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PREFACE 

This book has evolved from a set of notes used in a graduate course 
on network analysis at Syracuse University for the last three years. 
The course follows a first-term graduate course in functions of a complex 
variable and Laplace transforms. Hence, in the book we assume that 
the student will come equipped with this background. Nevertheless, 
we have provided an appendix on these subjects which serves as a con
venient reference. The Appendix also serves the purpose of acquainting 
the student with the level of the prerequisites assumed in the main text. 

The need for a first-year graduate-level textbook on network theory 
has been apparent for some time. In the past, by network (or circuit) 
analysis was almost invariably meant a-c steady-state analysis. This 
was to be distinguished from transient analysis. Guillemin's Communi
cation Networks and Gardner and Barnes' Transients in Linear Systems 
have been the classic works in these two areas. But network theory is 
much more than simply the addition of steady-state analysis and tran
sient analysis. In this book we have attempted to develop the founda
tions of network theory carefully and to smooth out the transitions 
among (a) steady-state and transient responses, (6) time and frequency 
responses, and (c) analysis and synthesis. 

The development starts from the basic fundamentals (Kirchhoff's 
laws, the number of independent equations, etc.) and leads the student 
to the thresholds of some of the most advanced concepts in network 
theory: network synthesis, realizability conditions, feedback and control 
systems, etc. Almost all results are carefully proved, and all assumptions 
that are made in the development are clearly enunciated. Whenever a 
result is used with merely a "reasonableness" type proof, the conditions 
under which the results apply and the results themselves are carefully 
stated. 

In the past, a fairly sharp division has existed between the "passivists" 
and the "activists." In this book, active and passive networks are 
treated simultaneously from the first chapter. All discussions, theorems, 
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viii Preface 

etc., are phrased to encompass both types of networks (except those 
which are not valid for active networks, of course). 

The purpose of network theory is to be able to predict the value of 
voltage or current at any point and at any instant of time, in an inter
connection of electrical devices when the voltage or current at some 
other point is known. The first problem that must be faced when 
attempting this task is the establishment of an adequate model which 
will account for all observable effects under specified conditions of opera
tion of the devices. Such a model has been built up over the years. 
Here we are content with a postulational approach; we postulate the 
behavior of the elements which go to make up the model. For example, 
we spend no time with considerations of magnetic field and flux in order 
to show the reasonableness of the voltage-current relationships of a 
transformer. 

It may be possible to represent a physical device by one element of 
the model, or by an interconnection of several such elements, under cer
tain conditions of operation. However, under other conditions the model 
for that device may require modification. Whether or not the interelec-
trode capacitances of a vacuum tube need to be considered in a given 
problem, for example, depends on the frequency range of interest. Con
siderations such as this will influence an engineer in choosing models for 
the devices encountered in a given problem. Desire for simplicity will 
also influence his choice. But no matter what considerations are in
volved, the network that is drawn on paper as a candidate for analysis 
is a model. The techniques that we use in analyzing the model will be 
independent of these considerations. 

In this book we will not be concerned with the considerations that are 
involved in selecting an appropriate model in a given case under speci
fied conditions of operation; our starting point will be a model. How
ever, this does not imply that "physical" considerations and "device 
theory" are unimportant. It simply means that this is one of the topics, 
together with a host of other topics in electrical engineering, which we 
choose to omit from this book. On the other hand, a teacher using this 
book can easily make up for this "deficiency" in his lectures. 

The important topic of transmission lines (distributed systems) has 
been omitted from this book. To treat any more than the most trivial 
cases of lossless and distortionless lines is a major commitment because 
of the complexity of the contour integration problems that arise. We 
did not feel it justifiable to include a chapter on transmission lines, only 
to treat these simple cases. 

The core of the text consists of the first five chapters around which 
the rest of the structure is built. After a precise formulation of the 
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fundamental equations—Kirchhoff's laws and the definitions of network 
elements—in Chapter 1, Chapter 2 is devoted to a review of elementary 
network theory, but from a mature point of view. The complex plane 
is introduced here and is used throughout the rest of the book. No 
generality is sought in this chapter, but the student is given plenty of 
opportunity to solve relatively simple loop and node systems of equa
tions, with emphasis on the complete solution. 

As a prelude to the general loop and node analyses in Chapter 4, the 
elementary aspects of matrix algebra and network topology are taken 
up in Chapter 3. Chapter 4 attempts to complete the routine analysis 
of networks. To this end, very general formulations of loop and node 
equations are given, as well as methods of computing initial conditions 
in singular problems. The problem of computing network functions 
from loop and node equations is also taken up here, as well as a brief 
treatment of duality. Chapter 5 winds up the classical aspects of net
work analysis by taking up the more important network theorems and 
relating steady state and transient response. The chapter concludes 
with a discussion of the steady-state response to general periodic driving 
functions. 

Chapters 6 and 7 give the modern points of view in the time and fre
quency domains, respectively. The "excitation-response" point of view 
is exploited in Chapter 6 to get the superposition integral representa
tions for the response function. At the end of this chapter the main 
results are summarized as a set of uniqueness theorems. The discussion 
of network functions in the complex frequency plane is the main theme 
of Chapter 7. After an introductory section, the sufficiency of the real 
part, magnitude and angle as specifications of the network function, are 
taken up. The latter half is devoted to the integral relationships between 
the real and imaginary parts, generally referred to as "Bode formulas." 
The last section explains the analogy between network functions and 
potential fields. 

Chapter 8 is more or less a classical treatment of two-port parameters, 
except that the discussion is not restricted to reciprocal two ports, and 
scattering parameters are also included. 

Network functions of passive structures are singled out for special 
treatment in Chapter 9. This chapter contains the contributions of 
Brune, Foster, Cauer, and Gewertz, in so far as network analysis is 
concerned. An initial treatment of positive real functions, introduced 
by means of the energy functions of the network, is followed by Foster's 
Reactance Theorem and its restatements for RC and RL networks. The 
realizability criteria for the two-port parameters follow. The last sec
tion is devoted to the topological formulas of Kirchhoff and Maxwell. 



X Preface 

Chapter 10 is a collection of topics of special interest in active net
work analysis. A brief treatment of block diagrams is followed by a 
somewhat more detailed study of signal flow graphs and topics in sta
bility—the Nyquist criterion and the root locus. 

Chapter 11 treats classical filter theory based on image parameters. 
This is a generalized treatment and is not based on the characteristics 
of a particular structure as in Zobel's theory. 

A textbook at the first-year graduate level is unlikely to contain any 
original material. In a few places our point of view or method of attack 
might be considered novel, but the results are all well known. We have 
tried to give credit to the original contributors wherever it was appro
priate. It is almost certain that we have failed to give proper credit in 
some places, and we apologize to the authors for this oversight. 

A project of this magnitude necessarily reflects the authors' experi
ences under their teachers and in discussions with their colleagues and 
their students. It is virtually impossible to acknowledge them all. We 
would like to single out for specific acknowledgment Wilbur LePage 
who gave us continuous encouragement during the progress of this work, 
and Harry Gruenberg who patiently taught an initial version of the 
notes and gave us numerous suggestions for improvement, which we 
have incorporated. Professors Myril B . Reed and Wilbur R. LePage 
have also contributed indirectly by virtue of having been the teachers 
of the two authors. 

SUNDARAM SESHU 
NORMAN BALABANIAN 

March 1959 
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1 • FUNDAMENTAL CONCEPTS 

In the last two decades network theory has "graduated" from a 
"useful approximation in a large number of practical cases" to the status 
of an "exact science." This remark of course, applies to the attitude 
of engineers towards the subject rather than to any metamorphosis of 
the subject itself. This change in viewpoint is in a large measure due 
to the vastly increased emphasis in both mathematics and physics that 
is placed in the education of present-day electrical engineers, and the 
increased understanding of the nature of physical sciences which inevi
tably accompanies this training. An example of the demand for more 
mathematical training occurs right here, since we are assuming some 
knowledge of the theory of functions of a complex variable and of La
place transforms as prerequisites to network theory. 

In this text we will study network theory from precisely this modern 
point of view. In the first two chapters we will lay the groundwork, by 
reexamining the fundamental ideas and methods of circuit analysis. 
These were undoubtedly "covered" in an undergraduate course on cir
cuit theory. Nevertheless, it is quite likely that some very important 
ideas were either glossed over or else not quite understood or appreciated 
in that course. In any case our point of view here will be much more 
mature than is possible in an undergraduate course. 

1.1 Current and Voltage References 
The variables, in terms of which the behavior of electric networks is 

described, are voltage and current. Although other quantities, such as 
charge and magnetic flux, are also encountered, the former two are the 
most useful ones. These quantities are functions of time and we will 
designate them by the symbols v(t) and i(t). Although the notation 
we use here and throughout the book does not have any intrinsic merit, 
use of careless notation is usually a consequence of, and in turn leads 
to, sloppy and improper patterns of thinking. In order to foster clear 
thought, we will stress the importance of consistent notation. (Lower 
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2 Fundamental Concepts [Ch. 1 

case letters will consistently be used to represent functions of 
time.) 

The fundamental laws on which network theory is founded express 
relationships among currents and voltages at various places in the net
work. Before we can formulate these laws, we must clear up a certain 
matter having to do with the so-called "assumed positive direction of 
current" and "assumed positive polarity of voltage." 

The function i(t) is a real-valued function of time which characterizes 
the variation of a current with time. It can take on negative values as 
well as positive values in the course of time. Figure la shows a sinu-

Fig. 1. Current reference. 

soidal function of time which might represent the current in a branch of a 
network. Suppose we use a device to measure the current, which is 
sensitive to the instantaneous value of the current. 

For the purposes of this discussion we assume this device to be a 
center-zero D'Arsonval ammeter. It is perfectly clear that at any time, 
say t1, shown in the figure, two different readings will be obtained on the 
meter depending on the two ways in which the meter can be connected. 
One of these two readings will be the negative of the other, but either 
one of them will tell us the magnitude and sense (direction) of the current 
at t1, provided there is a mark on the terminals of the meter which in
dicates the direction of the current through the meter when the needle 
swings one way (positive) or the other (negative). Let's assume that 
one of the terminals has a + mark on it, indicating that the current 
is oriented from this terminal to the other through the meter when the 
needle swings positive. Then, if the terminals of the meter are so con
nected that the needle swings positive at time t = t1, a positive value 
of i(t) will correspond to a positive reading of the meter. However, 
it is not necessary that the meter be so connected. If the meter is con
nected in the opposite direction, the needle will swing negative at time 
t = t1. But since the meter terminals are interchanged, we still find the 
sense of the current through the branch to be the same as before. Thus it 
does not matter how the meter is connected, so long as we know how it 
is by some kind of a mark. 
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A completely analogous discussion is appropriate for the voltage 
across a network branch. 

