained in the previous section. 

Method Based on Eigenvalue Computation Only 

As before, we form the matrix M. But now we require only its 
eigenvalues. If A s )  is the characteristic polynomial of M, the already men- 
tioned properties of the eigenvalues of M guarantee the existence of a monic 
polynomial r(s) such that 

If desired, r(s) can be taken to have no zeros in Re[s] > 0. 
Now with r(s) = S" + aIsV1 + . . . $ a,, let r (M)  = M" + a,Mn-' + . 

+ a.1. We claim that a solution ii of the quadratic equation (6.4.1) is defined 
by 

Moreover, that solution which is also the limit of the solution of the asso- 
ciated Riccati equation is achieved by taking r(s) to have no zeros in Re[s] 
> 0. 
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We shall now justify the procedure. The argument is straightforward; for 
convenience, we shall restrict ourselves to the special case when r(s) has no 
zeros in Re[s] > 0. 

Let T be as in (6.4.3), with diagonal entries of A possessing nonnegative 
real parts. Then 

The last step follows because the zeros of r(s) are the nonpositive real part 
eigenvalues of M, which are also eigenvalues of -A. The Cayley-Hamilton 
theorem guarantees that r(-A) will equal zero. Now 

whence 

The first method discussed established that T,,T;: = n, with % the limit 
of the Riccati equation solution. 

Equation (6.4.10) is straightforward to solve, being a linear matrix equa- 
tion. 

For large n, the computational difficulties associated with finding eigen- 
values and eigenvectors increase enormously, and almost certainly direct 
solution of the Riccati equation or use of the next method to be noted are 
the only feasible approaches to obtaining n. 
Example With the same positive real function as in Example 6.4.1. viz., Z(s) 
6.4.2 = + l/(s + 1). with F = -1, G = H = R = 1, we have 

andp(s) = s, - 3. Then r(s) = s f JT and 
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Consequently 

yielding, as before, 

n=--2+" 

Method Based on Recursive Difference Equation 

The proof of the method we are about to state relies for its justi- 
fication on concepts from optimal-control theory that would take us too 
long to present. Therefore, we refer the interested reader to [ll] for back- 
ground and content ourselves here with a statement of the procedure. 

Define the matrices A, B, C, and U by 

U = R + C'(A + I)-'B + B'(A' + 1)-'C 

(6.4.1 1) 
and form the recursive difference equation 

with initial condition fl@) = 0. The significance of (6.4.12) is that 

= i i i  d(n)  (6.4.13) 
n- 

where il is that solution of (6.4.1) which is also the limit of the associated 
Riccati equation solution. This method however extends to singular R. 

As an example, consider again Z(s) = 4 + l/(s + I), with F = -1, 
G = H = R = 1. It follows that A = 0, B = C = 1 / n ,  U = 2, and 
(6.4.12) becomes 

The iterates are fI(0) = 0, fl(1) = -.25, fi(2) = -.26667, A(3) = 
-.26785, n(4) = h.26794. 

As we have seen, ii = -2 + JT = -.26795 to five figures. Thus four 
or five iterations suffice in this case. 

Essentially, Eqs. (6.4.11) and (6.4.12) define an optimal-control problem 
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and its solution in discrete time. The limiting solution of the problem is set 
up to he the same as li. 

The reader will notice that.if F has an eigenvalue at + I ,  the matrix A 
in (6.4.11) will not exist. The way around this difficulty is to modify (6.4.11), 
defining A, B, C, and U by 

Here a is a real constant that may be selected arbitrarily, subject to the 
restriction that a1 - F must be nonsingular. With these new definitions, 
(6.4.12) and (6.4.13) remain unchanged. 

Experimental simulations suggest that a satisfactory value of a is n-' tr F, 
where F i s  n x n. Variation in a causes variation in the rate of convergence 
of the sequence of iterates, and variation in the amount of roundoff error. 

Problem, Show that if 1 is an eigenvalue of M in (6.4.2), so is -1. (From an eigen- 
6.4.; vector u satisfying Mu = Au, construct a row vector d such that u'M 

= -lvZv'.) Also show that if A is an eigenvalue that is pure imaginary,- 
it has even multiplicity. Do this by first proving 

Take determinants and use the nonnegativity of Z(s) $- Z'(-s) for s = 
jw. 

Problem Suppose that W(s) = R112 + R - ' I ~ ( ~ G  + H)'(sZ - F)-lG. Prove that 
6.4.2 if F- GR-'(H' + G'm has no eigenvalues with positive real parts, 

then W-'(s) exists throughout Re[sl> 0. 

problem Choose a degree 2 positi<e real Z(s) and construct a minimal reaIi,zation 
6.4.3 for it. Apply the three methods of this section to solve (6.4.1). Compare 

the computational efficiencies of each method. 

Problem Use the eigenvalue-eigenvector computation method to construct a spec- 
6.4.4 tral factor W(s) for which W-'(s) exists everywhere in Re[s] < 0. 

Problem With a positive real matrix Z(s) of realization [F, G, H,J] with R = 
6.4.5 J + J'nonsingular we can associate a quadratic equation for the matrix 

. . 
n. Show that the inverse of each such fT satisfies the quadratic equation 
associated with the realiition (F', H, G, J']  of Z'(s). If F' - 
HR-'(G' + H'fT-') has eigenvalues with negative real parts [which 
would bethe case if n-' were determined as the limiting solution of the 
Riccati equation associated withZ'(s)], show that F - GR-'(H' -t G'n) 
has eigendues with positive real parts. 
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Problem Show that an attempted solution of the quadratic equation (6.4.1) with 
6.4.6 a Newton-Raphson procedure leads to the iterative equation 

~ + I [ F  - OR-I(H' + O'na)I f [F' - (H + ~.G)R-'G'I~~.+,  

= HR-'H' - ~ , , G R - ' G ' ~ ~  

(If you are unfamiliar with Newton-Raphson procedures, pass immed- 
iately to the remainder of the problem.) The algorithm is initialized by 
taking no = 0. D&e 

As the basis of an inductive argument to establish convergence, show that 
Re lI,[Eol < 0 and assume that Re &[FA < 0.-Evaluate - nn) Fn + F'.(&+, - n,J and show that Ha+, - 9 5 0 .  Show also that 
R - 4 + 1  r 0 by evaluating @ - f I . , , IK  + C ( f i  -it.+,) where ft 
is that solution of (6.4.1) derivable by solving the Riccati equation (6.3.1). 
Use the inequality fi - n.,, 5 0 and anexpressionfor(n - n.,,) Fn2, 
+ f i+?(n - to show that Re L,[F.+,I < 0. Conclude that TI. 
converges monotonically to a. 

6.5 SOLUTION COMPUTATION VIA 
SPECTRAL FACTORIZATION 

In this section we study the derivation, via spectral factorization, 
of a particular solution triple P, L, and W ,  to the positive real lemma equa- 
tions 

PF + F'P = -LL' 

P G = H - L W .  (6.5.1) 

J +  J' = WLWo 

We consider first the case when F has all negative real part eigenvalues, and 
then the case when F has pure imaginary eigenvalues. Finally, we link both 
cases together. As will be seen, the case when F  has pure imaginary eigen- 
values corresponds to the matrix Z(s) = H'(s1- F)-'G being lossless (the 
presence or absence of J is irrelevant), and the computation of solutions to 
(6.5.1) is especially straightforward. This case is therefore important in its 
own right. 

Case of F Possessing Negative Real Part Eigenvalues 

In considering this case we shall restate a number of results, here 
without proof, that we have already discussed in presenting a necessity proof 
for the positive real lemma based on spectral factorization. 
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First note that the eigenvalue restriction on Fimplies that no element of 
Z(s) can have a pole on Re[s] = 0 (or, of course, in Re[s] > 0). A procedure 
specified in [5] then yields a matrix W(s) such that 

with W(s) possessing the following additional properties: 

1. W(s) is r x m, where Z(s) is m x m and Z'(-s) + Z(s) has rank r 
almost everywhere. 

2. W(s) has no element with a pole in Re[$] 2 0. 
3. W(s) has constant rank r in Re[s] > 0; i.e., there exists a right inverse 

for W(s) defined throughout Re[s] > 0. 
4. W(s) is unique to within left multiplication by an arbitrary real constant 

orthogonal r x r matrix. 

In view of property 4 we can t h i i  of the result of [q as specifying a family 
of W(s) satisfying (6.5.2) and properties 1,2, and 3, members of the family 
differing by left multiplication by an arbitrary real constant orthogonal 
r x r matrix. In the case when Z(s) is scalar, the orthogonal matrix degen- 
erates to being a scalar + 1 or - 1. 

To solve (6.5.1), we shall proceed in two steps: first, 6nd Ws) as described 
above; second, from W(s) define P, L, and W,. 

For the execution of the first step, we refer the reader to [5] in the case of 
matrix Z(s), and indicate briefly here the procedure for scalar Z(s). This 
procedure was discussed more fully in Chapter 5 in the necessity proof of 
the positive real lemma by spectral factorization. 

We represent Z($) as the ratio of two polynomials, with the denominator 
polynomial monic; thus 

Then we form q(s)p(-s) +. p(s)q(-s) and factor it in the following fashion: 

where r(s) is a real polynomial with no zero in Re[s] > 0 (the eadier 
discussion explains why this factorization is possible). Then we set 

Problem 6.5.1 asks for verification that this W(s) satisfies all the requisite 
conditions. 
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The second step required to obtain a solution of (6.5.1) is to pass from 
a W(s) satisfying (6.5.2) and the associated additional constraints to matrices 
P, L, and W, satisfying (6.5.1). 

We now quote a further result from the earlier necessity proof of the 
positive real lemma by spectral factorization: 

If W(s) satisfies (6.5.2) and the associated additional conditions, 
then W(s) possesses a minimal realization of the form {F, G, L, 
W,) for some matrices L and W,. Further, if the first of Eqs. 
(6.5.1) is used to define P, the second is automatically satisfied. 
The third is also satisfied. 

Accordingly, to solve (6.5.1) we must 

1. Construct a minimal realization of W(s) with the same F and G matrix 
as Z(s); this defines L and W, by W(s) = W, + L'(s1- 3')-'G. 

2. Solve the first of Eqs. (6.5.1) to give P. Then P, L, and W, jointly satisfy 
(6.5.1). 

Let us outline each of these steps in turn. Both turn out to be simple. 
From W(s) we can construct a minimal realization by any known method. 

In general, this realization will not have the same F and G matrix as Z(s). 
Denote it therefore by {Fw, G,, L,, WOj. We are assured that there exists a 
minimal realization of the form (F, G, L, WoL and therefore there must 
exist a nonsingular T such that 

TF,T-' = F TG, = G (T-')'L, = L (6.5.6) 

If we can find T, then construction of L is immediate. So our immediate 
problem is to find T, the data at our disposal being knowledge of F,, G., L,, 
and W, from the minimal realization of W(s), and F and G from the minimal 
realization of Z(s). 

But now Eqs. (6.5.6) imply that 

where n is the dimension of F. Equation (6.5.7) is solvable for T ,  because 
the matrix [G, F,G, - . . F:-lGG] has rank n through the minimality, and thus 
complete controllability, of IF,, G., L,, W,}. Writing (6.5.7) as TV, = V, 
where V, and V are obviously defined, we have 

the inverse existing because V. has rank n, equal to the number of its rows. 
In summary, therefore, to obtain a minimal realization for W(s) of the 

form {F, G, L, W,B first form any minimal realization (F,, G,, L,,, W,]. 



286 COMPUTATION OF SOLUTIONS CHAP. 6 

Then with V = [G FG . . . F"-'G] and V, similarly defined, define Tby (6.5.8). 
Then the first two equations of (6.5.6) are satisfied, and the third yields L. 

Having obtained a minimal realization for W(s) of the form (F, G, L, W,], 
all that remains is to solve the first of Eqs. (6.5.1). This, being a linear matrix 
equation for P, is readily solved by procedures outlined in, e.g., 1121. 

The most difficult part computationally of the whole process of finding 
a solution triple P, L, W,  to (6.5.1) is undoubtedly the determination of 
W(s) in frequency-domain form, especially when Z(s) is a matrix. The mani- 
pulations involved in passing from W(s) to P, L, and Wo are by comparison 
straightforward, involving operations no more complicated than matrix 
inversion or solving linear matrix equations. 

It is interesting to compare the different solutions of (6.5.1) that follow 
from different members of the family of W(s) satisfying (6.5.2) and properties 
1,2, and 3. As we know, such W(s) differ by left multiplication by a real con- 
stant orthogonal r x r matrix. Let V be the matrix relating two particular 
W(s), say W,(s) and WW,(s). With Wl(s) and W,(s) possessing minimal realiza- 
tions (F, G,Ll,  W,,) and {F, G, L,, W.,), it follows that Li = VL; and 
W,, = VW,,. Now observe that LIL: = L,L', andL, W,, = L,W., because 
Vis orthogonal. It follows that the matrix P in (6.5.1) is the same for W,(s) 
and Wl(s), and thus the mutrix P is independent of the particular member 
of the fmily of W(s) satisfying (6.5.2) and the associated properties I ,  2, 
and 3. Put another way, P is associated purely with the family. 

Example Consider Z(s) = (s + 2)(sz + 4s + 3)-1, which can be verified to be 
6.5.1 positive real. This function possesses a minimal realization 

Now observe that 

Evidently, ~ ( s )  = (2s + 2,/37(sl + 4s + 3)-1 and a minimal real&- 
tion for W(s), with the same Fand G matrices as the minimal realization 
for Z(s), is given by 

The equation for P is then 
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That is. 

Of course, L' = [2JT + 21 and W, = 0. 

Case of F Possessing Pure Imaginary 
Eigenvalyes-Louless Z(s)  

We wish to tackle the solution of (6.5.1) with Fpossessing pure 
imaginary eigenvalues only. We shall show that this is essentialIy the same 
as the problem of solving (6.5.1) when Z(s) is lossless. We shall then note 
that the solution is very easy to obtain and is the only one possible. 

Because F has pure imaginary eigenvalues, Z(s) has pure imaginary poles. 
Then, as outlined in an earlier chapter, we can write 

where the w, are real, and the matrices J, C, A,, and B, satisfy constraints 
that we have listed earlier. The matrix 

is lossless positive real and has a minimal realization {F, G, H}. 
Now because F has pure imaginary eigenvalues and P is positive definite, 

the only L for which theequation PF + F'P = -U' can be valid is L = 0, 
by an extension of the lemma of Lyapunov described in an earlier chapter. 
Consequently, our search for solutions of (6.5.1) becomes one for solutions 
of 

PF+F'P=O 

P G = H  (6.5.11) 

J + J ' =  w;wo 

Now observe that we have two decoupled problems: one requires the deter- 
mination of Wo satisfying the last of Eqs. (6.5.1 1); this is trivial and will 
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not be further discussed. The other requires the determination of a positive 
definite P such that 

These equations, which exclude J, are the positive real lemma equations 
associated with the lossless positive real matrix Z,(s), since Z,(s) has minimal 
realization {F, G, HI. 

Thus we have shown that essentially the problem of solving (6.5.1) with 
Fpossessing pure imaginary eigenvalues is one of solving (6.5.12), the positive 
real lemma equations associated with a lossless Z(s). We now solve (6.5.12), 
and in so doing, establish that P i s  unique. 

The solution of (6.5.12) is very straightforward. One, way to achieve it is 
as follows. (Problem 6.5.2 asks for a second technique, which leads to the 
same value of P.) From (6.5.12) we have 

PEG = -FIPG = -F'H 

PF'G = -FIPFG = (F1)aH 

PF3G = --F'PF2G = -(F1)'H 

etc. 

So 

Set 

Then V,  has rank n if F is n x n because of complete controllability. Con- 
sequently (V,V:)-' exists and 

P = V,  V:(V, V:)- (6.5.15) 

The lossless positive real lemma guarantees existence of a positive dehite 
P satisfying (6.5.12). Also, (6.5.15) is a direct consequence of (6.5.12). 
Therefore, (6.5.15) defines a solution of (6.5.12) that must be positive definite 
symmetric, and because (6.5.15) defines a unique P, the solution of (6.5.12) 
must be unique. 
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Case of F Possessing Nonpositive Real Part 
Eigenvalues 

We now consider the solution of (6.5.1) when Fmay have negative 
or zero real part eigenvalues. Thus the entries of Z(s) may have poles in 
Re[s] < 0 or on Re[s] = 0. 

The basic idea is to apply an earlier stated decomposition property to 
break up the problem of solving (6.5.1) into two separate problems, both 
requiring the solutions of equations like (6.5.1) but for cases that we know 
how to handle. Then we combine the two separate solutions together. 

Accordingly we write Z(s) as 

Here the o, are real, and the matrices C, A,, and B, satisfy constraints that 
were listed earlier and do not concern us here, but which guarantee that 
Z,(s) = C, (A? + BJ(sZ + a;)-' + s-lC is lossless positive real. The 
matrix Z,(s) is also positive real, and each element has all poles restricted to 
Re[s] < 0. 

Let IF,, Go, H,, J,) be a minimal realization for Z,(s) and (F, ,  G,, H,)  
a minimal realization for Z,(s). Evidently, a realization for Z(s) is provided 
by 

This realization is moreover minimal, since no element of Z,(s) has a pole 
in common with any element of Z,(s). In general, an arbitrary realization 
(F, G, H, J )  for Z(s) is such that J = J,, although it will not normally be 

true that F = l]. etc But there exists a T, such that 

Further, T is readily computable from the controllability matrices 

V = [ G F G . . . F n - ' G I  

and 
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which both have full rank. In fact, TV = v and so 

T = ?V'(VV')-I (6.5.18) 

And now the determination of P, L, and W, satisfying (6.5.1) for an arbi- 
trary realization {F, G, H, J} is straightforward. Obtain Po, Lo, and W, 
satisfying 

P o F o  + GPO = -LOLL POGO = H ,  - LOWo J f J' = W;W, 
(6.5.19) 

and PI satisfying 

Of course, Po and PI are obtained by the procedures already discussed in this 
section. Then it is straightforward to verify that solutions of (6.5.1) are pro- 
vided by W, and 

Of course, the transfer-function matrix: W(s) = W, + L'(sZ- F)-'G is 
a spectral factor of Z(s) + Z'(-s). In fact, slightly more is true. Use of 
(6.5.21) .and (6.5.27) shows that 

W(s) = W, + L;(sI - F,):'G, (6.5.22) 

Thus W(.s) is a spectral factor of both Z'(-s) 4- Z(s) andZ;(-s) + Z,(s). 
This is hardly surprising, sin& the factthat Z,(s) . . islossless guarantees that 

' ' Z(-S) It. Z(s) = Z,'(--s) f Zo(s). ' (6.5.23) 

The realization {F, G,L,w,} of W(s) is clearly nonminimal because 
IF,, Go, Lo, W,} is a reali t ion of W(s) and F, has smaller dimension than 
F. Since [F, GI is completely controllabie, [F, L] must not be completely 
observable (this is easy to check directly). We still require this nonminimal 
realization of W(s), however, in order to generate a P, L, and W, satisfying 
the positive real lemma equations. The matrices Po, La, and W. associated 
with a minimal realization of W(s) simply are not solutions of the positive 
real lemma equations. This is somewhat surprising-usually minimal realiza- 
tions are the only ones of interest. 

The spectral factor W(s) = Wb f L'(sZ - F)-lG of course can be calcu- 
lated to have the three properties 1,2, and 3 listed in conjunction with 
Eq. (6.5.2); it is unique to within multiplication on the left by an arbitrary 
real constant orthogonal matrix. 
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We recall that the computation of solutions of (6.5.1) via a Riccati equation 
solution allowed us to define a family of spectral factors satisfying (6.5.2) 
and properties 1,2, and 3. I t  follows therefore that the procedures just 
presented and the earlier procedure lead to the same family of solutions of 
(6.5.1). As we have already noted, the matrix P is the same for all members 
of the family, while L' and W, differ through left multiplication by an 
orthogonal matrix. Therefore, the technique of this section and Section 6.2 
lead to the same matrix P satisfying (6.5.1). 

Example We shall consider the positive real function 
6.5.2 

1 S 
a s ) = &  +s+m 

which has a minimal realization 

Because Z(s) has a pole with zero real part, we shall consider separately 
the positive real functions 

For the former, we have as a minimal realization 

[ - I ,  1,L &I 
Now 

We take as the spectral factor (n + s)/(l +sf, whose inverse exists 
throughout Rets] > 0. Now 

and so W(s) has a realization 



292 COMPUTATION OF SOLUTIONS CHAP. 6 

Thus Lo = f l  - I, WO = 1, and a solution Po of PoF, + FiP. 
= -LOLL is readily checked to be 2 - fl. 

For Z,(s), we have a minimal realization 

and thesolution ofP, F, + F:P, = O,P,C, = H, is easily checked to be 

Combining the individual results for Zo(s) and Z1(s) together, it fol- 
lows that matrices P, L, and Wo, which work for the particular minimal 
realization of Z(s) quoted above, are 

Problem Verify that Eqs. (6.5.3) through (6.5.5) and the associated remarks define 
6.5.1 a spectral factor W(s) satisfying (6.5.2) and the additional properties 

listed following this equation. 

Problem Suppose that P satisfies the lossless positive real lemma equations 
6.5.2 PF + P P  = 0 and PC = H. From these two equations form a single 

equation of the form P$ + PP = ---ii', where [p, ',i] is completely 
observable. The positive definite nature of P  implies that P has all 
eigenvalues in the left half-plane, which means that the linear equation 
for P  is readily solvable to give a unique solution. 

6.6 FINDING ALL SOLUTIONS OF THE 
POSITIVE REAL LEMMA EQUATIONS 

In  this section we tackle the problem of finding all, rather than 
one, solution of the positive real lemma equations 

PF + F'P = -LL' 

P G = H - L W o  (6.6.1) 

J + J ' =  w;w, 

We shall solve this problem under the assumption that we know one solution 
triple P, L,  Wo of (6.6.1). 

A general outline of our approach is as follows: 
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1. We shall show that the problem of solving (6.6.1) is equivalent to the 
problem of solving a quadratic matrix inequality (see Theorem 6.6.1 for 
the main result). 

2. We shall show that, knowing one solution of (6.6.1), the quadratic 
matrix inequality may be replaced by another quadratic matrix inequal- 
ity of simpler structure (see Theorem 6.6.2 for the main result). 

3. We shall show how to find all solutions of this second quadratic matrix 
inequality and relate them to solutions of (6.6.1). 

Throughout, we shall assume that J + J' is nonsingular. 
This section contains derivations that establish the validity of the com- 

putational procedure, as distinct from forming an integral part of the 
computational procedure. They may therefore be omitted on a first reading 
of this chapter. The derivations falling into this category are the proofs of 
Theorem 6.6.1 and the corollary to Theorem 6.6.2. 

The technique discussed here for soIving (6.6.1) first appeared in [61. 

A Quadratic Matrix Inequality 

The following theorem provides a quadratic matrix inequality 
equivalent to Eqs. (6.6.1). 

Theorem 6.6.1. With [F, G, H, J] a minimal realization of a 
positive real Z(s) and with J + J' nonsingular, solution of (6.6.1) 
is equivalent to the solution of 

PF + F'P 2 -(PC - H)(J + J')-'(PC - H)' (6.6.2) 

in the sense that if [P, L, W,] satisfies (6.6.1), then P satisfies 
(6.6.2), and if a positive definite symmetric P satisfies (6.6.2), 
then there exist associated real matrices L and W, (not unique) 
such that P, L, and W, satisfy (6.6.1). Moreover, the set of all 
associated L and W,  are determinable as follows. Let N be a real 
matrix with minimum number of columns such that 

PF + F'P + (PG - H)(J + J')-'(PG - H)' = -NN' (6.6.3) 

Then the set of L and W, is defined by 

L = [-(PC - H)(J 3.7)-'1' j N]V 
(6.6.4) w; = [(J + J')"' / OIV 

where V ranges over the set of real matrices for which VV' = I, 
and the zero block in the definition of W.' is chosen so that L 
and W,' have the same number of columns. 
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Proof.' First we shall show that Eqs. (6.6.1) imply (6.6.2). 
As a preliminary, observe that WLW, is nonsingular, and 

so M = W,(W; W,)-lW; (I. For if x is an eigenvector of M, 
Ax = Mx for some A. Then AWLx = WiMx = WAX since 
WLM = W; by inspection. Hence either 1 = 1 or Wix = 0, 
which implies Mx = 0 and thus A = 0. Thus the eigenvalues of 
M are all either 0 or 1. The eigenvalues of I - M are therefore 
all either 1 or 0. Since I - M is symmetric, it follows that I - M 
2 0 or M I  I. Next it follows that LML' I L L '  or -LC 
I -LMLf. Then 

PFf F'P= -LC< -LW,(W;W,)-'W;L' 

= -(PC - H)(J + J')-'(PC - H)' 

which is Eq. (6.6.2). 
Next we show that (6.6.2) implies (6.6.1). 
From (6.6.2) it follows that 

PF f F'P + (PC - H)(J + J')-'(PC - H)' I 0 

and so there exists a real constant matrix N such that 

PF + F'P + (PC - H)(J <J')-'(PG - H)' = -NN1 (6.6.3) 

We assume that N has the minimum number of columns-a 
number equal to the rank, q say, of the left-hand side of (6.6.3). 
This determines N uniquely to within right multiplication by an 
arbitrary real constant orthogonal matrix V. 

Then in order that (6.6.1) hold, it is clearly sufficient, and as 
we prove below also necessary, that 

where V is any real constant matrix for which YV' = I, and the 
zero block in WA is chosen so that L and W; have the same 
number of columns. Note that V is not necessarily square. 

To see that Eqs. (6.6.4) are necessary, observe from (6.6.1) 
that any L and W, satisfying (6.6.1) must satisfy 

-(PF + F'P) PG - H 
[-L' Wol (6.6.5) 

*This proof may be omitted in a first reading of this chapter. 
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Let L,  and Wi,  denote the values of L and Wi achieved i n  
(6.6.4) by taking V = I. Now (6.6.5) implies that any L and 
W; must have a number of columns equal to or greater than the 
rank, call it p, of the left-hand side of (6.6.5); if L, and WA, have 

. . p columns, then (6.6.4) will define all solutions of (6.6.1) for the 
prescribed P as V ranges over the set of matrices for which VV' 

: = I,, with V possessing a number of columns greater than or 
equal top. 

Let us now check that L, and W,', do actually havepcolumns. 
The following equality is easily verified: 

J')-1 -(PF + P'P) PG - H 
][(PG-If)' J + J '  

-[PF + F'P + (PG - H)(J + J')-'(PG - H)7 0 

0 I I 
Therefore, the rank of the left side of (6.6.5) is rank NN' + m, 
where m is the size of the square matrix J;  i.e., p = q + m. 
Now recall that N has a number of columns equal to the rank of 
NN', viz., q. Then from (6.6.4) it is immediate that L, and Wi,  
have a number of columns equal to q + m = p, as required. 
V V V 

We wishto maketwo concerning the above theorem; the first is 
sufficiently important to be given status as a corollary. . . . 

. . corollary; I f  {P, L, W,] is a triple satisfying (6.6:1),.~ is m x m ,  
and W; hasm rows and columns, then P satisfies the inequality 
(6.6.2) withequality..Conversely, ifpsatisfies (6.6.2) with equality, 
among the family of L 'and W, satisfying together with P Eq. 
(6.6.1), there exist L' and W, with m rows. 

Proof is by immediate verification, Notice from the third of 9s . .  (6.6.1) 
that it is never possible for W, to have'fewer than,m rows with J + J' non- 
singular. 

The second point is this: essentially, Theorem 6.6.1 explains how to eli- 
minate the matrices L and W, from (6.6.1) to obtain a single equation, 
actually an inequality, for the matrix P. [Of course, it is logical to try to 
replace the three equations involving three unknowns by a single equation, 
although we have yet to show that this inequality is any simpler to soIve 
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than the original equations.] The inequality (6.6.2) has the general form 

P A P + P B + B ' P + C < O  

and is apparently very difficult to solve. However, were the matrix C equal 
to zero, one would expect by analogy with the scalar situation that solution 
would be an easier task. In the next subsection we discuss such a simplifica- 
tion. 

A Simpler Quadratic Matrix Inequality 

Instead of attempting to solve (6.6.2) directly, we shall instead try 
to k d  all values of Q = P - P, where P is a known solution of (6.6.2) 
actually satisfying (6.6.2) with equality, and P is any other solution of the 
inequality. The defining relation for Q is the subject of the next theorem 

Theorem 6.6.2. Let a matrix P satisfy (6.6.2) with equality, and 
let P be any other symmetric matrix satisfying the inequality 
(6.6.2). Define the matrix Q by Q = P - P. Then Q satisfies 

QE+ F Q  I -QG(J+ J ~ G Q  (6.6.6) 

where 

E =  F +  G(J+ J ' ) - ~ ( ~ G - H ) '  (6.6.7) 

Conversely, if Q satisfies (6.6.6) and P satisfies (6.6.2) with 
equality, P = Q + P satisfies (6.6.2). Finally, Q satisfies (6.6.6) 
with equality if and only if P satisfies (6.6.2) with equality. 

The proof of this theorem is straightforwad, proceeding by simple 
manipulation. The details are requested in Problem 6.6.1. 

Evidently, if we can find all solutions of the inequality (6.6.6), and if we 
know one solution of (6.6.2) with equality, then we can completely solve the 
positive real lemma equations (6.6.1). (Recall tfiat from Theorem 6.6.1 the 
generation of all the possible Land W, associated with a given P is straight- 
forward, knowing P.) 

The previous sections of this chapter have discussed techniques for the 
computation of a matrix P satisfying (6.6.2) with equality. In the next sub- 
section, we discuss the solution of (6.6.6). . . 

Let us note now an interesting property, provab1e.using (6.6.6). 

Corollary. Under the condition of Theorem 6.6.2, suppose that 
P is taken a s  that particular solution of (6.6.2) which satisfies 
the equality and is the negative of the limit of the solution of 
the associated Riccati equation. Then the eigenvalues of I? all 
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have nonpositive real parts, and Q 2 0. Moreover, if E = 

rf; :A, where Fl has d l  eigenvalues with *;m real parts and 
- 
1', all eigenvalues with negative real parts, and if Q is partitioned 

conformably as Q = , then Q,, and Q , ,  are zero. 

Proof.' Because P is the negative of the limit of the Riccati 
equation solution, it follows, as we have noted earlier, that the 
spectral factor family 

where V'V = YY'= I is such that W-'(s) exists throughout 
Re [s] > 0. 

This means that E has all eigenvalues in Re [s] 5 0, because? 

det (ST - [F + G(J + J')-'(PC - H)']] 

= det (sf - F) det [ I  - (sI - fl-'G(J $ J3-'(m - H)'] 
= det (sl - F) det [I - ( J  + J')-I(PG - H)'(sI - F)-'GI 

= det (s1- F) det (J + J')-L/Z det [(J + J')l/Z - (J + J3-1/2 
X (PG - H)'(sI - F)-'GI 

= hdet (sI - F) det ( J  + J')-l" det W(s) 

Thus eigenvalues of are either eigenvalues of F or zeros of 
det W(s), although not necessarily conversely. Since both the 
eigenvalues of F and the zeros of det W(s) lie in Re[s] < 0, the 
first part of the corollary is proved. 

If the eigenvalues of E are in Re[s] < 0 rather than just 
Re [s] < 0, Eq. (6.6.6) implies immediately by the lemma of 
Lyapunov that Q 2 0, since QP 4- F'Q < 0. The wnclusion 
extends to the case when eigenvalues of E are in Re[s] I 0  as 
follows. 

There is no loss of generality in assuming that 

with pJ possessing pure imaginary poles, Fz possessing poles in 

*The proof may be omitted at a first reading of this chapter. 
?The following equalities make use of the results det [I + AB] = det [ I  f BAI and 

det CD = det DC. 
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Re [s] < 0. [For there is clearly no loss of generality in replacing 
an arbitrary k' by TFT-', provided we simultaneously replace G 
by TG and Q by (T-') 'QT-~ for 'some nonsingular T-if after 
these replacements (6.6.6) is valid, then before the replacements 
it is valid, and conversely. Certainly there exists a T such that 
Tf'T-I is the direct sum of matrices with the eigenvalue restric- 
tions of F, and Fz.] By the same argument as used above to justify 
our special choice of I', it follows that there is no loss of generality 
in considering I', skew. 

Equation (6.6.6) can be written as 

(6.6.8) 
where 

@:] = G(J+ J')-l-'. and S = 

is nonnegative definite symmetric. We shall show that Q,, and 
Q,, are zero, and that Q,, 2 0. This will complete the proof of 
all the remaining claims of the corollary. 

Now consider the 1-1 block of this equation. The trace of the 
1-1 block of the right side of the equation is nonpositive, since 
the right side itself is nonpositive definite. Also 

These equalities follow from the skewness of k',, and the fact that 
tr (AB) = tr (BA) for arbitrary A, B for which AB and BA exist. 

This means that S,, = 0 and Q,,G, + Q,,G, = 0, for other- 
wise the trace of the 1-1 block on the right side would be negative. 
With S,, = 0, it follows that S, ,  = 0 to ensure that S is nonne- 
gative. 

Now consider the 2-1 block, recalling that Q,,C,  f Q,,G, 
and S, ,  are zero. We have 

Since El and F: have no eigenvalues in common, a standard 
property of linear matrix equations implies that Q',, = 0. Since 
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Q,,G, f QI,G, = 0, it follows that Q,,G, = 0. Now we can 
argue that Q , ,  = 0. For the complete controllabjlity of [F, G] 
implies complete controllability of [F - GK', GI for any K, and 
thus of IF, q. In turn, this implies the complete controllability of 
IF,, GI] and IF,, G,]. Now we have 

Q , , F l + F ; Q , , = O  and Q, ,G,=O 

It follows that 

Q,,F,G, = -F:Q,,G, = o 

and generally 

Complete controllability of l',, G, now implies that Q,, = 0. 
Consequently, (6.6.8) becomes simply 

for some nonnegative definite S,,, and with Fz possessing eigen- 
values in Re [s] < 0. As we have already argued, Q,, 2 0. 

Therefore, Q = 2 0, as required. V V V 

Solution of the Quadratic Matrix Inequality- 
Nonsingular Solutions 

Now we shall concentrate on solving the inequality (6.6.6) for 
Q. Our basic technique will be to somehow replace (6.6.6) by a linear equa- 
tion, and in one particular instance this is very straightforward. Because it 
may help to illustrate the general approach to be discussed, we shall present 
this special case now. 

We shall find all nonsingular solutions of (6.6.6). (Note: From the corollary 
to Theorem 6.6.2 it follows that if possesses a pure imaginary eigenvatue, 
there exist no nonsingular solutions. Therefore, we assume that all eigen- 
values of l'possess negative real part.) 

All nonsingular solutions of (6.6.6) are generated from all nonsingular 
solutions of 

where S ranges over the set of all nonnegative definite matrices. Because 
we are assuming nonsingularity of Q, it follows that the set of nonsingular 
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solutions of (6.6.6) may be generated by solving 

BQ-1 + Q - I F  = -G(J+ J,)-IG' - Q - ~ s Q - ~  (6.6.9) 

where S ranges over the set of all nonnegative definite matrices. But if S 
ranges over the set of all nonnegative definite matrices, so does Q-'SQ-! .  
Therefore, all nonsingular solutions of (6.6.6) are found by solving' 

BQ-1 + Q - I F ,  = -G(J + J')-lGr - 3 (6.6.1 0) 

where 9 ranges over the set of all nonnegative definite matrices. This equation 
is linear in Q-',  and procedures exist for its solution. 

With the constraint on F that its eigenvalues all have negative real parts, 
it is known from the lemma of Lyapunov that 

This matrix is always nonsingular for the following reason. Observe that 

If the matrix on the right side of the inequality is nonsingular, so is that on 
the left. But the matrix on the right is nonsingular if (and only if) [1", a is 
completely controllable. Since [F, GI is completely controllable, and since 
R = F - GK' for a certain K, [R, ,C;l must be completely controllable. 

In summary, Eq. (6.6.11) defines, as S^ ranges over the set of allnonnegative 
definite symmetric matrices, all no~singular solutions to (6.6.6); for such to 
exist, B musr have all negative real part eigenvalues. 

Solution of the Quadratic Matrix Inequality- 
Singular Solutions 

To find singular solutions of (6.6.6), it is necessary to delve 
deeper into the structure of E and to determine its eigenvalues. (Note: This 
was not necessary to compute nonsingular solutions.) 

For convenience we suppose that all eigenvalues of F with negative real 
parts are distinct, and that F is diagonalizable. Then there exists a matrix T 
such that 
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where EZ has purely imaginary eigenvalues and is skew. In this equation 
-f- denotes direct sum, and A, ,  . . . , A,, p,+,, . . . , p, are real positive num- 
bers. 

With & = T'QT and 6 = T-'G(J + J')-'", the inequality (6.6.6) is 
equivalent to 

G E +  PG -&6@& (6.6.12) 

As we have already noted, [F, GI is completely controllable. It follows easily 
from this fact that [P, is also completely controllable. 

We have already shown in the corollary to Theorem 6.6.2 that certain 
parts of & must be zero. In particular, if we write 

so that p, contains negative real part eigenvalues only, and f2 zero real part 
eigenvalues only, and if we partition & as 

so that &,, has the same dimension as pi?,, then &,, and &,, are zero. 
Therefore, we can restrict attention to the equation 

where PI has negative real part eigenvalues, 6, is defined in an obvious 
fashion, and [f,, 6,] is completely controllable because [f, 61 is completely 
controllable. 

Let US drop the subscripts on (6.6.13), to write again 

where we now understand that 3 has all negative real part eigenvalues, and 
of course [E, 61 is completely controllable. 

The inequality (6.6.12) can be rewritten as 

where S is an arbitrary nonnegative definite symmetric matrix. 
Now observe that if x is a vector such that &x = 0, then Sx = 0 and 

@x = 0 for all i. For multiplication of (6.6.14) on th$ left by x' and on the 
right by x establishes that x'Sx = 0, and thus Sx = 0. Multiplication on the 
right by x then establishes that &fx = 0, and dfi'x .. = 0 follows by iterating 
the argument. 
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The fact that &x = 0 implies that &glx = 0, for all i, implies that the 
vector x must have some zero entries if @ is not identically zero. For if x 
has no zero entry, the set of vectors x, fix, P3x, . . . , spans the whole space 
of vectors of dimension equal to the size of 0 [13]; then we would have to 
have & = 0. 

NOW let x,, . . . , x, be vecJors spanning the null space of 0. By reordering 
rows and columns of 0, j, G, and S if necessary, we may suppose that the - 
first r > 0 entries of x,,  . . . , x, are zero, while at least one of x,, . . . , x, 
has an (r 4- s)th entry nonzero for each s greater than zero. 

Let q be the dimension of &. It may be checked that the set x,, fix,, . . . , 
A 

x,, l%,, . . . , . . . , x,, Fxm,. . .,spans the space of vectors whose first r 
entries are zero and whose last (q - r) entries can be arbitrary. This space 
is identical with the nullspace of &. Therefore, the last (g - r) columns of 
& and S are zero. The symmetry of @ and S then implies that the last (q - r) 
rows are zero, so that (6.6.14) becomes 

dip, + E:Q, = -a,(~e.),a, - S, (6.6.15) 

where the subscript 1 denotes deletion of the last (q - r)  rows and columns 
of the ma* with which it is associated. The matrix 0, must be nonsingular, 
or else we would have a contradiction of the fact that x,, . . . , x, span the 
nullspace of G,.- 

Notice that F, will be a direct sum of blocks of the type [-dl and 

[ 3 for 2, p real and positive; i.e., the blocks making up F, are a 

subset of the blocks making up fi. It is not hard to check that it is impossible 

for a block of the form in the group making up fi to be "split," [I -11 
so that part of the block is included in i?, and part not. 

The solution of (6.6.15) with 0 ,  known to be nonsingular is straight- 
forward. Following the earlier theory for constructing all nonsingular solu- 
tions to the original inequality, we note that solution of (6.6.15) for all 
nonnegative definite S, is equivalent to solution for all nonnegative definite 
s^, of 

f2&l + &;I$' , - - - - gl (6.6.16) 

That this equation always has a nonsingular solution @il is readily checked. 
Thus dl can be formed. 

The corresponding solution of (6.6.12) is 
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The above analysis implicitly describes how to compute all singular solu- 
tions of (6.6.12), without determining vectors x such that &x = 0. One 
simply drops blocks from the direct sum making up I?, and at the same time 
constructs a submatrix of GG' by dropping the same rows and columns as were 
dropped from f. Denote by p, the matrix with certainAocks dropped 
(equivalently, certain rows and columns dropped). Denote by (GG'), the matrix 
&& with corresponding rows and columns dropped. Then Egs. (6.6.15) and 
(6.6.16) yield a whole f m i l y  of solutions to (6.6.12), or equivolenrly the original 
(6.6.6). All solutions are obtained by dropping different blocks of pandproceed- 
ing in the above manner. 

Properties of the Solutions 

In this subsection we wish to note briefly properties of the solu- 
tions P of (6.6.1). We shall describe these properties in terms of solutions 
to (6.6.6). 

As we have already noted in the corollary to Theorem 6.6.2, there is a 
minimum solution to (6.6.1), which is the matrix (termed P i n  this section) 
associated with that family of spectral factors whose inverse exists in 
Re [s] > 0. 

It is also possible to write down the maximum solution to (6.6.1). For 
simplicity, suppose that E has eigenvalues restricted to Re[s] < 0. Then 
there exist nonsingular solutions to (6.6.61, one of them being defined by 

If Q denotes this particular solution and P = P f the corresponding 
solution of (6.6.I), then P is the maximum solution of (6.6.1); i.e., if P is 
any other solution, P - P 2 0. This is proved in [6]. The spectral factor 
family generated by I' 1s interesting; it has the property that the inverse of 
a member of the family exists throughout Re [s] < 0. (Problem 6.6.2 asks 
for a derivation of this fact. See also [6].) 

As noted in the last subsection, solutions of (6.6.6) fall into families, each 
family derivable by deleting certain rows and columns in the matrix we have 
termed 2. There is a maximum member for each family computed as follows. 
The general equation determining a family is of the form 

where El is Ewith some of its rows and columns deleted ands ,  is nonnegative 
definite. The smallest 4;' satisfying (6.6.16) is easily checked to be that 
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obtained by setting 3, = 0, since in general 

Therefore, the 4, derived from 3, = 0 will be the largest, or maximum, 
member of the associated family. 

The associated Q can be checked t o  satisfy (6.6.6) with equality, so the 
maximum members of the families are precisely the solutions of (6.6.6) with 
the equality constraint. 

Example We wish to illustrate the preceding theory with a very simple example. 
6.6.1 We take Z(s) = 4 + l / ( s  + 1). for which [-I, I ,  1, 41 is a minimal 

realization. As we have calculated earlier, P = 2 - a. Then 

and the inequality for Q becomes 

There is only one family of solutions. The maximum member of that 
family is obtained from a nonsingular Q satisfying 

That is, 

Q = 2 , / 3  

Any Q in the interval [O, 21r57 satisfies the inequality. 
With Q = v, P = 2 + fl, and (6.6.1) yields L = - 1  - 0. 

The associated spectral factor is 

and is evidently maximum phase. 
If, for the sake of argument, we take Q = JT, then P becomes 2. 

It follows that 

PF + F'P + (PG - H)(J + J?-'(PC - H)' = -3 

so that, following (6.6.3) and the associated remarks, N = ,/T. The 
associated family of spectral factors is defined [see (6.6.4)] by 
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where Vis an arbitrary matrix satisfying VV' = I. It follows that 

Observe that, as required, 

This example emphasizes the fact that spectral factors W(s) readily arise 
that have a nonminimal number of rows. 

Problem Prove Theorem 6.6.2. 
6.6.1 

Problem Suppose that P is that particular solution of (6.6.2) which satisfies the 
6.6.2 equality and is the negative of the limit of a Riccati equation solution. 

Suppose also that the eigenvalues of E all have negative real parts. Let 
0 be thenonsingularsolution of QP + P'Q = -QG(J + J')-'G'Q and 
letP = P f 0. Show that if W(s)is amember ofthespectralfactorfamily 
defined by P,  then det W(s) is nonzero in Re [s] < 0. [Thus W(s) is a 
"maximum phase" spectral factor.] 

Problem Find a general formula for all degree 1 spectral factors associated with 
6.6.3 1 f l / (s  + 1) by extending the analysis of Example 6.6.1 to cope with the 

case in which Q is arbitrary, within the interval [O, 2 f l l .  
Problem Study the generation of solutions of the positive real lemma equations 
6.6.4 with Z(s) = (s2 + 3.5s f 2)(s2 + 3s f 2)-'. 

Problem Show that the set of matrices P satisfying the positive real lemma equa- 
6.6.5 tions for a prescribed positive real Z(s) is convex, i.e. if PI and P2 satisfy 

the equations, so does UP, + (1 - a)P2 for all a in the range [O, 11. 

Problem Show that the maximum solution of 
6.6.6 

PF+FIP t (PG-HXJ+J'- ' (PG -H) '=O 
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is the inverse of the minimum solution of 

PF + FP + ( P H  - G)(J + J')-'(?H - c)' = o 

What is the significance of this fact? 
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Bounded Real Matrices 

and the Bounded Real Lemma; 

the State-space Description 

of Reciprocity 

We have two main aims in this chapter. First, we shall discuss 
bounded real matrices, and present an algebraic criterion for a rational 
matrix to be bounded real. Second, we shall present conditions on a minimal 
state-space realization of a transfer-function matrix for that transfer-function 
matrix to be symmetric. In later chapters these results will be put to use in 
synthesizing networks, i.e., in passing from a set of prescribed port character- 
istics of a network to a network possessing these port characteristics. 

As we know, an m x m matrix of real rational functions S(s) of the 
complex variable s is bounded real if and only if 

1. All elements of S(s) are analytic in Re [s] 2 0. 
2. I - S'*(s)S(s) is nonnegative definite Hermitian in Re [s] > 0, or 

equivalently, I - S'*[jw)S(jm) is nonnegative definite Hermitian for aU 
real o. 
Further, S(s) is lossless bounded real if it is bounded real and 

3. I - S(-s)S(s) = 0 for all s. 

These conditions are analytic in nature; the bounded real Iemma seeks to 
replace them by an equivalent set of algebraic conditions on the matrices 
of a state-space realization of S(s). In Section 7.2 we state with proofs both 
the bounded real lemma and the lossless bounded real lemma, which are of 
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course counterparts of the positive real lemma and lossless positive real 
lemma, being translations into statespace terms of the bounded real property. 
Just as there arises out of the positive real lemma a set of equations that we 
are interested in solving, so arising out of the bounded real lemma there is 
a set of equations, which again we are interested in solving. Section 7.3 is 
devoted to discussing the solution of these equations. Numerous parallels 
with the earlier results for positive real matrices will be observed; for example, 
the equations are explicitly and easily solvable when derived from a lossless 
bounded real matrix. 