Now it would be impractical to show an ammeter and a voltmeter 
with suitably marked terminals for each branch in a network diagram; 
so we adopt some other conven
tion that will supply the same in
formation. The symbols that we 
will use in this text are shown in 
Fig. 2. The convention adopted 
here is to draw the arrow for i(t) 
from the + terminal of the am
meter to the other terminal. The 
+ for v(t) is placed at the same end of the branch as the + on the volt
meter. Thus, the arrow indicates that i(t) will be positive at those times 
when the actual current in the network branch is in the direction of the 
arrow. Alternatively we can say that the arrow indicates the actual 
(instantaneous) sense of the current when an ammeter is connected in 
such a way that it reads positive; and the arrow is drawn according to the 
meter connection. Similarly the plus sign indicates the actual instan
taneous voltage polarity when the voltmeter is connected in such a way 
that it reads positive; and the plus sign conforms to the meter connec
tion. 

Fig. 2. Current and voltage references. 

These two symbols, the arrow and the plus sign, are respectively 
called current and voltage references. As we mentioned above, it is 
completely arbitrary how the current and voltage references are chosen 
(just as it is unimportant how the meters are connected). Hence, it is 
not important how the references are chosen, but it is important that 
a current and voltage reference be assigned to a network element; other
wise the functions i(t) and v(t) for that element will be ambiguous. 

An apparent contradiction of this statement may be discovered by 
turning to later chapters of this book and noting that the branches in 
network diagrams have not been assigned current and voltage references. 
This is not really a contradiction, however, since we use the very arbi
trariness of the references to make conventions on their assignment for 
the purpose of simplifying network equations. After making these 
conventions, we can dispense with the reference symbols, being confident 
that our desires on this score are understood. 

1.2 Kirchhoff's Laws 
Electric network theory, like all scientific theories, attempts to de

scribe the phenomena occurring in a portion of the physical world by 
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setting up a mathematical model. This model, of course, is based on 
observations in the physical world, but it also utilizes other mathe
matical models which have stood the test of time so well that they have 
come to be regarded as physical reality themselves. As an example, the 
picture of electrons flowing in conductors and thus constituting an elec
tric current is so vivid that we lose sight of the fact that this is just a 
theoretical model of a portion of the physical world. 

The purpose of a model is to permit us to understand natural phe
nomena. But more than this, we expect that the logical consequences 
to which we are led will enable us to predict the behavior of the model 
under conditions which we establish. If we can now duplicate in the 
physical world the conditions that prevail in the model, our predictions 
can be experimentally checked. If our predictions are verified we gain 
confidence that our model is a good one. If there is a difference between 
the predicted and experimental values which cannot be ascribed to ex
perimental error, and we are reasonably sure that the experimental an
alog of the theoretical model duplicates the conditions of the model, we 
must conclude that the model is not "adequate" for the purpose of 
understanding the physical world and must be overhauled.* 

In the case of electric network theory, the model has had great success 
in predicting experimental results. As a matter of fact, the model has 
become so real that it is difficult for students to distinguish between the 
model and the physical world. 

The first step in establishing a model is to make intimate observations 
of the physical world. Experiments are performed attempting to es
tablish universal relationships among the measurable quantities. From 
these experiments general conclusions are drawn concerning the behavior 
of the quantities involved. These conclusions are regarded as "laws," 
and are usually stated in terms of the variables of the mathematical 
model. 

A. Kirchhoff's Current Law. In network theory the fundamental 
"laws" are Kirchhoff's two laws. Consider the portion of a network 
shown in Fig. 3. Several branches are shown connected together at a 
node, the current references in the branches being clearly indicated. 
In Fig. 3a all the references are directed away from the node. Let us 
remember that the reference indicates that if an instantaneous value-
reading meter is connected with its + marked terminal at the tail of the 
arrow it will read positive when the instantaneous current is in the arrow 
direction. Assuming meters so connected, experimental observation 

* An example of such a revision occurred after the celebrated Michelson-Morley 
experiment, where calculations based on Newtonian mechanics did not agree with 
experimental results. The revised model is relativistic mechanics. 
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Fig. 3. Kirchhoff's current law. 

shows us that the sum of all the meter readings is zero (within experi
mental accuracy). If we interchange the terminals of one of the meters 
(equivalently, reverse the corresponding current reference) we should 
of course change the sign of that particular reading. Thus, with the 
current references shown in Fig. 3o, we find 

( 1 ) 

Each current with reference directed away from the node is preceded 
with a plus sign while each current with reference directed toward the 
node is preceded with a minus sign. 

Based on many observations such as this, we draw the general con
clusion that expressions such as Eq. (1) will hold at all nodes of a network 
no matter how many branches are connected at each node. This is then 
really in the form of an assumption, or postulate. A whole theory is 
built up on this, and several other, postulates. If at any time it is found 
that logical results that are derived based on the postulates cannot be 
verified experimentally, then we will have to seek a modification of the 
postulates. Fortunately, such a circumstance has not yet transpired in 
network theory (and most probably is not likely to). As a matter of 
fact, we may consider that the validity of equations similar to Eq. (1) 
at any node is a direct consequence of the principle of conservation of 
charge, which is itself a fundamental postulate. 

Let us now state Kirchhoff's current law formally. For this purpose 
it is convenient to include in the equation for each node all branches of 
a network, whether or not the branch is connected to the particular node. 

Kirchhoff's Current Law 
If a network has Nb branches and Nv (v for vertex) nodes, then 

(2) 
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where the coefficients akj have the values +1 , —1 or zero: 

akj = 1 if branch j is connected to node k and its current reference 
is directed away from the node; 

akj = — 1 if branch j is connected to node k and its current reference 
is directed toward the node; 

akj = 0 if branch j is not connected to node k. 

In stating this law no cognizance is taken of the constituents of a 
branch; they may be active or passive, linear or nonlinear, although in 
this book we will be restricted to linear networks. 

In defining the akj coefficients we have chosen the branch currents 
with reference away from the node to be exalted with positive coefficients; 
those branch currents with reference toward the node have been assigned 
a lowly negative coefficient. We can actually reverse this convention if 
we like, since such a practice would be equivalent to multiplying Eqs. (2) 
by — 1 throughout. It may be helpful to think that a node has two 
possible orientations, away and toward, and we choose one of these as 
the node orientation. 

According to Eq. (2) we will have as many equations from the current 
law as there are nodes in the network. The question arises whether all 
of these equations are independent. We shall next answer this question. 

Let us denote the left side of the equations with the symbol y; thus, 
yk stands for the left side of the kth equation. A set of homogeneous 
equations is said to be linearly dependent if at least one of the equations 
can be expressed as a linear combination of the others; that is, if we can 
write 

(3) 

or, equivalently, 

(4) 

where the íC's are constants, not all zero. 
To help in visualizing the argument, let us consider a specific example. 

Figure 4 shows a network with four nodes and five branches which have 
been numbered arbitrarily. The Kirchhoff current law equations (ab
breviated K C L ) can be written as follows. 

Node 1: i1(t) +i2(t) = 0 
Node 2: -i1(t) -i3(t) +i4(t) = 0 
Node 3: -i4(t) -i5(t) = 0 
Node 4: -i2(t) +i3(t) +i5(í) = 0 

(5) 
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The vertical bars in these equations have no significance other than to 
emphasize the systematic manner of writing the equations. We have 
omitted writing the terms with zero 
coefficient for clarity. Note that only 
one branch current appears in each 
column, and it appears exactly twice, 
once with a plus sign, once with a 
minus sign. This circumstance should 
be expected since each branch is con
nected between exactly two nodes, and 
its current reference is away from one 
node and toward the other. 

Now let us add all the equa
tions. Each term on the left will be 
matched by another term having the opposite sign. Hence, the sum 
will be identically zero. This result has the form of Eq. (4) with all 
the K's equal to unity. Hence, the equations are linearly dependent. 
Any one of the equations can be expressed as the negative sum of all the 
others. If we know three of the equations, we immediately know the 
fourth one as well. Expressed in terms of the number of nodes, we can 
say that at most Nv — 1 of the equations are independent. For this 
particular example we can easily see that exactly Nv — 1 (or 3) of the 
equations are independent. As a matter of fact, this is a general result 
which we will use from now on without proof. The proof will be given 
in section 3.3. 

Fig. 4. Illustration of dependence 
of KCL equations. 

B. Kirchhoff's Voltage Law. The second fundamental law, or 
postulate, of network theory is Kirchhoff's Voltage Law (abbreviated 
K V L ) . Consider the portion of a network shown in Fig. 5. This con-

Fig. 5. Kirchhoff's voltage law. 

sists of several branches connected to form a simple closed path or loop. 
From the two possible orientations we must choose an orientation or 



8 Fundamental Concept! [Ch. 1 

reference for the loop, just as we did for the node. The orientation of 
the loop is shown by means of an arrow. 

The voltage references of the branches are clearly indicated in the 
figure. In Fig. 5a the plus marks are all located at the tail of the loop 
orientation arrow. If we connect instantaneous value-reading volt
meters across the branches of the experimental analog of the model 
shown in the diagram, with the + marked terminals at the indicated 
voltage references, then we observe that the sum of all the voltmeter 
readings at each instant of time is zero. Again, if we interchange the 
terminals of a meter, or reverse the corresponding voltage reference, we 
should change the sign of that particular reading. Thus, in terms of the 
references shown in Fig. 5b we will find 

(6) 

Each voltage with a reference plus at the tail of the loop orientation 
arrow is preceded with a plus sign, while each voltage with a reference 
at the head of the loop orientation arrow is preceded with a minus sign. 

Based on many experimental observations such as this, we postulate 
that expressions such as Eq. (6) will hold for each closed path in a net
work. To formalize the statement of the law let us include in the equa
tion for each loop all the branches of the network, whether or not a branch 
appears on the contour of a particular loop. If a branch is not in a loop, 
then the corresponding branch voltage will have a zero coefficient in the 
equation for that loop. 