In Section 7.4 we turn to the question of characterizing the symmetry of 
a transfer-function matrix in terms of the matrices of a state-space realization 
of that matrix. As we know, if a network is composed of passive resistors, 
inductors, capacitors, and transformers, but no gyrators, it is reciprocal, 
and immittance and scattering matrices associated with the network are 
symmetric. Now in our later examination of synthesis problems we shall be 
interested in reciprocal and nonreciprocal synthesis of networks from port 
descriptions. Since reciprocal syntheses can only result from transfer-func- 
tion-matrix descriptions with special properties, in general, the property of 
symmetry, and since our synthesis procedures will be based on state-space 
descriptions, we need a translation into state-space terms of the property 
of symmetry of a transfer-function matrix. This is the rationale for the 
material in Section 7.4. 

Problem Let S(s) s) a scalar 10ssIess bounded real function of the form &s)/q(s) 
7.1.1 for relatively pn'mepolynomialsp(s) andq(s). Show that S(s) is an all-pass 

function, i.e., has magnitude unity for all s = jw, w real, and has zeros 
that are dections in the right half-plane Re [s] > 0 of its poles. 

Statement and Proof of the Bounded Real Lemma 

We now wish to reduce the bounded real conditions for a real 
rational S(s) to conditions on the matrices of a minimal state-space realiza- 
tion of S(s). The lemma we are about to present was stated without proof 
in [I], while a proof appears in 121. The proof we shall give differs somewhat 
from that of [2], but shares in common with [2] the technique of appealing 
to the positive real lemma at an appropriate part of the necessity proof. 

Bounded Real Lemma. Let S(s) be an m x m matrix of real 
rational functions of a complex variable s, with S(M) < W, and 
let (F, G, H, J )  be a minimal realization of S(s). Then S(s) is 
bounded real if and only if there exist real matrices P, L, and Wo 
with P positive definite symmetric such that 
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Note that the restriction S(m) < m is even more inessential here than the 
corresponding restriction in the positive real lemma: If S(s) is to be bounded 
real, no element may have a pole in Re [d 2 0, which, inter alia, implies that 
no element may have a pole at s = m ;  i.e., S(m) < 00. 

Proof of Sufficiency. The proof is analogous to that of the 
positive real lemma. First we must check analyticity of all ele- 
ments of S(s) in Re [sl> 0. This follows from the first of Eqs. 
(7.2.1), for the positive definiteness of P and the complete obsew- 
ability of [F, H] guarantee by the lemma of Lyapunov that 
Re A,[F] < 0 for all i. This is the same as requiring analyticity of 
all elements of S(s) in Re [s] 2 0. 

Next we shall check the nonnegative definite Hermitian nature 
of I - S8(jw)S(jo) = I - S'(-jw)S(jw). We have 

= G(-jol - F')-'[P(jwl- F) + (-jwl - F')P] 

x ( j w l -  F)-'G using the first of Eqs. (7.2.1) 

= G'(-joI - F')-IPG + GP( jo1-  F)-'G 

= -G(-jwI - F')-'(HJ + LW,) - (HJ+ LW,)' 

x ( joI  - F)-'G using the second of eqs. (7.2.1) 

Now rewrite this equality, using the third of Eqs. (7.2.1), as 

I - J'J - WL W, - G(- joI  - F')-'(HJ + LW,) 

- (HJ + LW,)'(joI - F)-'G 

- G'(-jcd- F')"(HH' + LL')(jol- F)-'G = 0 

By setting 

W(s) = W, + L'(sI- F)-'G (7.2.2) 

it follows that 

as required. V V V 
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Before turning to a proof of necessity, we wish to make one important 
point. The above proof of sufficiency includes within it the definition of 
a transfer-function matrix W(s), via (7.2.2), formed with the same F and G 
as S(s), but with the remaining matrices in its realization, L and W,, defined 
from the bounded real lemma equations. Moreover, W(s) satisfies (7.2.3), 
and, in fact, with the most minor of adjustments to the argument above, can 
be shown to satisfy Eq. (72.4) below. Thus W(s) is a spectral factor of 
I - S'(-s)S(s). Let us sum up these remarks, in view of their importance. 

Existence of Spectral Factor. Let S(s) be a bounded real 
matrix of real rational functions, and let [F, G, H, J ]  be a minimal 
realization of S(s). Assume the validity of the bounded real lemma 
(despite necessity having not yet been proved). In terms of the 
matrices L and Wo mentioned therein, the transfer-function 
matrix W(s) = W o  + L1(sI - F)-'G is a spectral factor of 
I - S'(-s)S(s) in the sense that 

The fact that there are many W(s) satisfying (7.2.4) suggests that we should 
expect many triples P, L, and W, to satisfy the bounded real lemma equations. 
Later in the chapter we shall discuss means for their determination. 

Proof of Necessity. Our strategy will be to convert the bounded 
real constraint to a positive real constraint. Then we shall apply 
the positive real lemma, and this will lead to the existence of 
P, L, and W, satisfying (7.2.1). 

First, define P, as the unique positive definite symmetric solu- 
tion of 

P,F + F'P, = -HH' (7.2.5) 

The stated properties of P,  follow from the complete observ- 
ability of [F, HI and the analyticity restriction on the bounded 
real S(s), which implies that Re AdF] < 0. 

Equation (7.2.5) allows a rewriting of I - S(-s)S(s):  

I - S(-s)S(s) = (I  - J'J) - (HJ)'(sI - F)-'G 

-Gf(--SI - F')-'HJ 

- G'(-sI - F ' - I  HH'(s1- F)-IG 

= (I - J'J) - (HJ + P,G)'(sI - F)-'G 

- G'(-sI - F1)-'(NJ + P, G)  (7.2.6) 

where we have used an argument in obtaining the last equality, 
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which should be by now familiar, involving the rewriting of HH' 
as P,(sI - F )  + (-sI - F3P,.  Now define 

Then Z(s) has all elements analytic in Re [s] 2 0, and evidently 
Z(s) + Z'(-s) = I - S'(-s)S(s), which is nonnegative dehite 
Hermitian for all s = jw, o real, by the bounded real constraint. 
It follows that Z(s) is positive real. Moreover, IF, G, 
-(HJ + P,G), (I  - .7'J)/2) is a completely controllable realiza- 
tion of Z(s). This realization of Z(s) is not necessarily completely 
observable, and so the positive real lemma is not immediately 
applicable; a modification is applicable, however. This modi- 
fication was given in Problem 5.2.2, and also appears as a lemma 
in [3]; it states that there exist real matrices P,, L, and W. with 
P, nonnegative dejnite symmetric satisfying 

P,F + F'P, = -LL1 

PzG = -(HJ + P,G) - LW, (7.2.8) 

I - T J =  w;w, 
Now set P = P, + P,; P is positive dehite symmetric because 
P, is positive definite symmetric and P, is nonnegative definite 
symmetric. Combining the first of Eqs. (7.2.8) with (7.2.5) we 
obtain 

PF+ F'P= - H Z - L C  

while 

-PG = HJ+ LW, 

I -  J 'J= WLW, 

are immediate from (7.2.8). These are precisely the equations of 
the bounded real lemma, and accordingly the proof is complete. 
v v v  

Other proofs not relying on application of the positive real lemma are of 
course possible. In fact, we can generate a proof corresponding to each 
necessity proof of the positive real lemma. The problems at the end of this 
section seek to outline development of two such proofs, one based on a 
network synthesis result and energy-balance arguments, the other based on a 
quadratic variational problem. 
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Example Let S(s) = s/(s + 1). It is easy to verify that S(s) has a minimal realization 
7.2.1 ( - ] , I ,  -1, 1). Further, one may check that Eqs. (7.2.1) are satisfied 

with P = 1, L = 1, and W, = 0. Thus S(s) is bounded real and 

is such that I - S(-s)S(s)= W(-s)W(s). 

The Lossless Bounded Real Lemma 

The lossless bounded real lemma is a specialization of the 
bounded real lemma to lossless bounded real matrices. Recall that a lossless 
bounded real matrix is a bounded real matrix S(s) satisfying the additional 
restriction 

The lemma is as follows. 

Lossless Bounded Real Lemma. Let S(s) be an m X m 
matrix of real rational functions of a complex variable s, with 
S(w) < w ,  and let {F, G, H, J)be a minimal realization of S(s). 
Then S(s) is lossless bounded real if and only if there exists a 
(real) positive definite symmetric matrix P such that 

PF + F'P = - HH' 

Proof. Suppose first that S(s) is lossless bounded real. By the 
bounded rea1 lemma and the fact that S(s) is simply bounded real, 
there exist matrices P, L, and W,satisfying the regular bounded 
real lemma equations and such that 

where 

W(s) = W, + L'(sI - F)-'G (7.2.2) 

Applying the lossless constraint, it follows that W'(-s)W(s) = 0, 
and setting s = jo we see that W(ja) = 0 for all o. Hence W(s) 
= 0 for all s, implying W, = 0, and, because [F, G] is completely 
controllable, L = 0. When W, = 0 and L = 0 are inserted in the 
regular bounded real lemma equations, (7.2.10) result. 

Conversely, suppose that (7.2.10) hold. These equations are 
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a special case of the bounded real lemma equations, correspond- 
ing to W, = 0 and L = 0, and imply that S(s) is bounded real 
and, by (7.2.2) and (7.2.4), that I - S'(-s)S(s) = 0 ;  i.e., S(s) is 
lossless bounded real. V V V 

Example Consider S(s) = (s - l)/(s +- I), which has a minimal realization 
7.2.2 (-1.1, -2, I). We see that (7.2.10) are satisfied by taking P = [2], a 

positive definite matrix. Therefore, S(s) is lossless bounded real. 

Problem Using the bounded real lemma, prove that S(s) is hounded real if S(s) 
7.2.1 is bounded real, and louless bounded real if S(s) is lossless bounded real. 

Problem This problem requests a necessity proof of the bounded real lemma via 
7.2.2 an advanced network theory result. This result is as follows. Suppose 

that S(s)is bounded real with minimal statespace realization[F, G, H, J). 
Then there exists a network of passive components synthesizing S(s), 
where, in the statespace equations i = Fx f Gu, y = H'x f Ju, one 
can identify u = $(v + i)), v and i being port voltage and current, and 
y = t(u - i). Check that the instantaneous power flow into the network 
is given by u'u - y'y. Then proceed as in the corresponding necessity 
proof of the positive real lemma to genemte a necessity proof of the 
bounded real lemma. 

Problem This problem requests a necessity proof of the bounded real lemma via 
7.2.3 a quadratic variational problem. The timedomain statement of the fact 

that S(s) with minimal realization (F, G, H, J ]  is hounded real is 

for all I, and u( . )  for which the integrals exist. Put another way, if x(0) 
= 0 and i i. Fx f Gu, 

for all t ,  and u(.) for which the integrais exist. 
To set up the variational problem, i t  is necessary to assume that 

I - I'J = R is positive definite, as distinct from merely nonnegative 
definite. The variational problem becomes one of minimizing 

subject to i = Fx + Gu, x(0) = x.. 
(a) Prove that the optimal performance index is bounded above and 

below if S(s) is bounded real, and that the optimal performance index 
is x!,lT(O, t,)x,, where II(., t i)  satisfies a certain Riccati equation. 
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(b) Show that lim,,,, n(t, t , )  exists, is independent of 1, and satislies 
a quadratic matrix equation. Generate a solution of the bounded real 
lemma equations. 

Problem Let S(s) = + 2). Show from the bounded real definition that 
7.2.4 S(s) is bounded real, and find a solution of the bounded real lemma 

equations. 

7.3 SOLUTION OF THE BOUNDED REAL 
LEMMA EQUATIONS* 

In this section our aim is to indicate how triples P, L, and W, 
may be found that satisfy the bounded real lemma equations 

We shall consider fust the special case of a lossless bounded real matrix, 
corresponding t o L  and W, both zero. This case turns out subsequently to 
& important and is immediately dealt with. Setting L and W, to zero in 
(7.3.1), we get 

PF+ F'P= -HH' 
-PG = HJ 

Because Re AXF) < 0 and [F, HI is completely observable, the first equation 
is solvable to yield a unique ~bluti011 P. The second equation has to auto- 
matically be satisfied, while the third does not involve P. Thus solution of 
the lossless bounded real lemma equations is equivalent to solution of 

We now turn to the more general case. We shall state most of the results 
as theorems without proofs, the proofs following closely on corresponding 
results associated with the positive real lemma equations. 

A Special Solution via Spectral Factorization 

The spectral factorization result of Youla [4], which we have 
referred to previously, will establish the following result. 

*This section may be omitted at a first reading. 
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Theorem 7.3.1. Consider the solution of (7.3.1) when {F, G, H, 
J) is a minimal realization of an m x m bounded real matrix S(s). 
Then there exists a matrix W(s) such that 

I - s-(-s)S(s) = w y - s )  W(s) (7.3.3) 

with W(s) computable by procedures specified in [4]. Moreover, 
W(s) satisfies the following properties: 

1. W(s) is r x m, where r is the normal rank of I - S(-s)S(s). 
2. All entries of W(s) are analytic in Re [s] 2 0. 
3. W(s) has rank r throughout Re [s] > 0; equivalently, W(s) 

possesses a right inverse whose entries are analytic in Re [s] 
> 0. 

4. W(s) is unique to within left multiplication by an arbitrary 
r x r real orthogonal matrix. 

5. There exist matrices W, and L such that 

W(s) = W, + L'(sI - F)-'G (7.3.4) 

with L and W, readily computable from W(s), F, and G. 

The content of this theorem is the existence and computability via a tech- 
nique discussed in I41 of a certain transfer-function matrix W(s). Among 
various properties possessed by W(s) is that of the existence of the decom- 
position (7.3.4). 

The way all this relates to the solution of (7.3.1) is simple. 

Theorem 7.3.2. Let W(s) = W, + L'(sI - F)-'G be as de- 
scrjbed in Theorem 7.3.1. Let P be the solution of the first of 
Eqs. (7.3.1). Then the second and third of Eqs. (7.3.1) also hold; 
i.e., P, L, and W, satisfy (7.3.1). Further, P is positive definite 
symmetric and is independent of the particular W(s) of the family 
described in Theorem 7.3.1. 

Therefore, the computations involved in obtaining one solution of (7.3.1) 
break into three parts: the determination of W(s), the determination of L 
and W,, and the determination of P. While P is uniquely defined by this 
procedure, L and W, are not; in fact, L and W, may be replaced by LV' 
and VW. for any orthogonal V. 

In the case when W(s) is scalar, the computations are not necessarily 
difficult; the "worst" operation is polynomial factorization. In the case of 
matrix W(s), however, the computational burden is much greater. For this 
reason we note another procedure, again analogous to a procedure valid for 
solving the positive real lemma equations. 



31 6 BOUNDED REAL MATRICES CHAP. 7 

A Special Solution via a Riccati Equation 

A preliminary specialization must be made before this method is 
applied. We require 

R = I - J ' J  (7.3.5) 

to be nonsingular. As with the analogous positive real lemma equations, we 
can justify imposition of this restriction in two ways: 

1. With much greater complexity in the theory, we can drop the restric- 
tion. This is essentially done in [5]. 

2. We can show that the task of synthesizing a prescribed S(s)-admittedly 
a notion for which we have not yet given a precise definition, but cer- 
tainly the main application of the bounded real lemma-for the case 
when R is singnlar may be reduced by simple transformations, described 
in detail subsequently in our discussion of the synthesis problem, to the 
case when R is nonsingular. 

In a problem at the end of the last section, the reader was requested to 
prove Theorem 7.3.3 below. The background to this theorem is roughly as 
follows. A quadratic variational problem may be defined using the matrices 
F, G, H, and J of a minimal state-space realization of S(s). This problem is 
solvable precisely when S(s) is bounded real. The solution is obtained by 
solving a Riccati equation, and the solution of the equation exists precisely 
when S(s) is hounded real. 

Theorem 7.3.3. Let {F, C, H, J }  be a minimal realization of a 
bounded real S(s), with R = I - J'J nonsingular. Then II(t, t , )  
exists for all t < t , ,  where 

-E = n ( F  + GR-~J'H? + (F 3- G R - ~ J ' H ~ ' ~  
dt 

- I~GR-~G'II  - HH' - HJR-'J'H' (7.3.6) 

and II(t,,  t,) = 0. Further, there exists a constant negative 
definite symmetric matrix i=f given by 

R = am n ( t ,  t , )  =!mII(t, t , )  (7.3.7) 
*,- 

and a satisfies a limiting version of (7.3.6), viz., 

R(F + G R - I J ' ~  + (F + CR-~J'HO'Z~ - i = f c ~ - ~ ~ ' i i  

- HH' - HJR-'J'H' = 0 (7.3.8) 

The significance of i=f is that it defines a solution of (7.3.1) as follows: 
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Theorem 7.3.4. Let ii be as above. Then P = -R, L = 
( i tG - HJ)R-I/2, and W, = R'" are a solution triple of(7.3.1). 

The proof of this theorem is requested in the problems. It follows simply 
from (7.3.8). Note that, again, L and W, may be replaced by LV' and VW, 
for any orthogonal V. 

With the interpretation of Theorem 7.3.4, Theorem 7.3.3 really provides 
two ways of solving (7.3.1); the first way requires the solving of (7.3.6) 
backward in time till a steady-state solution is reached. The second way 
requires direct solution of (7.3.8). 

We have already discussed techniques for the solution of (7.3.6) and (7.3.8) 
in connection with solving the positive real lemma equations. The ideas are 
unchanged. Recall too that the quadratic matrix equation 

,Y(F + GR-'J'H') + (F + GR-'SH')'X - XGR-IG'X 

- HH' - HJR-'SH' = 0 (7.3.9) 

in general has a number of solut~ons, only one of which is the limit of the 
associated Riccati equation (7.3.6). Nevertheless, any solution of (7.3.9) will 
define solutions of (7.3.1), since the application of Theorem 7.3.4 is not 
dependent on using that solution of (7.3.9) which is also derivable from the 
Riccati equation. 

The definitions of P, L, and W, provided by Theorem 7.3.4 always generate 
a spectral factor W(s) = W, + L'(s1- F)-'G that is of dimension m x m; 
this means W(s) has the smallest possible number of rows. 

Connection of Theorems 7.3.2 and 7.3.3 is possible, as for the positive 
real lemma case. The connection is as follows: 

Theorem 7.3.5. Let P be determined by the procedure outlined 
in Theorem 7.3.2 and Ti by the procedure outlined in Theorem 
7.3.3. Then P = -ii. 

In other words, the spectral factor generated using the formulas of Theorem 
7.3.4, when I3 is determined as the limiting solution of the Rimt i  equation 
(7.3.6), is the spectral factor defined in [4] with the properties listed in 
Theorem 7.3.1 (to within Left multiplication by an arbitrary m X m real 
orthogonal matrix). 

Example Consider S(s) + 2), which can be verified to be bounded real. 
7.3.1 Let us first proceed via Theorem 7.3.1 to compute solutions to the 

bounded real lemma equations. We have 
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We see that W(s) = ( s  + a s  + 9 - 1  satisiiesall the conditions listed 
in the statement of Theorem 7.3.1. Further, a minimal realization for S(s) 
is ( -2 ,  I ,  f l, 01, and for W(s) one is readily found to be ( -2 ,1 ,  
-2 +a, 1 ) .  The equation for P is simply 

As Theorem 7.3.2 predicts, we can verify simply that the second and 
third of Eqs. (7.3.1) hold. 

Let us now follow Theorem 7.3.3. The R i c ~ t i  equation is 

from which 
-(z - JQ1 - eZfiLzl-01 

a c t ,  r , )  = 1 - [(2 - 2 / 2 ) / ( 2  + JT)lezfi~fl-t) 

Clearly n ( t ,  r,) exists for all t 5 t , ,  and 

il = lim n(t, t , )  = -(2 - 0) ,--- 
This is the correct value, as predicted by Theorem 7.3.5. We can also 
solve (7.3.1) by using any solution of the quadratic equation (7.3.8). 
which here becomes 

One solution is -(2 - a), as we have found. The other is 
-(2 + 0. This leads to P = 2 +a, L = -2 - fl, while still 
W. = 1. The spectral factor is 

So far, we have indicated how to obtain special solution P of (7.3.1) and 
associated L and W,; also, we have shown how to find a limited number of 
other P and associated L and W, by computing solutions of a quadratic 
matrix equation differing from the limiting solution of a Riccati equation. 
Now we wish to find all solutions of (7.3.1). 
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General Solution of the Bounded Real Lemma 
Equations 

We continue with a policy of stating results in theorem form 
without proofs, on account of the great similarity with the analogous calcu- 
lations based on the positive real lemma. As before, we convert in two steps 
the problem of solving (7.3.1) to the problem of solving a more or less 
manageable quadratic matrix inequality. 

We continue the restriction that R = I - J'Jbe nonsingular. Then we have 

Theorem 7.3.6. Solutionof (7.3.1) is equivalent, in a sense made 
precise below, to the solution of the quadratic matrix inequality 

PF $- F'P -HH' - (PG + HJ)R-'(PG + HJ)' (7.3.10) 

which is the same as 

P(F+ GR-'J'H') + (F + GR-IJ'H')'P 

$- PGR-'G1P + HH' 4- HJR-'J'H' < 0 (7.3.11) 

If P,L, and W, satisfy (7.3.1), then P satisfies (7.3.10). If P 
satisfies (7.3.10), then P together with some matrices L and W, 
satisfies (7.3.1). The set of all such L and W, is given by 

where V ranges over the set of real matrices for which YV' = I, 
the zero block in the definition of W; contains the same number 
of columns as N, and N is a real matrix with minimum number 
of columns such that 

PF + F'P = -HH' - (PG + HJ)R-'(PC + HJ)' - NN' 
(7.3.13) 

A partial proof of this theorem is requested in the problems. Essentially, 
it says that P satisfies (7.3.1) if and only if P satisfies a quadratic matrix 
inequality, and L and W, can be computed by certain formulas ifpis  known. 

Observe that the matrices P satisfying (7.3.10) with equality are the nega- 
tives of the solutions of (7.3.9). In particular, P = -Zt satisfies (7.3.10) with 
equality, where ii is the limiting solution as t approaches minus iniinity of 
the Riccati equation (7.3.6). 

The next step is to replace (7.3.10) by a more manageable inequality. 
Recalling that P satisfies (7.3.10) with equality, it is not difficult to prove the 
following: 
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Theorem 7.3.7. Let Q = P - F, where P is defined as above. 
Then P satisfies (7.3.10) if and only if Q satisfies 

QE+ PQ < -QGKrc 'Q (7.3.14) 

where 
P = F + GR'IPH' + GR-'G'p (7.3.15) 

Solution procedures for (7.3.14) have already been discussed. As one 
might imagine, the choice of as the negative of the limiting solution of the 
Riccati equation (7.3.6) leads to possessing nonpositive real part eigen- 
values, and thus to Q being nonnegative definite. 

At this point, we conclude our discussion. The main point that we hope 
the reader has grasped is the essential similarity between the problem of 
solving the positive real lemma equations and the bounded real lemma 
equations. 

Problem Prove Theorem 7.3.4. 
7.3.1 

Problem Prove that if P satisfies Eqs. (7.3.1), then P satisfies the inequality (7.3.10). 
7.3.2 Verify that if P satisfies (7.3.10) and L and Wo are defined by (7.3.12). 

then (7.3.1) holds. 

Problem Let S(s) = # - &/(s + I). Find a minimal realization [F, G, H, J )  fot 
7.3.3 S(s). Find a W(s) with all the properties listed in Thwrem 7.3.1 and con- 

struct a realization {F, G, L, W,]; determine a P such that (7.3.1) holds. 
Also set up a quadratic equation determining two P safisfying (7.3.1); 
find these P and the associated W(s). Finally, find all P satisfying (7.3.1). 

7.4 REClPROClTV IN STATE-SPACE TERMS 

As we have noted in the introduction to this chapter, there are 
advantages from the point of view of solving synthesis problems in stating 
the constraints applying to the matrices in a state-space realization of a 
symmetric transfer function. Without further ado, we state the first main 
result. For the original proof, see [q. 

Theorem 7.4.1. Let W(s) be an m x m matrix of real rational 
functions of s, with W(w) < m. Let (F, G, H, J) be a minimal 
realization of W(s). Then W(s) = W'(s) if and only if 

and there exists a nonsingular symmetric matrix P such that 
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Proof. First suppose that W(s) = W'(s). Equation (7.4.1) is 
immediate, by settings = m. Symmetry of W(s) implies then that 

so that {F, G, H ]  and{Ff, -H, -G] are two minimal realizations 
of W(s) - J. It follows that there exists a nonsingular matrix P,  
not necessarily symmetric, such that 

The first two of these equations imply Eqs. (7.4.2). 
It also follows that P is unique. This is a general property of 

a coordinate-basis transformation relating prescribed minimal 
realizations of the same transfer-function matrix, but may be seen 
in this particular care by the following argument. Suppose that 
PI and P, both satisfy (7.4.2). Set P, = P, - P,, so that P3F 
= F'P, . and P,G =r 0. Then P,FG = F'P,G = 0, and more 
generally P3FfG = 0, or P3[G FG . . . Fm-'GJ = 0, where n is the 
dimension of F. Complete controllability implies that P3 = 0 or 
PI = P,, establishing uniqueness. 

Having proved the uniqueness of P, to establish symmetry is 
straightforward. Transposing the first and last equations of 
(7.4.3) yields 

F'P' = P'F 

P C = - H  

Now compare Eqs. (7.4.4) with (7.4.2). We see that if P satisfies 
(7.4.2), so does P'. By the uniqueness of mafrices P satisfying 
(7.4.2), P = P' as required. 

Now we prove the converse. Assume (7.4.1) and (7.4.2). Then 

The third equality follows by using (7.4.2); the remainder is 
evident, and the proof is complete. V O V 

In the statement of the above theorem we restricted W(s) to being such 
that W(m) < ca. If W(s) is real rational but does not satisfy this constraint, 
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we may write W(s) = . . . + W,sl + W , s  + J +- H'(sZ- F)-'G. Then 
Theorem 7.4.1 applies with the addition of W ,  = W:, W2 = W;, - - . , to 
Eq. (7.4.1). 

Calculation of P 

Just as we have foreshadowed the need to use solutions of the 
positive real lemma equation in applications, so we make the point now that 
it will be necessary to use the matrix P in later synthesis calcuiations. For this 
reason, we note here how P may be calculated. 

For notational convenience, we define 

as the controllability and observability matrices associated with W(s). It will 
be recalled that F i s  assumed to be n x n, and that V, and V. will have rank 
n by virtue of the minimality of (F, G, H, J ] .  

From (7.4.2) we have 
. . 

PC = -H 

PFG = FPG = -F'H 
PFZG = FPFG = -(F3'H 

and generally 

PFG = -(F'YH 

I t  follows that 

PV< = -V, 

or 

P=(-V,V:)(v,v:)-'  . ' (7.4.5) 

with the inverse existing by virtue of the full rank property of V,. 

Example Consider the scaIar transfer function W(s) = (s f lXs3 + s2 + s + I)-' 
7.4.1 for which a minimal realization is 

The controllability and obse~ability matrices are 
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and 

Observe that P, as required, is symmetric. The satisfaction of (7.4.2) is 
easily checked. 

Developments from Theorem 7.4.1 

We wish to indicate certain consequences of Theorem 7.4.1, 
including a coordinate-basis change that results in Eqs. (7.4.2) taking a 
specially simple form. 

Because P is symmetric and nonsingular, there exists a nonsingular matrix 
T such that 

where Z is a diagonal matrix of the form 

Here, if F is n x n, we have k, f k, = n. We note the foUowing important 
result: 

Theorem 7.4.2. The integers k, and k, above are uniquely 
defined by W(s) and are independent of the particular minimal 
realization of W(s) used to generate P. 

Proof. Suppose that {F,, G,, H,, J )  and (F,, G,, H,, J )  are two 
minimal realizations of the same W(s) = W'(s), with T a non- 
singular matrix such that TF,T-1 = F,, etc. Then if P, andP, are 
the solutions of (7.4.2) corresponding to the two realizations, it is 
easily checked that PI =. TIP,T. It follows that P, and P, have 
identical numbers of posltlve and negative real eigenvalues. But 
k, and k, are, respectively, the number of positive and the number 
of negative eigenvalues of PI or P,; thus k, and k, are uniquely 
dehed by W(s). V V V 

In the sequel thecomputation of Tfrom P will be required. This is actually' 
quite straightforward and can proceed by simple rational operations on the 
entries of P. Reference [7] includes two techniques, due to Lagrange and 



324 BOUNDED REAL MATRICES CHAP. 7 

Jacobi. The matrix Tis not unique and may be taken to be triangular. If k ,  
and k ,  above are required rather than T, these numbers can be computed 
from the signs of the principal leading minors of P without calculation of T. 
As shown in [7], if D, is the value of the minor of P obtained by deleting all 
but the first i rows and columns, and if D, # 0 for all i, then k ,  is the number 
of permanences of sign of the sequence 1, D,,  D,, . . . , D,. (If one or more 
D, is zero, a more complicated rule applies.) Given k , ,  k, is immediately 
obtained as n - k , .  

Now let us note a coordinate-basis change that yields an interesting form 
for Eqs. (7.4.2). 

With T such that P = T'XT, define a new realization {F, ,  G I ,  H, ,  J )  of 
W(s) by 

F, = TFT-1 G ,  = TG H ,  = (T-')'H (7.4.8) 

Then it is a simple matter to check that Eqs. (7.4.2) in the new coordinate 
basis become 

Dl = F;X ZG, = -HE (7.4.9) 

so that 

and if G; = [G:,  G;,], then Hi = [-G:, Gl,] 
Since Tis not unique, F , , ,  F,,, etc., are also not unique, although k ,  and 

k ,  are unique. 
We sum up this result as follows: 

Theorem 7.4.3. Let W(s) be a symmetric matrixof real rational 
functions of s with W(m) < oo. Let {F, G,  H, J ]  be a minimal 
realization. Then there exists a nonunique minimal realization 
IF,, G , ,  H,,  J }  with F ,  = TFT-1, G ,  = TG, and H, = (T-')'H, 
the matrix T being defined below, such that 

XF, = F;X XG, = -HI 

Here the matrix C is of the form I,, + (-Ix,), with k ,  and k ,  
determined uniquely by W(s). With P the unique symmetric 
solution of PF = F'P, PG = -H, any decomposition of P as 
P = T'XT yields T. 

Problem Suppose that W(s) is a scalar with minimal realization (F, G, H, J ] ,  
7.4.1 with F of dimension n x n. Suppose also that W(s) is expanded in the 

form 
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so that w, = H'F'G. By examining VLPV,, where P is a solution of 
PF = F'P and PG = -H, conclude that k,  and k, are the number of 
negative eigenvalues and positive eigenvalues respectively of the matrix 

Problem Suppose that W(s) = W'(s), and that (F, G, H, J )  is a realization for 
7.4.2 W(s) with the property that XF = F'X and ZG = -H for some 

= I - 1  Show that a realization (F,, GI, H,, J ]  with 
F, = TIIT-', etc., will satisfy XF, = FiZ and ZG, = -H, if and only 
if T'ZT= X. 

Problem Suppose that W(s)  = (s -i- I)/(s + 2)(s + 3). Compute the integers k ,  
7.4.3 and kz of Theorem 7.4.2. 

Problem Let 

Find P such that PF = F'P, PG = -H, and then Tsuch that T%T= P. 
Finally, determine F, = TFT-l, C, = TG, HI = (T-1)'H, and check 
that ZF, = FiI: and ZG,  = -HI for some appropriate E. 
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Part V 

NETWORK SYNTHESIS 

In this part our aim is to apply the algebraic descriptions of the 
positive real, bounded real, and reciprocity properties to the 
problem of synthesis. We shall present algorithms for passing 
from prescribed positive real immittance and bounded real 
scattering matrices to networks whose immittance or scattering 
matrices are identical with those prescribed. We shall also pay 
attention to the problem of reciprocal (gyratorless) synthesis 
and to synthesizing transfer functions. 



Formulation of State-Space 
Synthesis Problems 

8.1 AN INTRODUCTION TO SYNTHESIS 
PROBLEMS 

In the early part of this book we were largely preoccupied with 
obtaining analysis results. Now our aim is to reverse some of these results. 
The reader will recall, for example, that the impedance matrix Z(s) of a pas- 
sive network N is positive real, and that G[Z(s)J is less than or equal to the 
number of inductors and capacitors in the network N.* A major synthesis 
result we shall establish is that, given a prescribed positive real Z(s), one can 
find a passive network with impedance Z(s) containing precisely the mini- 
mum possible number 6[Z(s)] of reactive elements. Again, the reader will 
recall that the impedance matrix of a reciprocal network N is symmetric. 
The corresponding synthesis result we shall establish is that, given a pre- 
scribed symmetric positive real Z(s), we can lind a passive network with 
impedanceZ(s) wntainingprecisely 6[Z(s)] reactive elements and no gyrators. 

Statements similar to the above can be made regarding hybrid-matrix 
synthesis and scattering-matrix synthesis. We leave the details to later sec- 
tions. 

Generally speaking, we shall attempt to solve synthesis problems by con- 
verting them in some way to a problem of matrix algebca, and then solving 

*This second point was established in a section that may have been omitted at a first 
reading. 
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the problem of matrix algebra. In this chapter our main aims are to formu- 
late, but not solve, the problems of matrix algebra and to indicate some 
preliminary and minor, but also helpful, steps that can be used to simplify 
a synthesis problem. Sections 8.2 and 8.3 are concerned with converting 
synthesis problems to matrix algebra problems for, respectively, impedance 
(actually including hybrid) matrices and scattering matrices. Section 8.4 is 
concerned with presenting the preliminary synthesis steps. 

Solutions to the matrix algebra problems-which amount to solutions of 
the synthesis problems themselves-will be obtained in later chapters. In 
obtaining these solutions, we shall make great use of the positive real and 
bounded real lemmas and the state-space characterization of reciprocity. 

The reader will probably appreciate that impedance (or hybrid) matrix 
synthesis and scattering-matrix synthesis constitute two sides of the same 
coin, in the following sense. Associated with an impedance Z(s) there is 
a scattering matrix 

A synthesis of Z(s) automatically yields a synthesis of S(s), and conversely. 
It might then be argued that the separate consideration of impedance- and 
scattering-matrix synthesis is redundant; however, the insights to be gained 
from separate considerations are great, and we have no hesitation in offering 
separate consideration. This is entirely consonant with the ideas expressed 
in books dealing with network synthesis via classical procedures (see, e.g., 
[I]). 

8.2 THE BASIC IMPEDANCE SYNTHESIS 
PROBLEM 

In this section we shall examine from a state-space viewpoint 
broad aspects of the impedance synthesis problem. In the past, many classical 
multiport synthesis methods made use of the underlying idea of an early 
classical synthesis called the Darlington synthesis (see [I]), the idea being that 
of resistance extraction, which we deline below. With recent developments in 
the theory of state-space characterization of a real-rational matrix, a new 
synthesis concept has been discovered-the reactance-extraction technique, 
again defined below. The technique appears to have originated in a paper by 
Youla and Tissi 121, which deals with the rational bounded real scattering 
matrix synthesis problem. Later Anderson and Newcomb extended use of 
the concept to the rational positive real impedance synthesis problem [3]. 
Indeed, the technique plays a prominent role in the modern theory of state- 
space n-port network synthesis, as we shall see subsequently. We shall now 
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formulate the impedance synthesis problem via (I) the resistance-extraction 
approach, and (2) the reactance-extraction approach. 

We shall assume throughout this section that there is prescribed a rational 
positive real Z(s) that is to be synthesized, with Z(s) m x m, and with Z(m)  
< ao. Although the property that Z ( w )  < m is not always possessed by 
rational positive real matrices, we have noted in Section 5.1 that a rational 
positive real Z(s) may be expressed as 

where L is nonnegative definite symmetric, and Z,(s) is rational positive real 
with Z,(oo) < m. [Of course, the computations involved in breaking up 
Z(s) this way are straightforward.] It follows then that a synthesis of Z(s) 
is achieved by a series connection of syntheses of sL and Z,(s). The synthesis 
of sL can be achieved in a trivial manner using transformers and inductors; 
the details are developed in one of the problems. So even if the original Z(s) 
does not have Z(ao) < m, we can always reduce in a simple manner the 
problem of synthesizing a positive real Z(s) to one of synthesizing another 
positive real Z,(s) with the bounded-at-infinity property. 

The Resistance-Extraction Approach to Synthesis 

The key idea of the resistance-extraction technique lies in viewing 
the network N synthesizing the prescribed Z(s) as a cascade interconnection 
of a lossless subnetwork and positive resistors. Since any positive resistor r 
is equivalent to a transformer of turns ratio f i: 1 terminated in a unit 
resistor, we can therefore assume all resistance values to be 1 C2 by absorbing 
in the lossless subnetwork the transformers used for normalization. On 
collecting these unit resistors, p in number, into a subnetwork A',, we see 
that N, loads a lossless (m +p)  port N, to yield N, as shown in Fig. 8.2.1. 

The synthesis problem falls into two parts. The first part requires the deri- 
vation of a lossless positive real hybrid matrix X(s) of size (m + p) x 

r - - - - - - - - - - - - - - - -  - -  1 
I I 

Lossless 
Z(s)  - ;-Ft--JFl I 

NL NL 
I 
I 

FIGURE 8.2.1. Resistance Extraction to Obtain a Lossless 
Coupling Network. 



332 FORMULATION OF STATE-SPACE PROBLEMS CHAP. 8 

(m + p) from the given m x m positive real Z(s) such that termination in 
unit resistors of the last p ports of a network synthesizing X(s) results in 
Z(s) being observed at the unterminated ports. The second part requires 
the synthesis of the lossless positive real X(s). As we shall later see, the 
lossless character of X(s) makes the problem of synthesizing X(s) an easy 
one. The difficult problem is to pass from Z(s) to X(s), and we shall now 
discuss this in a little more detail. 

Let us now translate the basic concept of the resistance-extraction tech- 
nique into a true state-space impedance synthesis problem. Consider an 
(m +p>port lossless network N,, as shown in Fig. 8.2.2. Let us identify 

FIGURE 8.2.2. An (m +p)-port Lossless Network. 

an input m vector u with the currents and a corresponding output m vector 
y with the voltages at the left-hand m ports of N,. Let a p  vector u, denote 
the inputs at the right-hand p ports, where the i'h component u,, of u,  is 
either a current or a voltage, and let a p vector y ,  denote the corresponding 
outputs with the ith component y,; being the quantity dual to u,,, i.e., either 
a voltage or a current. Assume that we know the hybrid matrix X(s) describ- 
ing the port behavior of N,, and that [F,, G,, H,, JJ isa minimal realization 
of 3e(s). Then we can describe the port behavior of NL by the following 
time-domain state-space equations: 

We shall denote the dimension of the realization IF,, G,; H,, J,] by n. 
Because NL is lossless, .the quadruple {F,, G,, H,, J,) satisfies the lossless 

positive real lemma equations, i.e., the equations 

should hold for a symmetric positive definite n x n matrix P. 



SEC. 8.2 THE BASIC IMPEDANCE SYNTHESIS PROBLEM 333 

Now suppose that termination of the right-hand p ports of NL in unit 
resistors leads to the impedance matrix Z(s) being observed at the left-hand 
ports. The operation of terminating thesep ports in unit resistors is equiva- 
lent to forcing 

Therefore, the matrices F,, G, Hz, and J,, besides satisfying (8.2.3), are 
further restricted to those with the property that by setting (8.2.4) into (8.2.2) 
and on eliminating u, and y,, (8.2.2) must then reduce simply to 

with F, G, H, and J such that J + HJ(sI - F)-IG = Z(s). 
If N, is reciprocal, as will be the case when a symmetricZ(s) is synthesized 

by a reciprocal network, there is imposed on X(s) (and thus on the matrices 
F,, G,, H,, and J,) a further constraint, which is that X(s) = J, f- HL(sI 
- F,)-IG, should satisfy 

I: X(s) = X'(s) l: (8.2.6) 

for some diagonal matrix I: with only $1 and -1 entries, in which the + I  
entries correspond to the current-excited ports and the -1 entries to the 
voltage-excited ports in the definition of X(s). 

We may summarize these remarks by saying that if a network N synthe- 
sizing Z(s) is viewed as a lossless network N, terminated in unit resistors, 
andif the lossless network has a hybrid matrix X(s) with minimal realization 
{F,, G,, H,, J,], then (8.2.3) hold for some positive P, and under the substitu- 
tion of (8.2.4) in (8.2.2), the state-space equations (8.2.5) will be recovered, 
where {F, G, H, J )  is a realization of Z(s). The additional constraint (8.2.6) 
applies in case N is reciprocal. 

Now we reverse the line of reasoning just taken. Assuming for the moment 
the ready solvability of the lossless synthesis problem, it should be clear that 
impedance synthesis via the resistance-extraction technique requires the fol- 
lowing: Find'a minimal state-space realization {F,, G,, HL, JL} that charac- 
terizes N, via (8.2.2) such that 

1. For nonreciprocal networks, 
(a) the conditions of the lossless positive reallemma, (8.2.3), arefir@lled, 

and 
(b) under the constraint of (8.2.4), the set of equations (8.2.2) simpl$es 

to (8.2.5). 
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2. For reciprocal networks, 
(a) the conditions of the Iossless positive real lemma and the reciprocity 

property, corresponding to (8.2.3) and .(8.2.6), respecfively, are met, 
and 

(b) under the constraint of (8.2.4), the set of equations (8.2.2) simplges 
to (8.2.5). 

Before we proceed to the next subsection, we wish to make two com- 
ments. 

First, the entries of the vector u, have not been specified up to this point 
as being voltages or currents. Actually, we can demand that they be all cur- 
rents, or all voltages, or 'some definite combination of currents and volt- 
ages, and nonreciprocal synthesis is still possible for any assignation of. 
variables. However, as we shall see later, reciprocal synthesis requires us to 
label certain entries of u, as currents and the others as voltages according to 
a pattern determined by the particular Z(s) being synthesized: 

The second point is, that we have for the moment sidestepped the question 
of synthesizing a lossless hybrid matrix;X(s). Now lossleu synthesis prob- 
lems have been easily solved in classical network synthesis, and therefore it is 
not surprising to anticipate similar ease of synthesis via state-space proce- 
dures. However, when a lossless hybrid matrix X(s) is derived in the course 
of a resistance-extraction synthesis of a positive real Z(s), it turns out that 
synthesis of X(s) is even easier than if X(s) were simply an arbitrary loss- 
less hybrid matrix that was to be synthesized. We shall defer illustration 
of this point to a subsequent chapter dealing with actual synthesis 
methods. 

The Reactance-Extraction Problem 

In a similar fashion to the resistance-extraction idea, we again 
suppose that we have a network N synthesizing Z(s), but now isolate and 
separate out all reactive elements (inductors and capacitors), instead of 
resistors. Thus an m-port network N realizing a rational positive real Z(s) 
L viewed as an interconnection of two subnetworks N ,  and N,, as illustrated 
in Fig. 8.2.3. The subnetwork N ,  is a nondynamic (m + n) port, while the 
n port N, consists of, say, n, I-H inductors and n, 1-F capacitors with n, 
+ n, = n. Note that all inductors and capacitors may always be assumed 
unity in value. This is because an 1-H inductor may be replaced by a trans- 
former of turns ratio f i  1 terminated in a 1-H inductor with a similar 
replacement possible for capacitors; the normalizing transformers can then 
be incorporated into N,. 

In formulating the synthesis problem via the reactance-extraction tech- 
nique, it is more convenient to consider the nonreciprocal and reciprocal 
cases separately. 
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I N I 
, . - - - - - - - - - - - - - - - - - - J  

FIGURE 8.2.3. Reactance Extraction to Obtain a Non- 
dynamic Coupling Network. 

Reactance Extraction-Nonreciprocal Networks 

In the nonreciprocal case, gyrators are allowable as circuit el* 
ments. We can simplify the situation by assuming that all reactive elements 
present in the network N synthesizing Z(s) are of the same kind, i.e., either 
inductors or capacitors. This is always possible since one type of element may 
be replaced by the other with the aid of gyrators, as illustrated by the equiva- 
Iences of Fig. 8.2.4. (These equivalences may easily be verified from the basic 
direct element definitions.) Assume for the sake of argument that only induc- 
tors are used; then the proposed realization arrangement in Fig. 8.2.3 sim- 
plifies to that in Fig. 8.2.5. 

Although N possesses an impedance matrix Z(s) by assumption, there is 
however no guarantee that N, will possess an impedance matrix, though, as 

FIGURE 8.2.4. Element Replacements. 
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1 N I 
L - - - - - - - - - - - - - - - - - -  J 

FIGURE 8.2.5. Inductor Extraction. 

remarked earlier, a scattering matrix or a hybrid matrix must exist for N,. 
For the present purpose in discussing an approach to the synthesis problem, 
it will be sufficient to assume tentatively that an impedance matrix does 
exist for N,; this will be shown later to be true* when we actually tackle 
the synthesis of an arbitrary rational positive real matrix. 

Now because N, consists of purely nondynamic elements, its impedance 
matrix M is real and constant; it must also be positive real since N, consists 
of purely passive elements. Application of the positive real definition yields 
a necessary and sufficient condition for M to be positive 14 as 

Let the (m + n) x (m 4- n) constant positive real impedance matrix M be 
partitioned similarly to the ports of N, as 

where Z,,  is m x m, Z,, is n x n, etc. To relate these submatrices Z,, to 
the input impedanceZ(s) when N, is loaded by N,, consisting of n unit induc- 
tors, we note that the impedance of N, is simply sl,. It follows simply that 

Comparison with the standard equation 

*Suictly speaking, the existence of an impedance matrix for N, is guaranted only if 
the number of reactive elements used in N, in realizingZ(s) is a minimum (as shown earlier 
in Section 5.3). However, for the sake of generality, such a restriction on reactive-element 
minimality will not be imposed at this stage. 
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reveals immediately that a realization of Z(s) is given by 

We may conclude from (8.2.10) therefore that if we have on hand a non- 
reciprocal synthesis of Z(s), and if, on isolating all reactive elements (normal- 
ized) and with all capacitors replaced by inductors as shown in Fig. 8.2.5, 
A4 becomes the constunt impedance of the nondynamic network N,, ?hen this 
impedrmee matrix M determines one particular 'realization of Z(s) through 
(8.2.10). 