Kirchhoff's Voltage Law 
If a network has Nb branches and Nm(m for mesh) loops, then 

(7) 

where the coefficients bkj have the values + 1 , — 1 , or 0: 

bkj = 1 if branch j is in loop k and its voltage reference is at the tail 
of the loop orientation arrow; 

bkj = — 1 if branch j is in loop k and its voltage reference is at the head 
of the loop orientation arrow; 

bkj = 0 if branch j is not in loop k. 

Just like the current law, this law is also valid for passive, active, linear, 
or nonlinear branches. 

In order to avoid some possible misunderstandings (or clear up ex
isting confusions) we need to make some remarks about the statement 
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of Kirchhoff's voltage law as given here. Frequently, Kirchhoff's voltage 
law is stated as 

Σ voltage rises = Σ voltage drops (8) 

for any closed loop. There is nothing wrong with this statement pro
vided we interpret the words "rise" and "drop" properly. The drops 
correspond to voltage references being at the tail of the loop reference 
arrow, and the rises correspond to voltage references being at the head 
of the loop reference arrow. The voltage of a given branch may be a 
drop in one loop and a rise in another. In this text we will not use the 
words "rise" and "drop," since they may carry connotations that we 
wish to avoid. 

Finally one remark about the loop reference. As far as Kirchhoff's 
voltage law is concerned, this arrow is nothing more than a specification 
of the loop and its orientation. It is not a loop current, something we 
have yet to define. It may be interpreted as such, in due course, when 
we come to write loop equations, but it does not play the role of a loop 
current in Kirchhoff's voltage law. 

According to the voltage law there will be as many equations as there 
are closed paths in a network. Again the question of dependence arises. 
In the present case it is more difficult to answer this question than it is 
for the K C L equations. If the network contains Nb branches and Nv 

nodes, then the number of independent equations that can be written 
from Kirchhoff's voltage law is Nb — (Nυ — 1). We will use this result 
without proof, leaving the proof to section 3.3. We will, however, show 
that there are at least this many independent equations. To do this let 
us make some definitions. 

A connected network is one which consists of only one part. A tree 
of a connected network is a connected subnetwork which contains all the 
nodes of the network but does not contain any closed paths. 

Any connected network contains at least one tree. Each branch of a 
network may or may not be on a tree depending on how the tree is chosen. 
For example, Fig. 6 shows two trees of the network which was originally 

Fig. 6. Trees of a network. 
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shown in Fig. 4. In Fig. 6a branch 4 is on the tree while in Fig. 6b it 
is not. For a particular choice of a tree the branches on the tree are 
called tree branches (strangely enough), whereas those that are not on 
the tree are called links or chords. Since there are Nb branches and 
Nv nodes, there must be Nv — 1 tree branches and Nb — (Nv — 1) 
links. (The proof that a tree of Nv vertices contains Nv — 1 branches 
is not given here, but may be found in section 3.3.) 

Let us choose any tree of a given connected network and consider any 
one of the links. This link has two nodes, and these are certainly on the 
tree. We can always find an open path consisting of tree branches 
only, connecting these two nodes, since the tree is connected. This 
open path of tree branches, together with the link, forms a closed loop. 
For each link we can find one such closed loop. Since there are Nb — 
(Nv — 1) links, there will be the same number of such closed loops. This 
set of loops is referred to as the fundamental system of loops. The orien
tations of the loops are chosen such that the link voltage reference is 
at the tail of the loop reference arrow. 

It is now clear that if we write K V L equations for the fundamental 
system of loops, the resulting set of equations will be independent. This 
is true because each equation contains a voltage (that of the link) which 
does not appear in any other equation. No linear combination of any 
number of the remaining equations can ever include this particular 
voltage. Hence, at least Nb — (Nv — 1) K V L equations are independ
ent. 

For any given network the correct number of independent equations 
will always be obtained if we choose a tree and form the fundamental 
system of loops. However, in the case of planar networks (networks 
which can be drawn on paper without having any branch cross over other 
branches), it is simpler to choose all the internal meshes, or "windows," 
as closed loops. This procedure will give the correct number of equations. 

Let us now summarize the discussion in this section. We have stated 
the two laws of Kirchhoff as fundamental postulates of network theory. 
These laws express the equilibrium of branch currents at the nodes of a 
network and the equilibrium of branch voltages around closed loops in 
the network. If a network contains Nb branches and Nv nodes, then 
the number of independent K C L equations is Nv — 1 and the number 
of independent K V L equations is Nb — (Nv — 1). 

1.3 Network Elements 
In the statement of Kirchhoff's laws, no cognizance is taken of the 

constituents of a branch. To complete the description of the model of 
electric networks which we are building up, we must now postulate the 
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existence of certain components. These components must be endowed 
with such properties that our model will be able to account for observable 
electrical phenomena, such as the spark produced by an induction coil, 
the heating of a wire which is carrying current, etc. Of course, this 
model has been established over the years; there is no need for us to 
review all the physical considerations which eventually led to the model 
in its present form. 

We define three network elements in our model: resistance, inductance, 
and capacitance. * The diagrammatic representations are shown in Fig. 7. 

Fig. 7. Network elements. 

The precise definitions of the elements are given in terms of the re
lationships between the current and the voltage at the element terminals. 
These definitions are shown in Fig. 7 and are tabulated in Table 1. 

TABLE 1 

Element Symbol Voltage-current relationships 

Resistance R 

Inductance L 

Capacitance C 

* Mutual inductance is treated separately. 
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Note that these expressions are valid only for the voltage and current 
references shown on the diagrams. Reversing either a current or a 
voltage reference will reverse the sign of the corresponding expression.* 

The element can be thought of as a two-terminal (paper) device. It 
is characterized by a parameter; in case of the resistance element, for 
example, the parameter is denoted by R and is called resistance. It is 
perhaps unfortunate that the element and the parameter have the same 
name, but this does not often lead to confusion. † 

We see that the first two relationships in the figure express v(t) in 
terms of i(t), while the third one gives i(t) in terms of v(t). It is some
times necessary to invert the v-i (short for voltage-current) relationships 
to solve for current or voltage as the case may be. This is easily done 
for the resistance, but is somewhat more difficult for the other two. 

Consider the inductance element. Its voltage depends only on the 
derivative of the current. Figure 8 shows a family of curves each mem

Fig. 8. Inductance-current curves. 

ber of which might be the current in the inductance. These curves will 
all lead to the same voltage across the inductance, since at each value 
of time the slopes are identical. For a given voltage, then, we will be 
unable to tell which one of these curves represents the current, unless 
a value of current is specified at some particular time. This will locate a 
point on the appropriate curve and, thus, fix the current. It is immate
rial for what particular value of time the current is specified. Usually, 
we are interested in the state of a network after some particular event 

* Note that in all cases the voltage is a linear function of the current, or its deriva
tive, or its antiderivative. For this reason, these elements are called linear elements. 

† There are three entities to be considered—the black box in the laboratory, the 
wiggly line on paper and the number R—for all of which we have only two names, 
"resistor" and "resistance." So, two of them have to share a name. We choose to 
use the same name for the last two. 
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in time, such as the opening or closing of a switch. Since the origin of 
time is arbitrary, we usually choose it to coincide with the value at 
which the current is specified. With this convention, inversion of the 
v-i relationship of the inductance leads to 

(9) 

In the last expression the lower limit is approached from positive values 
so that for i(0) we really should write i(0+). 

Quite often the inverse relationship is written as an indefinite integral 
(or antiderivative) instead of a definite integral, as we have written 
here. Such an expression is incomplete unless we add to it a specification 
of i(0+), and in this sense is misleading. Normally one thinks of the 
voltage υ(t) as being expressed as an explicit function such as 

sin ωt, etc., and the antiderivative as being something unique, 

etc., which is certainly not true. Also, in many of the cases 

that we shall consider, the voltage may not be expressible in such a 
simple fashion for all t, the analytic expression for v(t) depending upon 
the particular interval of the axis on which the point t falls. In such a 
case the definite integral is certainly preferable. Some such waveshapes 
are shown in Fig. 9. 

Fig. 9. Voltage waveshapes. 

Another important result becomes apparent if we again consider 
Eqs. (9). So long as the current is a continuous, differentiable function, 
the voltage will remain bounded. Or, considering it from the inverse 
viewpoint, the current in an inductance will be continuous so long as 
the voltage remains bounded. Thus, the value of the current at "zero 
plus" will be the same as its value at "zero minus" so long as the voltage 
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remains bounded. This is usually expressed by stating that the current 
in an inductance cannot change instantaneously. This statement will 
be true only if the voltage across the inductance remains bounded. In 
most networks this will be the case. We will defer to a later chapter 
the discussion of cases in which the inductance current can be dis
continuous. 

What we have said for the inductance will be equally true for the 
capacitance but with the words voltage and current interchanged. Thus, 
the v-i relationships for the capacitance are 

(10) 

The voltage across the capacitance will be continuous so long as the 
current remains bounded. Thus the capacitance voltage at zero plus 
will equal its value at zero minus so long as the current remains bounded, 
which will be true in most networks. We will consider the general case 
in a later chapter. 

The elements we have defined in our model do not have their exact 
counterparts in the physical world. The electrical behavior of physical 
devices can be described in terms of a model which consists of several 
(ideal) elements that are interconnected in various ways. For example, 
the behavior of a coil of wire can be approximately described (and pre
dicted) by the network shown in Fig. 10. Very often the required 

Fig. 10. Coil of wire and its model. 

capacitance is small and a good approximation to the behavior of the 
coil of wire is obtained if the capacitance is completely removed. 
Physical coils can be made whose behavior is closely approximated by 
that of an inductance alone (as in RF chokes) or of a resistance alone 
(as in a potentiometer or wire-wound resistance). 
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Physical devices whose electrical behavior can be represented approx
imately by one of the elements in our model are given special names. 
These are resistor, inductor, and capacitor, represented by the elements 
resistance, inductance, and capacitance, respectively. Such devices are 
designed so that only one effect, resistive, inductive, or capacitive, pre
dominates. 

We find, however, that not all physical devices can be described in 
terms of the three elements we have discussed. One such device is a 
transformer. A simple transformer consists of two coils of wire which 
are in close proximity. We say that the two coils are coupled (mutually 
or magnetically). We observe that a voltage will appear at the terminals 
of one coil when the current in the other coil varies with time. This 
effect cannot be accounted for by any combination of the three elements 
we have defined. We need to introduce another element. In contrast 
with the two-terminal elements appearing in our model so far, this one 
must have two pairs of terminals. The element is called a transformer, 
the same as the physical device of which it is to be a model. It is defined 

Fig. 11. A transformer. 

in terms of the diagram shown in Fig. 11a and the following voltage-
current relationships. 

(11) 

Note that the signs appearing in these equations are valid only for the 
voltage and current references shown. Reversing a voltage or current 
reference will reverse the signs of corresponding terms. 

This element is characterized by three parameters instead of only one: 
the two self-inductances L1 and L 2 , and the mutual inductance M. The 
self-inductance parameter is identical with the previously defined in-
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ductance. The mutual inductance is a measure of the voltage that can 
be produced at one pair of terminals by a current variation at the other 
pair. In contrast with the self inductance, it is an algebraic quantity 
which can have a negative or a positive value. The actual sign is 
indicated by polarity marks on the transformer diagram. A dot (or 
other symbol) is placed at one terminal of each pair. Then, M will be 
positive if each current reference is directed toward or away from the 
corresponding dot-marked terminal. It will be negative if one current 
reference is directed toward a dot while the other one is directed away. 
In writing the v-i relationships of a transformer it is not necessary to 
know how the dots are positioned on the terminals. This information 
will be necessary, however, when numerical values are required for the 
mutual inductance. 

We should here mention that there is another convention in common 
use. Under this convention M is always positive, like L. However, the 
signs preceding the terms involving M in the v-i relationships must be 
adjusted depending on the sense of the current references relative to the 
dots. The two conventions are, of course, completely equivalent. The 
second one, however, requires knowledge of the dot locations even when 
the v-i relationships are written. 

Let us note here that we have made very little attempt to justify 
establishing the transformer model that we did, starting from physical 
considerations and experimental evidence. We assume that these ex
perimental results (Faraday's law, Lenz's law), and their implications 
are known. We will leave it to you to show how the dot positions 
in the model are related to relative winding directions of the coils in an 
actual physical transformer. Another question that may be asked is: 
why choose the same parameter M in both of the expressions in Eqs. (11) 
instead of writing M12 and M21, respectively? Our viewpoint is that 
we are establishing a model. We are free to choose the components of 
our model and endow them with any characteristics we like. The only 
test of the model is its ability to describe and predict phenomena in the 
physical world. Our justification, then, must be our ability to corrob
orate experimentally the results of our assumption. We will leave to 
you the problem of devising an experiment that can be performed on 
an actual transformer, whose results will show that it is reasonable to 
choose M12 = M21 in the model.* 

We have stated that the mutual inductance is a measure of the 
voltage that can be produced at one pair of terminals of a transformer 
by a current variation in the other pair. Although this is true, more 

* This equality can also be established by appealing to Faraday's law, which is 
outside our scope, or by using a rather involved energy argument. 
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useful information will be obtained if we have a comparison of the 
voltages produced at both pairs of terminals by current in one pair of 
terminals. This can be done by considering the v-i relationships in 
Eqs. (11) alternately for the cases i2 = 0 and i1 = 0. For these two 
cases we find 

(12) 

If we now take the ratio of these two expressions, we will get 

(13) 

We find that this ratio is a positive constant, which we have labelled k2. 
Either of the ratios in Eqs. (12) can take on any real value. However, 
based on experimental observations on actual transformers, we should 
expect the ratio of v1 to v2, due to a variation of current i2, to be no 
greater than the same ratio due to a variation of current i1. Thus, 
k2 ≤ 1. The number k is called the coupling coefficient. It gives a 
measure of the tightness or closeness of coupling between the two pairs 
of terminals.* 

No physical transformer has yet been built that has a coefficient of 
coupling equal to unity, although this value has been approached quite 
closely. However, in the model, we admit the possibility of such a 
transformer and we dignify it with the name perfect transformer or unity-
coupling transformer. For such a transformer the self and mutual in
ductances satisfy the condition 

(14) 

Some authors use the name ideal transformer to denote the same thing. 
However, we will use the name ideal transformer for another element in 
our model. This element, like the plain, ordinary transformer, has two 
pairs of terminals, as shown in Fig. 12. We define the ideal transformer 
in terms of the following v-i relationships. 

* The generalization of the restriction on k to multiwinding transformers is given 
in section 9.3. 
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( 1 5 ) 

Fig. 12. An ideal transformer. 

Thus, the ideal transformer is characterized by a single parameter n 
called the turns ratio. For the references and polarities of Fig. 12a, n is 
positive, whereas for Fig. 126, n is negative. This is the more common 
usage of the term ideal transformer. 

Let us see how closely a perfect transformer and an ideal transformer 
are related. Turn back to Eqs. (11) and take the ratio of v2 to v1. At 
the same time, insert the perfect transformer condition given in Eq. (1.4). 
In order to make the diagrams in Figs. 11 and 12 agree, reverse the 
reference directions of i2 in Fig. 11. This will change the sign before 
the second term in Eqs. (11). The result for a perfect transformer will be 

( 1 6 ) 

Comparing this with the second one of Eqs. (15) we see that they will 
be identical if we set 

(17) 

Now in the case of actual coils of wire, the inductance is proportional 
to the square of the number of turns in the coil. This is the origin of the 
name turns ratio for n. 

So far it appears that a perfect transformer and an ideal transformer 
are the same. However, we still need to compare the relationships be
tween the currents in the two cases. In order to do this, turn again to 
Eq. (11a), still assuming the sign before the second term to be negative, 
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corresponding to a reversal of the reference of i2 in Fig. 11. Let us 
integrate this equation from 0 to t. We will get 

( 1 8 ) 

We have still not used the perfect transformer condition of Eq. (14). 
If we do so, and rearrange terms, we will get 

( 1 9 ) 

This equation is to be compared with the first one in Eqs. (15). Two 
differences are noted: first the appearance of the initial values of the 
currents, and second, the appearance of the term involving a voltage. 
The first of these is not serious. The major difference between an ideal 
transformer and a perfect transformer is in the appearance of the middle 
term on the right side of Eq. (19). 

If we denote by ia everything on the right side but the first term, the 
form of the equation will suggest that it is the K C L equation at a node, 
one branch of which consists of an inductance L1, as shown in Fig. 13. 

Ideal 
Perfect transformer 

Fig. 13. Relationship between perfect and ideal transformers. 

This figure satisfies both Eqs. (16) and (19). It shows how a perfect 
transformer is related to an ideal transformer. If in a perfect transformer 
we permit L1 and L 2 to approach infinity, but in such a way that their 
ratio remains constant, the result will be an ideal transformer. 

All of the elements that we have discussed up till now can be char
acterized by the word passive. To complete our model we will need to 
define other elements, elements which may be labeled active and which 
will account for our ability to generate voltage and current. We call 
such elements sources or generators. We define two types of source, as 
follows. 
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1. A voltage source is a two-terminal element whose voltage at any 
instant of time is independent of the current at its terminals. 

2. A current source is a two-terminal element whose current at any 
instant of time is independent of the voltage across its terminals. 

The diagrammatic representations are shown in Fig. 14. It does not 
matter what network is connected at the 
terminals of a voltage source, its voltage will 
be unmodified. Of course, the current will 
be affected by the network. Similarly, the 
network connected at the terminals of a 
current source will affect the voltage across 
these terminals but will leave the current 
unmodified. For this reason they are called 
independent sources. Fig. 14. Voltage and cur

rent sources. In the physical world there is no exact 
counterpart of the sources we have defined, 

any more than there are pure resistances or inductances. Physical 
generators may be approximated by one or the other of these two 
sources, to some degree. As an example, we are familiar enough 
with the dimming of the house lights when a large electrical appliance 
is switched on the line to know that the voltage of a physical source 
varies under load. 

In an actual physical source the current or voltage generated may 
depend on some nonelectrical quantity, such as the speed of a rotating 
machine, or the concentration of acid in a battery, or the light intensity 
incident on a photoelectric cell. These relationships are of no interest 
to us in network analysis, since we are not concerned with the internal 
operation of sources, only with their terminal behavior. Thus, our ideal
ized sources take no cognizance of the dependence of voltage or current 
on nonelectrical quantities; they are called independent sources. 

However, it is found that the behavior of certain electrical devices, 
vacuum tubes and transistors, for example, cannot be explained in terms 
of a model consisting of interconnections of the independent sources 
and passive elements which we have so far defined. To account for 
these devices as well, we define another type of source, a dependent 
source. 

A dependent voltage source is a source whose terminal voltage is de
pendent on other voltages or currents. Similarly, a dependent current 
source is a source whose terminal current is dependent on other voltages 
or currents. Examples of such sources are shown in Fig. 15. The first 
two are dependent voltages, one being voltage-dependent the other 
current-dependent. The second two are dependent currents, one being 
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Fig. 15. Dependent sources. 

voltage-dependent, the other current-dependent. In contrast with in
dependent sources, the dependent sources have two pairs of terminals 
instead of one. In each of these examples the source voltage or current 
is directly proportional to another voltage or current. This type of 
dependence is, of course, very simple. The model can be expanded by 
including other types of dependence, as well; for instance, the source 
output voltage may be the derivative of the input current. However, 
we will omit detailed consideration of any other type of dependence in 
our model. 

The introduction of dependent sources into our model leads to many 
additional results not possible with the previous elements alone. As 
an example, consider the parallel connection of a resistor and a dependent 
current source shown in Fig. 16. Application of K C L at one of the nodes 
shows that the current through R is (1 — α)i. 
Hence, the voltage-current relationship at the 
input terminals will be 

(20) 

The presence of the dependent source seems to 
have the effect of changing the value of R. If 
α is greater than one, the network behaves 
like a negative resistance. For this reason 
it is called a negative resistance converter. 

Fig. 16. A negative resist
ance converter. 

For certain ranges of voltage and current the behavior of certain 
vacuum tubes and transistors can be approximated by a model consisting 
of the interconnection of dependent sources and other network elements. 
Figure 17 shows two such models. These models are not valid repre
sentations of the physical devices under all conditions of operation. For 
example, at high enough frequency the interelectrode capacitances of the 
tube would need to be included in the model. 

The last point brings up a question. When an engineer is presented 
with a physical problem concerned with calculating certain voltages and 
currents in an interconnection of various physical electrical devices, his 
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Fig. 17. Models representing vacuum triode and transistor. 

first task must be one of representing each device by a model. This 
model will consist of interconnections of sources and/or passive com
ponents which we have defined in this chapter. The extent and com
plexity of the model will depend on the type of physical devices involved 
and the conditions under which they are to operate. Considerations 
involved in choosing an appropriate model to use, under various given 
conditions, do not form a proper part of network analysis. This is not 
to say that such considerations and the ability to choose an appropriate 
model are not important; they are. However, many other things are 
important in the total education of an engineer, and they certainly can
not all be treated in one book. In this book we will make no attempt 
to construct a model of a given physical situation before proceeding with 
the analysis. Our starting point will be a model. 