Conversely, then, if we have any realization {F, G, H, J ]  of a prescribed 
Z(s), we might think of trying to synthesize Z(s) by terminating a nondynamic 
N, in unit inductors, with the impedance matrix M of N, given by 

For an arbitrary state-space realization of Z(s), M may not be positive real. 
If M is positive real, it is, as  we shall see, very easy to synthesize a network 
N ,  with impedance matrix M. So if a realization of Z(s) can be found such 
that M is positive real, then it follows that a synthesis of Z(s) is given by N, 
as shown in Fig. 8.2.5, where the impedance matrix of N ,  exists, being that 
of (8.2.11), and is synthesizable. 

In summary, the problem of giving a nonreciprocal synthesis for a rational 
positive real Z(s) via the reactance-exfrac?ion technique is essentially this: 
among the infinitely many realizations of Z(s) with Z ( m )  arsumed to have 
finite entries,find one realizaiion (F, G, H, J ]  of Z(s) such that M of (8.2.11) is 
positive real, or equivalently, such that (8.2.7) Itolds. 

O f  course, if Z(s) is not positive real, there is certainly no possibility of 
the existence of such a realization {F, G, H, J )  of Z(s). 

We shall now consider the problem of giving a reciprocal synthesis for 
a symmetric rational positive real Z(sf via thc reactance-extraction approach. 

Reactance Extraction-Reciprocal Networks 

. When a synthesis of a symmetric rational positive real Z(s) is 
required to be reciprocal-(i.e., no gyrators may be used in the synthesis), 
the element replacements of Fig. 8.2.4 used for the nonreciprocal networks 
are not applicable, and we return to consider Fig. 8.2.3 as our proposed 
scheme for a reciprocal synthesis of Z(s). Of course, N ,  must be reciprocal if 
the network N synthesizing Z(s) is to be reciprocal. 

Suppose that N, is described by an ( m  + n) x (m + n) hybrid matrix M 
in which the excitations at the first m $ n, ports of N ,  are currents and those 
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at the remaining n, ports are voltages. Let M be partitioned as 

where M,,  ism x m and M,, is n x n. Because of the lack of energy storage 
elements, M is constant. Because N ,  is reciprocal, M satisfies 

and because N ,  is passive, M satisfies 

M +  M ' 2 O  

Now noting that the hybrid matrix of N, is simply st, with excitation vari- 
ables of N, appropriately defined, it is straightforward to see that the imped- 
ance observed at the input m ports of N ,  when loaded in N, is 

Examination of (8.2.15) reveals clearly that one state-space realization of 
Z(s) is given by 

IE, G, H, Jl = {-Mm Mzl, -M:z, MI11 (8.2.16) 

Conversely, apossible hybrid matrix M of NN, is 

where (F, G, H, J} is any realization of Z(s). Further, if a realization of Z(s) 
can be found such fhat M is positive real (i.e., M + M' 2 0) and (l, C 2)M 
is symmetric with Z an n x n diagonal matrix consisting of il and -1 
diagonal entries only, then it follows, provided M can be synthesized to yield 
N,, that a reciprocal synthesis of Z(s) is given as shown in Fig. 8.2.3, in 
which the hybrid matrix for N,is that of (8.2.17). As we shall see, the problem 
of synthesizing a constant hybrid matrix satisfying the passivity and reciproc- 
ity constraints is easy. 

In summary, the problem of giving a reciprocalnetwork synthesis for a sym- 
metric positive real impedance matrix Z(s) via the reactance-extraction tech- 
nique is essentially equivalent to the problem offinding a realization {F, G, H, J ]  
among the infinitely many realizations of Z(s), with Z(m) assumed to have 
fnite entries, such fhat M of (8.2.17) satiSfies (8.2.13) and (8.2.14). 

We can conclude from the resistan* and reactance-extraction problems 
posed in this section that the latter technique, that of reactance extraction, 
is the more natural approach to solving the synthesis problem from the state- 
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space point of view. This is so because the constant impedance or hybrid 
matrix of the nondynamic network N, (see Fig. 8.2.3) resulting fromextrac- 
tion of all reactive elements is closely associated through (8.2.1 1) or (8.2.17) 
with the four constant matrices F, C, H, and J, which constitute a state- 
space realization of the prescribed Z(s). On the other hand, an appropriate 
description for the lossless network N, resulting from extraction of all resis- 
tors (see Fig. 8.2.1) does not reveal any close association to F, C, H, and J 
in an obvious manner. 

Two additional points are worth noting: 

I. The idea of reactance extraction applies readily to the problem of 
hybrid-matrix synthesis. Problem 8.2.2 asks the reader to illustrate this 
point. 

2. Another important property that the reactance-extraction approach 
possesses, but the resistance-extraction approach does not. is its ready 
application to the lossless network synthesis problem. From the react- 
anceextraction point of view, the lossless synthesis problem is essen- 
tially equivalent to the problem of synthesizing a constant hybrid (or 
immittance) matrix that satisfies the losslessness and (in the reciprocal- 
network case) the reciprocity constraints. This problem, as will be 
seen subsequently, is an extremely easy one. The resistance-extrac- 
tion approach, on the other hand, essentially avoids consideration of 
lossless synthesis, assuming this can be carried out by classical proce- 
dures or by a state-space procedure such as a reactance-extraction 
synthesis. 

Problem Synthesize the lossless positive real impedance matrix sL, where L is 
8.2.1 nonnegafive definite symmetric. Show that if syntheses of sL and Zo(s) 

are available, a synthesis of sL + Z,(s) is easily achieved. (Hint: If L is 
nonnegative definite symmetric, there exists a matrix T such that L = 

T'T.) 
Problem Suppose that X(s) is an m x m rational positive real hybrid matrix with 
8.2.2 a statespace realization {F, C, H, J). Formulate thereactane&xtraction 

synthesis problem for X(s) for nonreciprocal and reciprocal cases, and 
derive the conditions required of IF, G,  H , J ]  for synthesis. 

Problem Verify Eq. (8.2.15). 
8.2.3 

8.3 THE BASIC SCATTERING MATRIX 
SYNTHESIS PROBLEM 

In this section we shall discuss the state-space scattering matrix 
synthesis problem in terms of the reactance-extraction method and the 
resistance-extraction method. As with the impedance synthesis problem, 
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matrices appearing in the descriptions of a nondynamic coupling network 
arising in the reactance-extraction method exhibit close links with a state 
space realization IF, G, H, J )  of the prescribed rational bounded real scatter- 
ing matrix S(s). The material dealing with the reactance-extraction method 
is based on [2], and that dealing with the resistance-extraction method is 
drawn from [4]. 

The Reactance-Extraction Problem 

As before, we regard an m port Nsynthesizing a rational bounded 
real S(s) as an interconnection of two subnetworks N, and N,, as shown in 
Fig. 8.23, except that we now have S(s) as the scattering matrix observed at 
the left-hand m terminals of N,, rather than Z(s) as the impedance matrix. 
The subnetwork N, is a nondynamic (m f n) port, while the n-port subnet- 
work N, consists of n, inductors and n, capacitors with n, + R, = n. If 
gyrators are allowed, then we may arrange for N, to consist of n inductors, 
and Fig. 8.2.5 applies in the latter case. 

Reactance Extraction-Reciprocal Networks. For the moment we wish to 
consider the reciprocal case in which N, contains no gyrators. In contrast to 
the impdance synthesis problem, we shall allow arbitrary choice of the values 
of the inductors and capacitors of N,. Assume that the n, inductors and n, 
capacitors are L,, L,, . . . , L,, henries and C,, C,, . . . , C., farads. Suppose 
that N, is described by a scattering matrix S.; then because of the reciprocity, 
lack of energy storage elements, and passivity of N,, S. is symmetric and 
constant, and the bounded real condition becomes simply 

Of course, S. is normalized to +1 at each of the m input ports (i.e., the left- 
hand m ports in Fig. 8.2.3) of N,. The normalization numbers for the output 
(right-hand side) n ports have yet to be specified. (A different set of nunrbers 
results in a diierent describing matrix S. for the same network N,.) A useful 
choice we shall make is 

We shall atso write down the scattering matrix of N,; the normalizing 
number of each port will be the same as the normalizing number at the 
corresponding port of N,. 

Now with normalization numberl, the reactance sL, possesses a scattering 
coefficient of 



SEC. 8.3 THE BASIC SCATTERING MATRIX PROBLEM 341 

for 1 = 1,2, . . . , n,, while with normalization number 1/C, the reactance 
I/sC, possesses a scattering coefficient of 

I = n, t- 1, . . . , n. Evidently the scattering matrix of N, is 

where 

X = in, + ( - 1 ) L  (8.3.4) 

If the resulting S. having the above normalization numbers is partitioned like 
the ports of N, as 

where S, ,  = S',, is m x m and S,, = S;,  is n x n, then the termination of 
N, in N ,  results in N with the prescribed matrix S(s). 

The calculation of S(s) from S, and B(s) has been done in an earlier chap- 
ter. The result is 

S(S) = S , ,  + Slz[B-'(s) - S,J''S\z 
s +  1 

= S , ,  + s,2(xx - s ~ ~ ) - ~ s ; ~  (8.3.6) 

= S , ,  4- S, ,(pi  - x S , 3 - 1 z S : ,  

with 

Therefore, we can view (8.3.7) as a change of complex variables, so that 
the function S(.) of the variable s may naturally be regarded as a function 
W(. )  of the variable p, via 
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I t  follows then that 

In  summary, if we have available a network N synthesizing S(s), this deter- 
mines a state-space realization of 

via (8.3.9), where the S,, are defined [see (8.3.5)] by partitioning of the scatter- 
ing matrix of the nondynamic part of N; further, S , ,  and S,, are symmetric 
and Eq. (8.3.1) holds. 

Conversely, we may state the reciprocal passive synthesis problem as 
follows. First, from S(s) form W(p) according to the change of variables 
(8.3.7), and construct a state-space realization of W@) such that quantities 
S,,, S,,, and S,, are defined via (8.3.9) by this realization, and S, in (8.3.5) is 
symmetric and satirjFes the passivity condition (8.3.1). Second, .synthesize S, 
with a nondynamic reciprocal network. (This step turns out to be straightfor- 
ward.) 

Let us now rephrase this problem slightly. On examination of (8.3.9), we 
can see that given Nand So, one possible state-space realization for W@) is 

(Fw, Gw, Hw JJ = (ZSzz, ZSi2. S'm s111 

Therefore 

s, = 11, + ZIM (8.3.10) 
where 

Note that the quadruple (F,, G., H,, J.1 obtained from the scattering 
matrix S, of N, via (8.3.10), although a state-space realization of W(p), is not 
(except in a chance situation) a state-space realization (F, G, H, J )  of the 
prescribed S(s). However, one quadruple may always be obtained from the 
other via a set of invertible relations; we shall state explicitly these relations 
in a later chapter. 

Considering again the synthesis problem, we see that we can state the 
symmetry condition and the passivity condition (8.3.1) on S, directly in 
terms of M as follows: 

and 
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This allows us to restate the passive reciprocal scattering matrix synthesis 
problem. 

1. Form a real rational W(p) from the prescribed rational bounded real S(s) 
via a change of variable defned in (8.3.7), and 

2. Derive a state-space realizatjon IF,, G,, H,, Jw} of W b )  such that with 
the definition (8.3.11), both (8.3.12) and (8.3.13) are fulfiled. 

As we shall show later, once 1 and 2 have been done, synthesis is easy. 

Reactance Extraction-Nonreciprocal Networks. We now turn our attention 
to the nonreciprocal synthesis case in which gyrators are m p t a b l e  as circuit 
elements. Suppose that a synthesis is available in this case; all reactances 
may be assumed inductive, since any capacitor may be replaced by a gyrator 
terminated in an inductor, as shown in Fig. 8.2.4, and the gyrator part may 
he then regarded as part of the nondynamic network N,. By choosing the 
normalization numbers for then inductively terminated ports of N, accord- 
ing to (8.3.2), this then determines a real constant scattering matrix S, for 
N,, which is a nonsyrnmetric matrix and satisfies the passivity condition 
(8.3.1). If we partition S, similarly to the ports of N, as 

and proceed as for the reciprocal case, we obtain, instead of (8.3.9), 

Thus, knowing N and S,, we can write down one state-space realization for 
W(P) as 

This may be rewritten as 

and the passivity condition of (8.3.1) in terms of M is therefore 

I - M r M > O  (8.3.13) 

The argument is reversible as for the reciprocal case. Hence we conclude 
that to solve the nonreciprocal scattering matrix synthesis problem via 
reactance extraction, we need to do the following things: 
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1. Form a real rational W(p) from the given rational bounded real S(s) via 
a change of variabfe (8.3.7), and 

2. Find a state-space realization {Fw, G,, H., J,] for W(p) such that with 
the definition of (8.3.16), the passivity condition (8.3.13) is satisfied. 

Once S, is known, synthesis is, as we shall see, very straightforward. There- 
fore, we do not bother to list a further step demanding passage from S, to 
a network synthesizing it. 

An important application of the reactance-extraction technique is to the 
problem of lossless scattering matrix synthesis. The nondynamic coupling 
network N, is lossless, and accordingly its scattering matrix is constant and 
orthogonal. The lossless synthesis problem is therefore essentially equivalent 
to one of synthesizing a constant orthogonal scattering matrix that is also 
symmetric in the reciprocal-network case. This problem turns out to be par- 
ticularly straightforward. 

The Resistance-Extraction Problem 

Consider an arrangement of an m port N synthesizing a prescribed 
rational bounded real S(s), as shown in Fig. 8.2.1, save that the scattering 
matrix S(s) [rather than an impedance matrix Z(s)] is observed at the left- 
hand ports of N,. Here a p-port subnetwork N, consisting of p uncoupled 
unit resistors loads a lossless (m + p)-port coupling network N, to yield N. 
Clearly, the total number of resistors employed in the synthesis of S(s) isp. 
Let S,(s) be the scattering matrix of N,, partitioned as the ports 

where S,,(s) is m x in and S,,(s) is p x p. The network N, is described by 
a constant scattering matrix S, = O,, and it is known that the cascade-load 
connection of N, and N, yields a scattering matrix S(s) viewed from the 
unterminated m ports that is given by 

Therefore, the top left m x m submatrix of S,,(s) of N, must necessarily be 
S(s). Since NL is lossless, S,(s) necessarily satisfies the lossless bounded real 
requirement S:(-s)S,(s) = I. 

We shall digress from the main problem temporarily to note an important 
result that specifies the minimum number of resistors necessary to physically 
construct a finite passive m port. It is easy to see that the requirement 
S',(-s)S,(s) = I forces, among others, the equation 
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Since S,,(s) is an m x p matrix, Sit(--s)S,,(s) has normal rank no larger 
than p. It follows therefore that the rank p of the matrix I - S(-s)S(s), 
called the resistivity matrix and designated by @(s), is at most equal to the 
number of resistors in a synthesis of S(s). Thus we may state the above result 
in the following theorem: 

Theorem 8.3.1. [4]: The number of resistors p in a finite pas- 
sive synthesis of S(s) is bounded below by the normal rank p of 
the resistivity matrix m(s) = I- S(-s)S(s); i.e., p 2 p. 

As we shall see in a later chapter, we can synthesize S(s) with exactly p 
resistors. 

The result of Theorem 8.3.1 can also be stated in terms of the impedance 
matrix when it exists, as follows (a proof is requested in the problems): 

Corollary 8.3.1. The number of resistors in a passive network 
synthesis of a prescribed impedance matrix Z(s) is bounded below 
by the normal rank p of the matrix ~ ( h )  + Z'(-s). 

Let us now return to the mainstream of the argument, but now considering 
the synthesis problem. The idea is to split the synthesis problem into two 
parts: first, to obtain from a prescribed S(s) (by augmentation of it with p 
rows and columns) a lossless scattering matrix S,(sFhere, p is no less than 
the rank p of the resistivity matrix; second, to obtain a network N, synthe- 
sizing S,(s). If these two steps are executed, it follows that termination of 
the appropriatep ports of NL will lead to S(s) being observed at the remaining 
m ports. 

Since the second step turns out to be easy, we shaU now confine discussion 
to the first step, and translate the idea of the first step into state-space terms. 
Suppose that the lossless (m +p) x (m + p )  S,(s) has a minimal state 
space realization {F,, G,, H,, J,), where FL is n x n. (Note that the dimen- 
sions of the other matrices are automatically fixed.) 

Let us partition G,, Hz, and JL as 

where G,, and H,, have m columns, and JL, has m columns and rows. 
Straightforward calculations show that 

It follows therefore from (8.3.18) that (F,, G,,, H,,, J,,) constitutes a state- 
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space realization (not necessarily minimal) of S(s). Also, the lossless property 
of N, requires the quadruple (F,, G,, H,, J,) to satisfy the following equa- 
tions of the lossless bounded real lemma: 

where P is an n x n positive definite symmetric matrix. 
Further, if a reciprocal synthesis N of a prescribed S(s) is required [of 

course, one must have S(s) = S'(s)], NL must also be reciprocal, and there- 
fore it is necessary that SL(s) = S:(s), or that 

Leaving aside the problem of lossless scattering matrix synthesis, we con- 
clude that the scattering matrix synthesis problem via resistance extraction is 
equivalent to the problem offinding constant matrices FL, C,, H,, and J, such 
that 

1. For nonreciprocal networks, 
(a) the conditions of the lossless bounded real lemma (8.3.21) are ful- 

jlled, and 
(b) with the partitioning as in (8.3.20), {F,, C,,, H,,, J,,] is a reali- 

zation of the prescribed S(s). 
2. For reciprocal networks, 

(a) the conditions of the lossless bounded real lemma (8.3.21) and the 
conditions of the reciprocity property (8.3.22) are fulfileii, and 

(b) with the partitioning as in (8.3.20), {F,, G,,, H,,, JL,) is a realiza- 
tion of the prescribed matrix S(s). 

As with the impedance synthesis problem, once a desired lossless scattering 
matrix S, has been found, the second step requiring a synthesis of SL is 
straightforward and readily solved through an application of the reactance- 
extraction technique considered previously. This will be considered in detail 
later. 

Problem Comment on the significance of the change of variables 
8.3.1 

and then give an interpretation of the (frequency-domain) bounded real 
properties of S(s) in t e m ~ ~  of the real rational 
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Does there exist a one-to-one transformation between a state-space 
realization of S(s) and that of W(p)? 

Problem Give a proof of Corollary 8.3.1 using the result of Theorem 8.3.1. 
8.3.2 

8.4 PRELIMINARY SlMPLlFlCATlON BY 
LOSSLESS EXTRACTIONS 

Before we proceed to consider synthesis procedures that answer 
the state-space synthesis problems for finite passive networks posed in the 
previous sections, we shall indicate simplifications to the synthesis task. 
These simplifications involve elementary operations on the matrix to be 
synthesized, which amount to extracting, in a way to be made precise, loss- 
less sections composed of inductors, capacitors, transformers, and perhaps 
gyrators. The operations may be applied to a prescribed positive real or 
bounded real matrix prior to carrying out various synthesis methods yet to 
be discussed and, after their application, lead to a simpler synthesis problem 
than the original. (For those familiar with classical network synthesis, the 
procedure may be viewed as a partial parallel of the classical Foster preamble 
performed on a positive real function preceding such synthesis methods as 
the Brune synthesis and the Bott-Duffin synthesrs [S]. Essentially, in the 
Foster preamble a series of reactance extractions is successively carried out 
until the residual positive real function is mlnimum reactive and minimum 
susceptrve; i.e., the function has a strictly Hurwitz numerator and a strictly 
Hurwitz denominator.) 

The reasons for using these preliminary simplification procedures are 
actually several. AU are basically associated with reducing computational 
burdens. 

First, with each lossless section extracted, the degree of a certain residual 
matrix is lowered by exactly the number of reactive elements extracted. This, 
in turn, results in any minimal statespace realization of the residual matrix 
possessing lower dimension than that of any minimal state-space realization 
of the original matrix. Now, after extraction, it is the residual matrix that has 
to be synthesized. Clearly, the computations to be performed on the constant 
matrices of a minimal realization of the residual matrix in a synthesis of this 
matrix will generally be less than in the case of the original matrix, though 
this reduction is, of course, at the expense of calculations necessary for 
synthesis of the lossless sections extracted. Note though that these calcula- 
tions are generally particularly straightforward. 
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Second, as we shall subsequently see, in solving the state-space synthesis 
problems formulated in the previous two sections, it will be necessary to 
compute solutions of the positive real or the bounded real lemma equations. 
Various techniques for computation may be found earlier; recall that one 
method depends on solving an algebraic quadratic matrix inequality and 
another one on solving a Riccati differential equation. There is however 
a restriction that must be imposed in applying these methods: the matrix 
Z(m) + Z'(m) or I - S1(m)S(m) must be nonsingular. Now it is the loss- 
less extraction process that enables this restriction to be met after the extra= 
tion process is carried out, even if the restriction is not met initially. Thus 
the extraction procedure enables the synthesis procedures yet to he given to 
be purely algebraic if so desired. 

Third, it turns out that a version of the equivalent network problem, the 
problem of deriving all those networks with a minimal number of reactive 
elements that synthesize a prescribed positive real impedance or bounded 
real scattering matrix, is equivalent to deriving all triples P, L, and W,, sat- 
isfying the equations of the positive real lemma or the bounded real lemma. 
The solution to the latter problem (and hence the equivalent network prob- 
lem) hinges, as we have seen, on finding all solutions of a quadratic matrix 
inequality,* given the restriction that the matrix Z(m) + Z'(m) or I - 
S'(m)S(ca) is nonsingular. So, essentially, the lossless extraction operations 
play a vital part in solving the minimal reactive element (nonreciprocal) 
equivalence problem. 

There are also other less important reasons, which we shall try to point 
out as the occasion arises. But notice that none of the above reasons is so 
strong as to demand the execution of the procedure as a necessary preliminary 
to synthesis. Indeed, and this is most important, savefor an extraction opera- 
tion corresponding to the removal of apole at infinity of entries of aprescribed 
positive real matrix (impedance, admittance, or hybrid) that is to be synthe- 
sized, the procedures to be described are generally not necessary to, but merely 
benelfcial for, synthesis. 

Simplifications for the lmrnittance Synthesis 
Problem 

The major specific aim now is to show how we can reduce, by 
a sequence of lossless extractions, the problem of synthesizing an arbitrary 
prescribed positive real Z(s), with Z(m)  < 00, to one of synthesizing a second 
positive real matrix, 2(s)  say, for which f(m) + p ( m )  is nonsingular. We 
shall also show how f(s) can sometimes be made to possess certain addi- 
tional properties. 

*The discussion of the quadratic matrix inequality appeared in Chapter 6, which may 
have been amitted at a first reading. 
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In particular, we shall see how the sequence of simple operations can 
reduce the problem of synthesizing Z(s) to one of synthesizing a s )  such that 

1. 2(w) + ?(w) is nonsingular. 
2. 2(w) is nonsingular. 
3. A reciprocal synthesis of Z(s) follows from a reciprocal synthesis of 

2(s). 
4. A synthesis of Z(s) with the minimum possible number of resistors 

follows from one of P(s) with a minimum possible number of resistors. 
5. A synthesis of Z(s) with the minimum possible number of reactive ele- 

ments follows from one of 2(s) with a minimum possible number of 
reactive elements. 

Some remarks are necessary here. We shall note that although the sequence 
of operations to be described is potentially capable of meeting any of the 
listed conditions, there are certainly cases in which one or more of the condi- 
tions represents a pointless goal. For example, it is clear that 3 is pointless 
when the prescribed Z(s) is not symmetric to start with. Also, it is a technical 
fact established in [l] that in general there exists no reciprocal synthesis that 
has both the minimum possible number of resistors of any synthesis (recip- 
rocal or nonreciprocal), and simultaneously the minimum possible number 
of reactive elements of any synthesis (again, reciprocal or nonreciprocal). 
Thus it is not generally sensible to adopt 3,4, and 5 simultaneously as goals, 
though the adoption of any two turns out to be satisfactory. 

Since reciprocity of a network implies symmetry of its impedance or admit- 
tance matrix, property 3 is equivalent to saying that 

3a. a s )  is symmetric if Z(s) is symmetric. 

[There is an appropriate adjustment in case Z(s) is a hybrid matrix.] Further, 
in order to establish 4, we need only to show that 

4a. Normal rank [Z(s) 4- Z'(-s)] = normal rank [2(s) + p(-$1. 
The full justification for this statement will be given subsequently, when we 
show that there exist syntheses of Z(s) using a number of resistors equal to 
p = normal rank [Z(s) + Z'(-s)]. Since we showed in the last section that 
the number of resistors in a synthesis cannot be less than p, it follows that 
a synthesis using p resistors is one using the minimum possible number of 
resistors. 

In the sequel we shall consider four classes of operations. For convenience, 
we shall consider the application of these only to impedance or admittance 
matrices and leave the hybrid-matrix case to the reader. For ease of notation, 
Z(s), perhaps with a subscript, will denote both an impedance and admittance 
matrix. Following discussion of the four classes of operation, we shall be 
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able to note quickly how the restrictions 1-5 may be obtained. The four 
classes of operations are 

1. Reduction of the problem of synthesizing Z(s), singular throughout 
the s plane, to the problem of synthesizing Z,(s), nonsmgular almost 
everywhere. 

2. Reduction of the problem of synthesizing Z(s) with Z(m) singular to 
the problem of synthesizingZ,(s) with some elements possessing a pole 
at infinity. 

3. Reduction of the problem of synthesizing Z(s) with some elements 
possessing a pole at infinity to the problem of synthesizing Z,(s) with 
6[Z,(s)] < 6[Z(s)] and with no element of Z,(s) possessing a pole at 
infinity. 

4. Reduction of the problem of synthesizing Z(s) withZ(w) nonsymmetric 
to the problem of synthesizing Z,(s) with Z,(w) symmetric. 

I. Singular Z(s). Suppose that Z(s) is positive real and singular. We shall 
suppose that Z(m) : m; if not, operation 3 can be carried out. Then the 
problem of synthesizingZ(s) can be modified by using the following theorem: 

Theorem 8.4.1. Let Z(s) be an m x m positive real matrix with 
Z(m) < m and with minimal realization (F, G, H, J ) .  Suppose 
that Z(s) is singular throughout the s plane, possessing rank 
m' < m. Then there exist a constant nonsingular matrix T and 
an m' x m' positive real matrix Z,(s), nonsingular almost every- 
where, such that 

= r [ z , ( ~ )  + om-,, ,,-, .I T (8.4.1) 

The matrix Z,(s) has a minimal realization IF,, G,, H,, J,), where 

F, = F G, = GT-'[I,,,. Om, ,,-, .]' 

H ,  = HT-'[I,,,, Om*.m-m,l' (8.4.2) 

J ,  = [Im Om:n-m~I(T')-'JT-'[Im. Om,,,,-J' 

Moreover, b[Z(s)] = b[Z,(s)], Z,(s) is symmetric if and only if 
Z(s) is symmetric, and normal rank [Z(s) + z'(-s)] = normal 
rank [Z,(s) + Z;(-s)]. 

For the proof of this theorem up to and including Eq. (8.4.2), see Problem 
8.4.1. (The result is actually a standard one of network theory and is derived 
in 111 by frequency-domain arguments.) The claims of the theorem following 
Eq. (8.4.2) are immediate consequences of Eq. (8.4.1). 

The significance of this theorem lies in the fact that ifa synthesis of Z,(s) is 
on hand, a synthesis of Z(s) follotvs by appropriate use of a multipart t r m -  
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. . . . , . . . . . 

former associated with the synthesis of Z,(s).If Z,(s) andZ(s) are impedances, 
one may take a transformer of turns-ratio matrix T and terminate its first m' 
secondary ports in a network N, synthesizing Z,(s) and its last m - m' ports 
in short circuits. The impedance Z(s) will be observed at the input ports. 
Alternatively; if denotes T with its last m - m' rows deleted, a trans- 
former of turns-ratio matrix terminated at its m' secondary:ports in a net- 
work N, synthesizing Z,(s) will provide the same effect (see Fig. 8.4.1): For 
admittances,. the situation is almost the same--one merely interchanges 
the roles of the primary and secondary ports of the transformer. 

. . 

' -  m 

. . -Z , (s)  

FIGURE 8.4.1. Conversion of a-Singular Z(sf to a  on- 
singular 2, (s). 

2. Singular Z(M), Nomingular Z(S). We now suppose that Z(s) is nonsingu- 
lar almost everywhere, but singular at s = w. [Again, operation 3 can be 
carried out if necessary to ensure that Z(w) < CO.] We shall make use of 
the following theorem. 

. . . ... 'Theorem 8.4.2. Let Z O b e  an m x m positive realmatrix with 
Z(w) < w, Z(s)nonsingular almost everywhere, and Z(w) sin- 

. . 

. . 
gular. Then Zl(s) = [Z(s)l'l is positive real and has elements 
possessing a pole at infinity. Moreover, 6[Z(s)] = +[z,(s)], Z,(s) 
is symmetric if and only'if Z(s) is symmetric, and normal rank 
[Z(s) + Z'(-s)] = normal rank [Z,(s) 4- Z',(-s)]. 

Proof. That Z,(s) is positive real because Z(s) is positive real is 
a standard result, which may be proved in outline form as fol- 
lows. Let S(s) = [Z(s) - I][Z(s) + 4-'; then S(s) is bounded 
real. It follows that S,(s) = -S(s) is bounded real, and thus that 
Zl(s) = [I + S,(s)][I - S1(s)]-I is positive real. Expansion of 
this argument is requested in Problem 8.4.2. 

The definition of Z,(s) implies that Z,(s)Z(s) = I; setting s = 
co and using the singularity of Z(M) yields the fact that some 
elements of Z,(s) possess a pole at infinity. 

The degree property is standard (see Chapter 3) and the sym- 



352 FORMULATION OF STATE-SPACE PROBLEMS CHAP. 8 

metry property is obvious. The normal-rank property follows 
from the easily established relation 

This theorem really only becomes significant because it may provide the 
conditions necessary for the application of operation 3. Notice too that the 
theorem is really a theorem concerning admittance and impedance matrices 
that are inverses of one another. It suggests that the problem of synthesizing 
an impedance Z(s) with Z (m)  < w and Z(oo) singular may be viewed as the 
problem of synthesizing an admittance Z,(s) with Z,(co) < w failiig, and with 
various other relations between Z(s) and Z,(s). 

3. Removal of Pole at Infnity. Suppose that Z(s) is positive real, with some 
elements possessing a pole at infinity. A decomposition of Z(s) is possible, as 
described in the following theorem. 

Theorem 8.4.3. Let Z(s) be an m x m positive realmatrix, with 
Z(m)  < m failing. Then there exists a nonnegative definite sym- 
metric L and a positive real Z,(s), with Z,(m) < m, such that 

Moreover, b[Z(s)] = rank L + 6[Z,(s)], Z,(s) is symmetric if and 
only if Z(s) is symmetric, and normal rank [Z(s) f Z'(-s)] = 
normal rank [Z,(s) + Z;(-s)]. 

We have established the decomposition (8.4.3) in Chapter 5. The remaining 
claims of the theorem are straightforward. 

The importance of this theorem in synthesis is as follows. First, observe 
that sL is simply synthesiznble, for the nornegativity of L guarantees that 
a matrix Ti exists with m rows and I = rank L columns, such that 

If sL is an impedance, the network of Fig. 8.4.2, showing unit inductors 
terminating the secondary ports of a transformer of turns-ratio matrix T,, 
yields a synthesis of sL. If sL is an admittance, the transformer is reversed 
and terminated in unit capacitors, as shown in Fig. 8.4.3. 

With a synthesis of an admittance or impedance sL achievable so easily, 
it follows that a synthesis of Z(s) can be achieved from a synthesisof Z,(s) by, 
in the impedance case, series connecting the synthesisof Z,(s) and the synthesis 
of sL, and, in the admittance case, paralleling two such syntheses. 

Since 6[st] = rank L, the syntheses we have given of sL, both impedance 
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I 
FIGURE 8.4.2. Synthesis of Impedance sL. 

u 
FIGURE 8.4.3. Synthesis of Admittance sL. 

and admittance, use S[sL] reactive elements-actually the minimum number 
possible. Hence if Z,(s) is synthesized using the minimal number of reactive 
elements, the same is true of Z(s). 

4 . Z ( w )  Nonsymmetric. The synthesis reduction depends on the following 
result. 

Theorem 8.4.4. Let Z(s) be positive real, with Z ( w )  < w and 
nonsymmetric. Then the matrix Z,(s) defined by 

is positive real, has Z, (m)  < w ,  and Z,(m) = Z',(oo). Moreover, 
S[Z(s)] = 6[Zl(s)] and normal rank [Z(s) + Z'(-s)] = normal 
rank [Z,(s) $- Z:(-s)].  

The straightforward proof of this theorem is called for in the problems. 
The significance for synthesis is that a synthesis of Z(s) follows from a 

series connection in the impedance case, or paraUel connection in the admit- 
tance case, of syntheses of Z,(s) and of g[Z(w)  - Z1(w)]. The latter is easily 
synthesized, as we now indicate. The matrix &[Z(w) - Z1(m)] is skew sym- 
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metric; if Z(oo) is rn x rn and +[Z(oo) - Z'(w)] has rank 2g, evenness of the 
rank being guaranteed by the skew symmetry 161, it follows that there exists 
a real 2g x rn matrix T,, readily computable, such that 

$[Z(w) - Zl(m)] = Th[E -!- E & . . . + El T ,  (8.4.5) 

where 

in the case when Z(s) is an impedance, and 

in the case when Z(s) is an admittance, and there are g summands in the 
direct sum on the right side of (8.4.5). The first E is the impedance matrix 
and the second E the admittance matrix of the gyrator with gyration resis- 
tance of 1 R Therefore, appropriate use of a transformer of turns ratio T, in 
the impedance case and T', in the admittance case, terminated in g unit 
gyrators, will lead to a synthesis of b[Z(oa) - Zi(oo)]. See Fig. 8.4.4 for an 
illustration of the impedance case. 

Our discussion of the four operations considered separately is complete. 
Observe that each operation consists of mathematical operations on the 
immittance matrices, coupled with the physical operations of lossless element 
extraction; all classes of lossless elements, transformers, inductors, capacitors, 
and gyrators arise. 

We s h d  now observe the effect of combining the four operations. Figure 
8.4.5 should be studied. It shows in flow-diagram form the sequence in which 
the operations are performed. Notice that there is one major loop. By Theo- 
rem 8.4.3, each time this loop is traversed, degree reduction in the residual 
immittance to be synthesized occurs. Since the degree of the initially given 
immittance is finite and any degree is positive, looping has to eventuaUy 
end. From Fig. 8.4.5 it is clear that the immittance finally obtained, call it 
2(s), will have 2(m) finite, 2(w) = 2('(m), and am) nonsingular. As a con- 
sequence, 2(w) $- P(m)  is nonsingular. Notice too, using Theorems 8.4.1 
through 8.4.4, that qs) will be symmetric if Z(s) is symmetric, and normal 
rank [Z(s) + Z'(-s)] = normal rank [2(s) + &-s)]. FinaUy, the only step 
at which degree reduction of the residual immittances occurs is in the looping 
procedure. By the remarks following Theorem 8.4.3, it follows that 

b[Z(s)l = b[as)] + X (degree of inductor or capacitor element 
extracfions) 

= 6[2(s)] + (number of reactive elements extracted) 
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I 
FIGURE 8.4.4. Synthesis for Impedance #Z(m) - Z'(m)]. 

Since, as we remarked in Section 8.1, the minimum number of reactive ele- 
ments in any synthesis of Z(s) is 6[Z(s)], it follows that a synthesis of Z(s) 
using the minimal number of reactive elements will follow from a minimal 
reactive element synthesis of 2%). 

Example Consider the impedance matrix 
8.4.1 

Adopting the procedure of the flow chart, we would first write 

where 
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FIGURE 8.4.5. Flow Diagram Depicting Preliminary Loss- 
less Extractions for Immittance Matrix Problem. 
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Next, we observe that Z,(m) # Z:(m), and so we write 

where 

Now we observe that Z2(s) is singular. We write it as 

and take 

We see that Z,(m) is singular, and thus we form 

Z4(s) = 1z31-1 = S + 1 

Finally, we take Z,(s) = 1, and at this point the procedure stops. In 
sequence, we have extracted a series inductor, extracted a series gyrator, 
represented the remaining impedance by a transformer terminated in 
a one-port network with a certain impedance, converted this impedance 
to an admittance, and represented the admittance as a parallel combina- 
tion of a capacitor and resistor. Although in this case application of the 
"preliminary" simplifications led to a complete synthesis, this is not the 
case in general. 

There is one additional point we shall make here. Suppose that the positive 
real matrix 2 ( s )  deduced from Z ( s )  possesses one or more elements with pure 
imaginary poles. If desired, these poles may be removed, thereby simplifying a$) and resulting in another positive real impedance, z ( s )  say, the elements 
of which are free of imaginary poles. More precisely, as indicated in Section 
5 . 1 , 2 ( s )  is expressed, using a partial fraction decomposition, as a sum of two 
positive real impedances, one with elements possessing purely imaginary 
poles-this being Z,(s), and one with elements possessing no purely imagi- 
nary pole together with a m j t h i s  being @).  Thus 2(s) = Z,(s) + g(s). 
The matrix Z,(s) is, of course, Iossless positive red. Synthesis procedures 
using a minimal number, 6[ZL(s)l, of reactive elements are available (see [I] 
for classical approaches and later sections in this book for a state-space 
approach). 
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Because f(co) is symmetric and nonsingular, 2(oo) = 2 ( m )  is also. More- 
over, because entries of Z, ( . )  and z ( . )  can have no common poles, 

which implies that a minimal reactive element synthesis of 2 ( s )  follows from 
a series connection of minimal reactive element syntheses of Z,(s) and Z(s). 
Since a minimal reactive element synthesis ofZ,(s) always exists, as remarked 
above, it follows therefore that the problem of giving a minimal reactive 
synthesis for 2 (s )  is equivalent to that of giving one for z ( s )  also with a mini- 
mal number of reactive elements. Note also that Z,(s) + Z:(-s) = 0 for all 
s, and therefore 2 (s )  + 2'(-s) = Z(s) + p ( - s )  and has normal rank equal 
to the normal rank of Z(s )  + Z'(-s). Finally, symmetry oC 2(s) is readily 
found to guarantee symmetry of Z,(s) and Z(s). 

Therefore, assuming synthesis of lossless Z,(s) is possible, we conclude 
that the problem of synthesizing an arbitrary positive real Z l s )  may even be 
reduced to the problem of synthesizing another positive real Z(s), with z (s )  
satisfying conditions 1 to 5 on page 349 [with 2 (s )  replaced by a s ) ] ,  and also 
6. No element of Z(s)  possesses a purely imaginary pole. 

Simplification for the Scattering Matrix Synthesis 
Problem 

In this subsection we shall use the sort of lossless extractions just 
considered to show how the problem of synthesizing an arbitrary prescribed 
bounded real S(s) may be reduced to one of synthesizing another bounded 
real s(s)  such that 

1. I - f?'(o~)g(w) is nonsingular. 
2. A reciprocal synthesis of S(s) follows from a reciprocal synthesis of 3(s). 
3. A synthesis of S(s) with the minimum possible number of resistors 

follows from a synthesis of $(s) with a minimum possible number of 
resistors. 

4. A synthesis of S(s) with the minimum possible number of reactive ele- 
ments follows from one of s(s) with a minimum possible number of 
reactive elements. 

Since the necessary and sufficient condition for a network to be reciprocal 
is that its scattering matrix be symmetric, and since the minimum possible 
number of resistors necessary to give a synthesis of a bounded real S(s) is 
given by normal rank [I -- S'(-s)S(s)] (which, as we shall see, is actually 
achievable in practice), it is clear that 2 and 3 are in fact equivalent to 

2a. $(s) is symmetric if S(s) is symmetric. 
3a. Normal rank [I - $(-s)S^($] = normal rank [I - S(-s)S(s)]. 
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Similarly, we note that the same sort of remarks as those made in the 
immittance-matrix case may be made; it., although the sequence of opera- 
tions to be specified is capable of fulfilling any of the conditions listed above, 
one or more of them may become a pointless objective in a particular case. 

Below, three classes of operations will be introduced. Then we shall be able 
to note quickly how the listed restrictions 1-4 may be obtained using these 
three classes in conjunction with the other four considered previously for the 
immittance matrices. 
The three classes of operations are 

5. Reduction of the problem of synthesizing S(s) with S(m) nonsymmetric 
to the problem of synthesizing S,(s) with S , (m)  symmetric. 

6. Reduction of the problem of synthesizing S(s) with 1 - S(s) singular 
throughout the s plane to the problem of synthesizing a matrix S,(s) of 
smaller dimensions with I- S,(s) nonsingular almost everywhere. 

7. Reduction of the problemof synthesizing S(s) with I - S(s) nonsingular 
almost everywhere to the problem of synthesizing a positive real imped- 
ance Z(s), and the reverse process of reduction of the pro biem of synthe- 
sizing a positive real immittance Z(s) to the problem of synthesizing 
a bounded real S(s). 

5. S(m) Nonsymmetric. The synthesis problem may be modified by using 
the following result: 

Theorem 8.4.5. Let S(s) be an m x m rational bounded real 
matrix with minimal realization IF, G, H, J ] .  Suppose that J is 
nonsymmetric. Then there exists an m x m real orthogonal 
matrix U and an m x nr bounded real matrix S,(s) with J,  = 
S , ( M )  symmetric, such that 

The matrix S,(s) has aminimal realization IF,, G , ,  H I ,  J,),  where 

F, = F G, = C H ,  = HU J ,  = U'J (8.4.7) 

Moreover, d[S(s)] = 6[S,(s)], and normal rank [I - S(-s)S(s)J 
= normal rank [I - S:(-s)S,(s)l. 

The proof of this theorem (see Problem 8.4.5) is straightforward and simply 
depends on a well-established result that for a given real constant matrix J, 
there exist a real orthogonal U and a real constant symmetric matrix J ,  such 
that J = UJ,. 

The significance of the above result for synthesis is that a synthesis of S(s) 
follows from syntheses of U and S,(s) via a coupling network N, of m un- 
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coupled gyrators, as shown in Fig. 8.4.6. The scattering matrix U, being 
a real orthogonal matrix, is bounded real and easily synthesizable using 
transformer-coupled gyrators, open circuits, and short circuits. Full details 
justifying the scheme of Fig. 8.4.6 and the synthesis of U are requested in 
Problems 8.4.6 and 8.4.7. 

FIGURE 8.4.6. Connection for Scattering-Matrix Multipli- 
cation. 

6. Singular I - S(s). Suppose that S(s) is bounded real and I - S(s) sin- 
gular throughout the s plane. Then the synthesis simplification depends on 
the following theorem: 

Theorem 8.4.6. Let S(s) be an m x m bounded realmatrixwith 
minimal realization (F, G, H, J). Suppose that I- S(s) is singu- 
lar throughout the s plane and has rank m' < m. Then there 
exist a real orthogonal matrix T and an m' x m' hounded real 
matrix S,(s) with I - S,(s)  nonsingular almost everywhere, such 
that 

The matrix S,(s) has a minimal realization{F,, G,, H,, J,) ,  where 
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Furthermore, 6[S(s)] = d[S,(s)], S,(s) is symmetric if and only if 
S(s) is symmetric, S , (m)  is symmetric if and only if S(m) is sym- 
metric, and normal rank [I- S(-s)S(s)] = normal rank [I - 
S',(-s)S,(s)l. 

The result of the theorem is actually a standard one of network theory 
and is established in [ I ]  by frequency-domain arguments. The theorem may 
also be proved using the arguments used to establish Theorem 8.4.1 (see 
Problem 8.4.1). 

The significance of this theorem for synthesis lies in the fact that if a syn- 
thesis of S,(s) is on hand, a synthesis of S(s) follows by appropriate use of 
an orthogona1 transformer of turns-ratio matrix T. Now a scattering matrix 
I,_, represents m - m' open circuits, so one may take a transformer with 
the turns-ratio matrix resulting from Twith its last m - m' columns deleted 
and terminate its m' primary ports in a network N ,  synthesizing S,(s), to 
yield a synthesis of S(s) at the unterminated ports (see Fig. 8.4.7). 

7. Conversion of S(s) to Z(s) and Conversely. Suppose that S(s) is bounded 
real, with I- S(s) nonsingular almost everywhere. Then the problem of 
synthesizing S(s) can be modified to an equivalent problem of synthesizing 
a positive real impedance matrix Z(s), as contained in the following result: 

Theorem 8.4.7. Let S(s) be an m x m bounded realmatrix, with 
I - S(s) nonsingular almost everywhere. Then 

js positive real. Conversely, if Z(s) is positive real, then 

always exists and is bounded real. Moreover, d[S(s)] = S[Z(s)], 
Z(s) is symmetric if and only if S(s) is symmetric, Z(m) is symmet- 
ric if and only if S(m) is symmetric, and normal rank [ I -  
S(-s)S(s)] = normal rank [Z(s) + T ( - s ) ] .  

The results of the theorem have all been demonstrated earlier. 
The main application of this theorem is as follows. As illustrated in the 

immittance case, the operations arisjng in the preliminary synthesis steps are 
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likely in some cases to involve extractions of transformer-coupled inductors 
and transformer-coupled capacitors (or even transformer-coupled tuned 
circuits if desired). These operations are simpler by far to define in terms of 
immittance matrices. 

Observe that operations 5 and 6 consist of mathematical operations on 
the scattering matrices which are associated with lossless element extractions 
involving transformers and gyrators only. However, through operation 7 
coupled with those operations considered in the imittance-matrix case, all 
classes of lossless elements can be involved in simplifications to the scattering 
matrix synthesis probIem. 

We shall now observe the result of combining all the operations considered 
in this section. Figure 8.4.8 together with Fig. 8.4.5 is to be used for this 
purpose, and it shows in flow-diagram form the sequence in which the opera- 
tions are performed. Notice that there is stiIl only one major loop in the 
sequence. By Theorems 8.4.3 and 8.4.7, each time this loop is traversed, 
degree reduction in the residual matrix to be synthesized occurs and, as 
explained previously, the sequence of operations has to eventually end. Now 
at the end of the looping (if Iooping is necessary) the immittance finally 
obtamned, call it 2(s), will have a m )  finite and nonsingular, and 2(m) = 
p(m). Therefore, the corresponding bounded real matrix, 3(s) say, will 
have g(w) = S l̂(m), I - S(m) and I + S(m) nonsingular, and thus I - 
S^.(m)S(m) xonsing~lar. Notice then (using Theorems 8.4.1 through 8.4.7 
and the line of argument as applied to the immittance-matrix case) that 
S(s) will satisfy conditions 2 through 4 on page 358. 