1.4 Power and Energy 
The concept of energy is one of the most fundamental concepts in 

physical science. The principle of conservation of energy, which states 
that energy can neither be created nor destroyed but can be transformed 

into different forms, is another fundamental 
postulate on which much of physical science is 
founded. 

The time rate of change of energy is power p. 
From elementary considerations we know that 
electrical power is related to voltage and cur
rent by the expression Fig. 18. Reference for 

power. 
(21) 

Since voltage and current have references, so must power in order for 
this expression to be valid. The reference for power is shown in Fig. 18 
relative to the references of voltage and current. If either reference is 
reversed, the reference for power will also reverse. 
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Let us now turn to the elements in our model and determine their 
behavior in terms of power and energy. First consider the independent 
sources; let the branch in Fig. 18 be an independent source. According 
to Fig. 18, the power entering the source is p = vi. But, if this is a 
voltage source, the voltage will be a given function of time, whereas the 
current will depend on the network which is connected at the terminals. 
The energy which enters the source between the time t1 and t2 is found 
by integrating the power. 

Energy entering (22) 

This energy will be either positive or negative depending on the function 
i(t), which, in turn, depends upon the network connected across the 
terminals of the source. A similar statement is true if the source is a 
current source. 

The preceding paragraph seems to indicate that an independent source 
can generate (or create) energy and can destroy energy. This would 
be catastrophic, if true. Our interpretation is that the source can trans
form into nonelectrical energy the electrical energy which it absorbs. 
Likewise, the energy which it apparently generates is transformed from 
some other, nonelectrical form. 

Let us now consider the passive elements. If the branch shown in 
Fig. 1.8 is a resistance, then v = Ri and the energy entering the resistance 
between time t1 and t2 will be 

Energy (23) 

Since i(t) is a real function of t, the integrand is always positive; hence, 
so is the energy. Thus, the resistance absorbs or dissipates energy. Again 
we interpret this as a conversion of energy into a non-electrical form, 
heat in this case. Note that the negative resistance converter shown in 
Fig. 16 is a device which continually supplies energy (for α > 1 ) ; it 
cannot absorb. 

Letting the branch in Fig. 18 be an inductance and a capacitance in 
turn, we find for the energy 

Energy entering L 

(24) 

We have labelled i1 and i2 the currents at the times t1 and t2, respectively. 



2 4 Fundamental Concepts [Ch. 1 

Similarly 

Energy entering C 

(25) 

Thus, the energy entering these elements may be positive or negative 
over a period of time. We say that these elements store energy, the 
instantaneous values of the energy stored being, respectively, 

(26) 

(27) 

The functions T and V are called the energy functions. They are never 
negative for any value of time. (The use of the symbol V for the capaci
tive energy is deplorable, but it is quite standard.) In a later chapter 
we will use the properties of the energy functions to deduce the behavior 
of the corresponding networks. 

Let us now summarize the results of this chapter. We stated as 
postulates the laws which express the equilibrium of currents at any node 
of an electric network and the equilibrium of voltages around all closed 
loops at every instant of time. These laws are independent of what 
constitutes a branch. We found that not all the equations resulting 
from the application of these laws are independent, and we discussed 
ways of finding the correct number of independent ones in any given 
network. We next discussed the voltage-current relationships of the 
elements which go to make up our model of electric networks. The 
next step in the development is to insert these v-i relationships into 
Kirchhoff's laws and then attempt a solution of the resulting equations. 
This will be the subject of the next chapter. 



2 • LOOP AND NODE SYSTEMS 
OF EQUATIONS 

In the last chapter we found that an application of the two funda
mental laws of Kirchhoff leads to two different sets of simultaneous 
equations. In one of these sets the variables are branch currents, while 
in the other they are branch voltages. Our ultimate purpose is to be 
able to solve for all the branch voltages and currents in the network, 
knowing the values of the network parameters, including the source 
voltages and currents, and the initial conditions. 

2.1 Loop Equations 
Consider the Kirchhoff current law equations. We found that these 

are Nv — 1. independent equations in the Nb branch currents. Since 
there are more unknowns than there are equations, a unique solution 
of these equations does not exist. If we assign values to Nb — (Nv — 1) 
of the branch currents (suitably chosen), then all the rest of the currents 
can be expressed uniquely in terms of these. The number Nb — (Nv — 1) 
rings a bell; this is precisely the number of independent Kirchhoff voltage 
law equations. However, these equations are in the branch voltage 
variables, of which there are again Nb. If we can express these branch 
voltage variables in terms of Nb — (N„ — 1.) current variables, then we 
will have the same number of unknowns as we have equations and a 
possible solution will be in view. This is what we plan to do. 

We will illustrate the procedure by means of an example. Figure 1. 
shows a Wheatstone bridge circuit. For this example Nv = 4 and 
Nb = 6. Hence, there will be 3 independent K C L equations and 3 
independent K V L equations. [The voltage source with R x in series is 
counted as one branch. If we count them as two branches Nb will be 7; 
but now there will be a node at their junction, thus making Nv = 5, 
leaving Nb — (Nv — I) unchanged.] The branches have been numbered 
according to the subscripts on the parameters. 

To avoid complicated notation, we will use similar symbols, i and v, 
with numerical subscripts for both branch variables and loop or node 

25 
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Fig. 1. Wheatstone bridge. 

variables. When it is necessary to distinguish between them (as it will 
be, if we need both sets within the same development) we will use ib 

and vb, with a second numerical subscript for branch variables. 
Suppose we choose a tree consisting, say, of branches 2, 4, and 5; 

then, branches 1, 3, and 6 will be links. If we apply Kirchhoff's current 
law at the nodes, we will find that all the branch currents can be expressed 
in terms of the link currents i1, i3, and i6. Thus, 

( 1 ) 

In Fig. 1, the three circular arrows indicate the orientations of the 
loops that we have chosen for writing K V L equations. They do not 
carry any implication of current (as yet). But suppose we think of 
circulating loop currents with references given by the loop orientations. 
A consideration of the figure shows that these loop currents are identical 
with the link currents i1, i3, and i6. All branch currents can be expressed 
in terms of the loop currents. The set of equations which relate the 
branch currents to the loop currents, such as Eqs. (1), is called the 
mesh transformation. 

Let us now write K V L equations for the three loops shown in the figure. 
Assuming that the branch voltage references are at the tail of the branch 
current references, we will get 

(2) 
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The next step is to invoke the voltage-current relationships of the 
branches in order to express the branch voltages in terms of the branch 
currents. Following this, the mesh transformation is used, leaving only 
the loop currents as unknowns. However, since the mesh transformation 
is usually obvious in simple examples, these two steps can be performed 
simultaneously. Thus, Eqs. (2) become 

(3) 

Presumably the source voltage vg and the initial capacitance voltage are 
known. These can be transposed to the right side of the equations and 
the rest of the terms can be collected to give 

(4) 

Consider the form of these equations. They are ordinary linear 
integrodifferential equations in the three unknown loop currents. When 
the terms are collected in this manner, we say that the equations are in 
standard form. The solution of such equations will occupy a large amount 
of our time. At the moment, however, let us assume that the solution 
can be found. Then the three loop currents will become known for all 
values of t. Since all the branch currents can be expressed in terms of 
the loop currents, they in turn, will become known. The v-i relationships 
of the branches will then permit determination of the branch voltages. 
The analysis of the network will thus be complete. 

Let us now go back and examine this sequence of events. Since we 
have six branch current variables and only three independent K C L 
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equations, some 6 — 3 = 3 of the branch current variables can be chosen 
arbitrarily (as far as the K C L equations are concerned) and all the 
others can be expressed in terms of these three. Within wide limits, it 
is immaterial which three are chosen in terms of which the remaining 
ones are expressed. We can perhaps more easily visualize the situation 
if we think in terms of loop currents instead of branch currents. The 
question then becomes, how do we choose the loop currents? In the 
example we worked out, the loops for choosing loop currents were the 
same as the loops for writing the K V L equations. This is really not 
necessary; the loops that define the loop currents can be different from 
the loops used in writing the K V L equations. However, if they are 
chosen the same, then the standard form of the loop equations will 
possess certain symmetries (when no dependent sources are present). 
Hence, it is certainly convenient to choose the loop currents in this 
manner, and we shall always do so. With the loop currents chosen in 
this manner, the terms involving loop current ij in equation k are iden
tical with the terms involving ik in equation j . We will have more to 
say about this symmetry later. 

The procedure which we have illustrated (and to which we will refer 
as loop analysis) is a general procedure which can be followed for any 
network. However, two specific situations warrant special attention. 
These are: (1) the presence of current sources, and (2) the presence of 
dependent sources in the network. Neither of these introduces any 
insurmountable difficulties. We will illustrate by means of examples 
the peculiarities introduced into the loop equations by these situations. 

Consider the network shown in Fig. 2a. Since the point we wish to 
illustrate does not depend on the constituents of the branches, we have 

Fig. 2. Network with current source. 
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chosen all the branches to be resistances for simplicity. There are again 
six branches and four nodes, leaving three independent K V L equations. 
Let us choose the loop currents such that the current of the current source 
is identical with one of the loop currents. This can always be done in 
any solvable problem; a redrawing of the diagram as in part (b) helps 
to visualize this. With the choice of loops shown, the loop currents are 
identical with branch currents i1 i2, and i3. Let us now write the K V L 
equations while at the same time we insert the v-i relationships of the 
branches. As a matter of fact, we can also perform the mesh trans
formation simultaneously. The result will be 

(5) 

Here we have three equations in what might appear to be four un
knowns, the three loop currents and the voltage across the current source 
which we have labelled vg. However, loop current i1 is identical with 
ig, which is known, thus leaving only three unknowns. However, note 
that the last two equations do not contain vg; only i2 and i3 are unknown 
in these equations. Let us rewrite these in standard form. The result 
will be 

(6) 

These are two equations in two unknowns, and we can proceed to solve 
them by methods we will discuss shortly. (Because we chose all the 
branches to be resistances, we can effect the solution of these equations 
readily right now.) Once we have the solutions for i2 and i3, we can 
substitute these into the first equation and solve for the voltage across 
the current source. 