Application to Lossless Synthesis 

Before we conclude the section we wish to make the following 
point. The preliminary simplification procedures that have just been 
described, though basically intended to help in the synthesis of an arbitrary 
positive real or bounded real matrix, provide a technique for the complete 
synthesis of a lossless positive real or bounded real matrix. To see why, 
consider in more detail the case of a lossless positive real matrix. At no stage 
in the application of the preliminary procedures can a positive real _matrix 
arise that is not lossless, and therefore at no stage will a matrix Z(s) be 
arrived at for which 2(w) is symmetric and nonsingular. But as reference to 
Fig. 8.4.5 shows, the preliminary extraction procedure will n_ot terminate 
unless 2(m) is symmetric and nonsingular, unless of course Z(s) = 0, i.e., 
unless a complete synthesis is achieved. In the case of a lossless immittance, 
the resulting synthesis resembles that obtained via thefirst Cauer synthesis 
(see [I] for a detailed discussion). 

Example Consider the lossless positive real impedance matrix 
8.4.2 
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First we separate out those elements of Z(s) that possess a pole at infinity 
(operation 3). Thus 

The first term is readily synthesized (merely an inductor for port 1 and 
a short circuit for port 2). Next, the remaining positive real impedance 
Z,(s), with Zi(m) i m, is examined to see if Z,(m) = Z:(m). The 
answer is no, so we apply operation 4 and write 

for which a gyrator may be extracted synthesizing the second term. Now 
the remaining positive real matrixZZ(s) is nonsin&laralmost everywhere, 
but ZZ(m) is singular. We then invert Zz(s) (operation 2) to give a positive 
real admittance matrix 

which evidently has elements with a pole at m, and these may be synthe 
sized (operation 3) using capacitors terminating a multiport transformer. 
Since Y2(s) consists of only elements with a pole at m, the remaining 
admittance is simply a zero matrix; hence the synthesis of Z(s1 is corn- 
pleted and is depicted in Fig. 8.4.9. 

Later we shall be considering state-space syntheses of lossless positive real 
and lossless bounded real matrices that are simple to carry out and are able 
t o  avoidthe matrix inversion operations contained in the preceding pro- 
cedures. 

Problem Prove Theorem 8.4.1. First write down the positive real lemma equations. 
8.4.1 Show that if w is a constant vector in the nullspace of Z(s), then Gw = 0 

and J w  = 0. Conclude that Hw = 0. Then take Tas a matrix whose last 
m' columns span the nullspace of Zfs). In like manner, prove Theorem 
8.4.6. 
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FIGURE 8.4.9. A Synthesis of Z(s). 

Problem Prove that part of the statement of Theorem 8.4.2 which claims that 
8.4.2 [Z(S)]-~ is positive real if Z(s) is positive real. 

Problem Rove Theorem 8.4.4 
8.4.3 

Problem Consider a positive real impedance matrix 
8.4.4 

s i l  f l ( x i 1 )  

Z(s) = 

2 + 2 s + 2  s z i 2 s + 2  I 
Show how to reduce Z(s) to another positive real matrix z(s) such that 
2(m) is nonsingular. Then verify that the normal-rank property and the 
degree property as stated in the text hold for Z(s) above. 

Problem Prove Theorem 8.4.5. 
8.4.5 

Problem Consider the scheme of Fig. 8.4.10, which depicts an interconnection of 
8.4.6 m gyrators with an m-port network Nz of scattering matrix SL. Show that 

the resultant 2m port has scattering matrix 

using the fact that the scattering matrix of the unit gyrator is 
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FIGURE 8.4.70. Building Block for the Network of Figure 
8.4-1 1. 

Conclude that the scattering matrix of the scheme of Fig. 8.4.11 is S,SI, 
where N, has scatterjug matrix S,. (The cascade load formula may be 
helpful here.) 

Problem In this problem you will need to recall the fact that an arbitrary 
8.4.7 orthogonal matrix U can be written as 

U = T'VT 

where T is orthogonal and V is a direct sum of blocks of the form [I], 

[-I], and [ sin @],8  10. show that the scattering matrix of 
-sin 0 case 

a gyrator with gyrator resistance y ohms is 
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and then show that a scattering matrix that is a real constant orthogonal 
matrix can be synthesized by appropriately terminating a transformer in 
gyrators. 

Problem Synthesize the lossless bounded real matrix 
8.4.8 
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Impedance Synthesis 

Earlier we formulated two separate approaches to the problem 
of synthesizing a positive real m x m impedance matrix Z(s); one is based 
on the reactance-extraction concept; the other is based on the resistance- 
extraction concept. We shall devote most of this chapter to giving synthesis 
procedures using both approaches yielding nonreciprocal networks, in which 
gyrators are included as circuit elements. 

Although synthesis procedures that yield a nonreciprocal network with 
a prescribed nonsymmetric positive real impedance matrix can naturally be 
applied to obtain a synthesis of a symmetr2 positive real impedance matrix 
(since the latter can be regarded as a special case of the former), one objection 
is that gyrators generally arise if a synthesis method for a nonsyrnmetric 
Z(s) is applied to a symmetric Z(s)-despite the fact that reciprocal (gyrator- 
less) networks synthesizing a prescribed symmetric positive real Z(s) can 
(and will) be shown to exist. The nonreciprocal synthesis procedures are 
therefore often unsuitable for the synthesis of a symmetric positive real 
Z(s), and other methods are desired which always lead to a reciprocal syn- 
thesis. Section 9.4 and much of Chanter 10 will arovide some reci~rocal * 
syntheses of symmetric positive real impedance matrices. 

We now ask the reader to note the following points concerning the material 
in this chapter. First, we shall assume throughout that Z(s) is such that 
Z(m) < m. As noted earlier, this restriction can always be satisfied with no 

369 
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loss of generality; for if a prescribed Z,(s) does not possess this property, 
one can always remove the pole at infinity by a series extraction of trans- 
former-coupled inductors, and the problem of synthesizing the original 
Z,(s) is then equivalent to the problem of synthesizing the remainingpositive 
real Z(s) satisfying the restriction Z(w) < w. 

Second, recall that the formulations of various approaches to synthesis 
were posed in terms of a state-space realization (F, G, H, J)  of Z(s), some- 
times with no specific reference to the size of the associated state vector. 
The synthesis procedures to be considered will, however, be stated in terms 
of a particular minimal realization of Z(s). The reason becomes apparent if 
one observes that the algebraic characterization of the positive real property 
of Z(s) in state-space terms, as contained in the positive real lemma, applies 
only to minimal realizations of Z(s). That is, the existence is guaranteed of 
a positive definite symmetric P and real matrices L and W, that satisfy the 
positive real lemma equations only if [F, G, H, J}  constitutes a minimal 
realization of the positive real Z(s). Since the synthesis of Z(s) in state-space 
terms depends on the algebraic characterization of its positive real property, 
the above restriction naturally follows. This in one sense provides an advan- 
tage over some classical synthesis methods in that a synthesis of Z(s) is always 
assured that uses the minimum number of reactive elements, this number 
being precisely 6[Z] or the size of the F matrix in a minimal realization. 

Third, we shall even assume knowledge of a minimal realization [F, G, 
H, J) of Z(s) such that 

F+F'=-LL'  

G = H - L W ,  (9.1.1) 

J + J ' =  WiW. 

for some real matrices L and W,. The existence of the minimal realization 
{F, G, H, J )  and matrices L and W, satisfying (9.1.1) is guaranteed by the 
following theorem-a development of the positive real lemma: 

Theorem 9.1 .I. Let Z(s) be a rational positive real matrix with 
Z(m) < 00. Let {F,, Go, H,, J )  be a minimal realization and 
[P, Lo, W,} be a triple that satisfies the positive real lemma equa- 
tions for the above minimal realization. With T any matrix 
ranging over the set of matrices for which 

then the minimal realization {F, G, H, J ) ,  with F = TF.T-', 
G = TG,, and H = (T-')'H,, satisfies Eq. (9.1.1), where L = 
(T-')'Lo. 
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The proof of the above result follows immediately on invoking the positive 
real lemma equations and on performing a few simple calculations. Note 
that F, G, H, L, and W, are certainly not unique: if IF,, Go, Ho, J ]  is an 
arbitrary minimal realization of Z(s), we know from Chapter 6* that there 
exists an infinity of matrices P satisfying the positive real lemma equations, 
and for any one P an infinity of L and W, satisfying the same equations. 
Further, for any one P there exists an infinity of matrices T satisfying (9.1.2). 
So the nonuniqueness arises on several counts. Even the dimensions of L 
and Wo are not unique, for, as noted earlier, the number of rows of L6 and Wb 
(and thus of L' and W.) is bounded below by p = normal rank [Z(s) 
+ Z'(-s)], but is otherwise arbitrary (see also Problem 9.1.1). 

In the following synthesis procedures, except for the lossless synthesis, 
we shall take (9.1.1) as the starting point. In the case of the synthesis of a 
lossless impedance, we know from previous considerations that the matrices 
L and W, are zero and (9.1.1) therefore is replaced by 

F + F ' = O  

G = H  (9.1.3) 

As we know from our discussions on the computation of solutions to the 
positive real lemma equations, a minimal realization of a lossless positive 
real Z(s) satisfying (9.1.3) is much easier to derive from an arbitrary minimal 
realization than is a minimal realization of a nonlossless or lossy positive 
real Z(s) satisfying (9.1.1). 

An outline of this chapter is as follows. 
In Section 9.2 we consider the synthesis of nonreciprocal networks using 

the reactance-extraction approach. The procedure includes as a special case 
the synthesis of lossless nonreciprocal networks. Since the latter can be 
achieved with much less computational effort than the synthesis of lossy 
nonreciprocal networks, and since lossless networks play a major role in 
network theory and applications, the lossless synthesis is therefore considered 
in a separate subsection. The material in Section 9.2 is drawn from [I] and 
121. 

In Section 9.3 a synthesis procedure for nonreciprocal networks using 
the resistance-extraction approach is discussed. This material is drawn from 
[3]. Finally, Section 9.4 is devoted to considering a straightforward synthesis 
procedure for a prescribed symmetric positive real Z(s) that results in a 
reciprocal network. The material of this section is drawn from [4] and [Sl. 

*This chapter may have been omitted at a first reading. 
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Problem Show that ifF, G, H, Jaresuch that (9.1.1) holdsfor somepairof matrices 
9.1.1 L and W,, then it holds for L and W, replaced by LVaud V'W. for any 

V, not necessarily square, with VV' = I. Show also that the minimum 
number of rows in L' and W, is p = normal rank [Z(s) + Z'(-s)], and 
that, given the existence of L' and W, with p rows, there exist other 
L' and W, with any number of rows greater than p. (Existence of L' 
and W. with p rows is established in Chapters 5 and 6.) 

We recall that the problem of finding a passive structure synthesiz- 
ing a prescribed m x m positive real Z(s) via reactance extraction essentially 
rests on finding a realization [F,, Go, H,, J ]  for Z(s), such that the real 
constant (m + n) x (m + n) matrix 

has its symmetric part nonnegative definite: 

In other words, M is positive real. With n denoting the dimension of F, the 
constant positive real matrix M is the impedance of a nondynamic (m + n)- 
port coupling network N,.  On terminating N, at its last n ports in 1-H induc- 
tors, a network N synthesizing the prescribed Z(s) is obtained. 

As is guaranteed by Theorem 9.1.1, we can find a minimal realization 
[F, G, H, J ]  of Z(s) and real matrices L and W,, such that 

The dimensions of the various matrices are automatically fixed except for 
the number of rows of both L' and W,. These are arbitrary, save that the 
number must be at least p, the normal rank of [Z(s) + Z'(-s)]. As we have 
already noted, there are infinitely many minimal realizations (F, G, H, J ) ,  
which, with some L and W,, satisfy (9.2.3). We shall show that any one of 
these provides a synthesizable M, i.e., a matrix M satisfying (9.2.2). 

By direct calculation, we have 
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M + M ' =  J + J '  ( G - H ) '  
G - H  -F-F' 1 

=["W0 -"" 
- L o  LL' I 

The first equality follows from the definition of M, the second from (9.23), 
and the last from an obvious factorization. Thus, we conclude that 

[where IF, G, H, J ]  is any one minimal realization of Z(s) satisfying (9.2.3)] 
has the property that M is positive real, or equivalently that the symmetricpart 
of M is nonnegative dejnite: 

We have claimed earlier that if M satisfies this constraint, it is readily 
synthesizable. We shall now justify this claim. Note that a synthesis of Z(s) 
follows immediately once a synthesis of M is known. 

Synthesis of a Constant PR Impedance Matrix M 

To realize a constant positive real impedance M, we make use of 
the simple identity 

M = M,, -k M,, (9.2.6) 

where M,, denotes the symmetric part of M, i.e., &(M +- M'), and M,, 
denotes the skew-symmetric part of M, i.e., J(M - M'); then we use the 
immediately verifiable fact that M,, and M,, am both positive real irnpe- 
dances. As may also be easily checked, M,, is even lossless. A synthesis of 
JM is then obtained by a series connection of a synthesis N, of M, and a 
synthesis N, of M,,, both with rn + n ports, as illustrated in Fig. 9.2.1. 
A synthesis of the skew impedance matrix M,, is readily obtained, as seen 
earlier, on noting that M,, may be expressed as 

0 1 
where E = [ 1, and thee are g nummandsin (9.21) with 2g = rank 

-1 0 
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FIGURE 9.2.1. Series Connection of Impedances 
-I- M') and - M3. 

M,,. Thus M,, may be synthesized by a multiport transformer of turns-ratio 
matrix T, terminated by g unit gyrators. Note that the synthesis of M,, does 
not use any resistors, as predicted by the lossless (or skew) character of 
M,,. To synthesize M,, we note from (9.2.4) that 

where r is the number of rows of L' and W,. This equation implies that M ,  
may be synthesized by terminating a multiport transformer of turns ratio 
I / f l [ W o  -L7 in r unit resistors. Since the synthesis of M,, does not use 
any resistors, it follows that the total number of resistors used in synthesizing 
N is equal to the number of rows r of the matrices L' and Wo in (9.2.3). 

We now wish to note a number of interesting properties of the synthesis 
procedure given above. 

1. Since the number of reactive elements, in this case inductors, needed 
in the synthesis of Z(s) is n, the dimension of F, and since F is part of 
a minimal state-space realization of Z(s), the number of reactive ele- 
ments used is 6[2(.)].  We conclude that the synthesis of Z(s) achieved 
by this method always uses a minimal number of reactive elements. 

2. As the total number of resistors required in the synthesis of Z(s) is the 
same as the number of rows of the matrices L' and W, in (9.2.3), it 
follows that the smallest number of resistors that can synthesize Z(s) 
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via the above method is equal to the lower bound on the number of 
rows of L' and W,, and this number is, as we have noted, p = normal 
rank [Z(s) f Z'(-s)]. As we have also noted in Chapter 8, no synthesis 
of Z(s) is possible using fewer than p resistors. Hence we can always 
achieve a synthesis of Z(s) using the minimum number p of resistors 
and simultaneously the minimum number of reactive elements, since 
it is always possible to compute matrices L' and W. with p rows that 
satisfy (9.2.3), as shown in Chapters 5 and 6.* 

3. The synthesis procedure described requires only that Z(s) be positive 
real; hence it always yields a passive synthesis for any positive real 
Z(s), either symmetric or nonsymmetric. However, gyrators are almost 
always required even when Z(s) is symmetric, and so the method is 
generally unsuitable for synthesizing a symmetric positive real Z(s) 
when a synthesis is required that uses no gyrators. 

4. Problem 9.2.4 requests a proof of the easily established fact that every 
(nonreciprocal) minimal reactive synthesis defines a particular minimal 
realization (F, G, H, J ]  of Z(s) together with real matrices L and W, 
that satisfy (9.2.3). Also, as we have just proved, each minimal realiza- 
tion (F, G, H, J ]  with associated real matrices L and W,, such that 
(9.2.3) hold, yields a minimal reactive synthesis. It follows that all 
possible minimal reactive element syntheses of Z(s) are obtained, i.e., 
the minimal reactive element equivalence problem for nonreciprocal 
networks is solved, if all minimal realizations can be found that satisfy 
(9.2.3) together with real matrices L and W,. How may this be done? 
Suppose that (F,, G, ,  H, ,  J , ]  is any one minimal realization of Z(s). 
From Theorem 9.1.1, it is clear that from each solution triple P, L,, 
and W. of the positive real lemma equations associated with [F,, G,, 
H,, J) ,  there arises a set of minimal realizations satisfying (9.2.3) for 
some real matrices L and W,,. Further, we know from Chapter 6* how 
to compute essentially all solution triples P,  L,, and W, for an arbitrary 
initial minimal realization [F,, G,, H,, J}. It follows that we can derive 
all possible minimal realizations satisfying (9.2.3) from a particular 
[F,, G , ,  H , ,  J ]  by obtaining aU matrices P,  L,, and W, and then all 
T such that T'T = P.  This is also the set of all possible minimal realiza- 
tions with the properties given in (9.2.3) that may be derived from any 
other initial minimal realization, and so from all arbitrary minimal 
realizations. To see this, suppose that [F,, G, ,  H,, J ]  and [F,, G,, Hz, J ]  
are two minimal realizations of the same Z(s), with f a nonsingular 
matrix such that f ~ , f - l  = F,,  etc.; if P,, L,, and W. constitute a solu- 
tion of the positive real lemma corresponding to (F,, G , ,  HI, J h  then 
P, = 2"p1f ,  L, = P L , ,  and W, constitute a solution corresponding 

*This materid may have been omitted at a first reading. 
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I 

to (F,, G,, Hz, J ) .  The factorization PI = T'T leads to the same [F, G, 
H, J3 from(F,, G,, HI, J )  as does the factorization P, = (TOT?. from 
IF23 Gm Hi, J J .  

Lossless-Impedance Synthesis 

Suppose that we are given a lossless m x m impedance Z(s). 
Recall that 

By removing the pole at infinity of all elements of Z(s), if any, we may 
consider a lossless Z(s) with Z(W) < W. Note, however, and this is impor- 
tant, that rhe simpl~cation procedure involving.lossless extraction considered 
in Chapter 8 should not be. applied, save for making Z(w) < W, since this 
would eventually completely synthesize a lossless Z(s). 

Let {F, G, H, J )  be a minimal statespace realization of Z(s) with F an 
n x n matrix, easily derivable from an arbitrary minimal realization of 
Z(s), suchthat 

F + F ' = O  

. .  . ,: . G - = H  (9.2.10) 
. . J + J ' = O  . . 

. . 

Of course, the lossless pbsitive real lemma guarantees that such a quadruple 
(F, G, H, J )  always exists. Now the matrix 

. . 

is obviously skew, because of (9.2.10). As shown earlier, the real constant 
matrix M is the impedance, lossless in this case, of an (m + n)-port lossless 
nondynamic network N. synthesizable with transfonner-coupled gyrators. 
Termination of the last n ports of N,  with uncoupled 1-H inductors yields a 
lossless synthesis of Z(s) that uses a minimum number n of reactive elements. 

Once any minimal realization of a lossless Z(s) has been found, synthesis 
is easy. We have .described in Chapter 6* the straightforward calculations 
required to generate, from an arbitrary minimal realization, a minimal reali- 
zation satisfying (9.2.10). As we have just seen, synthesis, given (9.2.10), is 
easy. 

Classical synthesis procedures for lossless impedances, though not com- 
putationally difficult, may not be quite so straightforward as the state-space 

'This chapter may have beenomitted at a first reading. 
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procedure. For example, there is a partial fraction synthesis that generalizes 
the famous Foster reactance-function synthesis 161. The method rests on the 
decomposition of Z(s), as a consequence of its lossless positive real property, 
in the form 

where each term is individually lossless positive real; the matrices L, C, and 
A, are real, constant, symmetric, and nonnegative definite, while Jand  B, are 
real, constant, and skew symmetric. A synthesis of Z(s) follows by series 
connection of syntheses of the individual summands of (9.2.1 1). The terms 
J, sL, and s-'C are easily synthesized, as is sAi/(s2 + m:) if Bi = 0. [Note: 
IfZ(s) = Z'(s), B, = 0 for all i.] However, a synthesis of the terms (sA, f B,)/ 
(s2 + mf) is not quite so easily computed. It could be argued that the 

Table 9.2.1 
SUMMARY OF SYNTHESIS PROCEDURE 

Operation 

Step Lossless-impedance case Lossy-impedance case 

1. Extract Pole at infinity of all elements of Z(s), to write Z(s) as sL + Zo(s), 
with Zo(m) < ar 

2. Synthesize sL via tranjformer-coupled inducton, so that a synthesis of Z(s) will 
follow bv seriesconnection with a synthesis ofZo(s)(also ifdesired, ~ . .  . 
carry out the other preliminary extraction procedures for the lossy- 
impedance case) 

3. Find A minimal realization of the impedance to be synthesized 
4. Solve The positive real lemma equations 
5. Find A minimal realization [F, G, H, A minimal realization (F, G, H, 

3)  for Z(s) such that (9.2.10) J ]  for Z(s) together with real 
holds matrices L and Wa such 

that (9.2.3) holds 
6. Form The impedance matrix 

7. Synthesize M as a lossless nondynamic M a s  a nondynamic network N, 
network Nc consisting of comprised of a series connec 
transfornier-coupled gyrators; tion of a transformer-resktor 
terminate the last d[Zl ports network of impedance matrix 
in unit inductors to yield N t(M + M') and a transfor- 

mer-gyrator network of im- 
pedance matrix HM - M3; 
terminate the last 6[Z1 ports 
in unit inductors to yield N 
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state-space synthesis procedure is computationally simpler, but it has the 
disadvantage that, in the form we have stated it, gyrators will always appear 
in the synthesis, even for symmetric Z(s). 

We now summarize in Table 9.2.1 the steps in the synthesis of an arbitrary 
lossless impedance and an arbitrary positive real impedance using the 
reactance-extraction approach. Following below are illustrative examples. 

Example Consider the positive real impedance 
9.2.1 

A minimal realization of Z(s) is 

We then calculate a triple P,L, and WO satisfying the positive real 
lemma equations: 

Note that the matricesl' and W, have only one row, and this is obviously 
also the normal rank of Z(s) + Z'(-s). The positive definite symmetric 
P has a factorization 

Therefore, we obtain 

and a minimal realization (F, G, H, J ]  of Z(s) satisfying (9.2.3) is 

The network N, then has a positive real impedance matrix 
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Next, form the impedance matrices 

1 0 -1 

- 1  0 

and 

Figure 9.2.2 shows a synthesis for the nondynamic network N, by 

FIGURE 9.2.2. Synthesis of Nondynamic Coupling Net. 
work No for Example 9.2.1. 
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series connection of networks of impedance &(M + M 3  and &(M - M'). 
Termination of the last two ports in unit inductors yields a complete 
synthesis of the prescribed positive real Z(s), shown in Figure 9.2.3. 

I I 
FIGURE 9.2.3. Complete Synthesis of Z(s) of Example 
9.2.1. 

Example Consider the positive real matrix (actually symmetric) 
9.2.2 

A minimal realization of Z(s) is given by 

F=[-21 G=[O I] H=[O -31 J =  

A solution triple P, L, and W, of the positive real lemma equations is 
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(This triple may be easily found by inspection.) The minimal realization 
above satisfies (9.2.3) since P is the idkntity matrix, and no coordinate- 
basis change is therefore necessary. An impedance M for the nondynamic 
coupling network N. is then given by 

Then we have the symmetric part and the skew symmetric part of M a s  
follows: 

and 

The network N, of impedance M is thus obtained by a series connec- 
tion of networks of impedances t (M + M3and *(M - M'), as shown 
in Fig. 9.2.4. A complete network N for the prescribed Z(s) is found by 
terminating the last port of N, in a 1-H inductance, as illustrated in Fig. 
9.2.5. 

From the examples above we observe that both syntheses use simultane- 
ously the minimum number of reactances and resistances, as expected, a t  the 
cost however of the inclusion of a gyrator in the syntheses. (We know that 
both impedances being symmetric may be synthesized without the use of 
gyrators.) 

We shall give yet another synthesis for the second symmetric positive real 
Z(s) that arises from a situation in which the number of rows of the matrices 
L.' and W, in (9.2.3) exceed the minimal number, i.e., normal rank [Z(s) 
+ Z'(-s)]. As a consequence, the synthesis uses more than the minimum 
number of resistances. The example also illustrates the fact that by using 
more than the minimum number of resistances (while retaining the minimum 
number of reactances), it may be possible to achieve a reciprocal synthesis, 
i.e., one using no gyrators. 

Example Consider once again the symmetric positive real matrix in Example 
9.2.3 9.2.2: 

r~ n r o  o 1 
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FIGURE 9.2.4. Synthesis of M of Example 9.2.2. 

It can be easily verified that the quadruple [F, G, H, J ]  with 

is a minimal realization of Z(s). Further, it is easy to check by direct 
calculation that F, G, H, and J above satisfy (9.2.3) with 
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FIGURE 9.2.5. A Final Synthesis ofZ(s)for Example9.2.2. 

Notice that L' and Wo now have three rows while normal rank Z(s) 
+ Z'(-s) is two. The nondynamic coupling network has a positive real 
impedance M of 

Obviously M, as well as being positive real, is also symmetric, which 
implies that M can be synthesized by a transformer-coupled resistor 
network. We have then 
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and a synthesis N, of M therefore requires three resistancss (equal to the 
number of rows of L' and W,). Terminating N. in a I-H inductor at the 
last port then yields a (reciprocal) synthesis of Z(s) using three resistances, 
but no gyrators, as shown in Fig. 9.2.6. 

FIGURE9.2.6. A Final Synthesis ofZ(s)forExample9.2.3. 

Though the example illustrates a reciprocal synthesis for a prescribed posi- 
tive real Z(s) that is ~ y r n m e ~ c ,  the theory considered in this section does 

: not allow us to guarantee that when Z(s) is symmetric, M is too, permitting 
a reciprocal synthesis. Neither have we shown in the example how we 
managed to arrive at a symmetric M, and one might ask if the gyratorless 
synthesis obtained above resulted by pure chance. The answer is neither yes 
nor no. A reciprocal synthesis was obtained in Example 9.2.3 without modi- 
fication of the present theory simply because the impedance is characteristic 
of an RL network, in the sense that only one type of reactive element (in this 
case, inductances) is sufficient to give a reciprocal synthesis; on the other 
hand, one must know how to seek a reciprocal synthesis-simple increase 
of the number of resistances in !he synthesis will not necessarily result 
in a reciprocal network. Later we shall consider procedures that always 
lead to a reciprocal synthesis for a positive real impedance matrix that is 
symmetric. 
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Minimal Gyrator Synthesis 

Until recently, i t  was an open question as to what the minimum 
number of gyrators is i n  any synthesis of a prescribed nonsymmetric m x 
m Z(s). A lower bound was known to be one half the rank of Z(s) - Z'(s) 
161, while an upper bound for lossless Z(s) was known to be m - 1 (see [8] for 
a classical treatment and [2] for a straightforward state-space treatment). 
The conjectured lower bound was established for lossless synthesis in [9] 
and for lossy synthesis in [lo]. A state-space treatment of the lossless case 
appears in [I 11; see also Problem 9.2.7. A state-space treatment of the lossy 
case has not yet been achieved, but see Problem 9.2.6 for a restricted result. 

Problem Synthesize the lossless positive real impedance matrix 
9.2.1 

5sZ + 4 2.9' - 3s= + 4s - 12 
Z(s) = ---- 

-2s' - 3s2 - 4s - 12 16sz + 40 1 
Problem Synthesize the lossless bounded real matrix 
9.2.2 

[Hint: Convert S(s) into an impedance matrix Z(s) by using Z = 
(1 -!-Ax1 - n-l.1 

Problem Synthesize the positive real impedance matrix 
9.2.3 

by (a) extracting the jw-axis pole initially, and (b) without initial extra- 
tion of the jw-axis pole. Compare the two syntheses obtained and give 
a discussion of the computational aspects. 

Problem Using reactance-extraction arguments, show that every (nonreciprocal) 
9.2.4 minimal reactive synthesis of a positive real impedance Z(s) defines a 

minimal realization [F, G, H, J ]  such that (9.2.3) holds for certain 
matrices. (Assume that the nondynamic network resulting from a reao 
tance extraction possesses an impedance matrix.) 

Problem (Constant hybrid matrix synthesis) Let ICi' be a constant p X p hybrid 
9.2.5 matrix, with the top left p ,  x p ,  corner of M an impedance matrix and 

the bottom rightp, x p, wrneran admittancematrix. Here,p = p ,  +p2.  
Show how to synthes~ze M. 

Problem (Minimal gyrator synthesis for constant matrices) Let M be as in Prob- 
9.2.6 lem 9.2.5. Show that M can be synthesized with rank ( Z M  - M ' x )  

gyrators, but no fewer, where = I,, + (-I)I,. 
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Problem (Minimal gyrator lossless synthesis) Show that in the problem of syn- 
9.2.7 thesising a prescribed lossless positive real Z ( s )  using simultaneously a 

minimum number of gyrators and reactive elements, it may be assumed 
without loss of generality that Z(m) is nonsingular and that no element 
of Z(s) possesses a pole at s = 0. Form a minimal realization {I? G, H, 
J ]  of Z(s) with F t- F' = 0 and G = H. Let Vbe an orthogonal matrix 
such that the top left r x r submatrix of V'(GJ-'G' - F)Vand bottom 
right r X r submatrix of V'FVare zero, where 2r q 6[Zl. (Existence of 
V is a consequence simply of the skewness of GJ-'G' - F and F, see 
Ill].) Use V to change the coordinate basis and apply the ideas of h b -  
lem 9.2.6 and of the discussion in Chapter 8 on reciprocal reactance 
extraction to derive a synthesis using both the minimum number of 
gyrators and the minimum number of reactive elements. 

9.3 RESISTANCE-EXTRACTION SYNTHESIS 

We recall that the problem of givinga nonreciprocal synthesis 
for an m x m positive real impedance Z(s) via resistance extraction is as 
follows. Find real constant matrices F ,  G , , H ,  and JL that define the 
state-space equations 

and are such that the following two conditions hold: 

1. The matrices F,; G,, HL, and J, satisfy the lossless positive real lemma 
equations for some positive definite symmetric matrix P. 

2. On setting 

Y I  = -UI (9.3.2) 

(9.3.1) simplifies to 

where the transfer-function matrix relating G[u(.)] to Sb(.)], which is 
J + H'(sI - F)-'G, is the- prescribed matrix Z(s). 

The vector u is an m vector and u, an r vector, .so that Eqs. (9.3.1) are 
state-space equations for a Iossless m + r port. Physically, u and y represent 
current and voltage, as is evident from the fact that (9.3.3) constitute state- 
space equations for the prescribed impedance, while u, and y, are such that 
jf the ith entry of u, is a current, the ith entry of y, is a voltage, and vice 
versa. In this section, however, we shall take every entry of u, to be a cur- 
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rent.and every entry of y, to be a voltage. Thus JL + Hi(sI - FJLG,  be- 
comes an impedance matrix, as distinct from a hybrid matrix. If a lossless 
network N, is found synthesizing this impedance, termination of the last r 
ports of NL in unit resistances yields a synthesis of Z(s). 

We shall impose two more restrictions, each with a physical meaning that 
will be explained. The first requires the quadruple (F, G, H, J j  in (9.3.3) to 
be a minimal realization of Z(s). This means therefore that the size of the 
state vector x in (9.3.3), and hence (9.3.1), is to be exactly 6 [ 4 .  Consequently, 
the lossless coupling network NL may be synthesized with 6[Z]  reactive e le  
ments, and, in turn, the network N synthesizing Z(s) may be obtained using 
6 [ 4  reactive elements-the minimum number possible. The second restriction 
is that the size r of the vectors u, and y ,  is to be p = normal rank Z(s) 
+ Z'(-s). Since p is the minimum possible number of resistances in any 
synthesis of Z(s), while r is the actual number of resistances used in synthesiz- 
ing Z(s), this restriction is therefore equivalent to demanding a synthesis of 
Z(s) that uses a minimum number of resistances. Actually, the latter restric- 
tion, in contrast with the first, is not essential for the method to work; as 
we shall see later, the dimension of u, and y, may be greater than p, corre- 
sponding to syntheses using a nonminimal number of resistances. 

Proceeding now with the synthesis procedure, suppose that we have on 
hand a minimal realization {F,  G, H, J )  of Z(s), such that 

F + F ' = - L L '  

G = H - L W ,  (9.3.4) 

J + r =  WiW, 

with L' and W ,  having p rows, where p = normal rank [Z(s) + Z'(-s)]. 
We claim that matrices F,, G,, H,, and J, with the properties stated are given 
by 

First we shall observe that (FL, G,, H,, JJ defined in (9.3.5) satisfies con- 
dition 1 listed earlier. By direct calculation, we have 

F' + FL = 0 

GL = HL (9.3.6) 

JL + JL = 0 
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Clearly, (9.3.6) are exactly the lossless positive real lemma equations with 
P = I, the identity matrix. 

Now we shall prove that the quadruple of (9.3.5) satisfies condition 2. 
Substituting (9.3.5) into (9.3.1) yields, on expansion, the following equations: 

y,. = --j+ - p'y"" 1 
. , 

Settjng(9.3.2) in (9.3.7a) and (9.3.7b) to eliminate u,, and then substituting 
for y, from (9.3.7~) leads to 

= J(F- F' - L o n  $ t[G + N - LWJu 

y = JIG + H  + LWJx + j[J - J'. +- WL Wo]u 

On using (9.3.4), these equations become 

and the impedance matrix relating S[u(-)] to SM.)] is clearly Z(s). 
We conclude therefore that {FL, G,, H,, J,] of (9.3.5) defines a lossless 

impedance matrix for the coupling network N,. A synthesis of N,, and hence 
the network N synthesiszing Z(s), may be obtained using available classical 
methods [b], the technique of Chapter 8, or the state-space approach as 
discussed in the previous section. The latter method is preferable in this case 
since one avoids computation of the lossless impedance matrix Z,(s) = J, 
+ HL(sI - F&'G,, and, more significantly, the matricesF,, G,, H,, and J, 
are such that a synthesis of N,is immediately derivable (without the need to 
change the state-space coordinate basis). To see this, observe that the real 
constant matrix M defined by 

is skew, and therefore lossless positive real. In other words, M is the impe- 
dance of an easily synthesized (m + p + n)-port lossless nondynamic net- 
work of transformer-coupled gyrators, and termination of this network at 
its last n ports in I-H inductances yields a synthesis for N,. Resistive termina- 
tion of all but the first m ports of N, finally gives the desired synthesis for 
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Z(s) in which a minimal number of resistances as well as reactive elements is 
used. 

A study of the preceding synthesis procedure will quickly convince the 
reader that the minimality of the number of rows of the matrices L' and W, 
played no role in the manipulations, save that, of course, of guaranteeing a 
minimal number of resistors in the synthesis. Indeed, it is easy to see that 
any minimal realization {F, G, H, J )  and real matrices L' and W. not neces- 
sarily minimal in their numbers of rows, such that (9.3.4) is satisfied, will 
yield a synthesis of Z(s). The number of resistances required is the dimension 
of the vectors u, and y,, which, in turn, is precisely the number of rows in 
L' and Wo. 

Summary of Synthesis 

A summary of the synthesis procedure outlined in this section is as 
follows: 

1. Ensure that no element of Z(s) has a pole at infinity by carrying out, 
if necessary, a series extraction of transformer-coupled inductors. 

2. Computea minimal realization (F, G, H, J]  of Z(s) such. that (9.3.4) 
holds for some real constant matrices L and W,. 

... 
3. Form the skew const i t  impedance matrix 

1 1 
$J - J') w; -S(G f H)' r 1  1 

and give a synthesis of M as a transformer-coupled gyrator network 
by using a factorization M = TL[E . . . -F. EIT,, with E the impe- 
dance matrix of a unit gyrator. 

4. Terminate the last n (= S[Z] = dimension of the matrix F) ports of 
the above network in I-H inductances, and then aU but the first m ports 
of the resulting network in 1-&2 resistances to give a synthesis of Z(s). 
The number of inductances used, being n = S[Z], is minimal, while the 
number of resistances used is equal to the number of rows in L' and 
Wo, and may be minimal if desired. 

As an alternative to steps 3 and 4, the following may be used. 

3'. Compute matrices F, G,, HA, and JL from (9.3.5) and form the loss- 
less (m + r) x (m + r) impedance matrix J, + H;(sI - FA-IG, (here, 
r is the number of rows in L' and WG). 

4'. Synthesize the lossless impedance matrix J, + H;(sI - F p G ,  by 
any procedure, classical or state-space, and terminate the last r ports 
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of the network synthesizing this matrix in unit resistors to yield the 
impedance matrix Z(s) at  the first m ports. 

Example Consider the positive real impedance 
9.3.1 

A minimal realization of Z(s) is 

A solution triple of the positive real lemma equations may be found to be 

With I- r 7 a quadruple (P. G, H,I] and the associated L 
1 - 1  

and W. satisfying (9.3.4) is therefore given by 

Using (9.3.8) as a guide, we form the skew matrix 

whence 

1 0 0  0  0 1  0 0  1 0  0  -1 

- 1 0  0 0  0 1  -1 

0 0 - 1 0  0 0  

A synthesis of M is shown in Fig. 9.3.1; a synthesis of Z(s) is obtained 
by terminating poas 3 and 4 of the network synthesizing M in 1-H 
inductances and port 2 in a 1-Q. resistance. The desired network is shown 



SEC. 9.3 RESISTANCE-EXTRACTION SYNTHESIS 

, - 

FIGURE 9.3.1. Sydthesis of M in Example 9.3.1. 

in Fig. 9.3.2. The synthesis obviously uses a minimal number of induc- 
tances as well as a minimal number of resistances. 

To close this section, we offer some remarks comparing the reactance- 
extraction and resistance-extraction methods. These remarks carry over 
mutatis mutandis to syntheses to be presented later, viz., reciprocal immit- 
tance synthesis and nonreciprocal and reciprocal scattering synthesis. First, 
the onIy awkward computations are those requiring the construction of 
a minimal realization IF, G, H, J ]  of the prescribed Z(s) satisfying (9.3.4). 
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FIGURE 9.3.2. A Synthesis of Z(s) of Example 9.3.1. 

This construction is required in both the reactance- and resistance-extraction 
approaches, while the remaining calculations in both methods are very 
straightforward. Second, if one adopts the reactanceextraction approach 
to synthesizing the lossless impedance derived in the course of the resistance- 
extraction synthesis, one is led to the skew constant impedance matrix M 
of (9.3.8). Now, as may be checked easily, if a network with impedance M 
in (9.3.8) is terminated at ports m + 1 through m + p in unit resistors, the 
resulting network has impedance matrix 
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This is the matrix that appears in the normal reactance extraction, and its 
occurrence here means that the structures resulting from the two syntheses 
are the same. 

One might well ask why two approaches to the same end result should be 
discussed. There are several answers. 

1. The two approaches give different conceptual insights into thesynthesis 
problem. 

2. The resistance-extraction approach, while marginally more complex, 
offers more variety in synthesis structures because there is variety in 
lossless synthesis procedures. 

3. While the reactance-extraction approach is amore  immediate conse 
quence of state-space ideas than the. resistance-extraction approach, 
the latter isbetter known from classical synthesis. 

Problem Show that the procedure considered in this section always yields a syn- 
9.3.1 thesis that uses nonreciprocal elements, i.e., gyrators, even if Z(s) is sym- 

metric. 
Can you state what modifications might be made so that a reciprocal 

synthesis could be obtained? 
Problem Give two syntheses for the positive real impedance 
9.3.2 

one with a minimal number of resistors (bnek this case) irrd thd dther 
with more than one reristor.'Compare the two realiiatioas in thenuniber 

. . . . 
of gyrators used. . , 

9.4 A RECIPROCAL (NONMINIMAL RESISTIVE 
AND REACTIVE) IMPEDANCE SYNTHESIS 

In this section we shall look at a reciprocal synthesis procedure for a 
prescriid m x m positive real impedance Z(s), which is also symmetric. 
The method is based on the reactance-extraction concept. It is always suc- 
cessful in eliminating gyrators in a synthesis, given that Z(s) is symmetric, 
and there is no real increase in the amount of major computation involved 
over the nonreciprocal synthesis given. The major computational effort lies 
in the determination of a minimal realization {F, G, H, J ]  of Z(s), with 
Z(m) < w, such that 
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for some real matrices L and W,, which is a calculation that has been required 
in the various syntheses considered so far. As may be expected, we do'not 
gain something for nothing; in eliminating gyrators while retaining the same 
level of computation in achieving a synthesis, the cost paid is in terms of 
extra numbers of reactive elements and resistances appearing in the synthesis. 
That additional elements are needed should not be surprising at all in the 
light of Example 9.2.3, in which theonly gyrator was eliminated at the cost 
of introducing an extra resistance. 

We shall make use in discussing the method of a rather trivial identity. 
(Considered by Koga in 171, this identity provided a key to a related synthesis 
problem.) The identity is 

where (f, G, R, 91 is any state-space realization of Z(s) with Z(s) = Z'(s). 
Equation (9.4.2) may be readily verified on noting that since Z(s) = Z'(s), 
one has Z(s) = $[Z(s) + Z'(s)]. 

A sketch of the development leading to the reciprocal synthesis procedure 
is as follows. We shall first set up a constant square matrix, in turn made up 
from matrices that form a special realization (nonminimal in fact) of Z(s). 
This constant matrix will be such that its positive real character can be easily 
recognised. We shall then define from this matrix another matrix via a simple 
orthogonal transformation, so that while the positive real character is 
retained, other additional properties arise. These properties then make it 
apparent that if the constant matrix is regarded as a hybrid matrix, it has 
a reciprocal passive synthesis; moreover, terminating certain ports of a net- 
work synthesizing the matrix appropriately in inductances and capacitances 
then yields a synthesis of Z(s). 

To begin, it is easy to see from (9.4.2) that matrices Fa, Go, H,, and J, 
defined by 

[with F, C, H, and J a  minimal realization ofZ(s) satisfying (9.4.111 constitute 
a state-space realization (certainly nonminimal) of Z(s). In other words, as 
may be checked readily, 

The dimension of F,, or the size of the associated state vector, is obviously 
Zn, i.e., twice the degree of Z(s), which indicates that if we are to synthesize 
Z(s) via, say, reactance extraction through the realization (F,, Go, H,, J )  of 
Z(s), then 2n reactive elements will presumably be needed. In fact, we shall 
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show that a reciprocal synthesis for Z(s) is readily obtained from {Fa, Go, 
No, J ]  through a simple orthogonal matrix basis change; exactly n inductances 
and n capacitances-a total of 2n reactive elements-are always used in the 
synthesis. 

Let us consider a constant matrix M defined by 

Note that we have not so far given physical significance to M by, for example, 
demanding that it be the impedance matrix of a nondynamic network. But 
we can conclude that M is positive real from the following sequence of simply 
derived equalities: 

I w;wo -~+(LwJ z(Lwo)r 

- -itLW. LL' 0 1 

The first equality follows immediately from (9.4.5), the second on using 
(9.4.1), and the third from an obvious factorization. 

We observe also another important fact from this sequence of equalities, 
which is that 

rank [M -f M'] = 2r (9.4.7) 

where r is the number of rows of L,' and W,. 
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We shall now introduce yet another constant matrix M,,  like Min that it is 
positive real and consists of matrices of a realization of Z(s), but possessing 
one additional property to be outlined. Consider the following matrix: 

T ' ~  [" I,, -7 I" 

with I, an n x n identity matrix and n = J[q. It is easy to verify that T 
is an orthogonal matrix. Now define another realization IF,, G,, H I ,  J )  of 
Z(s), using the matrix T of (9.4.8), via 

F, = TF0Tf G,  = TG, H ,  = THO (9.4.9) 

The realization {F1, G,, H,, J )  defines a constant matrix M ,  by 

such that 

1. M ,  +. M: is nonnegative definite, or MI is positive real, and M ,  f Mi 
has rank Zr, where r is as defined previously following (9.4.7). 

2. [I,,, + I, i (-In)]M, is symmetric. 

To prove claim 1, we note that MI of (9.4.10) is 

= (1, T)M(I. + T')  

so that 

Since M f M' is nonnegative definite, as noted in (9.4.6), it follows immedi- 
ately that MI + M ;  is also. Further, the above equality implies from the 
nonsingularity of I,, + T and (9.4.7) that 

rank (M,  + Mi)  = rank ( M  + M') = 2r (9.4.1 1) 

We now prove claim 2. By direct calculation, using (9.4.3), (9.4.8), and 
(9.4.9), we obtain 

J f F  + F') &(F - F') ' ( G -  H) H - G )  

Fl = [ t ( F  - F1) 4 (F + F') j ~I=h+d ~ l = [ ; i G + d  
(9.4.12) 
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and therefore 

J $(G-H)'  - f ( G + H ) '  
&(G - H) - i (F  + F') $(-F + F') (9.4.13) 

J(G + H) l ( - F  + F? -$(F + F') I 
That [I,, + I,, + ( - I d M ,  is symmetric is evident by inspection. 

Let us summarize the major facts derived above: 

1. {F,,  G,,  H,,  J J  as given in (9.4.12) is a realization of Z(s) with F, being 
2n X 2n. 

2. The constant matrix M, = [i, ' I:] is positive reaI, and 2.. is 

symm&ric, where X = [ I ,  -F., I, +(-I,,)]. 

Point 2 irnpiies that, if we consider the matrix M, as a hybrid matrix of 
an (m + 2n)-port network, where the first m + n ports are current-excited 
ports corresponding to the frst m 4- n rows of 2, that have a +I on the 
diagonal, and the remaining n ports are voltage-excited ports corresponding 
to the rows of 2: that have a -1 on the diagonal, then a network realizing 
M ,  can be found that uses only passive reciprocal elements. 

Further, from our discussion of the reactance-extraction procedure we can 
see that 1 and 2 together imply that termination of the last 2n ports of a 
synthesis of M ,  in n unit inductances for the current-excited ports, and n 
unit capacitances for the voltage-excited ports yields a network synthesizing 
Z(s). Since a synthesis of M, that is passive and reciprocal is guaranteed by 
point 2 to exist, and since we know how to derive a passive reciprocal synthe- 
sis of Z(s) from a passive reciprocal synthesis of M I ,  it follows that a recip- 
rocal passive synthesis of Z(s) can be achieved. 

So far, we have not yet shown how to go about synthesizing M I .  This we 
shall now consider, thereby completing the task of synthesizing Z(s). 

Synthesis of a Resistive Network Described 
by a Constant Hybrid Matrix M 

Consider the following equation describing a reciprocal (p + q) 
port N, having a constant hybrid matrix M: 

with the (p f q) x (p + q )  constant matrix Mpositive real, or M$ M' 2 0. 
The matrix MI, is p x p and symmetric, and M,, is q x q and symmetric. 
The first p ports of N, are the current-excited or open-circuit ports, while the 
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remaining q ports are the voltage-excited or short-circuit ports. It is easy to 
see that the positive real character of M, or the nonnegative definiteness of 
M 4- M' together with the form of M, implies that the symmetricprincipal 
submatrices M,, and M,, are individually nonnegative defmite, orpositive red.  

The positive real p x p symmetric matrix M , , ,  corresponding to the 
current-excited ports of M, is therefore an impedance matrix and is obviously 
realizable as a p-port transformer-coupled resistance network. The positive 
real q x q symmetric matrix M,,, corresponding to the voltage-excited ports 
of M, is an admittance matrix and is realizable as a q-port transformer- 
coupled conductance network. The remaining portion of M, that is, 

-M'xl, represents, as we may recall from an earlier section, the 
fM>,  0 
hybrid-matri;description of a multiport transformer with a turns-ratio 
matrix -M,,. We may therefore rightly expect that the q x p matrix Mi, 
represents some sort of transformer coupling between the two subnetworks 
described by the impedance MI, and the admittance M,,. A complete synthe- 
sis of M is therefore achieved by an appropriate series-parallel connection. 
In fact, it can be readily verified by straightforward analysis that the network 
N, in Fig. 9.4.1 synthesizes M; j.a, the hybrid matrix of N, is M. (Problem 
9.4.1 explores the hybrid matrix synthesis problem further.) 

Synthesis of Z(s) 

A synthesis of the hybrid matrix M ,  of (9.4.13) is evidently 
provided by the co11nection of Fig. 9.4.1 with 

-i + 0 ' Impedance MI, 

( P )  
1 

Adrn~ttance Mt2 
[G,T network1 

(9) 
"I 

Current-excited 
ports - 12 

+ 
Transformer v2 

-M21 Voltage-excited 
(P 1 ( 9 )  A ports - - 

- I 
FIGURE 9.4.1. Synthesisof theHybrid Matrix Mof Equa- 
tion (9.4.14). 
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J +(G - H)' 
M - 1 M,, = $[-F - F'] 

"-Li(G-H) #-F-P') (9.4.15) 

A synthesis of Z(s) then follows from that for M,, by terminating a11 current- 
excited poas other than the first m ports of the network N, synthesizing M, 
in 1-H inductances, and all the voltage-excited ports in 1-F capacitances. 

Observe that exactly n inductors and n capacitors are always used, so a 
total of 2n = 26[Z] reactive elements appear. Also, the total number of 
resistances used is the sum of rank M,, and rank M,,, which is the same as 

rank [M,, + Mi,] $ rank [M,,  + Mi,] = rank [M, + M:] = 2r 

Therefore, the synthesis uses 2r resistances, where r is the number of rows 
of the matrices L' and Wo appearing in (9.4.1). 

Arising from these observations, the following points should be noted. 
First, before carrying out a synthesis for a positive real Z(s) with Z(m) < m, 

it is worthwhile to apply those parts of the preliminary simplification pro- 
cedure described earlier that permit extraction of reciprocal lossless sections. 
The motivation in doing so should be clear, for the positive real impedance 
that remains to be synthesized after such extractions will have a degree, n' 
say, that is less than the original degree 6[a by the number of reactive ele- 
ments extracted, d say. Thus the number of reactive elements used in the 
overall synthesis becomes d f 2n'; in contrast, if no initial lossless extractions 
were made, this number would be 26[21 or 2(n1 + d)-hence a saving of d 
reactive elements results. Moreover, in computing a solution triple P, L, and 
W,, satisfying the positive real lemma equations [which is necessary in deriv- 
ing (9.4.1)l some of the many available methods described earlier in any case 
require the simplification process to be carried out (s,o that J+ J' = 2 J  is 
nonsingular). 

Second, the number of rows r of the matrices L' and W, associated with 
(9.4.1) has a minimum value of p = normal rank [Z(s) $. Z'(-s)]. Thus 
the minimum number of resistors that it is possible to achieve using the 
synthesis procedure just presented is 2p. 

The synthesis procedure will now be summarized, and then a simple synthe- 
sis example will follow. 

Summary of Synthesis 

The synthesis procedure falls into the following steps: 

1. By lossless extractions, reduce the problem of synthesizing a prescribed 
symmetric positive real impedance matrix to one of synthesizing a 
symmetric positive real m x m Z(s) with Z(m) < m. 
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2. Find a minimal realization for Z(s) and solve the positive real lemma 
equations. 

3. Obtain a minimal realization IF, G, H, J) of Z(s) and'associated real 
matrices L' and W, possessing the minimum possible number of rows, 
such that (9.4.1) holds.. . 

4. Form the symmetric positive real impedance M,, ,  admittance MI,, 
a n d  transformer turns-ratio matrix -M,, using (9.4.15)., 

5. Synthesize M,,, M,,, and -M,,  and connect these together a s  shown 
in Fig. 9.4.1. Terminate all of the voltage-excited ports in I-F capaci- 
tances, and all but the first m current-excited ports in 1-H inductances 
to yield a synthesis of the m x m Z(s): 

Example Consider the positive real impedance of Example 9.3.1: 
9.4.1 

A minimal realization [F, G, H, J )  satisfying (9.4.1) is 

. . 

and the associated matrices L' and W,, with L' and W, possessing the 
minimal number of rows, are 

First, weform the impedance MI,, the admittance M,,,.and the turns- 
ratio matrix M2, as follows: 

A synthesis of M,, is shown in Fig. 9.4.2a, and Ma, in Fig. 9.4.2b. 
Note that M,, is nothing more than an open circuit for port 1 and a 
1-C? resistor for port 2. A final synthesis of Z(s) is obtained by using the 
connection of Fig. 9.4.1 and terminating this network appropriately 
in  1-F capacitances and 1-H induc'tances, as shown in Fig. 9.42. 

By inspecting Fig. 9.4.2, we observe that, as expected, two resistances, 
two inductances, and two capacitances are used in the synthesis. But if we 
examine them more closely, we can observe an interesting fact: the circuit 
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1-  / , , i  ilI(m I ~~ 

I' 2' 3' 
2' 23111 1iI 

((1) Synthesisof M,, ( b )  Synthesis of M22 

( c l  Final Synthesis of Z(s1 of Example 9.4.1 

FIGURE 9.4.2 Synthesis of Example9.4.1. 

of Fig. 9.4.2 contains unnecessary elements that may be eliminated with- 
out affecting the terminal behavior, and it actually reduces to the sim- 
plified circuit arrangement shown in Fig. 9.4.3. Problem 9.412 asks the 
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reader to verify this. Observe now that the synthesis in Fig. 9.4.3 uses 
one resistance, inductance, and capacitance, and no gyrators. Thus, 

1 H 

FIGURE 9.4.3. A Simplified Circuit Arrangement for Fig. 
9.4.2. 

in this rather special case, we have been able to obtain a reciprocal 
synthesis that uses simultaneously the minimal number of resistances and 
the minimal number of reactances! One should not be tempted to think 
that this might also hold true in general; in fact (see [6]), it is not possible 
in general to achieve a reciprocal synthesis with simultanwusly a 
minimum number of resistances as well as reactive elements, although 
it is true that a reciprocal synthesis can always be obtained that uses a 
minimal number of resistances and a nonminimal number of reactive 
elements, or vice versa. This will be shown in Chapter 10. 

The example above also illustrates the following point: although the 
reciprocal synthesis method in this section theoretically requires twice the 
minimal number of resistances (2p) and twice the minimal number of reactive- 
elements (26[2]) for a reciprocal synthesis of a positive real symmetric Z(s), 
[at least, when Z(s) is the residual impedance obtained after preliminary 
synthesis simplifications have been applied to the original impedance matrix], 
cases may arise such that these numbers may be reduced. 

As already noted, the method in this section yields a reciprocal synthesis 
in a fashion as simple as the nonreciprocal synthesis obtained from the 
methods of the earlier sections of this chapter. In fact, the major computation 
task is the same, requiring the derivation of (9.4.1). However, the cost paid 
for the elimination of gyrators is that a nonminimal number of resistances 
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as well as a nonminimal number of reactive elements are needed. In Chapter 
10, we shall consider synthesis procedures that are able to achieve reciprocal 
syntheses with a minimum number of resistances or a minimal number of 
reactive elements. The computation necessary for these will be more complex 
than that required in this chapter. 

One feature of the synthesis of this section, as well as the syntheses of 
Chapter 10, is that transformers are in general required. State-space tech- 
niques have so far made no significant impact on transformerless synthesis 
problems; in fact, there is as yet not even a state-space parallel of the classical 
transformerless synthesis of a positive real impedance function. This synthe- 
sis, due to R. Bott and R.J. Duffin, is described in, e.g., [8]; it uses a number 
of resistive and reactive elements which increases exponentially wlth the 
degree of the impedance function being synthesized, and is certainly almost 
never minimal in the number of either reactive or resistive elements. It is 
possible, however, to make a very small step in the direction of state-space 
transformerless synthesis. The step amounts to converting the probfem of 
synthesizing (without transformers) an arbitrary positive real Z(s) to the 
problem of synthesizing a constant positive real Z,. If the reciprocal synthesis 
approach of this section is used, one can argue that a transformerless syn- 
thesis will result if the constant matrix MI of (9.4.13), which is a hybrid 
matrix, is synthesizable with no transformers. Therefore, one simply demands 
that not only should F, G, H, and Jsatisfy (9.4.1), but also that they be such 
that the nondynamic hybrid matrix of (9.4.13) possess a transformerless 
synthesis. Similar problem statements can be made in connection with the 
reciprocal synthesis procedures of the next section. (Note that if gyrators are 
allowed, transformerless synthesis is trivial. So it only makes sense to consider 
reciprocal transfoxmerless synthesis.) 

Finally we comment that there exists a resistance extraction approach, 
paralleling closely the reactance extraction approach of this section, which 
will synthesize a symmetric positive real Z(s) with twice the minimum 
numbers of reactive and resistive elements [4, 51. 

Problem Show that the hybrid matrix Mof the circuit arrangement in Pig. 9.4.1 
9.4.1 is 

- " ~ I P  
M z 2  I9 - - 

P 4 

Consider specifically a hybrid matrlx M, of the form of (9.4.13) with 
the first m + n porn currentexcited and the remaining n ports voltage 
excited ports. Now it is known that the last n of the m + n current- 
excited ports are to be terminated in inductances, while all the n 
voltageexcited ports are to be terminated in capacitances. Can you find 
an alternative circuit arrangement to Fig. 9.4.1 for M, that exhibits clearly 



404 IMPEDANCE SYNTHESIS CHAP. 9 

the last n current-excited ports separated from the first m currentexcited 
ports (Fig. 9.4.1 shows these combined together) in terms of the sub- 
matrices appearing in (9.4.13)? 

Problem Show that the circuit arrangement of Fig. 9.4.3 is equivalent to that 
9.4.2 of Fig. 9.4.2. 

[Hint: Show that the impedance Z(s) is (sZ + s -1- 4)j(sz + s -I- I).] 
Problem Synthesize the symmetric positive real impedance 
9.4.3 

s2+  2 r + 4  Z(s) = + s ,. 1 

using the method described in this section. Then note that two resistances, 
two capacitances, and two inductances are required. 

Problem Combine the ideas of this section with those of Section 9.3 to derive a 
9.4.4 resistance-extraction reciprocal synthesis of a symmetric positive real 

Z(s). The synthesis will use twice the minimum numbers of reactive and 
resistive elements [4,5l. 
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Reciprocal Impedance synthesiss 

10.1 INTRODUCTION 

In this chapter we shall continue our discussion of impedance 
synthesis techniques. More specifically, we shall be concentrating entirely on 
the problem of reciprocal or gyratorless passive synthesis. 

In Section 9.4 a method of deriving a reciprocal synthesis was given. This 
method, however, requires excess numbers of both resistances and energy 
storage elements. In the sequel we shall be studying reciprocal synthesis 
methods that require only the minimum possible number of energy storage 
elements, and also a reciprocal synthesis method that requires only the mini- 
mnm possible number of resistances. 

A brief summary of the material in this chapter is as follows. In Section 
10.2 we consider a simple technique for lossless reciprocal synthesis based 
on [I]. In Section 10.3 general reciprocal synthesis via reactance extraction is 
considered, while a synthesis via the resistance-extraction technique is given 
in Section 10.4. All methods use the minimum possible number of energy 
storage elements. In Section 10.5 we examine from the state-spaceviewpoint 
the classical Bayard synthesis. The synthesis procedure uses the minimum 
possible number of resistances and is based on the material in [2]. The results 
of Section 10.3 may be found in [3], with extensions in [4]. 

*This chapter may be omitted at z fiat reading. 
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We shall consider here the problem of generating a state-space 
synthesis of a prescribed m x m symmetric lossless positive real impedance 
Z(s). Of course, Z(s) must satisfy all the positive real constraints and also 
the constraint that Z(s) = -Z1(-s). 

We do not assume that any preliminary lossless section extractions, a s  
considered in an earlier chapter, are carried out-for this would completely 
solve the problem! We shall however assume (with no loss of generality) 
that Z(m) < co. In fact, Z(m) must then bezero. The reasoning isasfollows: 
since Z(s) is lossless, 

But the left-hand side is simply Z(m) + Zr(m) = 2Z(w), by the symmetry 
of Z(s). Hence 

We recall that the lossless positive real properties of Z(s) guarantee the 
existence of a positive definite symmetric matrix P such that 

where (F, G, H )  is any minimal realization of Z(s). With any T such that 
T'T = P, another minimal realization (F,, G,, H,]ofZ(s)defined by {TIT-', 
TG, (T-,)'HI satisfies the equations 

Now the symmetry property of Z(s) implies (see Chapter 7) the existence of 
a symmetric nonsingular matrix A uniquely defined by the minimal realiza- 
tion (F,, G,, H,] of Z(s), such that 

AF, = F', A 

AG, = -HI 

We shall show that A possesses a decomposition 
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where U is an orthogonal matrix and 

with, of course, nl + n, =. n = 6[Z(s)]. To see this, observe that (10.2.2) 
and (10.2.3) yield AF\ = F I A  and AH, = -G,, or 

F,A-1 = A-IF, 

A-'G, = -H,  

From (10.2.3) and (10.2.6) we see that both A and A-1 satisfy the equations 
XF, = P, Xand XG, = - H I .  Since the solution of these equations is unique, 
it follows that A = A-I. This implies that A2 = I, and consequently all 
eigenvalues of A must be +1 or -1. As A is symmetric also, there exists an 
orthogonal matrix U such that A = U'ZU, where, by absorbing a permuta- 
tion matrix in U, the diagonal matrix Z with 4 1  and -I entries only may 
be asswnedto be X = [I", -f- (-1)1,]. 

With the orthogonal matrix U defined above, we obtain another minimal 
reali t ion of Z(s) givenby 

I t  now follows from (10.2.2) and (10.2.3) that 

From the minimal realization {F,, G,, Hz], a reciprocal synthesis for Z(s) 
follows almost immediately; by virtue of (10.2.8), the constant matrix 

satisfies 

M f M' = 0 (Im + X)M = Mf(Im 4 Z) (10.2.10) 

The matrix M is therefore synthesizable as the hybrid matrix of a reciprocal 
lossless network, with the current-excited ports corresponding to the rows of 
(I, 4- X) that have a 4 1  on the diagonal, and the voltage-excited ports 
corresponding to those rows that have a -1 on the diagonal. Now because 
M satisfies (10.2.10), it must have the form 
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We conclude that the hybrid matrix M is realizable as a mulliport transformer. 
A synthesis of Z(s) of course follows from that for M by terminating the 

primary ports (other than the first m ports) of M in unit inductances, and all 
the secondary ports in unit capacitors. 

Those familiar with classical synthesis procedures will recall that there are 
two standard lossless syntheses for lossless impedance functions-thc Foster 
and Cauer syntheses [a], with multipart generalizations in [b].  The Foster 
synthasis can be obtained by taking in (10.2.8) 

(It is straightforward to show the existence of a coordinate-basis change 
producing this structure of F,, G,, and Hz.) The Cauer synthesis can be 
obtained by using the preliminary extraction'p~ocedures of Chapter 8 to 
carry out the entire synthesis. 

Problem Synthesize the impedance matrix 

10.3 RECIPROCAL SYNTHESIS VIA 
REACTANCE EXTRACTION 

The problem of synthesizing a prescribed m x m positive real 
symmetric impedance Z(s) without gyrators is now considered. We shall 
assume, with no loss of generality, that Z(w) < m. The synthesis has the 
feature of always using the minimum possible number of reactive elements 
(inductors and capacitors); this number is precisely n = 6[Z(s)]. Further, 
the synthesis is based on the technique of reactance extraction. As should 
be expected, the number of resistors used will generally exceed rank [Z(s) 
+ z'(-s)]. 

We recall that the underlying problem is to obtain a state-space realiza- 
tion {F, G, H, J )  of Z(s) such that the constant matrix 
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has the properties 

M + M ' > O  (10.3.2) 

[ I ,  -4- ZlM =. M'[Im $ a (10.3.3) 

where 2: is a diagonal matrix with diagonal entries 4-1 or -1. Furthermore, 
if (10.3.1) through (10.3.3) hold with Fpossessing the minimum possible size 
n x n, then a synthesis of Z(s) is readily obtained that uses the minimum 
number n of inductors and capacitors. 

The constant matrix M in (10.3.1) that satisfies (10.3.2) and (10.3.3) is the 
hybrid matrix of a nondynamic network; the current-excited ports are the 
first m ports together with those ports corresponding to diagonal entries 
of 2 with a value of $1, while the remaining ports are of course voltage- 
excited ports. On terminating the nondynamic network (which is always 
synthesizable) at the voltage-excited ports ~n l-F capacitances and at all but 
the first rn current-excited ports in 1-H inductances, the prescribed impedance 
Z(s) is observed. 

More precisely, the first condition, (10.3.2), says that the hybrid matrix 
M possesses a passive synthesis, while the second condition, (10.3.3), says 
that it possesses a reciprocalsynthesis. Obviously, any matrix M that satisfies 
both conditions simultaneously possesses a synthesis that is passive and 
reciprocal. In Chapter 9 we learned that any minimal realization {F, G, H, J ]  
of Z(s) that satisfies the (special) positive real lemma equations 

F + F ' = - L L '  

G = H - L W ,  (10.3.4) 

J +  J' = WLW, 

results in M of (10.3.1) fulfilling (10.3.2). [In fact if M satisfies (10.3.2) for 
any (F,  G, H, J) ,  then there exist L and W, satisfying (10.3.4).] The procedure 
required to derive {F, G, H, J ]  satisfying (10.3.4) was also covered. We shall 
now derive, from a minimal realization of Z(s) satisfying (10.3.4), another 
minimal realization IF,, G,, H,, J )  for which both conditions (10.3.2) and 
(10.3.3) hold simultaneously. In essence, the reciprocal synthesis problem is 
then solved. 

Suppose that (F, G, H, J )  is a state-space minimal realization of Z(s) such 
that (10.3.4) holds. The symmetry (or reciprocity) property of Z(s) guarantees 
the existence of a unique symmetric nonsingular matrix P with 

As explained in Chapter 7 (see Theorem 7.4.3), any matrix T appearing in a 
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decomposition of P of the form 

P = T'XT Z = [In, -I- (-1)IJ (10.3.6) 

generates another minimal realization {TFT-', TG, (T-')'H, J }  of Z(S) that 
satisfies the reciprocity condition (10.3.3). However, there is no guarantee that 
the passivity condition is still satisfied. We shall now exhibit a specific state- 
space basis change matrix T from among all possible matrices in the above 
decompositon of P such that in the new state-space basis, passivity is pre- 
sewed. 

The matrix T is described in Theorem 10.3.1; first, we require two pre- 
liminary lemmas. 

Lemma 10.3.1. Let R be areal matrix similar to areal symmetric 
matrix S. Then S is positive definite (nonnegative definite) if 
R + R' is positive definite (nonnegative definite), but not neces- 
sarily conversely. 

The proof of the above lemma is'straightforward, depending on the fact 
that matrices that are similar to one another possess the same eigenvalues, 
and the fact that a real symmetric matrix has real eigenvalues only. A formal 
proof to the lemma is requested in a problem. 

Second, we have the following result: 

Lemma 10.3.2. Let P be the symmetric nonsingular matrix satis- 
fying (10.3.5). Then P can be represented as 

P = BVXV' = VXV'B (10.3.7) 

where B is symmetric positive definite, V is orthogonal, and 
X = [I,, -!- (-1)1,;1. Further, VZV' commutes with B"L, the 
unique positive definite square root of B; i.e., 

Proof. It is a standard result (see, e.g., [5D, that for anonsingular 
matrix P, there exist unique matrices B and U, such that B is 
symmetric' positive definite, U is orthogonal, and P = BU. 
From the symmetry of P, 

BU = U'B = (U'BU)U' 

This shows that B and (U'BU) are both symmetric positive- 
definite square roots of the symmetric positive-definite matrix 
K = PP' = PZ. It follows from the uniqueness ofpositive-definite 
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square roots that 

B = U'BU 

Hence, multiplying on the left by U, 

Next, we shall show that the orthogonal matrix U has a decom- 
position VZV'. To do this, we need to note that Uis symmetric. 
Because P is symmetric, P = BU = U'B. Also, P = UB. The 
nonsingularity of B therefore implies that U = U'. Because U 
is symmetric, it has real eigenvalues, and because it is orthogonal, 
it has eigenvalues with unity modulus. Hence the eigenvalues of 
U must be +1 or -1. Therefore, U may be written as 

U =  VZV' 

where V is orthogonal and Z = [I,, + (-1)1,,1. Now to prove 
(10.3.8), we proceed as follows. By premultiplying (10.3.7) by 
XV' and postmultiplying by V Z ,  we have 

XV'BV = V'BVI: 

on using the fact that V is orthogonal and Z2 =I. The above 
relation shows that V'BV commutes with Z. Because V'BV is 
symmetric, this means that Y'BV has the form 

where B, and B, are symmetric positive-definite matrices of 
dimensions n, x n, and n, x iz,, respectively. Now (V'B"aV)2 
= V'BV and [B:" 4 B:11]2 = [B, Bt]. By the uniqueness of 
positive-definite square roots, we have V'B'lZV = [B:I2 + B:'a]. 
Therefore 

from which (10.3.8) is immediate. V V V 
With the above lemmas in hand and with all relevant quantities defined 

therein, we can now state the following theorem. 

Theorem 10.3.1. Let (F, G, H, J ]  be a minimal realization of a 
positive real symmetric Z(s) satisfying the special positive real 
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lemma equations (10.3.4). Let V, B, and ): be defined as in 
Lemma 10.3.2, and define the nonsingular matrix T by 

T =  V ' B X I ~  (10.3.9) 

Then the minimal realization {F,, G,, HI, J )  = {TFT-', TG, 
(T-l)'H, J ]  of Z(s) is such that the hybrid matrix 

satisfies the following properties: 

Proof. From the theorem statement, we have 

The second and third equalities follow from Lemma 10.3.2. 
It follows from the above equation by a simple direct calcula- 

tion or by Theorem 7.4.3 that T defines a new minimal realization 
{F,, GI, If,, J )  of Z(s) such that 

holds. It remains to check that (10.3.10) is also satisfied. 

RecaUing the definition of M as [I. :TI, ic is clear that 

or, on rewn'ting using (10.3.9), 

where M, denotesp 4- V ' ] M [ I +  V ] .  From the fact that M+ M' 
2 0, it follows readily that 
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Now in the proof of Lemma 10.3.2 it was established that 
Y'BIIZV has the special form [B;" 4- B:la], where B:I2 and B:12 
are symmetric positivedefinite matrices of dimensions n, x n,  
and n, x n,, respectively. For simplicity, let us define symmetric 
positive-deiinite matrices Q ,  and Q ,  of dimensions, respectively, 
(m + n,) x (m + n , )  and n, x n,, by 

Q ,  = 11, t B:i21 
Q ,  = B y 2  

and let M, be partitioned conformably as 

i.e., M l 1  is (m + n,) x (m + n,)  and M,, is n, x n,. Then we 
can iewrite (10.3.12), after simple calculations, as 

The proven symmetry property of [I, & Z]Ml implies that the 
submatrices Q i l M , ,  Q l  and QilM, ,Q,  are symmetric, while 
Q;lM,,Q, = -(Qi1M1,Q,)' .  Consequently 

Now M , ,  and M,, are principal submatrices of M,, and so 
M I ,  + M i ,  and M,,  $ M i ,  are principal submatrices of M, 
+ M i .  By (10.3.13), M ,  + Mb is nonnegative definite, and so 
M l l  + M',, and M,, + M i ,  are also nonnegative definite. On 
identifying the symmetric matrix Q ; ' M l l Q ,  with S and the 
matrix M , ,  with R in Lemma 10.3.1, it follows by Lemma 10.3.1 
that Q i l M , , Q ,  is nonnegative definite. The same is true for 
Q;1M,2Q,. Hence 

and the proof is now complete. V V O 
With Theorem 10.3.1 on hand, a passive reciprocal synthesis is readily 
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obtained. The constant hybrid matrix M, is synthesizable with a network 
of multiport ideal transformers and positive resistors only, as explained in 
Chapter 9. A synthesis of the prescribed Z(s) then follows by appropriately 
terminating this network in inductors and capacitors. 

A brief summary of the synthesis procedure follows: 

1. Find a minimal realization {F,,, Go, Ha, J) for theprescribedZ(s), which 
is assumed to be positive real, symmetric, and such that Z(oo) < m. 

2. Solve the positive real lemma equations and compute another minimal 
realization [F, G, H, J )  satisfying (10.3.4). 

3. Compute the matrix P for which PF = F'P and PG = -H, and from 
P find matrices B, V, and I: with properties as defined in Lemma 10.3.2. 

4. With T = V'B"', form another minimal realization ofZ(s) by (TFT', 
TG, (T-I)'H, J )  and obtain the hybrid matrix M,, given by 

5. Give a reciprocal passive synthesis for M,; terminate appropriate ports 
of this network in unit inductors and unit capacitors to yield a synthesis 

The calculations involved in obtainingB, V, .and:Z.from:P are straight-. 
forward. We note that B is simply the symmetric po&tive-definite square root 
of the matrix PP' = P Z ;  the matrix B-'P (or PB-I), which is symmetric 
and orthogonal, can be easily. decomposed as VXV'[q. 

Example Let the symmetric positive real impedance matrix Z(s) to be synthesized 
10.3.1 be 

A minimal realization for Z(s) satisfying (10.3.4) is given by 

The solution P of the equations PF = F'P and PG = -His easily com- 
puted to be 

for which B, V, and X are 
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The required state-space basis change T = V'BIIZ is then 

yielding another minimal realization {F,, G , ,  HI, J] of Z(s): 

We then form the hybrid matrix 

It is easy to see that MI + M', is nonnegative definite, and (I + E)M, 
is symmetric. A synthesis of MI is shown in Fig. 10.3.1; a synthesis of 
Z(s) is obtained by terminating ports 2 and 3 of thisnetwork in a unit 
inductance and unit capacitance, respectively, as shorn in Fig. 10.3.2. 

The reader will have noted that the general theme of the synthesis given 
in this section is to start with a realization of Z(s) from which a passive 
synthesis results, and construct from it a realization from which a passive 
and reciprocal synthesis results. One can also proceed (see [3] and Problem 

FIGURE 10.3.1. A Synthesis of the Hybrid Matrix M,. 
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FIGURE 10.3.2. A Synthesis of Z(s). 

10.3.5) by starting with a realization from which a reciprocal, but not neces- 
sarily passive, synthesis results, and constructing from it a realization from 
which a reciprocal and passive synthesis results. The result of Problem 10.3.1 
actually unifies both procedures, which at first glance look quite distinct; 
[4] should be consulted for further details. 

Problem Let (F, G, H, J) be an arbitrary minimal realization of symmetri.~ 
10.3.1 positive real matrix. Let Q be a positive-definite symmetric matrix satisfy- 

ing the positive real lemma equations and let P be the unique symmettic 
nonsingular matrix satisfying the reciprocity equation, i.e., Eqs. (10.3.5). 

Prove that if a nonsingdar matrix Tcan be found such that 

YZT = P with 2 = [I., f (-1)Z.l 

and 
T'YT= Q 

for some arbitrary symmetric positive definite matrix Y having the form 
[Y, + YZ1, where Y1 is n, x n, and Y, is n, x n,, then the hybrid 
matrix Mformed from the minimal realization {TET-1, TG, (T-')'H, J ]  
satisfies the equations 

Note that this problem is concerned with proving a theorem offering a 
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more general approach to reciprocal synthesis than that given in the 
text; an effective computational procedure to accompany the theorem 
is suggested in Problem 10.3.8. 

Problem Show that Theorem 10.3.1 is a special case of the result given in Problem 
10.3.2 10.3.1. 

Problem Prove Lemma 10.3.1. 
10.3.3 

Problem Synthesize the foUowing impedance matrices using the method of this 
10.3.4 section: 

s ' + 4 s + 9  
(a) Z(s) = s, + 2s + 

Problem Let [F, G, H, J ]  be aminimalrealization of an m x m symmetricpositive 
10.3.5 real Z(s) such that 

with X = [I., + (-1)1,,,1. Suppose that 3' is a positive-definite sym- 
metric matrix satisfying the positive real lemma equations for the above 
minimal realization, and let P be partitioned conformably as 

where P ,  I is nl x nl and P Z 2  is n, x n,. Define now an nl x n, matrix 
Q as any solution of the quadratic equation 

with the extra property that I - Q'Q is nonsingular. (It is possible to 
demonstrate the existence of such Q.) 

Show that, with 

(Ina - QQ')-11'2 
T - [ (I., - QQ'I-'"Q 

( I  - Q'Q)J2Q' (I., - Q'Q)-l'' 1 
then the minimal realization { F l ,  G I ,  H I ,  J ]  = [TIT- ' ,  TG, (T-')%I,J) 
of Z(s) is such that the hybrid matrix 

satisfies the following properties: 
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M, +M',>O 

[I,+ EIM, = MXI, 4- XI 

(Hint: Use the result of Problem 10.3.1.) 
Can you give a computational procedure to solve the quadratic equa- 

tion for a particular Q with the stated property? (See [3,4] for further 
details.) 

Problem Suppose that it is known that there exists a synthesis of a prescribed 
10.3.6 symmetric positive real Z(s) using resistors and inductors only. Explain 

what simplifications result in the synthesis procedure of this section. 

Problem Let Z(s) be a symmetric-positive-real matrix with minimal realization 
10.3.7 [F, G, H, J1. [Assume that Z(w) < w.] Show that the number of induc- 

tors and capacitors in a minimal reactive reciprocal synthesis of Z(s) 
can be determined by examining the rank and signature of the symmetric 
Hankel matrix 

H'G H'FG - .  . H'Fn-I G 
H'FG H'F2G . .. H'FnG 

H'Fn-1G H'FxG . .. H'Fln-2G - 1 
Problem Show that the following procedure will determine arnatrix Tsatisfying the 
10.3.8 equations of Problem 10.3.1. Let S ,  be such that Q = S',ISl, and let 

St be an orthogonal matrix such that S,(S:)-'PS:S: is diagonal. Set 
S = SzSI .  Then S will sirnultanwusly diagonalize P and Q. From S 
and the diagonalized P, find T. Discuss how all Tmight be found. 

Problem Let Z(s) be a symmetric positive real matrix with minimal realization 
10.3.9 (F, G, H, Jj. Suppose that XF = F'C and XG = -X where 2 has the 

usual meaning. Suppose also that R = W is nonsingular. Let P be the 
minimum solution of 

PF f F'P = -(PC - H)R-'(PC - H Y  

Show that the maximum solution is (XPZ)-1. 

10.4 RECIPROCAL SYNTHESIS VIA 
RESISTANCE EXTRACTION 

I n  the last section a technique yielding a reciprocal synthesis for 
a prescribed symmetric positive real impedance matrix was considered, the 
synthesizing network being viewed as a nondynamic reciprocal network 
terminated in inductors and capacitors. Another technique-the resistance- 
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extraction technique-for achieving a reciprocal synthesis will be dealt with 
in this section. The synthesizing network is now thought of as a reciprocal 
lossless network terminated in positive resistors. The synthesis also uses 
a minimal possible number of reactive elements. 

With the assistance of the method given in the last section, we take as our 
starting point the knowledge of a minimal realization {F, G, H, Jj  of Z(s) 
with all the properties stated in Theorem 10.3.1; i.e., 

and 

Suppose that E is [I,, + (-I)?,J. Let us partition the matrices F, G, and 
H conformably as shown below: 

Hence, F,, is n, x n,, FZ1 is n, x n,, G, and H ,  are el X m, and G, and 
H, are n, x m. Then (10.4.2) may be easily seen to imply that 

On substituting the above equalities into (10.4.1), we have 

Hence the principal submatrices - ~ , 1 ]  and I-2Faz] are individually 

nonnegative definite. Therefore, there exists an(m -k n , ) ~  r, matrix R and . 

an n, X r, matrix S, where r ,  is the rank of [ -2,j mir,  is the m k  

of [-2F,J, such that 
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If we partition the matrix R as 

CHAP. 10 

with R, m x r ,  and R, n, X r,, then (10.4.4) reduces to 

2J= R,R; ZG, = R,Ri -2F,, = R,R', (10.4.6) 

With these preliminaries and definitions, we now state the following 
theorem, which, although it is not obvious from the theorem statement, is 
the crux of the synthesis procedure. 

Theorem 10.4.1. Let Z(s) be an m x m symmetric positive real 
impedance matrix with Z(co) < oo. Let [F, G, H, J )  be a minimal 
realization of Z(s) such that (10.4.1) and (10.4.2) hold. Then the 
following state-space equations define an (m f r)-port lossless 
network: 

[Here x is an n vector, u and y are m vectors, and u, and y, are 
vectors of dimension r = r, + r,.] Moreover, if the last r ports of 
the lossless network are terminated in unit resistors, correspond- 
ing to setting 

U I  = -YI (10.4.8) 

then the prescribed impedance Z(s) will be observed at the remain- 
ing m ports. 
Proof. We shall establish the second claim first. From (10.4.8) 
and the second equation in (10.4.7), we have 
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Substituting the above into (10.4.7) yields 

or, on using Eqs. (10.4.6) and collecting like terms 

Using now (10.4.3), it is easily seen that the above equations are 
the same as 

and evidently the transfer-function matrix relating U(s) to Y(s) is 
J + H'(sI - F)-lG, which is the prescribed Z(s). 

Next we prove the first claim, viz., thatthe state-space equations 
(10.4.7) define a lossless network. We observe that the transfer- 
function matrix relating the Laplace transforms of input variables 
to those of output variables has a state-space realization, in fact 
a minimal realization, (F",, G,, H,, J,] given by 

1 F L = - ( F -  2 
F') = [->, 71 

Clearly then, 
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Since these are the equations of the lossless positive real lemma 
with P the identity matrix I, (10.4.7) defines a lossless network. 

v v v  
With the above theorem, we have on hand therefore a passive synthesis 

of Z(s), provided we can give a lossless synthesis of (10.4.7). Observe that 
though u is constrained to be a vector of currents by the fact that Z(s) is an 
impedance matrix (with y being the corresponding vector of voltages), u, 
however can have any element either a current or voltage. [Irrespective of the 
definition of u,, (10.4.8) always holds and (10.4.7) still satisfies the lossless 
positive real lemma.] Thus there are many passive syntheses of Z(s) corre- 
sponding to different assignments of the variables u, (and y,). [Note: A 
lossless network synthesizing (10.4.7) may be obtained using any known 
methods, for example, by the various classical methods described in [6] or 
by the reactance-extraction method considered earlier.] 

By making an appropriate assignment of variables, we shall now exhibit 
a particular lossless network that is reciprocal. In effect, we are thus present- 
ing a reciprocal synthesis of Z(s). 

Consider the constant matrix 

It is evident on inspection that M is skew, or 

M +  M ' = O  

and ZM is symmetric with 

z = IL + (-III,, -L I , ~  4 In, + (-I)IJ 
h e s e  equations imply that if M is thought of as a hybrid matrix, where ports 
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m + 1 to m $- r ,  and the last n, ports are voltage-excited ports with all 
others being current-excited ports, then M has anondynamiclossless synthesis 
using reciprocal elements only. In addition, termination of this synthesis of 
M a t  the first n, of the last n ports in unit inductances and the remaining n, 
of the last n ports in unit capacitances yields a reciprocal lossless synthesis 
of the state-space equations (10.4.7) of Theorem 10.4.1, in which the first 
r ,  entries of u1 are voltages, while the last r, entries are currents. Taking the 
argument one step further, it follows from Theorem 10.4.1 that termination 
of this reciprocal lossless network at its last r ports in unit resistances then 
yields a reciprocal synthesis of Z(.V). 

We may combine the above result with those contained in Theorem 10.4.1 
to give a reciprocal synthesis via resisfance extraction. 

Theorem 10.4.2. With the quantities as defined in Theorem 
10.4.1, and with the first r ,  entries of the excitation r  vector u, 
defined to be voltages and the last r ,  entries defined to be currents, 
the state-space equations of (10.4.7) define an (m + r)-port loss- 
less network that is reciprocal. 

As already noted, the reciprocal lossless network defined in the above 
theorem may be synthesized by many methods. Before closing this section, 
we shall note one procedure. Suppose that the reciprocal lossless network is 
to be obtained via the reactance-extraction techn~que; then the synthesis 
rests ultimately on a synthesis of the constant hybrid matrix M of (10.4.9). 
Now the hybrid matrix M has a synthesis that is nondynamic and lossless, 
as well as reciprocal. Consequently, the network synthesizing M must be 
a multiport ideal transformer. This becomes immediately apparent on per- 
muting the rows and columns of M so that the current-excited ports are 
grouped together and the voltage-excited ports togkther: 

Evidently M,is realizable as an (m + r, + n,) x (r, + n,)-port transformer 
with an (r,  + n,) X (m + r, $. n,) turns-ratio matrix of 
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The above argument shows that a synthesis of a symmetric positive real 
Z(s) using passive and reciprocal elements may be achieved simply by ter- 
minating an (m + r, + n,) x (r,  + nJ-port transformer of turns-ratio 
matrix T, in (10.4.10) a t  the last n, secondary ports in units capacitances, 
at the remaining r, secondary ports in unit resistances, at the last n, primary 
ports in unit inductances, and a t  all but the first m of the remaining primary 
ports in r, unit resistances. 

Let us illustrate the above approach with the following simple example. 

Example Consider the (symmetric) positive real impedance 
10.4.1 

Z(s) = s f + 2 . + 9  1 1 
8sz+ 1 6 s + 8 = 8 + s Z + 2 . + 1  

A minimal state-space realization of Z(s) that satisfies the conditions in 
(10.4.1) and (10.4.2) with X = [I + -11 is 

as may be easily checked. Now 

[-ZF,,] = 0 = SS 

Hence 

and the 2 x 3 tums-ratio matrix T, in (10.4.10) is therefore 

Note that the second column of T, can in fact be deleted; for the moment 
we retain it to illustrate more effectively the synthesis procedure. A 
multipart transfonner realizing T, is shown in Fig. 10.4.1, and with 
appropriate terminations at certain primary ports and all the secondary 
ports the network of Fig. 10.4.2 yields a synthesis of Z(s). 
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FIGURE 10.4.1. A Multiport Transformer Realizing T. of 
Example 10.4.1. 

- - 

. . 

. . 

- 
FIGURE 10.4.2. A Synthesis of Z(s) for Example 10.4.1. 

It is evident that one resistor is unnecessary and the circuit in Fig. 
10.4.2 may be reduced to the one shown in Fig. 10.4.3. By inspection, 
we see that the synthesis u s e  the minimal number of reactive elements 
as predicted, and, in this particular example, the minimal number of 
resistances as well. 
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FIGURE 10.4.3. A Simplified Version of the Network of 
Fig. 10.4.2. 

This concludes our discussion of reciprocal synthesis using a minimal 
number of reactive elements. The reader with a background in classical 
synthesis will have perceived that one famous classical synthesis, the Brune 
synthesis [8I, has not been covered. I t  is at present an open problem as to 
how this can be obtained via state-space methods. It is possible to analyze 
a network resulting from a Brune synthesis and derive state-space equations 
via the analysis procedures presented much earlier; the associated matrices 
F, G, H, and J satisfy (10.4.1) and (10.4.2) and have additional structure. 
The synthesis problem is of course to find a quadruple (F, G, H, J j  satisfying 
(10.4.1) and (10.4.2) and possessing this structure. 

Another famous classical synthesis procedure is the reciprocal Darlington 
synthesis. Its multiport generalization, the Bayard synthesis, is covered in the 
next section. 

Problem Consider the positive real impedance function 

Using the method of the last section, compute a realization of Z(s) 
satisfying (10.4.1) and (10.4.2). Then form the state-space equations 
defined in Theorem 10.4.1, and verify that on setting ul = -y , ,  the 
resulting state-space equations have a transfer-function matrix that is 
Z(s). 
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Problem With the same impedance function as given in Problem 10.4.1, and 
10.4.2 with thestate-spaceequations defined inThwrem 10.4.1, giveall possible 

syntheses ofZ(s) (corresponding to differing assignments for thevariables 
ul and y,), including the particular reciprocal synthesis given in the text. 

Compare the various syntheses obtained. 

In earlier sections of this chapter, reciprocal synthesis methods 
were considered resulting in syntheses for a prescribed symmetric positive 
real impedance matrix using the minimum possible number of energy storage 
elements. The number of resistors required varies however from case to case 
and often exceeds the minimum pos~ible. Of course the lower limit on the 
number of resistors necessary in a synthesis of Z(s) is well defined and is given 
by the normal rank of Z(s) + Z'(-s). 

A well-horn classical reciprocal synthesis technique that requires the 
minimum number of resistors is the Bayard synthesis (see, e.g., [6, I), the 
basis of which is the Gauss factorization procedure. We shall present in this 
section a state-space version of the Bayard synthesis method, culled from [2]. 

Minimality of the number of resistors and absence of gyrators in general 
means that a nonminimal number of reactive elements are used in the syn- 
thesis. This means that the state-space equations encountered in the synthesis 
may be nonminimal, and, accordingly, many of the powerful theorems of 
linear system theory are not directly applicable. This is undoubtedly a com- 
plicating factor, making the description of the synthesis procedure more 
complex than any considered hitherto. 

As remarked, an essential part of the Bayard synthesis is the application 
of the Gauss factorization procedure, of which a detailed discussion may be 
found in 161. Here, we shall content ourselves merely with quoting the result. 

Statement of the Gauss Factorization Procedure 

Suppose that Z(s) is positive real. As we know, there exist an 
infinity of matrix spectral factors W(s) of real rational functions such that 

Z(S) + Z'(-S) = W'(-s)W(s) (10.5.1) 

Of the spectral factors W(s) derivable by the procedures so far given, almost 
all have the property that W(s) has minimal degree; i.e., d[W(.)] = d[Z(.)1. 
The Gauss factorization procedure in general yields anonminima[ degree W(s). 
But one attractive feature of the Gauss factorization procedure is the ease 
with which W(s) may be found. 

*This section may be amitted at a first reading of this chapter. 
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The Gauss Factorization. Let Z(s) be an m x m positive 
real matrix; suppose that no element of Z(s) possesses a purely 
imaginary pole, and that Z(s) + Z'(-s) has rank r almost every- 
where. Then there exists an r x r diagonal matrix N,  of real 
Hurwitz* polynomials, and an m x r matrix N, of real poly- 
nomials such that 

Moreover, if Z(s) = Z'(s), there exist N, and N, as defined above 
with, also, N,(s) = N,(-s). The matrices N,(s) and Nz(s) are 
computable via a technique explained in i61.t 

Observe that there is no claim that N, and N, are unique; indeed, they 
are not, and neither is the spectral factor 

In the remainder of the section we discuss how the spectral factor W(s) 
in (10.5.3) can be used in developing a stateapace synthesis of Z(s). The 
discussion falls into two parts: 

1. The construction of a state-space realization (which is generally non- 
minimal) of Z(s) from a state-space realization of W(3). This realization 
of Z(s) yields readily a nonreciprocal synthesis of Z(s) that uses a mini- 
mum number of resistors. 

2. An interpretation is given in statespace terms of the constraint in the 
Gauss factorization procedure owing to the symmetry of Z(s). An 
orthogonal matrix is derived that takes the state-space realization of 
Z(s) found in part 1 into a new state-space basis from which a reciprocal 
synthesis of Z(s) results. The synthesis of course uses the minimum 
number of resistors. 

Before proceeding to consider step 1 above, we first note that the Gauss 
factorization requires that no element of Z(s) possesses a purely imaginary 
pole; later when we consider step 2, it will be further required that Z(m) 
be nonsiugular. Of course, these requirements, as we have explained earlier, 
are inessential in that Z(s) may always be assumed to possess these properties 
without any loss of generality. 

*For our purposes, a Hnrwitz polynomial will he delined as one for which all zeros 
have negative real parts. 

?The examples and problems of this section will involve matrices N,( . )  and A',(.) that 
can be computed without need for the fomal technique of [q. 
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Construction of a State-Space Realization of Z(s) 
via the Gauss Spectral Factorization 

Suppose that Z(s) is an m x m positive real impedance matrix to 
be synthesized, such that no element possesses a purely imaginary pole. 
Constraints requiring Z(s) to be symmetric or Z ( m )  to be nonsingular will 
not be imposed for the present. Assuming that Z(s) + Z'(-s) has normal 
rank r, then by the use of the Gauss factorization procedure, we may assume 
that we have on band a diagonal r x r matrix of Hunuitz polynomials N,(s) 
and an m x r matrix of polynomials N,(s) such that a spectral factor W(s) 
of 

is. : 

The construction of a state-space realization of Z(s) will be preceded by 
construction of a realization of W(s). Thus matrices F, G, L, and Wo are 
determined, in a way we shall describe, such that 

[Subsequently, F and G will be used in a realization of Z(s).J 
The calculation of W, is straightfonvard by setting s = w in (10.5.3). 

Of course, W, = W(-) < m since Z ( m )  < w. The matrices F and L will 
be determined next. We note that 

where each p,(s) is a Hunvitz polynomial. Defne f i  to be the companion 
matrix with pj(s) as characteristic polynomial; i.e., 

and define I, = [0 0 . . . 0 I]'. As we h o w ,  [fi, 41 is completely controllable 
for each i; further, 
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as may be readily checked. Define now Pand 2 as 

Obviously, the pair [E', 21 is completely controllable because each [E,  fi] is. 
Having Iixed the matrices i? and 2, we now seek a matrix 8 such that 

Subsequently, we shall use the triple (3, G,e] to define the desired triple 
(F, G, L) satisfying (10.5.4). From (10.5.3) we observe that the (i, j)th entry 
of V(s) = W'(s) is 

where n,,,(s) is the (i, j)th entry of N,(s) of (10.5.3). is v,,(co), and the 
degree of ii,,(s) is less than the degree ofp,(s) with Rri,,(s) the residue of the 
polynomial n,(s) modulo p,(s). Define B:, to be the row vector obtained 
from the coeficients of ii,,(s), arranged in ascendingpower of s. Then because 
(sf - 83-'i can be checked to have the obvious form 
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it follows that 
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re:, e:, .., a:.1 

A few words of caution are appropriate here. One should bear in mind 
that in constructing 8' and t, if there exists apj(s)  that is simply a constant, 
then the corresponding block must evanesce, so that the rows and columns 
corresponding to the block fi in the P' matrix must be missing. Correspond- 
ingly, the. associated rows in the i matrix occupied b y  the vector 1, will 
evanesce, but the associated single column of zeros must remain in order to 
give the correct dimension, because if E' is n x n, then is n x. r, where 
r is the normal rank ofZ(s)  + Z'(-s). Consequently, the number of columns 
in i i s  always r. The matrix e' will have fib, zero for all q, and the corre- 
sponding columns will. also evanesce because G' has n columns. 