Note that if we had not chosen the loops such that the current source 
appeared in only one loop, then the unknown vg would have appeared 
in more than one equation, thus not permitting the simplification that 
we found. To summarize, we observe that when current sources are 
present in a network and a loop analysis is carried out, far from en
countering difficulties, the solution is simplified by the fact that the 
number of equations that must be solved simultaneously is reduced by 
the number of current sources present. After this set of equations is 
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solved, substitution into the remaining equation yields the solution for 
the unknown vg. 

Let us now consider the modification of loop equations when dependent 
sources are present. Consider the network shown in Fig. 3. (This is 

Fig. 3. Network with dependent source. 

the equivalent circuit of a cathode follower with some additional ele
ments in the cathode circuit.) In this network Nb = 4, whereas Nv = 3, 
so that there will be two independent K V L equations. Choosing loop, 
currents as indicated by the arrows, we write K V L equations around 
these loops, mentally substituting the v-i relationships of the branches 
and the mesh transformation. The result will be 

(7) 

We must now express the voltage of the dependent source, which is 
vp = μvg, in terms of the currents i1 and i2. From the diagram this 
expression is 

(8) 

Using this expression in Eq. (7) and collecting terms, we get 

(9 ) 

This is the desired set of equations. Note that these equations do not 
exhibit the type of symmetry we found when there are no dependent 
sources. 
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The presence of dependent sources does not seriously affect our pro
cedure for writing loop equations. There is an additional task of ex
pressing the voltages (or currents) of dependent sources in terms of the 
loop currents, but this is very easily accomplished. 

2.2 Node Equations 
Let us return now to a consideration of the Kirchhoff voltage law 

equations. We found that there are Nb — (Nv — 1) independent equa
tions in the Nb branch variables. If we assign values to a suitable set 
of Nb — [Nb — (Nv — 1)] = Nv — 1 of the variables, the remaining 
ones can be expressed uniquely in terms of these. We recognize Nv — 1 
to be the number of independent K C L equations. But these equations 
themselves involve Nb branch current variables. If it were possible to 
express these Nb current variables in terms of Nv — 1 voltage variables, 
then there would be the same number of equations as unknowns. This 
procedure is clearly quite similar to the one we used in arriving at the 
loop system of equations. In that case we substituted the K C L equa
tions (written as the mesh transformation) and the v-i relationships of 
the branches into the K V L equations. Now, we shall reverse this pattern 
and substitute the K V L equations together with the v-i relationships 
of the branches into the K C L equations. We shall illustrate the pro
cedure with an example. 

Consider the network shown in Fig. 4. Counting vg1 in series with 

Fig. 4. Illustration for node equations. 

R\ as one branch, there are five branches and three nodes. Let us choose 
one of the nodes (any one) as a reference (or datum) node and consider 
the voltages between each of the other nodes and the reference node, 
with the voltage reference + away from the datum node. These 
voltages are the node voltages. Any branch voltage can be written as 
the difference between two node voltages. (One of these two may be 
the reference node so that the branch voltage becomes identical with 
the node voltage except possibly for sign.) For the present example, 
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with node 3 chosen as reference, we have 

(10) 

These expressions, which relate the branch voltages to the node voltages 
are called the node transformation. They are equivalent to the K V L 
equations, as you can verify. 

Let us now write the K C L equations. There will be 3 — 1 = 2 
independent equations. We can choose any two of the three nodes for 
writing the K C L equations. The node we omit need not be the node 
chosen as reference in defining the node voltages. However, if we make 
this choice the standard form of the equations will take on a symmetrical 
form (when there are no dependent sources). Hence, we will always 
make this choice. The K C L equations for nodes 1 and 2 are 

(11) 

We now insert the v-i relationships of the branches into these expres
sions to obtain a result involving the branch voltages. Then we use the 
node transformation given in Eqs. (10) to convert to node voltages. 
Since the relationships between branch and node voltages are so simple, 
both of these steps can be performed simultaneously, yielding the result 

( 1 2 ) 

If we now collect terms and transpose known quantities to the right, 
the result will be 

(13) 
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These equations, just like the loop equations, are ordinary integro
differential equations. The source currents and voltages, and the initial 
conditions, are known; the unknowns are the node voltages. Suppose 
now that we solve these equations for the node voltages. The node 
transformation will then give us the solutions for the branch voltages. 
The branch currents will also be known from the v-i relationships of the 
branches. The analysis of the network is then complete. 

We refer to the procedure we have just discussed as node analysis. 
Like loop analysis, this is also a general procedure which can always be 
used, even when voltage sources or dependent sources are present. In 
fact, in our example a voltage source was present. 

There is one situation which might lead to difficulty when carrying 
out a node analysis. Consider a network which includes a transformer. 
The K C L equations can be written without difficulty. The next step 
in the analysis is to substitute the v-i relationships of the branches into 
the K C L equations. Here we encounter some difficulty. The v-i re
lationships for a simple transformer are 

( 1 4 ) 

These expressions give the voltages in terms of the currents. In order 
to use these in the K C L equations we will have to invert them. Suppose 
we integrate both sides between the limits 0 and t. The result will be 

( 1 5 ) 

Transposing the initial value terms leads to 

( 1 6 ) 

Each of these equations contains both i1 and i2. Let us now solve these 
for i1 and i2. Perhaps the easiest way is to multiply the first equation 
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by L 2 and the second by M and subtract. This will eliminate i2. Sim
ilarly, i1 can be eliminated by multiplying the first equation by M, the 
second by L 1 , and then subtracting the two equations. The results of 
these operations will be 

(17) 

Clearly, these expressions are valid only for a nonperfect transformer. 
Thus, we have succeeded in inverting the v-i relationships of a trans

former. With these expressions available, we can proceed on the nodal 
analysis of a network containing transformers without difficulty. This 
same approach can be used to invert the v-i relationships of multiwinding 
transformers, but the expressions will become very unwieldy. In Chap
ter 4 we will discuss a method based on matrix algebra which will make 
the expressions look simple. For the present, let us be content with the 
knowledge that nodal analysis can be carried out even when mutual 
coupling is present; however it involves a little extra work. 

Let us now consolidate our thoughts on the subject of loop and node 
analyses. We see that both procedures are made up of the same in
gredients: Kirchhoff's voltage law equations, Kirchhoff's current law 
equations, and the voltage-current relationships of the network elements. 
In loop analysis it is the current law which permits us to express, by means 
of the mesh transformation, all branch currents in terms of certain of 
them which we identify as loop currents. If we then substitute the 
v-i relationships into the voltage law equations and use the mesh trans
formation, the result is a set of Nb — (Nv — 1) integrodifferential 
equations in the same number of loop current unknowns. 

This order is reversed in node analysis. It is the voltage law which 
permits us to express, by means of the node transformation, all the 
branch voltages in terms of the node voltages. If we then substitute 
the v-i relationships into the current law equations and use the node 
transformation, the result is again a set of integrodifferential equations, 
this time Nv — 1 of them, in the same number of node voltage unknowns. 

For any given network, whether it contains current or voltage sources, 
or dependent sources, or transformers, either method of analysis—loop 
or node—may be used. They are both very general tools. The number 
of equations obtained might influence the choice, as Nv — 1 and Nb — 
(N„ — 1) may be different. If the objective of the analysis is to obtain 
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complete solutions to all branch voltages and currents, as we assume 
here, there is very little difference between one method of analysis and 
another. All of them—loop, node, or any of the other known methods— 
involve roughly the same amount of work. In the usual practical prob
lem this is not the case. If only the steady state solution is required, 
the number of equations is a prime consideration. If only the solution 
to one variable is required, the choice may depend upon whether this is 
a current or voltage. Presence of mutual inductances or dependent 
generators may also guide the choice. In some special network geome
tries a mixture of loop and node equations is more useful than either. 
(In network analysis, there are a very large number of special cases, and 
each of them has a "best method of attack." We shall stress the general 
procedures more in this text and refrain from just compiling "tricks of 
the trade." We shall mention a few of these special cases in Chapter 4, 
and a few more as we go along, especially in Chapter 10.) 

2.3 Solution by Laplace Transforms 
In the preceding sections of this chapter we have seen that in our 

attempt to find the voltages and currents in an electric network we are 
led to a set of simultaneous, ordinary, linear, integrodifferential equa
tions with constant coefficients. (Of course, for simple networks this 
set might reduce to a single equation.) We are now faced with the prob
lem of solving such a set of equations. In this book we will consider 
only one method of solution—the Laplace transformation method. We 
assume that you are familiar with the principles of the Laplace transform 
and of functions of a complex variable. * 

The basic procedure of the Laplace transform method of solution is 
quite simple and straight-forward. The first step involves taking the 
Laplace transform of the set of integrodifferential equations. In doing 
this we assume that the solutions of the equations are transformable. 
This step converts the set of integrodifferential equations, in which the 
unknowns are time functions (representing currents or voltages), into a 
set of algebraic equations in which the unknowns are the transforms of 
voltage or current. This set of equations is then solved for the unknown 
transforms by algebraic methods. Finally, taking the inverse transform 
leads to the desired solution of the original integrodifferential equations. 

Perhaps we can best illustrate this process by considering a few illus
trative examples. For a simple example, consider the network shown 
in Fig. 5. The capacitance has a voltage vc(0) = — V0 before the switch 

* An appendix on this subject has been provided, p. 505, for those who desire a 
"refresher course" in the theory of functions of a complex variable and Laplace trans-
forms. 
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is closed at t = 0. It is desired to find the current i(t) after the close 
of the switch. 

Fig. 5. Series RLC network. 

There is only one loop in this network and all the branch currents 
can be chosen equal to the loop current i(t). We can write Kirchhoff's 
voltage law around the single loop, at the same time substituting the 
voltage-current relationships to obtain 

( 1 8 ) 

In examining Eq. (18) we see that two types of terms are present. 
The last two terms, the initial capacitance voltage and the source voltage, 
are referred to as driving functions or excitation functions. If we were 
to write node voltage equations, then the initial inductance current 
would appear explicitly. This also is an excitation. Any voltage or 
current which is unknown before a solution is obtained is referred to 
as a response function. In the present case we are mainly interested in 
the current i(t) and we call it the current response. Thus, the equation 
contains driving functions and terms which involve the response function. 