The matrices p, 6, and i defined above constitute a realization of W(s) 
- W,. Weshall however derive another realiz@ion.via a simple state-space 
basis change. For each i, define P, as the symmetric-positive-definite solution 
of p,Ft + RP, = -ti:. Of course, such a P, always exists because the eigen- 
values of R, lie in Re Is] < 0 [i.e., the characteristic polynomial pi($) of 4 is 
Hurwitz], and the pair [R, f,] is completely controllable. Take T, to be any 
square matrix such that T:T, = P,, and define T as the direct sum of the 
Ti. With the definitions F; = T$?T;', li = ( T : ) - ~ ( ,  F = T ~ T - I ,  and L = 
(T)-li, it follows that c. + F; = ---1,1; and 

Finally, define G = TC?. 
Then [F, G, L, W.) is a realization of W(s), with the additional properties 

that (10.5.6) holds and that [F, L] is completely 06servable (the latter property 
following from the complete obsewability of. [f,L] or, equivalently, the 
complete controllability of I#', in. 

Define now 

We claim that with F, G, and H de$ned as above, and with J = Z(m), (F,  G, 
H, J ]  consfitutes a realization for Z(s). To verify this, we observe that 
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2% 
.% 

W'(-s)W(s) = WiW, + WbL'(sI - fl-'G + G'(-.d - F')-'LW, ,I 
+ G'(-sl- F3-'LL'(sI- F)"G .S 

i :! 
= w; w, + W'&'(sI - q - ' G  + G'(-sI - F')-'L W, 7 

i; + GI(-SI - F')-l[-sI - F' + sl- q(sI - F)-IG 
using (10.5.6) , .: 

= wgw, + (G' + WiL')(sI - n - ' G  

4- G'(-sI - F')-'(Lw, + G)  

= Wb W, + H'(s2- F)-lG + G'(-$1- PI)-'H 
using (10.5.7) . . 

Now the right-hand quantity is also Z(s) + Z'(-s). The fact that F is a 
direct sum of matrices all of which have a Hunvitz characteristic polynomial 
means that H'(sI - fl-'G is such that every element can only have Ieft-half- 
plane poles. This guarantees that Z(s) = Z(m) + H'(sl- 0 - ' G ,  because 
every element of Z(s) can only have left-half-plane poles. 

The above constructive procedure for obtaining a realization of Z(s) up to 
this point is valid for symmetric and nonsymmetricZ(s). The procedure yields 
immediately a passive synthesis of an arbitstry positive real Z(s), in general 
nonreciprocal, via the reactance-extraction technique. This is quickly illus- 
trated. 

Consider the constant impedance matrix 

It follows on using (10.5.6), (10.5.7), and the constraint WLW, = J + J' 
that 

Therefore, M + M' is nonnegative definite, implying that M is synthesizable 
with passive elements; a passive synthesis of Z(s) results when all but the 
first m ports are terminated in unit inductors. The synthesis is in general 
nonreciprocal, since, in general, M # M'. 

In the following subsection we shall consider the remaining problem- 
that of giving a reciprocal synthesis for symmetric Z(s). 

Reciprocal Synthesis of Z(s) 

As indicated before, there is no loss of generality in assuming that 
Z(m) 4- Z'(m) is nonsingular and that no element of Z(s) has a purely 
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imaginary pole. Using the symmetry of Z(s) and letting o = oc, it follows 
that Z(m) is positive definite. 

Now normal rank [Z(s) + Z'(-s)] 2 rank [Z(m) + Z'(--)I = rank 
[2Z(co)]. Since the latter has full rank, normal rank [Z(s) + Z'(-s)] is m. 
Then W(s), N,(s), and N,(s), as defined in the Gauss factorization pro- 
cedure, are m x m matrices. Further, WbW, = 2J, and therefore W, is 
nonsingular. As indicated in the statement of the factorization procedure, 
N,(s) may be assumed to be even. We shall make this assumption. 

Our goal here is to replace the realization [F, G, H, J ]  of Z(s) by a realiza- 
tion {Tm-', TG, (T-')'H, J ]  such that the new realization possesses addi- 
tional properties helpful in incorporating the reciprocity constraint. To 
generate T, which in fact will be an orthogonal matrix, we shall define a 
symmetric matrix P. Then P will be shown to satisfy a number of con- 
straints, including a constraint that all its eigenvalues be tl or -1. Then 
Twill be taken to be any orthogonal matrix such that P = T'XT, where X 
is a diagonal matrix, with diagonal entries being +1 or - I .  

Lemma 10.5.1. With F, G, H, L, and W, as defined in this 
section, the equations 

define a unique symmetric nonsingular matrix P. Moreover, the 
following equations also hold: 

PC= -H 

PF = F'P 

To prove the lemma, we shall have to call upon the identities 

L'(sl- F)-'L = L'(sl - F')-'L (10.5.10) 

and 

-H'(sl- F)-'L = G'(sI - F)- 'L (10.5.11) 

The proof of these identities is requested in Problem 10.5.2. The proof of the 
second identity relies heavily on the fact that the polynomial matrix N,(s) 
appearing in the Gauss Factorization procedure is even. 

Proof. If {F, L, L) is aminimal realization of L'(sl- F)-'L, the 
existence, uniqueness, symmetry, and nonsingularity of P follow 
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from the important result giving a state-spacecharacterization of 
the symmetry property of a transfer-function matrix. Certainly, 
[F, L] is completely observable. That [F, L] is completely con- 
trollable can be argued as follows: because iF',L] is completely 
controllable, [F' - LK', L] is completely controllable for all K. 
Taking K = -L and using the relation P + F' = -LL', it 
follows that [F, L] is completely controllable. 

The equation yielding P explicitly is, we recall, 

P[L F'L . . - (F')"-'L] = [L FL . . . F"-'L] (10.5.12) 

Next, we establish (10.5.9). From the identity (10.5.1 I), we have 

G'(d - F')-'L = -H'(sI - F)-'L 

= -H'P(sl- P-'FP)-'P-'L 

= -H'P(sI - F')-'L 

Conskquently, using the complete controllability of [F', L], 

This is the first of (10.5.9), and together with the definition of H 
as G + LWb, it yields 

or, again, using (10.5.7), 

This is the second equation of (10.5.9). Next, from F + F' = 
-LLt, we have the third equation of (10.5.9): 

PF = -PF' - PLL' 

- - -FP - LL'P by (10.5.8) 

= -(F + LL')P 

= F'P using (10.5.6) 

This equation and (10.5.8) yield that P-'L = L and FP-' = 
P-'F', or, in other words, P-1 satisfies FX = XF' and XL = L. 
Hence the last equation of (10.5.9) holds, proving the lemma. 

v v v  
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Equation (10.5.9) implies that P" I, and thus the eigenvalues of P must 
be +I or -1. Since P is symmetric, there exists an orthogonal matrix T 
such that P = W T ' ,  with X consisting of +1 and -1 entries in the diagonal 
positions and zeros elsewhere. 

We now define a realization {F,, G,, H,, J] of Z(s) by F1 = TYT, GI 
= TG, and H ,  = TH; the associated hybrid matrix is 

This hybrid matrix is the key to a reciprocal synthesis. 

Theorem 10.5.1. Let Z(s) be an m x m symmetricpositive real 
impedance matrix with Z(oo) nonsingular and no element of 
Z(s) possessing a purely imaginary pole. With a realization 
IF,, G,,  H, ,  J )  of Z(s) as defined above, the hybrid matrix M of 
of (10.5.13) satisfies the following constraints: 

1. M + M' 2 0, and has rank VJ. 
2. (Im + X)M is symmetric. 

Proof. By direct calculation 

25 -H'+ G 
M + M ' = = ( I , + T )  

G - H  - F - P  

= (Im + T )  [W:wo 
-w:r 

-LW, LL' 
] (1, 4- 

= (1. C T )  rw:] - w0 -L2 (I,,, & T') 

Hence M + M' is nonnegative definite. The rank condition is 
obviously fi&i!Jed, since [W, -a has rank no less than W,, 
which has rank m. 

It remains to show that/ = J', ZG, = - H I ,  and XF, = Fix .  
The first equation is obvious from the symmetry of Z(s). From 
(10.5.91. T'XTG = -Hor U r n  = -TH. That is. ZG, = p H . .  
k s o ,  f;bm (10.5.9), T'ZTF ; F'T'ZT or ZTFT = TF'TX.  hat 
is, ZF, = Fix .  V V V 

With the above theorem in hand, the synthesis o fZ( s )  IS immediate. 
The matrix M is realizable as a hybrid matrix, the current-excited ports 

corresponding to the rows of I ,  -i- I: that have a +I on the diagonal, and 
the voltage-excited ports corresponding to those rows of I, I: that have 
a -1  on the diagonal. The theorem guarantees that M is synthesizable using 
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only passive and reciprocal components. A synthesis of Z(s) then follows 
on terminating current-excited ports other than the h t  min urtit inductances, 
and the voltage-excited ports in unit capacitances. Since M + M' has rank 
m, the synthesis of M and hence of Z(s) can be achieved with m resistances- 
the minimum number possible, as aimed for. 

As a summary of the synthesis procedure, the following steps may be noted: 

1. By transformer, inductance, and capacitance extractions, reduce 
the general problem to one of synthesizing an rn x m Z(s), such that 
Z(m) is nonsingular, rank [Z(s) + Z'(-s)] = in, no element of Z(s) 
possesses a pole on the jw axis, and of course Z(s) = Z'(s). 

2. Perform a Gauss factorization, as applicable for symmetric Z(s). Thus 
W(s) is found such that Z'(-s) + Z(s) = W'(-s)W(s) and W(s) 
= [N,(s)]-ll-'N:(s), where N l ( . )  is a diagonal m x rn matrix of Hunvitz 
polynomials, and N,(s) is an rn x m matrix of even polynomials. 

3. Construct P using companion matrices, and 1 and G from W(s). From 
g, 2, and 6 determine F, L, and G by solving a number of equations 
of the kind ~ , f  + e p j  = -[,& [see (10.5.6) and associated remarks]. 

4. Find H = G + LW,, and P as the unique solution of FP = PF' and 
PL = L. 

5.  Compute an orthogonal matrix T reducing P to a diagonal matrix Z of 
+1 and -1 elements: P = TTT. 

6. With F, = TFT', GI = TG, and H, = TH, define the hybrid matrix 
M of Eq. (10.5.13) and give a reciprocal synthesis. Terminate appro- 
priate ports in unit inductors and capacitors to generate a synthesis 
of Z(s). 

Example Let us synthesize the scalar positive real impedance 
10.5.1 

s2+2S+4 
Z(S) = ~2 f S + 1 

As 6s )  has no poles on the jw axis and z(co) is not zero, we compute 

It is readily seen that candidates for W(s) are f l (s2  + s + 2)/(s2 + s 
+ 1 )  or 0 ( s 2  - s + 2)/(@ + s + 1). But the numerators are not 
even functions. To get the numerator of a W(s) to be an even function, 
multiply 4s)  + z(-s) by 6% 39 + 4)/(s+ + 39 + 4); thus 
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The process is equivalent to modifying the impedance z(s) through 
multiplication by ( 9  + s + 2)i(sz + s + 2), a standard technique used 
in the classical Darlington synthesis 181. (The Gauss factorization that 
gives N,(s) = N,(-s) forZ(s) = Z'(s) in multiports, often only by insert- 
ingcommon factorsinto N,(s) and N,(s), may beregarded as a generaliza- 
tion of the classial one-port Darlington procedure.) 

We write 

a realization of which is 

&=[zJz - 3 a  -0 -2.Jzl wo= f l  
Obtain P, through P,P + F^'P, = -Lt to give 

One matrix T, such that TiT, = P is 
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Therefore, matrices of a new state-space realization of W(s) are 

At this stage, nonreciprocal synthesis is possible. For reciprocal synthesis. 
we proceed as follows. The solution of FP = PF' and PL = L is 
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Next, we form the hybrid matrix 

for which the first three ports correspond to currentexcited ports and the 
last two ports.correspond to voltageexcited ports. It can be verified that 
(1 + X)M is symmetric; M f M'is nonnegative definite and has rank 1. 
A synthesis of Z(s) is shown in Fig. 10.5.1. Evidently, the synthesis uses 
one resistance. 

Problem Synthesize the symmetric~positive-real impedance 

using the procedure outlined in this section. 

Problem With matrices as defined in this section, prove the identity 
10.5.2 

L'(s1- F)-'L = L'(sI - F')-'L 

by showing that L'fsZ - F)-IL is diagonal. 
Prove the identity 

[Hint: The (i, j)th element of W'(s) = W, + G(sI - F T L L  is 

with n;, = fi:lTi. The polynomial n,,](s) is even if Z(s) is symmetric. 
Show that the dimension of F, is even and that 
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FIGURE 10.5.1. A Final Synthesis forZ(s) in Example 10.5.1. 

nz,(s) = woo det (-st - F:) + n;, tadj (-st - F;)]!, 
=so, det (sl + F;) + n:, iadj (sI 4- F$)]Ij 
= det (st - Fj)[vOlj - njj(sI + F$)-'I;1[1 - l;(sl - Fj)"lj] 

= det (sl - Fj)tvo, - (vo,,l$ + n:,)(sI - F,)-'ljl 

from which the result follows.] 

Problem (For those familiar with the classical Darlington synthesis.) Given the 
T 0.5.3 impedance function 

give a synthesis for this z(s) by (a) the procedure of this section, and 
(b) the Darlington method, if you are familiar with this technique. 
Compare the number of elements of the networks. 

Problem It is known that the Gauss factorization does not yield a unique W(s). 
10.5.4 Consider the symmetric positive real impedance matrix 
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Using the Gauss factorization, obtain two different factors W(s) and the 
corresponding state-space syntheses for Z(s). 

Compare the two syntheses. 
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Scattering Matrix Synthesis 

11 -1 INTRODUCTION 

In Chapter 8 we formulated two diierent approaches to the prob- 
lem of synthesizing a bounded real m x m scattering matrix S(s); the first 
was based on the reactance-extraction concept, while the second was based 
on the resistanceextraction concept. In the present chapter we shall discuss 
solutions to the synthesis problem using both of these approaches. 

The reader should note in advance the following points. First, it will be 
assumed throughout that the prescribed S(s) is a normalized scattering matrix; 
i.e., the normalization number at each port of a network of scattering matrix 
S(s) is unity [I, 23. 

Second, the bounded real property always implies that S(s) is such that 
S(M) < m. Consequently, an arbitrary bounded real S(s) always possesses 
a state-space realization {F, G, H, JJ such that 

Third, we learned earlier that the algebraic characterization of the bounded 
real property in state-space terms, as contained in the bounded real lemma, 
applies only to minimal realizations of S(s). Since the synthesis of S(s) in 
state-space terms depends primarily on this algebraic characterization of its 
bounded real property, it foIIows that the synthesis procedures to be con- 
sidered will be stated in terms of a particular minimal realization of S(s). 
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Fourth, with no loss of generality, we shall also assume the availability of 
minimal realization (F, G, H, J) of S(s) with the property that for some real 
matrices L and W,, the following equations hold: 

F + F 1 =  - H H 1 -  LL' 

-G= HJ+LW, (11.1.2) 

I -  J'J= WbW, 

That this is a valid assertion is guaranteed by the following theorem, which 
'follows easily from the bounded real lemma. Proof of the theorem will be 
omitted. 

Theorem 11.1 .I. Let {F,, Go, H,, J] be an arbitrary minimal 
realization of a rational bounded real matrix S(s). Suppose that 
{P, L,, W,} is a triple that satisfies the bounded real lemma for 
the above minimal realization. Let T be any matrix ranging over 
the set of matrices for which 

T'T = P (11.1.3) 

Then the minimal realization (F, G, H, J] given by {TF,T-', TG,, 
( T 1 ) ' H , ,  J) satisfies Eq. (11.1.2), where L = (TL)'L,. 

Note that F, G, H, L, and Wo are in no way unique. This is because there 
are an infinity of matrices P satisfying the bounded real lemma equations for 
any one minimal realization (F,, Go, Ho, J) of S(s). Further, with any one 
matrix P, there is associated an infinity of L and W, in the bounded real 
lemma equations and an infinity of T satisfying (1 1.1.3). Note also that the 
dimensions of L and W, are not unique, with the number of rows of L' and 
W ,  being bounded below by p = normal rank [I - S'(-s)S(s)]. 

Except for lossless synthesis, (1 1.1.2) will be taken as the starting point in 
all the following synthesis procedures. In the ,case of a lossless scattering 
matrix, we know from earlier considerations that the matrices L and W, are 
actually zero and (1 1.1.2) reduces therefore to 

A minimal realization of a lossless S(s) satisfying (1 1.1.4) is much simpler to 
derive than is a minimal realization of a lossy S(s) satisfying (11.1.2). This is 
because the lossless bounded real lemma equations are very easily solved. 

The following is a brief outline of the chapter. In Section 11.2 we consider 
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the synthesis of nonreciprocal networks via the reactanceextraction 
approach. Gyrators are allowed as circuit components. Lossless nonrecip 
rocal synthesis is also treated here as a special case of the procedure. In 
Section 11.3 a synthesis procedure for reciprocal networks is considered, 
again based on reactance extraction. Also, a simple technique for lossless 
reciprocal synthesis is given. The material in these sections is drawn from 
[3] and 141. Finally, in Section 11.4 syntheses of nonreciprocal and reciprocal 
networks are obtained that use the resistance-extraction technique; these 
syntheses are based on results of 151. All methods in this chapter yield mini- 
mal reactive syntheses. 

11.2 REACTANCE-EXTRACTION SYNTHESIS 
OF NONRECIPROCAL NETWORKS 

As discussed earlier, the reactance extraction synthesis problem of 
finding a passive structure synthesizing a prescribed m x m bounded real 
S(s) may be phrased as follows: 

From S(s), derive a real-rational W(p) via a change of complex 
variables 

for which 

Then End a Statespace realization (F,, G,, H,, Jw] for W(p) such 
that the matrix 

satisfies the inequality 

As seen from (11.2.2), the real rational matrix W(p) is derived from the 
bounded real matrix S(s) by the bilinear transformations = (p + I)/@ - 1) 
of (11.2.1), which maps the left half complex s plane into the unit circle in 
the complexp plane. Of greater interest to us however is the relation between 
minimal statespace realizations of S(s) and minimal state-space realizations 
of W(p). Suppose that (Po, Go, H,, J ]  is a minimal realization of S(s). Now 
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Consider only the term [PI - (F. + I)(Fa - I)-'1-'(p - 1). We have 

[PI - (4 + - I)"l-'[pl-  I1 

= [ P I  - (F, + I)(Fa - I)"]-' 

x [PI - (F, + I)(F, - I)-' - I + (8 + I)(F, - I-)-'] 

= [PI  - (F, + I)(F. - 
X [ P I -  (F, 4- I)(F, - I)-' + 2(F0 - I) - ' ]  

= I + 2[pI  - (F, f I)(F, - I)-'l-'(F0 - I)'' 

Therefore 

Evidently, a state-space realization {F,, G,,, H,,, J.} may be readily identified 
to be 

Several points should be noted. 

1 .  The quantities in (11.2.5) are well defined; i.e., the matrix (Fa - I)-' 
exists by virtue of the fact that S(s) is analytic in Re [s] > 0 and, in 
particular, at s = 1. In other words, f l can not be an eigenvalue of F,. 

2. By a series of simple manipulations using (11.2.5), it can be verified 
easily that the transformation defined by (11.2.5) is reversible. In fact, 
{F,, Go, If,, 4 is given in terms of {Fvo, G.,, H,,, J,].by exactly the same 
equations, (11.2.5), with {F,, Go, H,, J) and IF,, G,,, If,,, JJ inter- 
changed. 

3. The transformations in (11.2.5) define a minimal realization of W(p) 
if and only if (Fa, G o ,  H,, JJ is a minimal realization of S(s). (This fact 
follows from 2 incidentally; can you show how?) 
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We now state the following lemma, which will be of key importance in 
solving the synthesis problem: 

Lemma 11.2.1. Suppose that (F, G, H, J )  is oneminimal realiza- 
tion of S(s) for which (11.1.2) holds for some real matrices L and 
W,. Let IF,, G,, H,, 3.1 be the associated matrices computed via 
the transformations defined in (11.2.5). Then IF,, G,, H,, Jw) are 
such that 

for some real matrices L, and W,. 

Proof. From (11.2.5) we have 

D e h e  matrices L, and Ww by 

We then substitute the above equations into (11.1.2). The first 
equation of (11.1.2) yields 

This reduces simply, on premultiplying by F: - I and postmulti- 
plying by F, - I, to 

which is the first equation of (11.2.6). The second equation of 
(11.1.2) yields 
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Straightforward manipulation then gives 

Using the first equation of (11.2.6), the above reduces to 

This establishes the second equation of (1 1.2.6). Last, from the 
third relation of (11.1.2), we have 

On expansion we obtain 

The second equality above of course follows from the use of the 
first and the second relations of (11.2.6). Thus (11.2.6) is estab- 
lished, and the lemma proved. V V V 

Suppose that we compute a minimal realization IF., G,, H,, J,) of W(p) 
from a particular minimal realization (F, G, H, Jl satisfying (1 1.1.2). Then, 
using Lemma 11.2.1, we can see that IF,, G,, Hw, J.] possesses the desired 
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property for synthesis, viz., the matrix M defined in (11.2.3) satisfies the 
inequality (11.2.4). The following steps prove this: 

1 - J,J, - GLG, --(H.J. +- FLG,)' I -  M'M= 
-(H,J. + F: G,) I - H,H: - FLF, 1 

= L., 

The second equality follows from application of (11.2.6). The last equality 
obviously implies that I- M'M is nonnegative definite. Therefore, as dis- 
cussed in detail in an earlier chapter, the problem of synthesizing S(s) is 
reduced to the problem of synthesizing a real constant scattering matrix S ,  
which in this nonreciprocal case is the same as M. Synthesis of a constant 
hounded real scattering matrix is straightforward; a simple approach is to 
apply the procedures discussed earlier,* which will convert the problem of 
synthesizing S, to the problem of synthesizing a constant impedance matrix 
2,. We know the solution to this problem, and so we can achieve a synthesis 
of S(s). 

A brief summary of the synthesis procedure follows: 

1. Find a minimal realization (F,, Go, H,, 4 for the bounded real m x 
m S(s). 

2. Solve the bounded real lemma equations and compute another minimal 
realization [F, G, H, J1 satisfying (1 1 . I  .2). 

3. Calculate matrices F,, G., H., and J,  according to (11.2.5), and obtain 
the scattering matrix S, given by 

The appropriate normalization numbers for So, other than the first m 
ports, are determined by the choice of the reactance values as explained 
in the next step. 

4. Choose any set of desired inductance values. (As an alternative, choose 
all reactances to be capacitive; in this case the matrices G, and F, in 
S, are replaced by -G, and -F,, respective1y.t) Then calculate the 

*InUlccarlierdiscussionit was aluaysassumed lhar thcscatteringrnarrix was normallred. 
If S. is not initially nonalixd, ir must firs1 bc converted to a norm~lized matrix (see 
chapter 2). 

+This point will become clear if the reader studies carefully thematerial in Section 8.3. 
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normalization numbers r,,,, I = 1,2, . . . , n with r,,, = L, (or r,,, 
= 1/C, if the reactances are capacitive). Of course, the normalization 
numbers at the first rn ports are iixed by S(s), being the same as those 
of S(s), i.e., one. 

5. Obtain a nondynamicnetwork N, synthes~zjng the real constant scatter- 
ing matrix S. with the appropriate normalization numbers for S, just 
defined. Finally, terminate the last n ports of N, appropriately in induc- 
tors (or capacitors) chosen in step 4 to yield a synthesis for the pre- 
scribed S(s). 

Note that at no stage does the transfer-function matrix W(p) have to be 
explicitly computed; only the matrices of a state-space realization are 
required. 

Lossless Scattering Matrix Synthesis 

A special case of the above synthesis that is of significant interest 
is lossless synthesis. Let an m x rn scattering matrix S(s) be a prescribed 
lossless bounded real matrix; i.e., 

1 - sr(-s)s(~) = o (I 1.2.9) 

Now one way of synthesizing S(s) would be to apply the "preliminary" 
extraction procedures of Chapter 8. For lossless S(s), they are not merely 
preliminary, but will provide a complete synthesis. Here, however, we shall 
assume that these preliminary procedures are not carried out. Our goal is 
instead one of deriving a real constant scattering matrix 

where [F., G,, H,, J,] is a statespace realization of 

with 

such that M is lossless bounded real, or 

Let IF, G, H,JJ be a minimal realization of S(s). Assume that F is an 
n x n matrix, and that (11.1.4) holds; i.e., 
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F +  F'= -HH' 

-G = HJ' (11.2.11) 

I - J ' J = O  

Let one minimal realization (F., G,, H,, J,] of W(p) be computed via the 
transformations defined in (11.2.5). Then, following the proof of Lemma 
11.2.1, it is easy to show that because of (11.2.11), the matrices F,, G,, H,, 
and J, are such that 

FLFw - I =  -HwHL 

-FLG, = H,J, (11.2.12) 

I - JLJ, = GwG, 

With the above IF,, G,, H,, J,] on hand, we have reached our goal, since 
it is easily checked that (11.2.12) implies that the real constant matrix M of 
(11.2.3) is a lossless scattering matrix satisfying (11.2.10). Because M is loss- 
less and constant, it can be synthesized by an (m + n)-port lossless non- 
dynamic network N, containing merely transformer-coupled gyrators. A 
synthesis of S(s) then follows very simply. 

Of course, the synthesis procedure for a general bounded real S(s) stated 
earlier in this section also applies in this special case of lossless S(s). The only 
modification necessary lies instep 2, which now reads 

2'. Solve the lossless bounded real lemma equations and compute another 
minimal realization {F, G, H, J) satisfying (1 1.2.11). 

The following examples illustrate the reactance extraction synthesis pro- 
cedure. 

Example Consider tlie bounded real scattering function (assumed normalized) 
11.2.1 

1 4 S(s) = - - 
1 + 2 r  s + +  

It is not difficult to verify that I-&, 1 / n ,  1 / n ,  0) is a minimal 
realization of S(s) that satisfies (1 1.1.2) with L = 1/JZ and Wp = -1. 

From (11.2.5) the realization (F,, G,, H,, J,] is given by (-4, -f,+, 
$1, so 

It is readily checked that I - S:S. 2 0 holds. 
Suppose that the only inductance required in the synthesis is chosen to 

be 1 H. Then S. has unity normalizations at both ports. To synthesize 
S., we deal with the equivalent impedance: 
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The symmetric part (Z.),, has a synthesis in which ports 1 and 2 are 
decoupled, with port 1 simply a unit resistance and port 2 a short circuit; 
the skew-symmetric part (Z.),, has a synthesis that is simply a unit 
gyrator. The synthesis of Z. or of So is shown in Fig. 11.2.1. Tbe final 
synthesis for S(s) shown in Fig. 11.2.2 is obtained by terminating port 2 
of the synthesis for S. in a 1-H inductance. On inspection and on noting 

FIGURE 11.2.1. Synthesis of Z. in Example 11.2.1. 

FIGURE 11.2.2. Synthesis of S(s) of Example 11.2.1. 
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that a unit gyrator terminated in a unit inductance is equivalent io a unit 
capacitance, as Fig. 11.2.3 illustrates, Fig. 11.2.2 reduces simply to a 
series connection of a capacitance and a resistance, as shown in Fig. 
11.2.4. 

Example As a further illustmtion, consider the same bounded real scattering func- 
11.2.2 tion as in Example 11.2.1. But suppose that we now choose the only 

reactance to be a I-F capacitance; then the real constant scattering matrix 
So is given by 

The matrix I- SLS; may be easily checked to be nonnegative definite. 
Since the capacitance chosen is 1 F, S. has unity normalization numbers 
a t  all ports. Next, we convert S. to an admittance function* 

Ye = (I - S*)(Z t so)-' 

FIGURE 11.2.3. Equivalent Networks 

FIGURE 11.2.4. A Network Equivalent to that of Figure 
11.2.2. 

*Note that an impedance function for SI does not exist because I - S. is singular. Of 
course. if we like. we can (with the aid of an orthogonal transformer) reduce S. to a lower 
order be such that I - s.' is now nonsingular--see the earlier preliminary simplification 

. 

procedures. 
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Figure 11.2.5 shows a synthesis for Yo; termination of this network in a 
unit capacitance at the second port yields a final synthesis of S(s), as 
shown inFig. 11.2.6. Ofcourse thenetwork of Fig. 11.2.6 can be simplified 
to that of Fig. 11.2.4 obtained in the previous example. 

Problem Prove that the transformations defined in (11.2.5) are reversible in the 
11.2.1 sense that the matrices CF,, Go, Ha, J) and (Fw0, G,., H,., J,) may be 

interchanged. 

Problem Show that among the many possible nonreciprocal network syntheses 
11.2.2 for a prescribed S(s) obtained by the method considered in this section, 

thereexist syntheses that are minimal resistive; i.e. the number of resistors 

FIGURE 11.2.5. Synthesis of Y. in Example 11.2.2. 

1 F 

FIGURE 11.2.6. Synthesis of S(s) in Example 11.2.2. 
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employed in the syntheses is normal rank [I - S(-s)S(s)]. How are 
they to be obtained? 

Problem Svnthesize the lossless bounded real matrices 
11.2.3 

-1 -10s + 4 
(a) S(s) = - 

1 

Problem Give two syntheses for the bounded real scattering function S(s) = 
11.2.4 (s' + s + I)(&' + 2s + I)-', one with all reactances inductive, and the 

other with all reactances capacitive. 

11.3 REACTANCE-EXTRACTION SYNTHESIS 
OF RECIPROCAL NETWORKSa 

In this section the problem of reciprocal or gyratorless passive 
synthesis of scattering matrices is discussed. The reactance-extraction tech- 
nique is still used. One important feature of the synthesis is that it always 
requires only the minimum number of reactive or energy storage elements; 
this number n is precisely the degree 6[S(s)] of S(s), the prescribed m X m 
bounded real scattering matrix. The number of dissipative elements generally 
exceeds rank [I - S(-s)S(s)] however. 

Recall that the underlying idea in the synthesis is to find a statespace 
realization IFw, G,, H,, J.] of W(p) = s ( p  + l)j(p - I)] such that the real 
constant matrix 

possesses the properties 

(I) I - M'M 2 0, (11.3.2) 

and 

(2) (1, 4- X)M = M'(1, f- X). (11.3.3) 

Here Z is a diagonal matrix with diagonal entries being +I  or -1 only. 
Recall also that if the above conditions hold with F, possessing the minimum 
possible size n x n, then a synthesis of S(s) can be obtained that uses the 
minimum number n of inductors and capacitors. 

The real constant matrix M deiines a real constant matrix 

*This section may be omitted at a first reading 
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which is the scattering matrix of a nondynamic network. The normalization 
numbers of S, are determined by those of S(s) and by the arbitrarily chosen 
values of inductances and capacitances that are used when terminating the 
nondynarnic network to yield a synthesis of S(s). In effect, the first condition 
(1 1.3.2) says that the scattering matrix S, possesses a passive synthesis, while 
the second condition (11.3.3) implies that it has a reciprocal synthesis. When 
both conditions are fulfilled simultaneously, then a synthesis that is passive 
and reciprocal is obtainable. 

In the previous section we showed that if a minimal realization (Fw, G,, 
H,, J,] of W(p) satisfies 

F',F,- I  = -H,HI - L,Lk 
-FLG, = H.J, 4- L.W, (11.3.5) 

I -  J:J,= W:W,+ GLG, 

for some real constant matrices L,, and W,, then the matrix M of (11.3.1) 
satisfies (11.3.2). Furthermore, the set of minimal realizations (Fw, G,, H,, 
J,] of W(p) satisfying (11.3.5) derives actually from the set of minimal realiza- 
tions (F, G, H, JJ of S(s) satisfying the (special) bounded real lemma equa- 
tions 

F + F ' = - H H ' - L L '  

-G = H J +  LW, (I 1.3.6) 
I - J ' J =  WLW, 

whereL and W, are some real matrices. We also noted the procedure required 
to derive a quadruple [F, G, H, J )  satisfying (11.3.6), and hence a quadruple 
IFw, G,, H,, Jv) fulfilling (1 1.3.5). Our objective now is to derive from a mini- 
mal realization IF,, G., H.,J,] satisfying (11.3.5) another minimal reallza- 
tion {F.,, G.,, H,,, J,) for which both conditions (11.3.2) and (11.3.3) hold 
simultaneously; in doing so, the reciprocal synthes~s problem will be essen- 
tially solved. 

Assume that (F,, G,, X,, J,] is a state-space minimal realization of W(p) 
[derived from S(s)] such that (1 1.3.5) holds. Now W(p) is obviously symmetric 
because S(s) is. The symmetry property then guarantees the existence of a 
unique symmetric nonsingular matrix P with 

PF, = F I P  

PG, = H, 

(The same matrix P can also be obtained from PF = F'P and PG = -H 
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incidentally.) Recall that any matrix T appearing in a decomposition of P 
of the form 

P = T'XT X = [In, + (-1)IJ 

generates another minimal realization {TF,TF1, TG,, (T-')'H,, Jw] of WO,) 
that satisfies the reciprocity condition of (11.3.3) (see Chapter 7). However, 
there is no guarantee that after the coordinate-basis change the passivity 
condition remains satisfied. Our aim is to exhibit a specific statespace basis 
change matrix T from among all possible matrices in the above decomposi- 
tion of P such that in the new state-space basis, passivity is preserved. The 
required matrix Twill be given in Theorem 11.3.1, but first we require the 
following two results. 

Lemma 11.3.1. Let C be a real matrix similar to a real symmetric 
matrix D; then I - D'D is positive definite (nonnegative definite) 
if I- C'C is positive definite (nonnegative definite), but not 
necessarily converseIy. 

By using the facts that matrices that are similar to one another possess 
the same eigenvalues, and that a real symmetric matrix has real eigenvalues 
only [6], the above lemma can be easily proved. We leave tlie formal proof 
of the lemma as an exercise. 

Thc second result we require has, in fact, been established in Lemma 10.3.2; 
for convenience, we shall repeat it here without proof. 

Lemma 11.3.2. Let P be the symmetric nonsingular matrix 
satisfying (11.3.7), or equivalently PF = F'P and PG = -H. 
Then P can be represented as 

P = BVXV' = VXV'B 

where B is symmetric positive definite, V is orthogonal, and X 
= [I., / (-l)I#,J. Further, VZV'commutes with B1/Z, the unique 
positive definite square root of B; i.e., 

VXV'B'J2 = B'J2VXV' (1 1.3.9) 

These two lemmas provide the key raults needed for the proof of the main 
theorem, which is as follows: 

Theorem 11.3.1. Let [F, G, H, 4 be a minimal realization of 
a bounded real symmetric S(s) satisfying the special bounded real 
lemma equations (11.3.6). Let (F,, G,, H,, J,] denote the minimal 
realization of the associated real symmetric matrix W@) = 
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S[(P -I- l)l(p - 1)l derived from {F, G, H, J j  through the trans- 
formations 

F,= (F+I)(F-I)-' 

Gw = &(F - I)-%G 
(11.3.10) 

Hw = - p ( F  - I)-IH 

J, = J -  H'(F - I)-'G 

With V, B, and 2 defined as in Lemma 11.3.2, define the nonsin- 
gular matrix T by 

Then the minimal realization [F",, G.,, H,,, J.) = [TF,T", TG,, 
(T1)'H.,  J,) of W@) is such that the wnstant matrix 

has the following properties: 

I -M$Ml>O 

(Im + Z)M, = M',(Im Jr Z) 

Proof. We have, from the theorem statement, 

where the second and thud equalities are implied by Lemma 
11.3.2. As noted above, it follows that T defines a new minimal 
realization {FwF,,, G,,, H,,, JJ of W(p) such that 

holds. 
Next, we shall prove that (11.3.12) is also satisfied. With M 

defined as [l' *'I, it is dear that 
G. F. 

M, = I1 4- T]M[I 4- T-'1 

or, on using (11.3.11), 
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where M, denotes [I + Vi]MII + V ] .  from the theorem state- 
ment we know that I - M'M > 0; it follows readily from the 
orthogonal property of I + V that 

Equation (11.3.15) is to be used to establish (I1.3.IZ). 
On multiplying on the left of (1 1.3.14) by I + X, we have 

But from (11.3.9) of Lemma 11.3.2, it can be easily shown that 
XY'B1"V = J"BL/2VX, or that Z commutes with V'BL/2V. Hence 
I + X commutes with I i V'B1"V. Therefore, the above equa- 
tion reduces to 

Observe that (13.3.15) can be rewritten as 

Observe also, using (11.3.16), that ( I +  X)Mo is similar to 
( I  + X)M,, which has been shown to be symmetric. It follows 
from Lemma 11.3.1, on identifying ( I +  Z)M, with C and 
(I + Z)M, with D, that 

whence 

I - M : M I ~ O  V V V  

Theorem 11.3.1 converts the problem of synthesizing a bounded real sym- 
metric S(s) to the problem of synthesizing a constant bounded real symmetric 
So. The latter problem may be tackled by, for example, converting it to an 
impedance synthesis problem using the procedures of Chapter 8. In effect, 
then, Theorem 11.3.1 solves the synthesis problem. A summary of the syn- 
thesis procedure is as follows: 
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I. Find a minimal realization {Fn, Go, H,, J )  for the prescribed m x m 
S(s), which is assumed to be bounded real and symmetric. 

2. Solve the bounded real lemma equations and compute another minimal 
realization [F, G, H, J )  satisfying (11.3.6). 

3. Calculate matrices Pw, G,, H., and J, according to (11.3.10). 
4. Compute the matrix P for which PF, = F',P and PC, = H., and from 

P find matrices B, Y, and 2 with properties as defined in Lemma 11.3.2. 
5. WithT= V'BIJa, calculate{FwF,,, G,,, HVx, J,) = (TF,T", TG,, (TL)'H,, 

J,j and obtain the scattering matrix S, given by 

where the appropriate normalization number for S. other than the first 
m ports is determined by the choice of desired reactances, as explained 
explicitly in the next step. 

6. Choose any set of n, inductance values and n, capacitance values. Then 
define thenormalizationnumbers r ,,,, I = 1,2, . . . , n, at the (m + 1)th 
through (m -t n)th port by 

r,,,=L, I =  1,2 ,..., n, 
and 

+ I = n , + l ,  ..., n 

The normalization numbers at the first m ports are the same as those 
of S(s). 

7. Give a synthesis N, for the constant symmetric scattering matrix S, 
taking into account the appropriate normalization numbers of So. 
Finally, terminate the last n ports of N, appropriately in n, inductors 
and n, capacitors to yield a synthesis for the prescribed S(s). 

Before illustrating this procedure with an example, we shall discuss the 
special case of lossless reciprocal synthesis. 

Lossless Reciprocal Synthesis 

Suppose now that the m x m symmetric bounded real scattering 
matrix S(s) is also lossless; i.e., S(-s)S(s) =I. Synthesis could be achieved 
by wrying out the "preliminary" lossless section extractions of Chapter 8, 
which for lossless matrices provide a complete synthesis. We assume here 
that these extractions are not made. 

Let IF, G, H, J ]  be a minimal realization of the prescribed lossless S(s). 
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As pointed out in the previous section, we may take (F, G, H, J ]  to be such 
that 

m e  last equation follows from the symmetry of S(s).] Now the symmetry 
property of S(ss) implies (see Chapter 7) the existence of a symmetric non- 
singular matrix A, uniquely defined by the minimal realization {F,  G, H, J] 
of ~(s) ,  such that 

AF = F'A 

A G =  - H  

One can then show that A  possesses a decomposition 

A = U'CU (1 1.3.19) 

in which U is an orthogonal matrix and 

with n, + n, = n = SIS(s)]. The argument is very similar to one in Section 
10.2; one shows, using (11.3.17), that A-I satisfies the same equation as A, 
so that A  = A-' or A2 = I. The symmetry of A  then yields (11.3.19). 

Next we calculate another minimal realization of S(s) given by 

IF,. G , ,  H , ,  J ]  = {UFLI', UG, UH, J ]  (11.3.21) 

with U as defined above. It follows from (11.3.17) and (11.3.18) that 
(F,, G,,  H,, J ]  satisfies the following properties: 

F , + F \ = - H , H ;  - G , = H , J  

I - J Z = O  Zfi, = F'J (1 1.3.22) 

CG, = -Hz J = J '  

From the minimal realization IF,, G,, H,, J ] ,  a reciprocal synthesis for 
S(s) is almost immediate. We derive the real constant matrix 
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where {F,, G,, H,, J,] are computed from IF,, GI, H,, J )  by the set of trans- 
formations of (11.3.10), viz., 

Then it follows from (1 1.3.22) that 

It is a trivial matter to check that (1 1.3.24) implies that S, defined by (1 1.3.23) 
is symmetric and orthogonal; i.e., S = I. The (m + n) x (m + n) real 
constant matrix S,, being symmetric and orthogonal, is easily realizable with 
multipart transformers, open circuits, and short circuits. Thus, by the reac- 
tance-extraction technique, a synthesis of S(s) follows from that for S.. 
(We terminate the last n, ports of the frequency independent network 
synthesizing S. in capacitors, and all but the first m ports in inductors.) 

Example Consider the bounded real scattering function 
11.3.1 

A minimal state-space realization of S(s) satisfying (11.3.6) is 

Then we calculate matrices F,, C,, H,, and J,  in accordance with 
(11.3.10). Thus 

These matrices of course readily yield a passive synthesis of S(s), as 
the previous section shows; the synthesis however is a nonreciprocal one, 
as may be verified easily. 

We compute next a symmetricnonsingularmatrixP with PFw = FLP 
and PC, = H.. The result is 
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for which 

Therefore 

Then we obtain [ F ,  G,, H ,  Jw] = {TF,T-', TG,, (T'YH.,  J.1 as fol- 
lows: 

It can be readily checked that 

is a constant scattering ma& satisfying both the reciprocity and tbe 
passivity conditions. From this point the synthesis procedure is straight- 
forward and will be omitted. 

Problem Prove Lemma 11.3.1. 
11.3.1 

Problem From a minimal realization [F, G, H, J) of a symmetric bounded real 
11.3.2 S(s) satisfying (11.3.6), derive a reciprocal passive reactance extraction 

synthesis of S(s) under the condition that no further state-space basis 
trwsformation is lo be applied to (F, G, H, Jf above. Note that the 
transformations of (11.3.10) used to generate IFw, G., H,, J.) may be 
used and that there is no restriction on the number of reactive elements 
required in the synthesis. [Hint: Use the identity 

Problem Using the method outlined in this section, give reciprocal syntheses for 
11.3.3 (a) The symmetric lossless bounded real scattering matrix 
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(b) The bounded real scattering function 

11.4 RESISTANCE !XTRACTION SCATTERING 
MATRIX SYNTHESIS 

In this section we present a state-space version of the classical 
Belevitch resistance extraction synthesis of bounded real scattering matrices 
[q. The key idea of the synthesis consists of augmenting a prescribed scatter- 
ing matrix S(s) to obtain a Iossless scattering matrix s,(~) in such a manner 
that terminating a lossless network N, which synthesizes S,(s) in unit resistors 
yields a synthesis of the prescribed S(s) (see Fig. 11.4.1). This idea has been 
discussed briefly in Chapter 8. 

FIGURE 11.4.1. Resistance Extraction. 

Suppose that the required lossless scattering matrix S,(s) is given by 

where S(s) denotes the rn x m prescribed scattering matrix and the dimen- 
sion of S,,(s) is p x p, say. Here what we have done is to augment S(s) by 
p rows and columns to obtain a lossless S,(s). There is however one impor- 
tant constraint-a result stated in Theorem 8.3.1-which is that the number 
p must not be smaller than p = normal rank [I - S'(-s)S(s)], the minimum 
number of resistors required in any synthesis of S(s). Now the IossIess con- 
straint on s,(~), i.e., 

requires the following key equations to hold: 
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In the Belevitch synthesis and the later Oono and Yasuura synthesis [a], p 
is taken to be p; i.e., the syntheses use the minimum number of resistors. 
The crucial step in both the above syntheses lies in the factorization of I - 
St(-s)S(s) to obtain S,,(s) and I -  S(s)S'(-s) to obtain S,,(s) [see (1 l.4.2)]. 
The remaining matrix Sa,(s) is then given by -S,,(s)S1(-s)[S:,(-s)]-I 
where precise meaning has to be given to the inverse. To obtain S,,(s) 
and Sl,(s), Belevitch uses a Gauss factorization procedure, while Oono 
and Yasuura introduce a polynomial factorization scheme based on the 
theory of invariant factors. The method of Oono and Yasuura is far more 
complicated computationally thqn the Belevitch method, but it allows the 
equivalent network problem to be tackled. 

An inherent property of both the Belevitch and the basic Oono and 
Yasuura procedures is that 6[SL(s)] > 6[S(s)] usually results; this means 
that the syntheses usually require more than the minimum number of reactive 
elements. However, the difficult Oono and Yasuura equivalent network t h e  
ory does provide a technique for modifying the basic synthesis procedure to 
obtain a minimal reactive synthesis. In contrast, it is possible to achieve 
a minimal reactive synthesis by state-space means in a simple fashion. 

Nonreciprocal Synthesis 

Suppose that an m X m bounded teal S(s) is to be synthesized. 
We have learned from Chapter 8 that the underlying problem is one of finding 
constant real matrices FL, G,, HL, and JL-which constitute a minimal real- 
ization of the desired SL(s)--such that 

1. The equations of the lossless bounded real lemma hold: 

where P is symmetric positive definite. 
2. With the partitioning 

where G,, and HL, have m columns, and J,, has m columns and rows, 
IF,, G,,, H,,, J,,) is a realization of the prescribed S(s). 
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If a lossless network N, is found synthesizing the lossless scattering matrix 
J, + H',(sI - FA-' G,, termination of all but the first m ports of this network 
N, in unit resistances then yields a synthesis of S(s). 

Proceeding now with the synthesis procedure, suppose that IF, G, H, J] is 
a minimal realization of S(s), such that 

-G = HJ+ LW, 

I - J ' J =  wgw. 

with if and W, having the minimum number of p rows. (Note that p = 
normal rank [T - S(-s)S(s)].) 

We shall now construct an (m + p) x (m + p) matrix S,(s), or, more 
precisely, constant matrices [FL, G,, H,, J,], which represent a minimal real- 
ization of S,(s). 

We start by computing the (m + p) x (m + p) real constant matrix 

The first m columns of J, are orthonormal, by virtue of the relation I  - J'J 
= W;Wo. It is easy to choose the remaining p columns so that the whole 
matrix J, is orthogonal; i.e., 

Next, we define real constant matrices F,, G, and H, by 

With these definitions, it is immediate from (11.4.4) that 

hold, that is, Eqs. (11.4.3) hold with the matrix P being the identity matrix 
I. Also it is evident from the definitions of F,, G,, HL, and J, in (11.4.5) and 
(11.4.7) that the appropriate submatrices of G,, H,, and J, constitute with 
F, a realization, in fact, a minimal one, of the prescribed S(s). 

We conclude that the quadruple IF,, G,, H,, Jd of (1 1.4.5) and (11.4.7) 
defines a lossless scattering matrix for the coupling network N,. A synthesis 
of the lossless S,(s), and hence a synthesis of S(s), may be obtained by avail- 
able classical methods [9], the technique of Chapter 8, or the state-space 
approach discussed in Section 11.2. The latter method is preferable in this 
case, since one avoids computation of the lossless scattering matrix S,(s) = 
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J, + H:(sl- F,)"G,;and, more significantly, the matricesF,, G,, H,, and 
J, are such that a synthesis of the lossless network is immediately obtainable 
-without any further need to change the state-space coordinate basis. This is 
because fF,, G,, H,, J,,] satisfies the lossless bounded real lemma equation 
with P = f. 

A quick study of the synthesis procedure will immediately reveal that 

6[SL(s)] = dimension of F, = 6[S(s)] 

This implies that a synthesis of SL(s) is possible that uses b[S(s)] reactive 
components. Therefore, the synthesis of S(s) can be obtained with the mini- 
mum number of reactive elements. Moreover, the synthesis is also minimal 
resistive. This follows from the fact that p resistors are required in the syn- 
thesis, while also p = normal rank [I - S'(-s)S(s)]. 

. .  . 

Example Consider the bounded real scattering function 
11 -4.1 

A minimal realization of S(s) satisfying (11.4.4) is 

with 

Next, matrices IFL, GL, HL, JL] are computed according to (11.4.5) 
and (11.4.7); the result is 

It can be checked then that S,(s), found from the above IFL, C,, HA, JLl, 
is given by 
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and is a lossless bounded real matrix; i.e., I - Si(-s)S,(s) = 0. Further- 
more, the (I ,  1) principal submatdx is obviously s ( ~ ) .  The remainder of 
the synthesis is straightforward and will be omitted. 

Note that in the above example S(s) is symmetric but S,(s) is not. This is 
true in general. Therefore, the above method gives in general a nonreciprocal 
synthesis. Let us now study how a reciprocal synthesis might be achieved. 

Reciprocal Synthesis* 

We consider now a prescribed m x m scattering matrix S(s) that 
is bounded real and symmetric. The key idea in reciprocal synthesis of S(s) 
is the same as that of the nonreciprocal synthesis just considered. Here we 
shall seek to construct a quadruple IFp G,, H, JJ, which represents a mini- 
mal realiyation of an (m + r )  x (m $- r) lossless s,(~), such that the same 
two conditions as for nonreciprocal synthesis are fulfilled, and also the third 
condition 

The number of rows and columns r used to border S(s) in forming S,(s), 
corresponding to the number of resistors used in the synthesis, is yet to be 
specified. This of course must not be less than p = normal rank [I- 
S'(-s)S(s)]. The third condition, which simply means that S&) = s;(~), is 
added here, since a reciprocal synthesis of S(s) follows only if the lossless 
coupling network N, synthesizing S,(s) is reciprocal. 

As we have stated several times, it is not possible in general to obtain 
a reciprocal synthesis of S(s) that is simultaneously minimal resistive and 
minimal reactive; with our goal of a minimal reactive reciprocal synthesis, 
the number of resistors r may therefore be greater than the normal rank p 
of [ I -  S(-s)S(s)l. For this reason it is obvious that the method of 
nonreciprocal synthesis considered earlier needs to be modified. As also 
noted earlier, preliminary extractions can be used to guarantee that 
I - S(-m)S(m) is nonsingular. We shall assume this is true here. It then 
follows that normal rank [I - S'(-s)S(s)] = m. 

Before we can compute a quadruple IFL, G,, H, J,), it is necessary to 
derive an appropriate minimal realization {F,, G, ,  H, ,  J )  for the prescribed 
S(s), so that from it (FA, G,, IT,, J,J may be computed. 

The following lemma sets out the procedure f o ~  this. 

Lemma 11.4.1. Let {F, G, H, J ]  be a minimal realition of 
a symmetric bounded real S(s) such that, for some L and W,, 

*The remainder of this s d o n  may be omitted at a first reading. 
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F f  F'= -HH1--LL' 

-C= H J f  LWo (1 1.4.4) 

I - J'J = Wb W, 

Let P be the unique symmetric matrix, whose existence is guaran- 
teed by the symmetry of S(s), that satisfies PF = F'P and PC 
- - -H, and let B be positive definite and V orthogonal such 
that P = BVXV'= VXY'B. (See Lemma 11.3.2.) Here X = 
[I,, f (-I)&,] with n, 4- n, = n = 6[S(s)]. Define a coordinate 
basis change matrix T by 

and a new minimal realization of S(s) by 

(F,, GI, H,, J )  = {TFT-', TG, (TF1)'H,J] (11.4.11) 

Then the following equations hold: 

EF, = F',X XG, = -HI J = J' (11.4.12) 

and 

A complete proof will be omitted, but is requested in the problems. Note 
that the initial realization {F, G, H, J ]  satisfies the special bounaed real lemma 
equations, but in general will not satisfy (11.4.12). The coordinate basis 
change matrix T, because it satisfies T'XT = P (as may easily be verified), 
leads to (11.4.12) holding. The choice of a particular T satisfying T'ET = P, 
rather than an arbitrary T,  leads to the nonnegativity constraint (11.4.13). 
The argument establishing (11.4.13) is analogous to a number of earlier 
arguments in the proofs of similar results. 

The construction of matrices of a minimal realization of SL(s) is our prime 
task. For the moment however, we need to study a consequence of (1 1.4.12) 
and (11.4.13). 

Lemma 11.4.2. Let IF,, G, ,H , ,  J] andZ bedefinedas in Lemma 
11.4.1. Then there exists an n, X n, nonnegative symmetric Q, 
and an n, x n, nonnegative symmetric Q, such that 
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Proof. That the left side of (1 1.4.14) is nonnegative definite fol- 
lows from (11.4.13). Nonsingularity of I - S'(-w)S(m) implies 
nonsingularity of I - JZ. NOW set 

Simple manipulations lead to 

Now premultiply and postmultiply by X. The right-hand side is 
seen to be unaltered, using (11.4.12). Therefore 

which means that Q = Q, / Qz as required. Q Q Q 

With Lemmas 11.4.1 and 11.4.2 in hand, it is now possible to define a mini- 
mal realization of SL(s) of dimension (2m f n) x (2m + n), which serves to 
yield a resistance-extraction synthesis. Subsequent to the proof of the theorem 
containing the main result, we shall indicate how the dimensions of SL(s) 
may sometimes be reduced. 

Theorem 11.4.1. Let (PI, G,, HI, J] and X be defined as in 
Lemma 11.4.1 and Q, and Q, be defined as in Lemma 11.4.2. 
Define also 

F,, = F, 

G,, = [GI I -H,(I - J1)JJa 

- (G, + H,JXI - Ja)-'I2 J; (-Q:fl) + Qrz] 

HL = [HI; -(GI + H,J)(I- JZ)-1/2/QiJz -j- Q;/l] (11.4.15) 

-J 
0 . . 

Then 

1. The top left m x m submatrix of S,(s) is S(s). 
2. SL(s) is lossless bounded real; in fact, 

F, -k Fi =. -H+H',. 
- GL = HLJL ' . (1 1.4.16) 

I- J;J, = 0 
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3. S,(s) is symmetric; in fact, 

Proof. The first claim is trivial to verify, and we examine now 
(11.4.16). Using the definitions in (11.4.15), we have 

which is zero, by (11.4.14). Also, 

HLJL = [ H , J -  (G, + HIJ)I HI([-- J2)'I2 

+ (G, + HIJ)(I - J3-"'J! 8:'' -k (-Q:I2)] 
- - - GL 

Verification of the third equation in (11.4.16) is immediate. 
Finally, (11.4.17) must be considered. The first equation in 
(11.4.17) is immediate from the definition of FL and from 
(11.4.12). The third equation is immediate from the definition of 
J,. Finally, 

2GL = [ZG, j -XH,(I - J31'2 
- (ZG, + XH, J)(I - Jz)-1/2 J / (-Q:") + (-QYa)] 

= 1-H, G,(l - JZ)Lf2 

-t ( H ,  + G,J)(I - JZ)-"z J i  (-Qin) -!- (-Q~"I1 
= [-HI j (G, + HIJ)(I - J2)-li2 j (-Qil') -k (-Qkf2)] 
- - -HL V V V  

The above theorem implicitly contains a procedure for synthesizing S(s) 
with r = (m + n) resistors. If Q is singular, having rank nS < n, say, it 
becomes possible to use r = (m + n*) resistors. Define Rl and R, as matrices 
having a number of rows equal to their rank and satisfying 

Between them, R, and R, wilt have n* rows. Let R, haven: rows and& have 
n2; rows. Define E* = Inl + (-l)In:. Then instead of the definitions of 
(11.4.15) for G,, H,, and J,, we have 
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. . 

JL = (I - Jf)"= [ :. -J 
... 

0 z* - J = " =  I " .  

Thqe claims may be verified by working through the proof of Theorem 
11.4.1 with but minor adjustments. 

Let us now summarize the synthesis procedure. 

1. ~ r o i  a minimal realization {F, G, H , J ]  of ~ ( s )  that satisfies (11.4.4), 
calculate the sy&netricnonsingular matrix P satisfying PF = F'P and 
PG = -H. 

2. Express P in the form BVZV', with B positive definite, V orthogonal, 
and T: = [I,,, i (-l)I,]. Then with T = V'B!/Z, form another minimal 
realization {F,, GI, H I ,  J ]  of S(s) given by {TFT-I, TG, (T-')'H, J ) .  

3. With Q, and Q, defined as in (1 1.4.14), define F,, G,, H,, and J, as in 
(11.4.15), or by (11.4.18) and (11;4.19). 

4. Synthesize S,,(s) by, for example, application of the preliminary extra& 
tion procedures of Chapter 8 or via the reactance-extraction procedure, 
and terminate in unit resistors all but the firstm ports of the network 
synthesizing S,(s). Note that because the quadruple (F,, G ,  H,, J,) 
satisfies (11.4.16) and (11.4.17), reactance-extraction synthesis is par- 
ticularly straightfokard. No coordinate basis change is necessary, and 
S,(s) itself does not have to be calculated. 

. . 

Example Consider the same bounded real +atte<i function . . 
11.4.2 

. .  . 

S(s) = + 
ZrZ+3s+5 

as in Example 11.4.1. A minimal realization of S(s) that satisfies (11.4.4) 
has been found to be. 

Then the symmetric nonsingular matrix P, satisfying PF = F'P and 
PG = -H, is computed to be 
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from which I: = 11 / - 11 and 

Thus, another minimal realization of S(s) is 

Using (11.4.14), we obtain Q1 = 0.58 and Qa = 0.32. The formulas 
(11.4.15) then yield 

Synthesis from this point is straightforward. : 

Problem Rove Lemma 11.4.1. 
11.4.1 

Problem Given the bounded real scattering function 
1f.4.2 

give a nonrecipkcal and a reciprocal synthesis. 

Problem Synthesize the symmetric bounded real scattering matrix 
7.1.4.3 

using the reciprocal synthesis procedure of this section. . 
. 

Problem Show that Lemma 11.4.2 and Theorem 11.4.1 will cover the case when 
11.4.4 I - J a  is singuk, if (1 - JZ)-' is replaced when it occurs by (1 - J')s, 

, is., the pseudo inverse of I - JZ. [The pseudo inverse of a symmetric 
matrix A is defined as A* = V'(B-1 f O)V, where V is an orthogonal 
matrix such that A = V'(B + 0)V with 3 n o n s ~ a r . 1  
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Transfer-Function Synthesis 

Probably the most practical application of passive network 
synthesis lies in the synthesis of transfer functions or trader-function 
matrices rather than immittances, though, to be sure, immittance synthesis 
is often a concomitant part of transfer-function synthesis. For example, in 
matching an antenna to a transmitter output stage, a passive coupling 
network is required, the dcsign of which may be based on impedance match- 
ing at the two ports of the coupling network. 

As we shall see, state-space transfer-function synthesis is rather less 
developed than immittance or scattering synthesis. Even the approaches we 
shall present are somewhat disjoint, though the same could probably be said 
of the many classical approaches to transfer-function synthesis. There is 
probably scope therefore for great advancement, with practical payoffs, in 
the use of state-space procedures for transfer-function synthesis. To give 
some idea for the basis of this statement, we might note that much of classical 
theory demands particular structures, for example, the lattice and ladder 
structures. h any given situation, it may well be that neither of these stnrc- 
tures offers especially good sensitivity characteristics; i.e., the performance 
of a filter using one of these structures may deteriorate severely in the face 
of variation of one or more of the element values. Now workers in control 
systems have found that the state-space description of systems offers a con- 
venient vehicle for analysis and synthesis of prescribed sensitivity character- 
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istics. Thus, presumably, one could expectlow sensitivity network designs to 
follow via state-space procedures. 

We now describe the basic idea behind the transfer-function (and transfir- 
function matrix) syntheses of this chapter. For convenience in describing, the 
approach, but with no loss of generality, suppose that the input variables 
are currents (or a single. current in the nonmatrix situation) and the output 
variables are all voltages. We shall also suppose that any port at whichthere 
is an exciting input variable is not a port at which we measure.an output 
variable. Figure 12.1.1 illustrates the situation; here, I, is a vector of currents, 

Network 
. . 

FIGURE 12.1 .l. Response and Excitation Variables Asso- 
ciated with Different Ports. 

the inputs, and V, a vector of voltages, the outputs. We are given the transfer- 
function matrix relating I, to V,, and we seek a network that synthesizes 
this matrix. Generally, the transfer-function matrix is in state-space form. 

The key step in the synthesis is to conceive of the prescribed transfer- 
function matrix as being a submatrix of a passive impedance matrix. Thus 
if T(s) is the transfer-function matrix, we conceive of a positive real Z(s) such 
that 

In synthesizing Z(s) with a network, we thereby obtain a synthesis of T(s). 
For observe that 

where the port voltage and current vectors have been partitioned to conform 
with the partition of Z(s). If now Z,(s) = 0, i.e., the second set of ports are 
open circuit, we have 

VA-9 = T(s)Zl(s) (12.1.3) 

This is, of course the relation required. 
As will be shown, passage from T(s) to an appropriate positive real Z(s) is 
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not especially difficult. In fact, we can make life easy for ourselves in the 
following way. First, instead of passing from the frequency-domain quantity 
T(s) to a frequency-domain quantity Z(s), we shall pass from a state-space 
description of T(s) to a state-space description of Z(s). Second, we shall 
ensure that the matrices appearing in the state-space description of Z(s) 
satisfy the equations of the positive real lemma with the matrix P of that 
lemma equal to the identity matrix; i.e., if IF,, G,, H,, J=] is the stat-space 
realization of Z(s) formed from a state-space realization of T(s), then 

for some L, and W,,. As we know, Z(s) may easily be synthesized given a 
realization satisfying (1 2.1.4). Therefore, we shall regard the transfer-function- 
matrix synthesis problem as solved if a Z(s) can be found with a realization 
satisfying (12.1.4), and we shall not carry the synthesis procedure further. 

The above discussion has been based on the assumption that all input 
variables have been taken to be currents and all output variables as voltages. 
This assumption can be removed by embedding the transfer-function matrix 
T(sf in a hybrid matrix X(s) rather than an impedance matrix. Consider, 
for example, the case when T(s) is a scalar current-to-current transfer func- 
tion. Then X(s) would be found as the hybrid matrix of a two port, with 
equations 

Because of the practical importance of gyratorless circuits, we can seek to 
ensure satisfaction of a symmetry constraint on Z(s), in addition to the other 
constraints. In view of our earlier discussion of reciprocal synthesis, we may 
and shall regard the problem of reciprocal transfer function synthesis as 
solved if we can embed the prescribed T(s) in a symmetric Z(s), the latter 
with a state-space realization {F,, G,, Hz, Jz) satisfying (12.1.4). 

In ail the synthesis procedures, as we have remarked, we begin with a 
statespace realization, actually a minimal one, of the prescribed transfer- 
function matrix T(s). Cill this realization (F,, G,, H,, &). We shall generally 
require the additional constraint 

or even 

If the constraint is not satisfied for an arbitrary realization, and it may well 
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not be, we can easily carry out a coordinate-basis change to ensure that it 
is satisfied, provided that the following assumption holds. 

Assumpti~n 12.1 .I. The prescribed transfer-function matrix 
T(s) is such that the poles of every element lie in Re [sl< 0, or 
are simple on Re [s] = 0. 

(The physical meaning of this restriction is obvious.) To see that (12.1.6) 
can be achieved starting with an arbitrary realization, we proceed as follows. 
Let (F,,, G,,, H,,, J,,) be an arbitrary realization. If F,, has all eigenvalues 
in Re [s] < 0, take Q as an arbitrary positive definite matrix, and define P 
as the positive definite solution of 

With R any matrix such that R'R = P, take 

Then (12.1.8) and (12.1.9) imply that 

Notice that the computation of P and R is straightforward (see, e.g., 111). 
If F,, has eigenvalues with zero real part, we must first find a matrix R, 

such that 

where ST, has all eigenvalues with negative real parts, and 5,. is skew. A 
further transformation R, can be found so that 

with 5,, + < 0. [This can be done by the technique described in Eqs. 
(12.1.8) through (12.1.10) and the associated remarks.] Now set 

R = R,R, (12.1.11) 

and define 4, G,, and H, by (12.1.9). It folIows from the properties of 
ST, and 5,, that 

FT -I- F> S 0 (12.1.6) 

Note that if F, has zero real part eigenvalues, it is impossible to have 

FT + F& < 0 (12.1.7) 

(The lemma of Lyapunov would be contradicted in this instance.) 
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We shall now give a brief summary of the remainder of this chapter. In 
Section 12.2 we consider two techniques for nonreciprocal synthesis, the 
first being based on a technique due to Silverman 121. In Section 12.3 recip- 
rocal synthesis is considered. In Section 12.4 we consider synthesis with 
prescribed load terminations, discnssing results of [3]. 

One approach to state-space transferifunction synthesis that we do not 
discuss in detail is that based on ladder network synthesis 14-7l. As was 
noted in Section 4.2, the network of Fig. 12.1.2 has the state equations 
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FIGURE 12.1.2. Ladder Network with State Equation 
(12.1.12). 

The transfer function relating V(s) to I,,@) is of the form 

and the a, in (12.1.13) are related to the element values of the circuit of 
Fig. 12.1.2 by straightforward formulas set out in the references. Thus, 
hardly with intervention of state-space techniques, (12.1.13) can be synthe- 
sized by a ladder network. Synthesis of transfer admittances with numerators 
other than a constant can also be achieved, as discussed in [7], by using 
the same basic network, but adjusting the points at which excitations are 
applied or responses are measured. 

Problem Show that procedures for the synthesis of a transfer-function matrix 
12.1.1 T(s) with T(m) infinite, but with lim,, T(s)ls finite, can be derived from 

procedures for synthesizing transfer-function matrices T(s) for which 
T(m) is finite. 

12.2 NONRECIPROCAL TRANSFER-FUNCTION 
SYNTHESIS 

In this section we shall translate into more precise terms the 
transfer-function synthesis technique outlined in the previous section. We 
suppose that we are given a transfer-function matrix T(s) with a minimal 
realization [F,, G,, HT, J,). We suppose moreover that 

Without loss of generality, we shall assume that T(s) is a current-to-voltage 
transfer-function matrix. We shall suppose too that FT is n x n, G, is n x p, 
HT is rr x nz, andJ, is rn x p. 

We now define quantities F?, G,, Hz, and J, by 
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The quadruple IF,, G,, H,, J,] is a realization, actually a minimal one, of 
a matrix Z(s) that. is @ $ m) X ( p  + m). If Z(s) is partitioned as 

with Z,,(s) a p  X p matrix, it is easy to verify that 

Observe also, using (12.2.1) and (12.2.2); that 

where the existence of L, folIows from (12.2.1) and the fact that F;= F,. 
Equations (12.2.5) are the positive real lemma equations with the matrix 

P equal to the identity matrix. Therefore, the synthesis problem is essentially 
solved. 

Notice that the computations required for transfer-function synthesis 
are much simpler than for immittance synthesis. The positive red lemma 
equations never have to be solved. 

Notice also that if the synthesis is completed by, say, the reactance- 
extraction technique, the number of reactive elements used will be n, where 
n is the dimension of F, and F,. Since F, is of minimal dimension, the 
synthesis therefore uses a minimal number of reactive elements. It does not 
necessarily use a minimal number of resistive elements, however. Problem 
12.2.1 develops a synthesis for scalar transfer functions using the minimal 
number of resistors, and also asks the student to look at such syntheses 
for transfer-function matrices. 

Example Consider the Butterworth function 
12.2.1 

A minimal realization for T(s) is easily derived as 

Notice that F, has nonpositive-definite symmetric part. Next, we con- 
struct 
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To synthesize the impedance of which these matrices are a minimal 
realization, we fonn 

and find a nondynamic network of which this is the impedance matrix. 
We note that 

and 

Thus the nondynamic network of impedance matrix M is that of 
Fig. 12.2.1, and the two-port network having the prescribed transfer 
function is obtained by terminating the network above at its last two 
ports in unit inductances, as shown in Fig. 12.2.2. 

As the reader will appreciate, the synthesis of a transfer-function matrix 
has a high degree of nonuniqueness about it. The procedure we have given 
has the merit of being simple, but ensurqs that T(s) is embedded in a positive 
real Z(s) that is uniquely determined by T(s). Of course, there are an in6nity 
of positive real Z(s) for which T(s) is a submatrix. So it may well be that 
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FIGURE 12.2.1. Nondynamic Network of Example 12.2.1. 

there are other synthesis procedures almost, if not equally, as convenient, 
which depend on T(s) being embedded in a Z(s) different from that used 
above. We shall examine one such procedure here. 

In the procedure now to be presented we shall restrict consideration to 
those T(s) for which all eigenvalues of the matrix F, in a minimal realization 
of T(s) lie in Re [s] < 0. Thus we can ensure that 

. . 

Without loss of generality, we shall take T(s) to be an m x p current-to- 
voltage transfer-function matrix, and we will embed it in a ( p  + m )  x (p + m) 
Z(s) of the form . . . 

. . 
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FIGURE 12.2.2. Synthesis of Transfer Function 
:O' + f l s  + 1)-'. 

where J, ,  and J,, are constant. Notice that ihis implies that there is zero 
transmission from the second set of ports to the first set; the voltage at the 
first set of ports depends purely on the current at those ports and is inde- 
pendent of the current at the second set of ports. (It is easy to envisage 
practical situations where this may be helpful.) Extension to the case when 
the zero block is replaced by a nonzero block is also possible (see Problem 
12.2.6). 

We deiine a realization of Z(s) in the following way: 

The matrix J, will be defined shortly. First, we shall define L, and W,,. With 
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T(s) an m x p matrix, let s = min {m,p}.  With F, an n x n matrix, let S be 
any nonsingular n X n matrix such that 

FT -I- F& = -SS' (122.9) 

(A triangular S is readily computed.) Then we define 

L,=[O... Sl (12.2.10) 

Notice that 

F, + F: = -L,L: (12.2.11) 

The matrix L, has n rows and s f  n columns; the matrix W,, will have 
s + n rows and p -I- m columns. Let us partition it as 

where W , ,  is s x p. The dimensions of the remaining submatrices are then 
automatically defined. Next, temporarily postponing definition of W , ,  and 
W,, ,  we d e h e  

W,,  = -S-IG, W,, = S-'H, (12.2.13) 

Now observe that 

It remains to define Jz, W , , ,  and W,,.  We let W,,  and W 1 2  be any matrices 
such that 

Notice that JT is m x p, while W , ,  is s x p and W , ,  is s x m. Since s = 
min {m, p}, there certainly exist W , ,  and W,, satisfying (12.2.15). Finally, 
define 

Equations (12.2.12), (12.2.13, and (12.2.16) imply that 
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Equations (12.2.8) and (12.2.16) define the minimal realization of Z(s), with 
the matrices W ,  in (12.2.16) defined by (12.2.9) through (122.15). Equations 
(12.2.11), (12.2.14), and (12.2.17) show that the realization IF, G,, Hz, Jz) 
satisfies the positive real lemma equations with the P matrix equal to the 
identity matrix. Equations (12.2.8) imply that 

and, taken in conjunction with (12.2.16), this means that Z(s) has the desired 
form of (12.2.7): 

The synthesis procedure is therefore essentially complete. Notice that, 
again, a minimal number of reactive elements is used. The number of resistive 
elements will, however, be large (see Problem 12.2.4). 

As a summary of the above synthesis procedure, the following steps are 
noted: 

1. Check that the prescribed current-to-voltage transfer function T(s) 
fulfills the condition that poles of each element all lie in the strict left 
half-plane, Re[s] < 0. 

2. Obtain a minimal realization (F,, C,, H,, J,) of T(s) for which F, f F$ 
< 0. 

3. Calculate any nonsingular matrix S such that F, + Fi = -SS.  
4. Compute matrices W,,, W,, using (12.2.13) and W,, ,  W, ,  for which 

(12.2.15) holds. 
5. Obtain F,, C,, H, simply via (12.2.8) and J, from (12.2.16). Give 

a synthesis by any known procedure for the positive real impedance Z(s) 
for which IF,, G,, Hz, J,] is a minimal realization. The network so 
obtained synthesizes the prescribed T(s). 

Example We take again 
'I 2.2.2 

For a minimal realization, we adopt 
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so that, following (12.2.81, 

CHAP. 12 

A matrix S satisfying (12.2.9) is given by 

and so, with s = 1, 

Next, Wzl and W,, aregiven from (12.2.13) by 
. . 

Matrices Wlz and WI1 satisfyin&' (12.2.15) are 

w,, = w,z=o 

From (12.2.16) this leads to 

With the quantitie F,, C,, Hz, and J, known, a synthesis of Z(s) can 
be achieved by, for example, the. reactance-extraction approach. We 
form the constant impedance matrix 
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We have then 

and 

A synthesis for the impedance matrixM is shown in Fig. 12.2.3, while 
a final circuit realizing the prescribed transfer function is given by 
Fig. 12.2.4. 
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FIGURE 12.23, Nondynamic Network of Example 12.2.2. 

Problem This problem investigates synthesis using a minimal number of resistive 
12.2.1 elements. Suppose that T(s) is a scalar transfer function, with minimal 

realization [FT,, gT,, &,, jT,] and with all eigenvdues of FT, in Re tsl 
< 0. Because [F,,, &,1 is a completely observable pair, there exists a 
positive definite symmetric P such that 

PFT, + F$,P = -h ,hk ,  

Carry out a coordinate-basis change, derived from P, and show that T(s) 
can be embedded in a 2. x 2 positive real matrix Z(s) with minimal reali- 
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2 

- 

1 1  

1' 

2'0 - - 
FIGURE 12.2.4. Synthesis of Transfer Function 
k(sZ + f l s  + I)-'. 

zation (Fz, G,, Hz, J,) and such that (12.2.5) is satisfied with L, a vector. 
Conclude the existence of a synthesis using only one resistor. Show also 
that there is no synthesis containing no resistors. What happens for 
matrix T(s)? 

Problem Show that if T(s) is a transfer-function matrix such that each element has 
12.2.2 polethat are always simple and with zero real part, then T(s) can be 

synthesized by a lossless network. 
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Problem Synthesize the scalar voltageto-voltage transfer function 
12.2.3 

Problem Compute the number of resistors resulting from the second synthesis 
12.2.4 procedure presented. 

Problem Synthesize the scalar voltage-to-voltage transfer function 
12.2.5 

using the second method outlined in the text. 

Problem Suppose that a passive synthesis is required of two current-to-voltage 
12.2.6 transfer-function matrices T,z(s) and T,,(s). These transfer-function 

matrices relate variables Il(s), I&), V,(s), and VL(s) according to the 
equations 

V I ( ~  = T~i(s)Iz(s) VA-9 = TzI(s)~,(s) 

with I,(s) and V,(s) being associated with the same set of ports, and 
likewise for iz(s) and Vl(s). Develop a synthesis procedure following 
ideas like those used in the second procedure discussed in the text. 
By taking T,,(s) = T',,(s), can one embed TI&) in a symmetric Z(s)? 

12.3 RECIPROCAL TRANSFER-FUNCTION 
SYNTHESIS* 

In this section we demand that the network synthesizing a pre- 
scribed transfer function be reciprocal. We shall start with a minimal real- 
ization &, G,, H,, Jr of a prescribed m x p transfer-function matrix T(s), 
assumed for convenience to be current to voltage. We shalt moreover suppose 
that 

The strict inequality is equivalent to a requirement that the poles of each 
element of T(s) should all lie in Re [s] < 0, rather than some poles possibly 
lying on Re [s] = 0. A straightforward way to remove this restriction is not 
known. 

As the f is t  step in the synthesis we shall change the coordinate basis so 
that in addition to (12.3.1), we have 

*This section may be omitted at a first reading. 
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where Z is a diagonal matrix of the form I., + (-1,J. Then we shall con- 
struct a minimal realization {F,, G,, Hz, J,) of a O, $ m) x @ + m) positive 
real impedance matrix Z(s) satisfying the equations 

F, + F: = -L,L: 

G, = Hz - LzW,, (12.3.3) 

J, + J: = WLWo, 
and 

ZF* = F:z 
CG,= -Hz (12.3.4) 

J. = J: 

Equations (12.3.3) imply that a passive synthesis of Z(s) may easily be found, 
while (12.3.4) imply that this synthesis may be made reciprocal. Of course, 
Z(s) has T(s) as a submatrix. 

Naturally, the calculations required for reciprocal synthesis are more 
involved than those for nonreciprocal synthesis. However, at no stage do the 
positive real lemma equations have to he solved. 

We now proceed with the first part of the synthesis. Suppose that we have 
a minimal realization {F,,, G,,, H,,, J,,} of T(s) such that 

while ZFT, # Fh,Z. Lemma 12.3.1 explains how a coordinate-basis change 
may be used to derive FT satisfying (12.3.1) and (12.3.2). 

Lemma 12.3.1. Suppose that FT, satisfies Eq. (12.3.5). With A 
any matrix such that AFT, = F&,A, there exist a positive dehits 
symmetric B, an orthogonal V, and a matrix Z = I,, + (-1.3 
such that 

A 4- A' = BVZV' = VZV'B (12.3.6) 

Further, with 

and 

the matrix Fr satisfies (12.3.1) and (12.3.2). 
This lemma is a special case of Theorem 10.3.1, and its proof will not be 

included. 
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With Lemma 12.3.1 in hand, we can now derive a minimal realization of 
an appropriate impedance Z(s), such that T(s) is a submatrix and such that 
Eqs. (12.3.3) and (12.3.4) are satisfied by the matrices of the state-space 
realization of Z(s). 

The matrices 1P,, G,, and Hz are defmed by 

We shall define J, shortly. Notice that, except for the equation J. = Jl, 
the reciprocity equations (12.3.4) hold. 

To define J,, we need first to define L, and W,,. Recalling that FT ',+ Fh is 
negative definite, let S be an n x n matrix (where FT is n x n) such that 

(It is easy to compute such an S, especially a triangular S.) Let s = min ( p ,  m}, 
and set, similarly to the procedure of Section 12.2, 

L,=[O.,, s] (12.3.11) 
Observe that 

F, + F: = -LJ: (12.3.12) 

as required. Next, again following Section 12.2, we form W,,, which is a 
matrix of (s $ n) rows and (g + m) columns. We shall identify submatrices 
of WW,, according to the partitioning 

where W,,  is s x p and the dimensions of the other submatrices are auto- 
matically defined. Now we set (in wntrast to Section 12.2) 

These definitions are made so that the equation 

holds. To check this, observe from (12.3.11) and (12.3.13) that 



SEC. 12.3 RECIPROCAL TRANSFER-FUNCTION SYNTHESIS 493 

Next, as in Section 12.2, we define W,, and W,, as any pair of matrices 
satisfying 

W'l,Wll = 2J, - W\,W,, (12.3.17) 

Notice that J is m X p, while W,,  and W,, are, respectively, s x p and 
s X m. With s = min { p ,  m), it is always possible to find W,, and W I z  
satisfying this equation. Finally, we define 

This ensures that J, is symmetric, that 

J, + J: = wb,wo, (12.3.19) 

and finally that the 2-1 entry of J, is, by (12.3.17), precisely J,. This fact, 
together with Eqs. (12.3.9), implies that T(s) is them x plowerleft submatrix 
of the (p $. m )  X (p + m) matrix Z(s) with realization IFz, G,, Hz, J,}. 
Equations (12.3.12), (12.3.16), and (12.3.19) jointly amount to (12.3.3), while 
the reciprocity equations (12.3.4) have also been demonstrated. This com- 
pletes a statement of the synthesis procedure. 

Notice that if the remainder ofthe synthesis proceeds by, say, the reactance- 
extraction approach, n reactive elements will be used, where n is the size of 
F, and F,. Since the dimension of F, is minimal, this means that T(s) is 
synthesized with the minimum number of reactive elements. 

To summarize, the synthesis procedure for a current-to-voltage transfer- 
function matrix is now given: 

1. Examine whether poles of each element of the prescribed T(s) lie in 
the left half-plane Re [s] < 0. 

2. Compute a minimal realization IF,,, G,,, H,,, J,J of T(s) with F,, 
-+ F;, < 0. 

3. With the coordinate-basis change R found according to Lemma 12.3.1, 
another minimal realization {F,, G,, H,, J,) of T(s) is computed. 

4. Calculate a nonsingular matrix S such that F, + P; = -SS. 
5. From (12.3.14) and (12.3.15) calculate matrices WZV,, and W,,, respec- 

tively; then obtain any pair of matrices W, and W,, for which (12.3.17) 
holds. 

6. Calculate J, from (12.3.18) and F,, G,, and H, from (12.3.9). 
7. Give a synthesis for the positive real impedance matrix Z(s) for which 

{Fz, G,, H,, J,] is a minimal realization. 
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Example we shall synthesize the current-to-voltage transfer function 
12.3.1 

t 
T(s) = s2 + I/ZS + 1 

AS a minimal. realization, we take 

Observe that 'CF, = F Z ,  where 

Following the procedure specified, we take 

A matrix S satisfying FT + F; = -SS' is given by 

whence 

and 
WZz = S-I(I: f 

Using (12.3.17), we see that W,, = Wll = 0 is adequate, so that by 
(12.3.18). 
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with 

Now we synthesize Z(s) with minimal realization {F,, G,, Hz, J,]. 
This requires us to form the hybrid matrix of a nondynamic 
network as 

The upper 3 x 3 diagonal submatrix 

corresponds to an impedance matrix, while the lower diagonal submatrix 
[l/J7J is an admittance matrix. The network of Fig. 12.3.1 gives a syn- 
thesis of the hybrid matrix M. Terminating this network at port 3 in a 
unit inductor and at port 4 in a unit capacitor then yieIds a synthesis of 
Z(s), as shown in Fig. 123.2. 

Problem Give a reciprocal synthesis of the voltageto-voltage transfer function 
12.3.1 

Problem Can you extend the synthesis technique of this section to cover the case 
12.3.2 when F, may have pure imaginary eigenvalues? (This is an unsolved 

problem.) 

Problem Show that if F, has all real eigenvalues, and that if T(s) is a current-to- 
12.3.3 voltage transfer-function matrix, then there exists a synthesis using only 

inductors, resistors, and transformers. 
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Open-Circuit 
Ports 

FIGURE 12.3.1. Nondynamic Network of Example 12.3.1. 

FIGURE 12.3.2. Reciprocal Synthesis of the Transfer 
Function l(sZ + 0 s  + I)-'. 

Problem Give a reciprocal synthesis of the current-to-voltage transfer function 
12.3.4 

using no capacitors. Use the procedure obtained in Problem 12.3.3. 
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12.4 TRANSFER-FUNCTION SYNTHESIS 
WITH PRESCRIBED LOADING 

We shall restrict our remarks in this section to the synthesis of 
current-to-voltage transfer-function matrices. Extension to the voltage-to- 
voltage and other cases is not difficult. 

The general situation we face can be described with the aid of Fig. 12.4.1. 
(If we were dealing with, for example, voltage-to-current transfer functions, a-m2 Unknown Network 

- 

FlGURE 12.4.1. Synthesis Arrangement with R, and R2 
Known. 

Fig. 12.4.2 would apply.) The new feature introduced in Fig. 12.4.1 is the 
loading at the input and output sets of ports. (Note that I, will be a vector 
and R,  a diagonal matrix if the number of ports at the left-hand side of the 
unknown network exceeds one.) 

Unknown 
Network 

FIGURE 12.4.2. Synthesis Arrangement for Voltage-to- 
Current Transfer Function. 

The synthesis problem is to pass from a prescribed T(s), R,, and R ,  to a 
network N such that the arrangement of Fig. 12.4.1, with Nreplaciug the 
unknown network, synthesizes T(s), in the sense that 

As soon as dissipation is introduced into the picture, it makes sense not 
to consider T(s) with elements possessing imaginary poles on physical 
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grounds. Therefore, we shall suppose that every entry of T(s) is such that all 
its poles lie in Re [s] < 0. 

Because of the way we have defined the loading elements-as resistors- 
we rule out the possibility of R, or R, being singular. (This avoids pointless 
short circuiting of the input current generators or the output.) We do permit 
R i l  and R;' to become singular, in the sense that diagonal entries of R,  and 
R, may become infinite; reference to Fig. 12.4.1 will show the obvious 
physical significance. 

As we shall see, if either of R;' or Ri' is zero, synthesis is always possible, 
while if both quantities are nonzero, synthesis is not always possible. A 
simple argument can be used to illustrate the latter point for the single-input, 
single-output case. Observe that the maximum average power flow into the 
coupling network obtainable from a sinusoidal source is R,I:/4, where I, 
is the root-mean-square current associated with the source. Clearly, the power 
disGpated in R, cannot exceed this quantity, and so if V,  is the root-mean- 
square voltage at the output, 

It follows that 

for all o. If a transfer function is specified together with values for R, and 
R, such that this inequality fails for some w, then synthesis will be impos- 
sible. 

Because of the importance of the cases Ryl = 0 and Ryl = 0, we shall 
consider these cases separately. Of course, the treatment in earlier sections 
has been based on R;' = R i l  = 0. Here we shall demand that one of R;I 
and Ri' be nonzero. 

Absence of Input Loading 

First, we shall suppose that R i l  = 0 (see Fig. 12.4.3). Before 
explaining a synthesis procedure, it proves advantageous to do some analysis. 
Let us suppose that the unknown network has an impedance-matrix descrip- 
tion identical to the impedancematrix description we derived in Section 12.2 
in the first synthesis procedure. In other words, we suppose that for some 
{RT, e,, fiT, jT} we have 

and the unknown network is described by the state-space equations 
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FIGURE 12.4.3. Arrangement for Output Loading Only. 

If Ril  were zero, and if also the quadruple {p,, kT, aT, j,] werearealitation 
of T(s), then (12.4.4) would define state-space equations for a readily syn- 
thesizable positive real Z(s), the synthesis of which would also yield a synthe- 
sis of T(s). . 

From Eqs. (12.4.4) and the relation 

it is not difficult to derive state-space equations for the impedance matrix 
of the unknown network when terminated with R,. Substitution of (12.4.5) 
into (12.4.4) yields these equations as 

The transfer-function matrix relating I, to V, (with I, = 0) is seen by inspec- 
tion to be 

This concludes our analysis, and we turn now to synthesis. In the synthesis 
problem we are given T(s), and we require the unknownnetwork. Theanalysis 
problem suggests one way to do this. We could start with a minimal reali%a- 
tion (F,, G,, H,, JT] of T(s). Then we could try to find quantities [E,, G,, 
$, .fT] such that (12.4.7) holds. One obvious choice of suchquantities that 
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we might try is 

Then,provided p, has nonpositive definite symmetric part, we could synthe- 
size a network defined by the state-space equations (12.4.4), appropriately 
terminate its right-hand ports in R,, and thereby achieve a synthesis of the 
desired T(s) with an appropriately loaded network. 

The question rcmains as to whether pT will have nonpositive definite 
symmetric part. Using (12.4.8), we see that we need to know if there is a 
minimal realization IF,, G,, H,, J,} of the prescribed T(s) such that 

If (12.4.9) can be satisfied, synthesis is easy. Let us now show how (12.4.9) 
can be achieved. Let (F,,, G,,, H,,, J,,) be an arbitrary minimal realization 
of T(s) for which (12.4.9) does not hold. Form the equation 

where Q is nonnegative definite, and such that this equation is guaranteed 
to have apositive definite solution. [Note: Conditions on Q are easy to find; 
if R;' is nonsingular, the complete observability of (F,,, H,,) guarantees by 
the lemma of Lyapunov that any nonnegative definite Q will work. In any 
case, any positive definite Q will work. See also Problem 12.4.1.1 

Let S be any matrix such that 

and set 

FT = SFT,S-! G, = SG,, H, = (S-')'H,, (12.4.12) 

With these definitions, Eq. (12.4.10) implies 

This inequality is the same as (12.4.9). 

Example We take 
12.4.1 

T(s) = s ~ + f l s - t l  1 
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with 

and suppose that R, = 2. Observe that 

Therefore, no coordinate-basis transformation is necessary. Using 
(12.4.8), we have 

Using Eqs. (12.4.4), we see that a state-space realization of the impedance 
of the "unknown network" of Fig. 12.4.3 is [F,, C,, Hz, J,), where 

The impedance can be synthesized in any of the standard ways. 

Absence of Output Loading 

Now we suppose that R i L  is nonzero, but R;' = 0. We shall see 
that the synthesis procedure is very little different from the case we have 
just considered, where R;' = 0 but R i L  is nonzero. Figure 12.4.4 now applies. 

As before, we analyze before we synthesize. Thus we suppose the unknown 

Unknown q-E2  - Network - 

FIGURE 12.4.4. Arrangement for Input Loading Only. 
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network has state-space equations 

i = Frx + [re, %I 
(12.4.13) 

Also, we require 

F , + & < O  

We now have 

1, = I ,  - R;'V, (12.4.14) 

which leads to the following state-space equations relating the input variables 
I, and I, to the output variables V, and V,: 

The transfer function relating I, to V2 is obtained by setting I, = 0, and is 

For the synthesis problem, we shall be given a minimal realization {F,, G,, 
H,, J,] of T(s). A synthesis of T(s) will follow from this minimal realization 
if we set 

and synthesize (12.4.13) as the "unknown network," with the procedure 
working only if (12.4.3) holds. From (12.4.17) it follows that (12.4.3) is 
equivalent to 

F, + F& + 2G,R;'CT < 0 (12.4.18) 

Though this condition is not necessarily met by an arbitrary minimal realiza- 
tion of T(s), the means of changing the coordinate basis to ensure satisfaction 
of (12.4.18) should be almost clear from the previous discussion dealing with 
the case of output loading. The equation replacing (12.4.10) is 

FT,P + PF;, = -2G,,R;'Gk, - Q (12.4.19) 
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With S satisfying SS' = P, we set F, = S-'F,,?, G, = S"G,,, and 
H, = S'H,,. Essentially, the remainder of the calculat~ons are the same, and 
we will not detail them further. 

Input and Output Loading 

Now we suppose that both R;-' and R i l  are nonzero. We shall 
also suppose that T(s) is such that T(oo) = 0, because the calculations 
otherwise become very awkward. This is not a significant restriction in 
practice, since most transfer-function matrices whose syntheses are desired 
will probably meet this restriction. 

Our method for tackling the problem is largely unchanged. With reference 
to Fig. 12.4.1, we assume that we have available a state-space description of 
the impedance of the unknown network of the form 

Observe that in (12.4.20) there is no direct feedthrough term; i.e., V, and 
V, are linearly dependent directly on x, rather than x, I , ,  and f2. As we shall 
see, this represents no real restriction. Of course, as before, 2, is constrained 
by 

r;. + 3; < 0 (12.4.21) 

Using the equations 

it is not hard to set up state-space equations in which the input variables 
are I, and I,. These will of course be state-space equations of theimpedance 
of the network comprising the unknown network and its terminations. The 
actual equations are 

We see from these equations that the transfer-function matrix T(s) relating 
I,(s) to V,(s) is 

T(s) = &[SI - ( f T  - C?,R;'@:. - l?T~s'8T)]-16, (12.4.24) 
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The synthesis problem requires us to proceed from a minimal realization 
{F,, G,, H,} of T(s) to a network synthesizing T(s). Study of (12.4.24) shows 
that this will be possible by reversing the above procedure if we define 

6, = G, H, = H, pT = Fr + G,Rr1GL + H,Ri'H: (12.4.25) 

and if the resulting 2, satisfies (12.4.21), i.e., if 

F, + F& 4- 2G,R;'Gr + 2H,Ri1H' 7 < - 0 (12.4.26) 

In general, (12.4.26) will not be satisfied by the matrices of an arbitrary 
minimal realization. So, again, we seek to compute a coordinate-basis change 
that will take an arbitrary minimal realization {F,,, G,,, H,,} to this form. 
If such a coordinate-basis change can be found, then the synthesis is straight- 
forward. The following lemma is relevant: 

Lemma 12.4.1. Let (F,,, G,,, H,,) be an arbitrary minimal reali- 
zation of T(s). Then there exists a minimal realization IF,, C,, H,} 
satisfying (12.4.26) if and only if there exists a positive-definite 
symmetric P such that 

PF,, + F&,P + 2PG,,R;'G>,P + 2H,,Ri1H:, < 0 (12.4.27) 

Proof. Here we shall only prove that (12.4.27) implies the exist- 
ence of {F,, G,, Hr] satisfying (12.4.26). Proof of the converse 
is demanded in a problem. Let P = S'S, where S is square; 
because P is nonsingular, so is S. Then set 

F, = SF,,S-' C, = SG,, H, = (S-')'H,, (12.4.28) 

Equation (12.4.26) follows by multiplying both sides of (12.4.27) 
oti the left by (S-I)' and on the right by S-'. V V V 

The significane of the lemma is as follows. If, given an arbitrary minimal 
realization (F,,, G,,, H,J of T(s), a nonsingular matrix P can be found satisfy- 
ing (12.4.27), then the synthesis problem is, in essence, solved. For from P 
we can compute S, and then F,, G,, and H, according to (12.4.28). Next, 
$,., eI', and follow from (12.4.25), with the fundamental restriction 
(12.4.21) holding. We can then synthesize the unknown network using its 
impedance description in state-space terms of (12.4.20). 