We now take the Laplace transform of this equation. In this book 
we shall use a capital letter to designate the Laplace transform of a 
function which is itself represented by the corresponding lower case 
symbol. Thus the Laplace transform of a function f(t) is 

( 1 9 ) 

Since the £-transform operation is distributive, the Laplace transform 
of the left side of Eq. (1.8) can be written as the sum of the transforms of 
each term, assuming each term is £-transformable. This is a step which 
needs justifying, since we do not yet know the solution and so do not 
know whether it, or its derivative or its integral, are £-transformable. 
If we proceed under the assumption that this step is justified, and we 
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obtain a solution for i(t) which satisfies the equation, then this is justi
fication enough.* 

Let us examine Eq. (18) in detail, assuming that the driving function 
is piecewise continuous and of exponential order. Most of the functions 
we deal with, such as sinusoids (truncated or otherwise), exponentials, 
step functions, pulses of various shapes, etc., are of this nature. It 
follows that the desired solution i(t) must be continuous, for otherwise 
Eq. (18) could not be satisfied (at a discontinuity). This statement 
applies everywhere except possibly at t = 0. Under some conditions, 
which we will discuss in Chapter 4, it is possible for the current in an 
inductance to be discontinuous across t = 0. This fact does not violate 
the above statement if we interpret the equation to be valid for t > 0. 
This is in line with our discussion of the lower limit of the integral in 
Eq. (18). 

Let us now proceed with the solution. Taking the Laplace transform 
of each term in Eq. (18) and transposing known quantities to the right 
yields 

or, finally, setting i(0) = 0 and vc(0) = — V0, 

(20) 

This is the Laplace transform of the desired result. Note that the numer
ator contains terms that involve the excitation functions, including the 
initial conditions, while the denominator involves the network param
eters. 

Since Vg(s) is a £-transform function, it is an analytic function of 
the complex variable s. Hence, J(s) is also an analytic function. Its 
singularities include the singularities of Vg(s) and the zeros of the 
quadratic in the denominator. 

The next step in the solution involves finding the inverse transform 
of I(s). For this purpose the inversion integral, given by 

(21) 

is always available. However, the transform functions whose inverses 
we need to evaluate in lumped network analysis are very often rational 

* The basis of this justification lies in the "uniqueness theorems" for the solutions 
of such equations, which can be found in any treatise on differential equations. 
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functions (the ratio of two polynomials). For such functions, no in
tegration is needed. Application of the residue theorem yields the result 
that i(t) is simply the sum of residues of I(s)est at all its poles, for t > 0. 

Another approach is to decompose the transform function into a sum 
of additive terms, each term of which is simple enough that its inverse 
transform is easily recognized. The inverse transform of the original 
function is then the sum of the inverse transforms of each additive term. 
This process involves forming a partial fraction expansion of J(s) (which 
therefore involves the evaluation of the same residues). 

In order to proceed with our illustration, let us insert some numerical 
values in Eq. (20). Let V0 = 1, L = 1, R = 5, C = and 

(22) 

With these values, Eq. (20) becomes 

(23) 

This is a good time for us to illustrate a few practical computational 
"tricks" that come in handy. We notice that the function I(s) has one 
pair of complex conjugate poles and two real poles. Now it is better 
to keep the conjugate poles together, since the response is going to be 
a real function of t. (Otherwise we would have to recombine the re
sulting two complex functions in t, after separating them in s—certainly 
a wasted effort.) Also it is easier to compute the residue at a real pole 
than to compute the residue at a complex pole (numerically). Keeping 
these facts in mind, we compute the residues at the real poles first. 
Since the real poles are both of order one, the computation is very simple. 

Residue of I(s) at —2 

(24) 
Similarly, 

(25) 
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Now instead of finding the residues at s = ± j , we shall merely 
subtract the principal parts at the real poles. 

(26) 

At first the right side of this expression looks worse than what we started 
with. However we know that the numerator must be divisible by 
(s + 2)(s + 3), because we have subtracted the principal parts at these 
poles; the poles are no longer present. So we divide the numerator by 
(s + 2)(s + 3), getting finally: 

(27) 

Remembering the transforms of sine and cosine functions, we separate 
the right side into two terms. After transposing, the expression for 
I(s) becomes finally 

(28) 

Equation (28) is not a partial fraction expansion but is a form that is 
convenient for inversion. We can recognize each term easily and write 
down the inverse transform as: 

(29) 

You should verify that this expression satisfies the integrodifferential 
Eq. (18) and the given initial value for the inductance current. (The 
capacitance voltage is satisfied automatically. Why?) 

We could have obtained the partial fraction expansion of 7(s) easily 
from Eq. (27) by computing the complex residues. This expansion is 

(30) 

Let us here digress temporarily to discuss a point which the numerical 
values in this problem force upon our attention. The given element 
values do not correspond to values which are normally available in 
physical devices. But with these element values the expression for I(s) 
in Eq. (23) is pleasantly free of large numbers, involving powers of 10. 
The poles and zeros of I(s) are conveniently located close to the origin 
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in the s-plane. This circumstance leads to computational convenience 
and is certainly desirable. 

It is always possible to reduce the tediousness of computation with 
large numbers by a suitable scale change in the s-plane. Consider the 
impedance of an inductance sL. For given values of L and s, this 
impedance will have a certain value. Suppose we multiply L by a real 
positive number ω 0 and we simultaneously divide s by the same number. 
The impedance will remain unchanged. Similarly, the impedance of a 
capacitance 1/sC will remain unchanged if we multiply C by ω 0, while 
at the same time dividing s by ω0. What this process does is to change 
the scale in the s-plane, the frequency scale. We refer to it as a frequency 
normalization. 

Another useful normalizing device involves amplitude. Note that if 
all resistance, inductance, and reciprocal capacitance values in a network 
are divided by a constant Ro, then the current in each branch of the 
network in response to a voltage excitation will be multiplied by that 
same constant. But this is simply a change in scale. Such a procedure is 
referred to as impedance normalization. 

Numerical computation can be considerably simplified by use of fre
quency and impedance normalization. Let us designate normalized 
values of R, L, and C with a subscript n. Then, if frequency is normal
ized with respect to ω 0 and impedance is normalized with respect to R 0 , 
the normalized element values will be given by 

These expressions show that the normalized element values are di-
mensionless. When, in the numerical illustrative examples we give 
values such as C = 2, we do not mean 2 farads; we mean a normalized, 
dimensionless value of 2. Now let us return to our mainstream of 
thought. 

The partial fraction expansion of I(s) puts into evidence all the poles 
of I(s). Some of these poles (the first two terms in Eq. (30)) are con
tributed by the driving function, while the remainder are contributed by 
the network. In the inverse transform we find terms that resemble the 
driving function and other terms which are exponentials. There is an 
abundance of terminology relating to these terms which has been ac-
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cumulated from the study of differential equations in mathematics, from 
the study of vibrations in mechanics, and from the study of a-c circuit 
theory, so that today we have a number of names to choose from. These 
are 

Forced response—natural or free response 
Particular integral—complementary function 

Steady state—transient 

Perhaps we are most familiar with the terms steady state and transient 
When the driving function is a sinusoid, as in our example, there will 
be a sinusoidal term in the response which goes on for all time. In our 
example the other terms present die out with time; they are ephemeral, 
transient. Thus, eventually the sinusoidal term will dominate. This 
leads to the concept of steady state. If the driving function is not a 
sinusoid, but is still periodic, we can extend the idea of steady-state 
response to this case as well. However, if the driving function is not 
periodic the concept of steady-state loses its significance. Nevertheless, 
the poles of the transform of the driving function contribute terms to 
the partial fraction expansion of the response transform and so the 
response will contain terms due to these poles. These terms constitute 
the forced response. In form they resemble the driving function. The 
remaining terms represent the natural response. They will be present in 
the solution (with different coefficients) no matter what the driving 
function is; even if there is no driving function except initial capacitance 
voltages or initial inductance currents. This leads to the name natural 
or free response. The exponents in the natural response are called the 
natural modes (or normal nodes). 

In the illustrative example the exponents in the natural response, 
the natural modes, are negative real. If there were positive exponents, 
or complex ones with positive real part, then the natural response would 
increase indefinitely with time instead of dying out. A network with 
such a behavior is said to be unstable. We define a stable network as one 
whose natural modes lie in the closed left half s-plane, that is, in the left 
half plane or on the j-axis.* Actually, some people prefer to exclude 
networks with j-axis natural modes from the class of stable networks. 
This is simply a matter of preference. 

Let us now clearly define the various classes of responses. The com
plete response of a network consists of two parts; the forced response 
and the natural, or free, response. The forced response consists of all 
those terms which are contributed by poles of the driving functions, 
whereas the free response consists of all the terms which are contributed 

* This definition is applicable to all lumped, linear, time-invariant systems. 
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by the natural modes [the zeros of Δ(s)]. In case the driving functions 
are periodic, the forced response is also called the steady-state. If there are 
no j-axis natural modes, then the free response is also called the transient. 
In this book we shall not use the words particular integral or comple
mentary function, since they do not convey the meanings which are 
important to us. 

Let us now return to the illustrative example and assume that the 
driving function is changed to 

(31) 

everything else remaining the same. Then, instead of Eq. (23), we will 
get 

(32) 

We now have a pole of order two at s = — 2, and a simple pole at s = — 3. 
Again we can increase computational efficiency by separating the simple 
pole at s = —3 first. By inspection the residue at s = —3 is —4. The 
remainder is: 

(33) 

The last step follows by cancelling (s + 3). The standard procedure 
now is to write 

(34) 

and compute A and B as 

(35) 

We can, if we like, repeat our procedure of subtracting the term that 
is easier computed, namely A/(s + 2 ) 2 . However in this simple case 
the standard procedure is easier. A and B are found by inspection from 
Eq. (35) to be 

(36) 
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Therefore, the partial fraction expansion of I(s) is finally 

(37) 

In this case we see that the transform of the driving function has a pole 
at one of the natural modes of the network. The response transform, 
therefore, has a double pole. Taking the inverse transform of I(s), we get 

(38) 

In this case it is not quite so simple to distinguish between the forced 
response and the natural, because the driving function has a pole at one 
of the natural modes of the network. Referring to specific terms in 
this solution as "transient" also does not make sense, since the entire 
response dies out with time. 