Lemma 12.4.1 raises two questions: (I) when can .(12.4.27) be solved, and 
(2) how can a solution of (12.4.27) be computed? To answer these questions, 
let us define the transfer-function matrix a s )  by 
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Problem 12.4.4 requests a proof of the following result. 

Lemma 12.4.2. With Z(s) defined as in (12.4.29), there exists 
a positive definite P satisfying (12.4.27) if and only if Z(s) is a 
bounded real (scattering) matrix. 

The matrix P in the bounded real lemma equation for X(s) is the same as 
the matrix P in (12.4.27). Thus Lemma 12.4.2 answers question 1, while 
earlier work on the calculation of solutions to the positive and bounded real 
lemma equations answers question 2. 

It is worthwhile rephrasing the scattering matrix condition slightly. In view 
of the fact that F,, has all its poles in Re [s] < 0, it follows that Z(s) is a 
bounded real scattering matrix if and only if 

I - ( - j o ) ( j w )  0 for all real a, 

I - 4R;'/%&,(-joI - F~,)"H,,R;'H:,(jwI - F,,)-1G,,Ri1/2 

2 0 for all real o 

or 

> - j R 1 T ( j o  for all real w 4 - (12.4.30) 

This is a remarkable condition, for it is the matrix generalization of con- 
dition (12.4.2) that we derived by simple energy considerations. Therefore, 
even though we have assumed a specialized sort of unknown network (by 
demanding that its impedance matrix have a certain structure), we do not 
sacrifice the ability to synthesize any transfer-function matrix that can be 
synthesized. Further, we see that the class of synthesizable transfer-function 
matrices is readily described by simple physical reasoning. 

In contrast to synthesis procedures presented earlier in this chapter, the 
procedure we have just given demands as muchcomputation as animmittance 
or scattering matrix synthesis. Notice though that a minimal number of 
reactive elements is used, just as for the earlier transfer-function syntheses. 
Bccept in isolated situations, the network resulting from use of this synthesis 
procedure will be nonreciprocal. A reciprocal synthesis procedure has not 
yet been developed. 

Example We take again 
12.4.2 
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with minimal realization 

Suppose that a current-to-voltage synthesis is desired with R, = R, 
= 1. Notice that 

> 0 for all real w 

Therefore, synthesis is possible. 
Because of the low dimensionality of T(s), it is easy to soIve (12.4.27) 

directly. If P = (p,,), and the equality sign is adopted in (12.4.27), we 
obtain-by equating to zero components of the mauix on the left side of 
(12.4.27&& equations 

from which 

Next, a matrix S satisfying S'S = P i s  readily found as 

Using (12.4.28). we define a minimal realization for T(s) as 

Finally, we have Grand fir identical with GT and HT, while 
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The unknown network therefore has impedance matrix Z(s)  with 
state-space realization 

and synthesis follows in the usual way. 

Problem Consider the equation 
12.4.1 

PFT, + Fk,P = - 2 H T , R t 1 H k ,  - Q 

with all eigenvalues of F,, possessing negative real parts. Show that P 
is positive definite if and only if [F,,, [H,,Ri'/' Dl) is completely 
observable, where D is any matrix such that DD' = Q. (Hint: Vary the 
standard proof of the lemma of Lyapunov.) 

Problem Synthesize the voltage-to-voltage transfer function 
12.4.2 

for the following two cases: 
(a) There is a resistor in series with the source of 2 Q and an open- 

circuit load. 
(b) There is a load resistor of 2 and no source resistance. 

Problem Complete the proof of Lemma 12.4.1. 
12.4.3 

Problem Let {F,,, G,,, H,,] be a minimal realization of T(s), and let [F,,, 
1.2.4.4 & T G , , R r l / ' ,  f i H , , R ; 1 / 2 ]  be a minimal realization of a matrix trans- 

fer function T(s). Using the bounded real lemma, show that X(s) is a 
bounded real scattering matrix if and only if there exists a positive 
definite P such that 

Problem Attempt to obtain reciprocal synthesis techniques along the lines of the 
12.4.5 nonreciprocal procedures of this section. 
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Part VI 

ACTIVE RC NETWORKS 

Modem technologies have brought us to the point where 
network synthesis using resistors, capacitors, and active 
elements, rather than all passive elements, may be preferred in 
some situations. In this part we study the synthesis of transfer 
functions using active elements, with strong emphasis on 
state-space methods. 



Active State-Space Synthesis 

13.1 INTRODUCTION TO ACTIVE RC 
SYNTHESIS 

In this chapter we aim to introduce the reader to the ideas of 
active RC synthesis, that is, synthesis using resistors, capacitors, and active 
elements. The trend to circuit miniaturization and the advent of solid-state 
devices have led to a rethinking of the aims of circuit design, w~th the con- 
clusion that often the use of active devices is to be preferred to the use of 
inductors and transformers. 

Here we shall be principally concerned with the use of state-space methods 
in active RC synthesis, and this leads to the use of operational amplifjers as 
active elements. Other active devices can be and are used in active RC syn- 
thesis such as the negative resistor, controlled source, and negative imped- 
ance converter. A few brief remarks concerning these devices will be offered 
later in this chapter, but for any extensive account the reader should consult 
any of a number of books, e.g., Il-l]. 

In Section 13.2 we introduce the operational amplifier in some detail, and 
illustrate in Section 13.3 its application to transfer-function-matrix synthesis, 
paying special attention to scalar transfer function synthesis. Section 13.4 
carries the ideas of Section 13.3 further by describing a circuit, termed the 
biquad, that will synthesize an almost arbitrary second-order transfer func- 
tion. Finally, in Section 13.5 we discuss briefly ofher approaches to synthesis, 

61 1 
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including immittance synthesis as distinct from transfer-function synthesis. 
In the remainder of this section, meanwhile, we offer brief comments on 
various practical aspects of active synthesis. 

In our earlier work on passive-circuit synthesis we paid some attention to 
seeking circuits containing a minimal number of elements, especially a mini- 
mal number of reactive elements. Likewise, early active RC syntheses were 
concerned with minimizing the number of reactive elements; however, there 
was also concern to minimize the number of active elements, and many 
syntheses only contained one active element. But the decreasing cost of 
active elements, either in discrete or integrated form, coupled with advantages 
to be derived from using more than one, has reduced the emphasis on mini- 
mizing the number in a circuit. At the same time, the desire to integrate 
circuits has led to the requirement to keep the total value of resistance down. 
Therefore, notions of minimality require rethinking in the context of active 
KC synthesis. For further discussion, see especially 11-31. 

One of the major problems that has had to be overcome in active-circuit 
synthesis (and which is not a major problem in passive synthesis) is the sen- 
sitivity problem. It has been found in practice that the input-output perfor- 
mance of some active circuits is very sensitive to variations in absolute values 
of the components and to parasitic effects, including phase shift. These prob- 
lems tend to be particularly acute in circuits synthesising high Q transfer 
functions. To a certain extent the problems are unavoidable, being due simply 
to the noninclusion of inductors in the circuits (see, e.g., [I, 51). Many tech- 
niques have, however, been developed for coping with the sensitivity problem; 
a common one in transfer-function synthesis is to synthesize a transfer func- 
tion as a cascade of syntheses of first-order and second-order transfer funs  
tions. Whether a circuit is discrete or integrated also has a bearing on the 
sensitivity problem; in an integrated circuit there is likely to be correlation 
between element variations to a greater degree than in a discrete-component 
circuit. Although this may be a disadvantage in some situations, it is often 
possible to use this correlation to an advantage. Integrated differential ampli- 
fiers, for example, have extremely low sensitivity to parameter variations, 
precisely because any gain fluctuation owing to a deviation 'in one element 
value tends to be canceled by a corresponding variation in another. Again, 
when the element variations are due to temperature fluctuation, it is often 
possible to arrange the temperature dependence of integrated resistors and 
capacitors to be such as to cause compensating variations. 

Another practical problem arising with active RC synthesis, and not asso- 
ciated with passive-circuit synthesis, is that of circuit instability. One class 
of instability can arise simply through element variation away from nominal 
values, which may cause a left half-plane transfer-function pole to move into 
the right half-plane--a phenomenon not observed in passive circuits. This 
phenomenon is essentially a manifestation of the sensitivity problem, and 
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techniques aimed at combatting the sensitivity problem will serve here. More 
awkward are instabilities arising from parasitics contained within the active 
elements; a controlled source may he modeled as having a gain K, when 
the gain is actually Ka/(s + a) for some large a. Designs may neglect the 
presence of the pole and not predict an oscillation, which would be predicted 
were the pole taken into account. Techniques for combatting this problem 
generally revolve around the addition of compensating resistor and capacitor 
elements to the basic active element (see, e.g., [31 for a discussion of some of 
these techniques). 

13.2 OPERATIONAL AMPLIFIERS AS 
CIRCUIT ELEMENTS 

In this section we examine the operational amplifier, which is 
the basic active device to be used in most of the state-space synthesis pro- 
cedures to be presented. We are interested particularly in its use to fonn 
finite gain, summing and integrating elements, both inverting and noninvert- 
ing. 

Basically, an operational amplifier is simply an amplifier of very highgain, 
usually with two inputs, called noninverting and inverting. A signal applied 
at the inverting input appears at the output both amplified and reversed in 
polarity. The usual representation of the differential-input operational ampli- 
fier is shown in Fig. 13.2.la; for many applications the noninverting input 
terminal will be grounded, and the resulting single-ended operational ampli- 

FIGURE 13.2.1. (a) Differential-Input Operational Ampli- 
fier; (b) SingQEnded Operational Amplifier. 
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fier is depicted as shown in Fig. 13.2.lb. Inversion of the signal polarity is 
implicitly assumed. 

The DC gain of an actual operational ampli6er may be anywhere between 
10' to 10' with fall-off at comparatively low frequencies; the unity gainfre- 
quency is typically a few megahertz or more. Ideally, the input impedance of 
an operational amplifier is infinite, as is its output admittance. In practice, 
a @re of 100 kilohms (kQ) is more likely to be attained for the input imped- 
ance and 50 Z1 for the output impedance. Ideally, amplifiers will be linear for 
arbitrary input levels, show no dependence on temperature, offer equal input 
impedance and gains at the input terminals with no cross coupling, and be 
noiseless. In practice again, none of these idealizations is totally valid. Fur- 
ther, it is sometimes necessary to add additional components externally to 
the operational amplifier to combat instability problems associated with 
pbase shift in the amplifier. All these points are generally dealt with in manu- 
facturers' literature. 

Achieving a Finite Gain Using an Operational 
Amplifier 

Consider the arrangement of Fig. 13.2.2. Assuming that the 
amplifier has a gain K and infinite input impedance and output admittance, 
it is readily established that 

FIGURE 13.2.2. Single-Ended Operational Amplifier Gen- 
erating Gain Element of Gain -(Rz/R1). 

v o  - R, 
F - -RL[ l  + (J/G(l + (R~/RI))I 

so that for very large K, we can write 

In this way we can build constant negative-voltage-gain amplifiers. Note 
that by taking R, = R,, the gain is -1, so that an inverting amplifier is 
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obtained. A positive voltage gain is then achievable by cascadjngan inve~ing 
amplifier with a negative-gain amplifier. Alternatively, a positive-voltage-gain 
amplifier is achievable from a differential-input amplifier. Rather than dis- 
cussing this separately, we can regard it as a special case of the differential- 
input summer, considered below. 

Summing Using an Operational Amplifier 

Consider the arrangement of Fig. 13.2.3, which generalizes that 
of Fig. 13.2.2. Straightforward analysis will show that for infinite gain, input 
impedance, and output admittance of the amplifier, one has 

FIGURE 13.2.3. Single-Ended Operational Amplifier Gen- 
erating a Summer. 

This equation shows that, in effect, weighted summation is possible, with 
the gain coefficients arbitrary except for their negative sign. limoduction of 
inverting amplifiers or, alternatively, use of the differential-input operational 
amplifier allows the achieving of positive gains in a summation. Consider 
the arrangement of Fig. 13.2.4. In this case, again assuming an ideal ampli- 
fier, we have 

Integrating Using an Operational Amplifier 

The single-ended operational arnpli6er circuit for integrating is 
reasonably well known and is illustrated in Fig. 13.2.5, It is easy to show 
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FIGURE 13.2.4.. Differential-Input Operational Amplifier 
Generatinga Summer. 

that the transfer function relating Vi to V. under the usual idealization 
assumptions is 

The noninverting integrator circuits are perhaps not as familiar; two of 
them are shown in Fig. 13.2.6. The resistance bridge integrator of Fig. 13.2.6a 
has a transfer function 

FIGURE 13.2.5. Inverting Integrator Circuit. 
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FIGURE 13.2.6. (a) Resistance Bridge Non-Inverting Inte- 
grator; (b) Balanced Time Constant Integratdr. 

provided that R,R, = R,R,. The balanced time-constant integrator of Fig. 
13.2.6b has a transfer function 

provided that R,C, = R,C,. 
It may be thought that in all cases one should use differential-input ampli- 

fiers if positive gains are required in an active circuit, rather than single- 
ended amplifiers followed or preceded by an inverting amplifier. However, 
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alignment or tuning of the circuit is usually easier when inverting amplifiers 
are used, and there is lower sensitivity to variations in the passive elements. 
Less compensation to avoid instability is also required, since when a single- 
ended amplifier is used to provide a gain element, a summer, or an integrator, 
there is no positive feedback applied around the amplifier. This is in contrast 
to the situation prevailing when differential-input amplifiers are used with 
feedback to the positive terminal, as in the circuit of Fig. 13.2.6a, for example. 

Combinations of Integration and Summation 

It is straightforward to combine the operations of integration and 
summation; Fig. 13.2.7 illustrates the relation 

c 

FIGURE 13.2.7. Summation and Integration. 

A further important arrangement is that of Fig. 13.2.8, which illustrates 
the equation 

This equation may also he written 

One can think of the R, feedback as turning an ideal integrator into a lossy 
integrator-a notion better described by (13.2.8)-or as providing negative 
feedback of V. in conjunction with integration-a notion described by 
(13.2.9). 
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FIGURE 13.2.8. Summation with Lossy Integration. 

Problem Verify Eq. 13.2.3. 
13.2.1 

Problem Verify that Eqs. (13.2.5) and (13.2.6) hold, subject to the resistance bridge 
13.2.2 and time-constant balance conditions. 
Problem Inthis section the fact that operational amplifiers can be used to provide 
13.2.3 constant gain elements has been established. Show also that they can be 

used to provide gyrators 161, negative resistors, and negative impedance 
converters [7]. (A negative resistor is a one port. dehed by u ;= -Ri 
for a positive constant, R. A negative impedance converter is a two port 
defined by equations u, = kv2, i l  = kiz for some constant k.) 

13.3 TRANSFER-FUNCTION SYNTHESIS USING 
SUMMERS AND INTEGRATORS 

As we shall see in this section, state-space synthesis of transfer- 
function matrices is particularly straightforward when the available elements 
are resistors, capacitors, and operational amplifiers. We shall begin our 
discussions by considering the synthesis of transfer-function matrices, and 
then specialize first to scalar transfer functions, and then to degree 1 and 
degree 2 transfer functions. The synthesis of degree 2 transfer functions will 
be covered at greater length in the next section. 

Suppose that T(s) is an m x p transfer function; for convenience, we shall 
suppose that no input is to be observed at the same port as any output. We 
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shall suppose too that T(w) < oo, and that a state-spaceset of equations is 
known for T(s): 

Consider the arrangement of Fig. 13.3.1, which constitutes a diagrammatic 
representation of (13.3.1). Observe further that practical implementation of 
the scheme of Fig. 13.3.1 requires constant gain elements, summers, and 
integrators, and these are precisely what operational ampli6ers can provide. 
In other words, Eq. (13.3.1) are immediately translatable into an active RC 
circuit, using the arrangement of Fig. 13.3.1 in conjunction with the schemes 
discussed in the last section for the use of operational amplifiers. 

FIGURE 13.3.1. Block Diagram Representation of State 
Space Equations. 

Example Consider the state equations 
13.3.1 

Figure 13.3.2a shows a block diagram containing integrators, gain blocks, 
and summers that possesses the requisite state-space equations relating 
ul and uz to y. Figure 13.3.2b shows the translation of this into a scheme 
involving operational amplifiers, resistors, and capacitors. Notice that 



SEC. 13.3 TRANSFER-FUNCTION SYNTHESIS 521 

the outputs of amplifiers A ,  and Az are -xl and -x,, respectively; it 
would be pointless to use two inverting amplifiers to attain xl and xz, 
since another inverting amplifier would be needed to obtain y from xl 
and x,. 

Notice that it is straightforward to obtain an infinite number of syntheses 
of a prescribed T(s). Change of the state-space coordinate basis will cause 
changes in F, G, and H in (13.3.1) with resultant changes in the gain values, 
but the general scheme of Fig. 13.3.1 will of course remain unaltered. 

Suppose now that T(s) is a scalar, given by 

For this scalar T(s) we can write down canonical forms, and study the struc- 
ture of the associated circuit synthesizing T(s) a little more closely. As we 
know, a quadruple (F, g, h, j) realizing T(s) is given by 

Y 

(a 
FIGURE 13.3.2. (a) Synthesis for Example 12.3.1, Showing 
Integrators, Gain Blocks and Summers. 
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FIGURE 13.3.2. (b) Synthesis of Example 12.3.1, Showing 
Operational Ampliiiers, Resistors and Capacitors. 

A scheme for synthesizing T(s) based on (13.3.3) is shown in Fig. 13.3.3. 
Notice that, in contrast to the scheme of Fig. 13.3.1, all variables depicted 
are scalar. The fact that so many of the entries of the F matrix and g vector 
are zero meaas that the scheme of Fig. 13.3.3 is economic in terms of the 



FIGURE 13.3.3. Block Diagram Representation of a State-Space Realization of a Scalar Transfer Function. 
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number of gain and summing elements required, and this may be an attrac- 
tive feature. On the other hand, there may be reasons against use of the 
scheme. First, the dynamic range of some of the variables may exceed that 
achievable with the active components; second, the performance of the cir- 
cuit may be very sensitive to variations in the individual components. In 
rough terms, the basic reason for this is that the zeros of a polynomial may 
vary greatly when a coefficient of the polynomial undergoes small variation. 
Therefore, small variation in a component synthesizing a, in (13.3.3) and 
(13.3.2) may cause large variation in the zeros of the denominator of T(s); 
consequently, if such a zero is near the jw axis, T(jw) for jw near this zero 
will vary substantially. 

The dynamic-range problem can sometimes be tackled by scaling. Let A 
be a diagonal matrix of positive entries, chosen so that the entries of the 
state vector 2 = Ax take values that are more acceptable than those of 
the state vector x. Then we simply build a realization based on MA-', Ag, 
A-'h; notice that M A - '  and Ag have the same sparsity of elements as do 
F and g, and almost the same resultant economy of realization. (Some unity 
entries in F and g may become nonunity entries in AFA-' and Ag. Extra 
elements may then be required in the circuit simply as a result of this change.) 
Application of the scaling'idea is of course not restricted to the simulation 
of scalar transfer functions. 

A basis for tackling the sensitivity problem is the observation that the 
problem is not particularly significant in the case of transfer functions of 
degree 1 and degree 2. This is borne out by practical experience and by 
extensive calculations made on the performance of the biquad circuit, which 
is a circuit synthesizing a degree 2 transfer function to be discussed in the 
next section. An arbitrary degree n transfer function T(s) can always be 
expressed as the product (or the sum) of a set of degree 1 and degree 2 trans- 
fer functions. Expression as a product requires factoring the numerator and 
the denominator, and pairing numerator terms with denominator terms. We 
allow pairing of constant, linear, or quadratic numerator terms with a quad- 
ratic denominator term, and pairing of a constant or linear numerator term 
with a linear denominator term. Expression of T(s) as a sum of degree 1 and 
degree 2 transfer functions requires factoring of the denominator of T(s) and 
the derivation of a partial fraction expansion. Care must be taken in obtain- 
ing the factors if T(s) is not already in factored form; it may be quite difficult 
to obtain accurate coefficients in the factors if high-order polynomials need 
to be factored. 

When T(s) is expressed in product form, each component of the product 
is synthesized individually, and the collection is cascaded. When T(s) is 
expressed in sum form, each summand is still synthesized individually, but 
the collection is put in parallel in an obvious fashion. From the viewpoint 
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of eliminating sensitivity problems, the product form is preferred. Problem 
13.3.4 asks for an argument justifying this conclusion. 

As already noted, synthesis of scalar, degree 2 transfer functions will be 
studied in the next section. Synthesis of degree 1 transfer functions is almost 
trivial, but it is helpful to note that frequently no active element will be 
required at all. The circuit of Fig. 13.3.4 has a (voltage-to-voltage) transfer 
function 

FIGURE 13.3.4. Realization of a First Order Transfer 
Function Using Passive Components Only. 

where C, = c,, C, = (I - c,), R, = c;', and R, = (a, - c,)-'. These equa- 
tions show that it is always possible to set C, or C, equal to zero; they also 
show that the coeBicients in (13.3.4) are constrained by c, 5 1 and c,/a, 
< 1. Inclusion of a constant gain element at the output (such as might be - 
needed for buffering anyway) enables these constraints to be overcome. 

FIGURE 13.3.5. Realization of a First Order Transfer 
Funa'on, Using Rwistors, Capacitors and an Operational 
Amplifier. 
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Degree 1 transfer functions can also be synthesized with the circuit shown 
in Fig. 13.3.5. The associated transfer function is 

A right-half-plane zero can be obtained with an extra amplifier. 
Note that it is never possible to synthesize a degree 2 transfer fmction 

possessing complex poles with resistor and capacitor elements only. This 
fact is proved in many classical texts (see, e.g., [a]). 
Problem Draw three block diagrams to illustrate three different syntheses of the 
13.3.1 voltage-to-voltage third-order Buttemoth transfer functions T(s) = 

ll(s3 + 232 + 2s + 1) obtained by not factoring the denominator, and 
by expressing T(s) both as a sum and a product. 

Problem Draw circuits showing resistor and capacitor values corresponding to 
13.3.2 each block diagram obtained in Problem 13.3.1. 
Problem How may a transfer function matrix synthesis problem be brokenup into 
13.3.3 elemental degree 1 and degree 2 synthesis problems7 
Problem Argue why, from the sensitivity point of vjew, it is better to express 
13.3.4 T(s) as a product than a sum and to synthesize accordingly. 

The general transfer function synthesis problem is, as we have 
seen, reducible to the problem of first-order and second-order transfer-funo 
tion syothesis. We have already dealt with first-order synthesis. Here we 
study second-order synthesis, exposing a most important circuit, originating 
with 191 and developed further in 110-121. In [ll] it was named the biquad. 
Our discussion will lirst cover a general description of the circuit; then we 
shaU discuss questions of sensitivity, following this by consideration of a 
number of other practical points. 

Our starting point is the general second-order transfer function 

We shall assume throughout this section that T(s) has its poles in Re [J] < 0. 
Further, we shall only discuss in detail the case when T(s) has its zeros in 
Re [s] < 0. This latter restriction is however inessential. 

Provided that c,a2 - c,  is nonzero, T(s) has a minimal realization 
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where A, and 2, are arbitrary positive numben. [Pioblem 13.4.1 requests 
verification that (13.4.2) defines a minimal realization of T(s).] 

A circuit synthesis suggested by (13.4.2) is shown in Fig. 13.4.1 for the case 
c,a, > c, and c3al > c , .  (Straightforwardvariations apply if these inequal- 
ities do not hold.) Element values are 

R, C,, and C, arbitrary 

R,  = 1 I c a  - c ,  R ,  = A,R R, = -2 = 
A,(c3a, - c3c l  2, c,a, - c, 

R (13.4.3) 

R R, = - 
c, 

The entry x ,  of the state vector x = [x, x,r will be observed at the output 
of the operational amplifier A, ,  and x, at the output of the operational ampli- 
fier A,. 

The amplifiers A, ,  A,, and A ,  constitute the main loop, with amplifier A3 
serving simply as an inverting amplifier. Note that one of the first two ampli- 
fiers could be replaced by a noninverting integrator, but at the expense of 
heightening any potential sensitivity and instability problem associated with 
the nonideal nature of the amplifiers. Generally, the gain around the loop 
should be equally distributed between the two integrating amplifiers, so that 
R,C, = R,C,, or 1, = 1. 

The amplifier A, serves simply to construct the output a .  a weighted sum 
of the input and the components of the state vector. With the signs assumed, 
this amplifier is used in a single-ended configuration, though it may well 
have to be used in a differential-input configuration (or in conjunction with 
an inverting amplifier) for certain parameter values. 

Sensitivity 

The critical aspects of input-output performance of thebiquad 
are the inverse damping factor Q and resonant frequency a, associated with 
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the denominator of the transfer function. In our case, Q = a and w, 
= &. The quantities of interest are the sensitivity coefficients SF and e, 
where x i s  an arbitrary circuit parameter, and 

The sensitivity coefficients for x identified with any passive component in 
the biquad circuit come out to be never greater than 1 in magnitude; some 
are zero, others are $. These sorts of sensitivity coefficients are of the same 
order as apply when purely passive syntheses of a transfer function (including 
inductor elements) are considered. Sensitivities with respect to operational 
amplifier gains are at the most in magnitude approximately 2Q/K,, where 
K, is the gain. It follows that a variation of 50 percent in an operational 
amplifier gain-as may well occur in practice--will cause a variation 
no greater than approximately 1 percent in Q or w, if Kt 2 l00Q; the 
conclusion is that a Q of several hundred can be obtained with high preci- 
sion. 

Particularly when integrated circuits are used, sensitivity problems asso- 
ciated with temperature variation can often be dealt with by arranging that 
the effect of some components cancels that of others. References [lo] and [I 11 
contain additional details. 

Miscellaneous Practical Points 

A number of points are made in [1&12], which should be studied 
in detail by anyone interested in constructing biquad circuits. Some of these 
points will be outlined here. 

Standardization. Subject to restrictions such as c,a, > c,, etc., an identical 
form of circuit is used for all second-order transfer functions; only the resistor 
values need be changed. Adjustment of key circuit parameters can be effected 
by adjusting one resistor per parameter (with no interaction between the 
adjustments). This means that the design of variable filters is simplified. 

Cascading. Because the output is inherently low impedance (and the input 
can be made to be a moderately high impedance), cascading to build up 
syntheses of higher-order transfer functions is straightforward. 

Absolute Stability. The natural frequencies remain in the left half-plane 
irrespective of passive component values. In this restricted sense, the circuit 
possesses absolute stability. However, stability difficulties can arise on 
account of nonideal behavior of the operational amplifiers. 
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Integrability. The full circuit can be integrated if desired. Trimming may 
be carried out solely with resistor adjustment, and technology allows such 
trimming to be effected through anodizing of thin-film resistors. It is also 
possible to largely overcome the problem of limitation of the total resistance 
in any integrated version of the circuit with an ingenious resistance multi- 
plication scheme [12]. 

Q Enhancement. The finite bandwidth of the operational amplifiers causes 
the actual Q to exceed the design Q, even to the point of oscillation. Reference. 
[Ill includes formulas for Q enhancement and indicates compensation tech- 
niques for minimizing the problem. 

Noise. Satisfactory output signal-to-noise ratios are achievable, e.g., 80 dB, 
with, if necessary in the case of low signal level, downward adjustment of 
the gain-determining resistor R, of Fig. 13.4.1. Note that, in effect, such an 
adjustment is equivalent to scaling. 

Distortion. It is claimed in [Ill that better distortion figures can often be 
obtained with the biquad than with some passive circuits, particularly when 
R, is adjusted. 

Problem Verify that the state-space realization defined as (13.4.2) is a realization 
13.4.1 of T(s), as given in (13.4.1). 

Problem Suggest changes to the design procedure for the case when csaz - ez = 0. 
13.4.2 

Problem Which resistors may most easily be varied in the biquad circuit to alter 
13.4.3 Q, wo, and the voltage gain at resonance (see [Ill)? 

13.5 OTHER APPROACHES TO ACTIVE RC 
SYNTHESIS 

Before leaving the subject of active-circuit synthesis, we mention 
briefly two additional topics. First, we shall comment on the use of gyrators, 
negative resistors, negative impedance converters, and controlled sources in 
active synthesis. Then we conclude the section by pointing out how a dynamic 
synthesis problem, that is, a problem involving synthesis of a nonconstant 
transfer-function matrix or even hybrid matrix, can be replaced in a straight- 
forward way by a problem requiring synthesis of a constant matrix. 

Synthesis with Gyrators 

Though gyrators are constructible at microwave frequencies and 
can be operated with no external power source, this is not the case at audio 
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or even RF frequencies. In order to build a gyrator, either a Hall-effect device 
can be used, or a circuit comprising transistors and resistors. This means 
though that any gyrator in a circuit is replaceable by active devices and 
resistors, and since, as we know, any inductor can be replaced by a gyrator 
terminated in a capacitor, a mechanism is available for replacing inductors 
by a set of active RC elements. Further, as we noted in Chapter 2, a trans- 
former may be replaced by a gyrator cascade, so even transformers may be 
replaced by a set of active RC elements. Consequently, any passive syntltesis 
of an impedance or transfer-function matrix can be replaced by an active RC 
synthesis, with the aid of active realizations of the gyrator. 

The resulting structure may be inefficient or awkward to actually construct; 
for it does not follow that a structure developed for passive synthesis should 
be satisfactory for active synthesis. Nevertheless, the method does have some 
appealing features. As pointed out by Orchard [13], active RCcircuits derived 
this way can be expected to enjoy very good sensitivity properties when 
passive element variation is considered. Variations within active elements, 
including the active circuits providing a gyrator, may, however, cause a prob- 
lem. For example, phase shift within the gyrators can cause instability. 

Reference [I] gives one of the most extensive treatments of the use of 
gyrators in active~ircuit design. Active circuits realizing gyrators will be 
found there, together with variations on passive-circuitsynthesis procedures 
designed to accommodate the peculiarities of practical gyrators. 

Negative Resistor.6, Negative Impedance Converters, 
and Controlled Sources 

Historically, these three classes of elements were the first to be 
considered and used in active RC synthesis. Negative resistors are probably 
the least interesting and were the least used. Negative resistors do not exist 
in practice, and so they must be obtained with active devices. Two very 
straightforward ways of obtaining a negative resistor are through the use of 
a negative impedance converter (dealt with below), and through the use of 
a controlled source. In a sense then, active RC synthesis with negative resis- 
tors is subsumed by active RC synthesis using negative impedance converters 
or controlled sources. 

The negative impedance converter PIC) is a two-port device with the 
property that if an impedance Z(s) is used to terminate one port, an imped- 
ance -Z(s) is observed at the other port. Very many of the earliest attempts 
at active synthesis relied on use of negative impedance converters with one 
NIC being permitted per circuit (see, e.g., [14]). Most of the early circuits 
were particularly beset with sensitivity problems. 

The controlled source as an active RC circuit element has enjoyed greater 
popularity than the negative resistance or the NIC. In ideal terms, it is a con- 
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stant-gain voltage amplifier, with zero input admittance and output imped- 
ance. Departures from the ideal prove less embarrassing and are more easily 
dealt with than in the case of the negative resistor and the NIC; these factors, 
combined with ease of construction, perhaps account for its popularity since 
the early suggestion of [15]. Important refinements are still being made, 
which make the circuits more suitable for integrating (see, e.g., [l] where 
unpublished work of W. J. Kerwin is discussed). The controlled source 
would appear to have greater sensitivity problems associated with its use than 
the operational amplifier, at least in most situations. The fact that a lower 
gain is used than in the operational amplifier is however a point in its favor. 

Conversion of a Dynamic Problem to a Nondynamic 
Problem 

In view of the above discussion, it should be clear that any tech- 
nique that may be used for passive synthesis may also he used as a basis of 
active RC synthesis; if such a technique requires the use of gyratdrs, induc- 
tors, or transformers, the active equivalents of these components are avail- 
able. In fact, the effort involved in such techniques can be greatly reduced, 
since passivity is never really needed at any point in the synthesis. We now 
illustrate this point in detail. 

We shall consider the question of hybrid-matrix synthesis; this, as we 
know, includes immittance synthesis and transfer-function-matrix synthesis. 
I n  case we aim to synthesize a transfer-function matrix, we conceive of its 
being embedded wilhia a hybrid matrix. 

Let X(s) be an rn x m hybrid matrix-not necessarily passive-possess- 
ing an n-dimensional state-space realization IF, G, H, J j .  Let us conceive of 
X(s) being synthesized by a nondynamic m + n port N, terminated in 
capacitors (see Fig. 13.5.1). For convenience in the succeeding calculations 

Nondynomic 

H(s) 

FIGURE 13.5.1. Idea Behind Synthesis of X(s). 

we shall assume the capacitors to all have unit value; however, this is not 
essential to the argument. 

As we know, X(s) will be observed as required if N, is chosen to have 
a hybrid matrix 
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In this hybrid description the last n ports of N, are assumed to be current 
excited, while excitation a t  the first m ports coincides with that used in defin- 
ing exciting variables for X(s). 

Evidently, the problem of synthesizing the hybrid matrix X(s) is equiva- 
lent to the problem of synthesizing the constant hybrid matrix M. This con- 
version of a dynamic synthesis problem to a nondynamic one has been 
achieved, it should be noted, at the expense of having to compute matrices 
of a state-space realization, which is hardly a severe problem. 

How may M be synthesized? There are a number of methods, but the 
simplest would appear to be a method based on the use of operational ampli- 
fiers as summers, together with voltageto-current and current-to-voltage 
converters, as required. Problem 13.5.4 asks for details. As far as is known, 
this technique has yet to be used for practical synthesis, and it is not known 
how it would compare with the earlier techniques described. 

Problem In using gyrators comprised of active devices and resistors, it is parti- 
13.5.1 cularly helpful to be able to ground two of the gyrator terminals. (One 

reason is that connections to a power supply can be achieved more 
straightforwardly.) Demonstrate the equivalence of Fig. 13.5.2, which is 
of oractical benefit in convertine classical ladder structures to active RC --  = - 
structures (see [la). Demonstrate also the equivalence of Fig. 13.5.3 

FIGURE 13.5.2. Inductor EquivalenceInvolving Grounded 
Capacitor and Gyrators. 

FIGURE 13.5.3. Replacement of Ungrounded Capacitor 
by Grounded Elements. 
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(see [I 71); this equivalence can be useful when a capacitor is to be realized 
in an integrated circuit. 

Problem Verify the circuit equivalence of Fig. 13.5.4, allowing replacement of 
13.5.2 coupled coils by a capacitor-gyrator circuit. Obtain relations between 

the element values t181. 

FIGURE 33.5.4. Replacement of Coupled Coils by Capac- 
iton and Gyrators. 

Problem Show how a negative resistance can be obtained using a controlled source, 
13.5.3 such as an ideal voltage gain amplifier, and a positive resistor. 

Problem Discuss details of the synthesis of the constant hybrid matrix M of 
13.5.4 (13.5.1). 
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EPILOGUE : 

What of the Future? 

An epilogue can only be long enough to make one main point, 
and our main point is this. Network analysis and synthesis via . 
statespace methods are comparatively new notions, and few 
would deny that they are capable of significant development. 
We believe these developments will be exciting and will increase 
the area of practical applicability of the ideas many times. 
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reciprocal synthesis for symmetric 

matrix, 393 
reciprocal synthesis via resistance 

extraction, 41 8 
via resistance extraction, 386 
using minimal number of gyrators, 

3 85 
Independent source, I8 
Inductor, 14 

equivalence to grounded capacitor 
and gyrators, 533 

equivalence to gyrator and 
capacitor, 335 

lossless property, 20 
Inverse linear optimal control problem, 

42,260 
Inverse transfer function matrix, 67 

L 
Ladder network: 

state-space equations, 147 
Linear circuit, 15 
Linear matrix equation, 134 
Linear optimal wntrol inverse 

problem, 42,260 
Linear systems: 

impulse response description, 64 
stability of, 127-138 
state, 65 

Linear svstems (cont.1: 
state-space description, 65 
transfer function matrix dcscriotion. 

64 
Lossless bounded real lemma. 312 
Lossless bounded real proper&, 12, 

48.50 
tests for, 49 

Lossless circuit element, 16 
Lossless extraction: 

preliminary synthesis step, 347-368 
Lossless impedance synthesis, 376 
Lossless network, 22 

lossless bounded real property of 
scattering matrix, 48 

lossless positive real property, 56 
Lossless positive real lemma, 221,229 

solution of equations, 288 
Lossless positive real matrix, 56 
Lossless positive real proper@, 12 

testing for, 57 
Lossless property, 11 
Lossless reciprocal synthesis: 

of scattering matrices, 459 
Lossless synthesis: 

for s y m m e ~ c  impedance matrix, 
406 

using preliminary simplification 
procedures, 363 

Losslessness: 
wnnection betwen network and 

circuit elements, 27 
Lumped circuit, 15 
Lyapunov lemma, 130 

extensions, 135-138 

M 
Markov matrix, 98 
Matrix exponential, 67 

calculation of, 70 
Maximum phase soectral factor. 243. . . 

2si, 303,505 
Minimal Pvrator svnthesis. 385 
Minimal reactive iynthes*, 329 
Minimal realization (see also 

Realization), 8 1 
Minimal resistive synthesis, 345 
Minimum phase spectral factor, 238 

obtainable via Riccati equation, 
271 
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Modern network theory: 
distinction from classical network 

theory, 4-6 
m-port network (see also Network 

and Passive network), 12 
Multiport ideal transformer, 16-18 
Multiport network (see also Network), 

12 
~ u l t i p o i  transformer, 17 

lossless property, 20 
orthogonal, 32,41 

Multistep algorithm, 76 

N 
Negative resistor, 201 
Network (see Passive network) 

augmented, for scattering matrix 
defmition, 30 

losslessness of, 22 
passivity of, 21 
state-space equations: 

simple technique for derivation, 
145 

without state-space equations, 202 
Norator, 21 
Nullator, 21,201 

0 
Obsemability (see also Complete 

obsemability), 89 
Operational amplifier, 513 

for finite gain, 514 
for integrating, 515 
for summing, 515 

Orthogonal transformer, 32.41 

P 
Parallel connection, 35 
Passive circuit element, 15 
Passive network, 21 

bounded real property of scattering 
matrix, 44 

deeree of: 
relation to reactive element count, 

199.329 
existenceof hybrid matrix, 171 

Passive network (cant.) : 
existence of scattering matrix, 38 
general structure of state-space 

equations, 196 
positive real property of immittance 

matrix, 52 
properties of statespack equations, 

198 -. - 
Passivity, 11 

conn&tion between networks and 
circuit elemenh. 25-27 

Popovcriterion, 42,261 
Positive real lemma, 213 

application: 
circle criterion, 260 
generalized positive real lemma, 

259 
inverse linear optimal control 

problem, 260 
Popov criterion, 261 
spectral factorization by algebra, 

262 
applied to hybrid matrix, 229 
change of co-ordinate basis, 255 
equivalence to quadratic matrix 

inequality, 293 
extensions, 223 
extension to nonminimal realization, 

223 
generalized, 259 
generating maximum phase spectral 

factor, 243 
lossless: 

solution, 288 
lossless case, 221,229 
other proofs, 258-259 
pmof based on energy balance 

arguments, 227 
proof based on network theory 

results, 223 
proof based on reactance extraction, 

224 
proof for lossless positive real 

matrix, 257 
singular case, 242 
solution computation via quadratic 

matrix equation, 270 
solution computation via Riccati 

equation, 270 
solution of equations: 

convexity property, 305 
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Positive real lemma (cont.) : 
solution of equivalent quadratic 

matrix inequality, 299-303 
solution via spectral factorization, 

9IlA --. 
spectral factorization proof, 243 
statement, 218 
sufficiency proof, 219 
use for co-ordinate basis change, 

370 
variational proof, 229 

Positive real matrix: 
associated Riccati equation, 236 
decompositions, 21G218 
generalized, 259 
properties of, 216 

Positive real property, 12,51 
of immittance of passive network, 

52 
for lossless networks, 56 
for rational matrices, 52 
relation with bounded real property, 

51 
testing for, 57 
time domain statement, 230 

Predictor-corrector algorithm, 75 
due to Adams, 76,81 

Predictor formula, 75 

Q 
Quadratic matrix equation: 

solution via eigenvalue computation, 
279 

solution via eigenvector 
computation, 277 

solution via Newton-Raphson 
method, 283 

solution via recursive difference 
equation, 281 

Quadratic matrix inequality: 
derived from positive real lemma, 

293 
solution of, 299-303 

equivalent to bounded real lemma, 
319 

R 
Rational bounded real property, 46,50 
Rational positive real property, 52 

Reactance extraction, 159,330, 334 
impedance matrix synthesis, 372 
losdess scattering matrix synthesis, 

449 
reciprocal synthesis for impedance 

matrix, 408 
scattering matrix synthesis, 444 

reciprocal case, 454 
synthesis of scattering matrix, 340 
use in positive real lemma proof, 

224 
use in state-space equation 

derivation, 156, 170 
Reactance extraction synthesis, 335 
Realization, 96 

construction from transfer function 
matrix, 104-116 

dimension of, 96 
minimal, 81,96-104 

consttuction from transfer 
function matrix, 104-116 

construction via completely 
controllable realizations, 110 

extraction from arbitrary 
realization, 94 

relation to other minimal 
realizations, 101 

for transfer function, 105 
Reciprocal lossless synthesis: 

for impedance matrix, 406 
Reciprocal network, 58 

hybrid matrix property, 61 
symmetry of immittance matrix, 60 
symmetryof scatteringmatrix, 61 

Reciprocal synthesis: 
for constant hybrid matrix, 397 
for imwdance matrix: 

~a$rd, 427 
minimal resistive. 427 
nonminimal resistive and 

reactive, 393 
for impedance matrix via reactance- 

extraction, 408 
for impedance matrix via resistance 

extraction., 418 
for scattering matrix: 

via reactance extraction, 454 
Reciprocity, 11,213 

in state-space terms, 32&325 
Resistance extraction, 330 

for impedancc synthesis, 386 
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Resistance extraction (cont.): 
reciprocal synthesis of impedance 

matrix, 418 
scattering matrix synthesis, 344,463 

Resistance extraction synthesis, 33 1 
Resistor, 14 

negative, 201 
passive Property, 20 

Riccati equation, 233 
associated with positive real mat& 

236 
obtaining minimum phase spectral 

factor, 271 
relation to positive real lemma, 237 
solution of, 273 
in solution of bounded real lemma 

equations, 3 16 
in solution of positive real lemma 

equations, 270 
solution via linear equation, 274 

Round-off error, 78 
Runge-Kutta algorithm, 77, 81 

S 
Scatteriag matrix, 30 

with arbitrary reference, 32 
augmented network definition, 30 
bounded real property, 43 

for passive network, 44 
degree: 

relation to immittance matrix 
degree, 122 

existence for passive network, 38 
of lossless network, 48 
relation to augmented admittance 

matrix, 32 
relation with other matrices, 31 
symmetry property for reciprocal 

network, 61 
for transformer, 31 

Scattermgmatrixmultiplication, 359 
Scatteriog matrix sjnthesis: 

lossless, 449 
lossless reciprocal, 459 
preliminninary simplijication, 358 
via mctance extraction, 339,444 
reciprocal reactance extraction. 454 
via resistance extraction, 463 

Sensitivity reduction in control 
systems, 42 

Series connection, 33 
Silverman-Ho algorithm, 104, 11 3 
Single-step algorithm, 76 
Singular synthesis problem: 

conversion to nonsingular problem, 
348 

Smith canonical form, 123 
Smith-McMillan canonical form: 

relation to degree, 124 
Spectral factor, 221 

associated with bounded real 
lemma, 3 10 

computation via recursive difference 
equation, 281 

degree of, 249 
derived by Riccati equation, 238 
maximum phase, 243,282,303,305 
minimum phase, 238 

obtainable via Riccati equation, 
271 

nonmioimal degree, 427 
Spectral factorization, 219-221 

by algebra, 262 
Gauss factorization, 427 
for matrices, 247 
use in proof of positive real lemma, 

243 
use in solution of bounded red 

lemma equations, 315 
Stability : 

of algorithm, 77 
of control systems, 42 
linear systems, 127-138 
Lyapunov lemma, 130 - 

State: 
for linear system, 65 

State-space equations, 65 
for active networks, 200 
approximate solution of, 74 
derivation via reactance extraction, 

156,170 
difficulties in using topology, 145 
inference of stability, 128 
for ladder network, 147 
for network analysis, 143 

difficulties in setting up, 144 
w u m c e  of input derivative, 

151 
for passive networks: 

general structure, 196 
properties, 198 
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State-space equations (conr.) : 
relation to transfer function matrix, 

66 
for sinusoidal response, 80 
solution of, 68 
of symmetric transfer function 

matrix, 320-325 
use of Kirchhoffs Laws for 

derivation, 146 
Svnthesis: 

Transfer function synthesis (cont.) : 
with gyrators, 530 
with input loading, 501 
with input and output loading, 503 

relevance of bounded real 
conditions, 505 

with ladder network, 478 
with negative impedance converter, 

531 
with negative resistor, 531 

distinction from analysis, 3 with noireciproc~l network, 479 
relation of scatterine and im~edance with no reflection, 482 - 

matrix, 330 

T 
Tellegen's Theorem, 21-27 

proof, 23 
statement, 22 

Time-invariant circuit element, 15 
Transfer function matrix (see also 

Transfer function synthesis), 
64 

degree, 116-127 
inference of stability, 128 
inverse of, 67 
relation to state-space equations, 66 
symmetry of, 103 

state-space interpretation, 
320-325 

Transfer function synthesis, 474507 
with controlled source, 531 
first order transfer function, 525 
via first and second order transfer 

functions, 524 

with output loading, 498 
with reciprocal network, 490 
using biquad, 526 
using summers and integrators, 519 

Transformer, 14 
controlled source model, 209 
orthogonal, 32 

Transistor: 
statespace equations for, 205 

Truncation error, 77 

U 
Unwntrollable system, 86 

v 
Voltage source, 18 

z 
Zero-initial-state response, 69 
Zero-input response, 69 
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