Let us now consider a slightly more complicated example. Figure 6 

Fig. 6. Network of illustrative example. 

shows a common interstage, the series-peaked circuit. The network is 
initially relaxed, which means that prior to the closing of the switch 
at t = 0 there is no current in the inductance and no voltages on the 
capacitances. It is desired to find the voltage across capacitance C 2 

after the closing of the switch. By counting the branches and nodes we 
see that there are two independent K V L equations and the same number 
of K C L equations. Since the desired response is a voltage it would 
be slightly more convenient to use a node analysis. Let us choose the 
node numbered 0 as a reference and write K C L equations at the other 
two nodes. We can mentally insert the v-i relationships of the branches, 
while at the same time expressing the branch voltages in terms of the 
node voltages. The result will be 

(39) 
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Since the initial inductance current is zero, this term has not been 
written. In standard form these equations are 

(40) 

The next step is to take the £-transform of these equations. This 
leads to 

( 4 1 ) 

Again, we did not write the initial values of v1 and v2 since they are zero. 
These equations are a set of simultaneous algebraic equations. To 
solve for V2(s) in this simple case, we can solve the second equation for 
V1(s) and substitute into the first. We can also solve for V2(s) by 
Cramer's rule in terms of determinants. Let Δ(s) be the determinant 
of this set of equations. Then, the solution for V2(s) is 

(42) 

where 

(43) 

For purposes of illustration let us take 

(44) 

and With these values, Δ(s) becomes 

(45) 
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Finally, V2(s) becomes 

(46) 

It is evident that the singularities of V2(s) include the singularity of 
the driving function and the zeros of Δ(s). The equation Δ(s) = 0 is 
called the characteristic equation and its zeros are the natural modes. 

In order to proceed we again expand the response transform in partial 
fractions. The result will be 

(47) 

In the second line the two terms contributed by the complex pair of 
poles are combined into a single term. 

The final step requires finding the inverse transform of V 2(s). From 
the first line of Eq. (47) it is apparent that the desired result will be a 
sum of exponential functions. However, some of the exponents, as well 
as the coefficients, will be complex. These complex exponentials can 
be combined into real terms. The same result is more easily obtained 
from the second line of Eq. (47) by writing the term involving the 
complex poles as 

(48) 

The final result is 

(49) 

All the terms but the last in this result constitute the natural re
sponse, since they are the contributions of the zeros of Δ(s). The last 
term is the forced response. The terms steady state and transient do 
not convey any real significance in this case. 

2.4 Summary 
Let us now summarize the discussion of this chapter. We have seen 

that a complete solution for all the branch voltages and currents can be 
obtained by the simultaneous solution of all the equations resulting 
from an application of Kirchhoff's voltage law, Kirchhoff's current law, 
and the branch voltage-current relationships. However, it is not neces-
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sary to do this. Two general methods of analysis can always be used: 
the loop system and the node system. 

In the first of these methods, the branch currents are expressed in 
terms of loop currents. These expressions are inserted into the branch 
v-i relationships which, in turn, are inserted into the K V L equations. 
In the node system, the branch voltages are expressed in terms of the 
node voltages. These expressions are inserted into the branch v-i 
relationships which, in turn, are inserted into the K C L equations. 

Each of these methods of analysis leads to an independent set of 
ordinary linear integrodifferential equations with constant coefficients; 
Nb — (Nv — 1) equations in loop analysis, Nv — 1 in node analysis. 
These equations are solved by the method of Laplace transforms. 

In this chapter we illustrated the Laplace transform method of solu
tion by means of numerical examples. We did not attempt to formulate 
the technique in a general way but shall do so after you have become 
familiar with the solution of network equations in relatively simple cases 
and after we have discussed in the next chapter a procedure which will 
considerably simplify the notation. 

PROBLEMS 
2.1 Write the loop and node systems of equations for the networks of Fig. 

P2.1. (Include initial conditions and insert any references you need.) 

Fig. P2.1. 
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Fig. P2.1 (continued). 

2.2 In Fig. P2.2 the switch has been closed for a long time when it is opened 
at t = 0. The source voltage is vg(t) = V0. Find the voltage across the switch 
under the condition RC = k2L/R, with 

(a) k2 = 1 
(b) k2 = 25/16 
(c) k2 = 16/25 

Fig. P2.2. 

2.3 In Fig. P2.3 the switch is closed at t = 0. Find the voltage across resist
ance R if 

(a) ve(t) = 1 
(b) vg(t) = sin 2t 

Take L1 = 1, L2 = 5, M = 2, R = 3, R0 = 2. 

Fig. P2.3. 
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2.4 The outer loop in Fig. P2.4 has been closed for a long time when at 
t = 0 the switch is closed. Find the voltage v(t) after the closing of the switch. 
Take L = 1, R = 1, R0 = i C = i, vg(t) = 2 sin 2t. 

Fig. P2.4. 
2.5 In the network of Fig. P2.5 Ri = 1. R 2 = 10. Ci = C 3 = 1. C 2 = 20. 
For ig 

cos t, t > 0 
0, t < 0 

find the current in R2 and the voltage across C2. 

Fig. P2.5. 

2.6 (Read this problem carefully.) In the network of Fig. P2.6 choose the 
"windows" as the closed loops for writing KVL equations. Obtain loop equa
tions: (a) by choosing the same loops to define loop currents; (6) by choosing 
one "window" and the outside loop to define loop currents. 

Note the symmetry, or lack of it in the resulting equations. 

Fig. P2.6. Fig. P2.7. 
2.7 (Read this problem carefully.) In the network of Fig. P2.7 write the 

KCL equations for all nodes but node 1. Now obtain node equations by: (a) 
choosing node I as a datum node; (b) choosing node 2 as a datum node. 

Note the symmetry or lack of it in the resulting equations. 
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2.8 In the network of Fig. P2.8 

R1 = 1 Ω L3 = 1 mh 
R 2 = 4 Ω L4 = 4 mh 

Coupling coefficient k = 1 / √ 2 ; all currents are zero for t < 0. 
(a) With t>f = 1, t > 0 

= 0, t < 0, find ib2(t). 
(b) Repeat with vg = sin 10t, t > 0 

= 0, t < 0 
(c) Repeat part (a) with everything unchanged except for k which is now 

k = 1. 

Fig. P2.8. 

2.9 In the network of Fig. P2.9 the initial capacitance voltages are zero. 

With ve = 1, t > 0 
= 0, t < 0 

Find the branch current in the 3R resistance. 

Fig. P2.9. 

2.10 In the network of Fig. P2.10 the initial inductance currents are zero. 

R1 = 100 
R2 = 200 = Rs 
vg = 100, t > 0 

= 0 , t < 0 

L1 = 1 
L2 = 2 

Find the branch currents in Ri and R3. 
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Fig. P2.10. 

2.11 Repeat Problem 2.10 when the source is placed in the second loop as 
shown in Fig. P2. l l . Everything else is the same. 

Fig. P2.ll. 

2.12 The response of an audio amplifier to an input "step" is very important, 
as hi-fi enthusiasts know. The network of Fig. P2.12 is an audio stage. Typical 
values for the parameters are: 

Rk = 1000 ohms 
C k = 10 microfarads 
Rp = 10,000 ohms 

RL = 500,000 ohms 
Cc = 0.1 microfarad 
Rg = 1 megohm 

μ = 20 

The input is a unit step; i.e., 

v1(t) = 0, t < 0 
v1(t) = 1, t > 0 

Fig. P2.12. 

http://P2.ll
http://P2.ll
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Find the output voltage v2(t) for t > 0, assuming zero initial conditions. Sketch 
the input and output voltages for the first 0.02 second. Remove CR from the 
network. Again find v2(t) with everything else unchanged. Plot v2(t) for 
0 < t < 0.02, on the same sheet as the first two curves. (Normalize each curve 
with respect to the initial value.) 

2.13 As compared with the RC interstages of Problem 2.12, the transformer-
coupled stages have relatively poor transient responses. To illustrate this, 
compute the output voltage v2(t) of the network shown in Fig. P2.13 (which is a 
simplified output stage) with the same input step. Plot v2(t) for 0 < t < 0.02 
sec. Compare with Problem 2.12. (Normalization is again advised.) All initial 
values are zero. 

Li = 10 henries 
R2 = 100 ohms 

Li = 1 henry 
RP = 10,000 ohms 

M = 3 henries 
RK = 1000 ohms 

μ = 20 

vi(t) = 0 , t < 0 
fi(t) = 1, t > 0 

Fig. P2.13. 

2.14 Repeat Problem 2.13 with 0.00001 microfarad connected across the 
primary and sketch v2(t) for 0 < t < 0.0002 sec. The result you see is the 
"singing" in the loudspeaker when percussion instruments (drums for instance) 
are played. (The capacitance represents the distributed capacitance in the 
transformer primary.) 

2.15 (Transient response of the simple tuned circuit.) In Fig. P2.15 

i1(t) = 1, 
i1(t) = 0, 

t > 0 
t < 0 

keeping ω 0

2 = 1/LC and f = (R/2) √C/L as parameters, compute v2(t). 
Assume all initial conditions to be zero. Sketch three typical curves for v2(t) 

one for each of the three cases ω o

2 ^ R 2 /4L 2 . For one fixed value, ω o = 10 and 
ζ = 0.1, compute the time taken for the response to go from 10 per cent to 90 

per cent of its steady-state value (the rise time) and the maximum value reached 
by the response in per cent above the steady-state value (the overshoot). 
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Fig. P2.15. 

2.16 In Problem 2.15, plot the location of the poles and zeros of V2(s) in 
the complex plane. Sketch the locus of the poles of V2(s) as R varies from 0 to 

∞. Interpret the three ranges for R as used in the first part of Problem 2.15. 
Interpret ζ and ω o in the complex plane for the case ω 0

2 > R2/4L2. 
2.17 Figure P2.17 illustrates one type of automobile ignition system. The 

contact K is cam operated when the engine turns over, opening and closing the 
gap. S denotes the spark gap in the spark plug. (The distributor is not shown.) 
Suppose the system is in steady state when the contact K opens. Write the 
integrodifferential equations that hold before the spark occurs together with the 
initial conditions (assuming continuity for inductance currents and capacitance 
voltages). Solve for vs(t) and sketch the form of vs(t) for 0 < t < 0.1 sec. 

Fig. P2.17. 

2.18 The network of Fig. P2.18 is in steady state when switch S opens. 
Find the voltage vQ(t) across the switch after the switch opens. 

Fig. P2.18. 
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2.19 The network of Fig. P2.19 is the power supply filter of a cheap broad
cast receiver. The input voltage v1(t) is a half rectified sine wave (rectifier 
output). 

RL represents the load (consisting of all the vacuum tubes). Assuming all initial 
conditions to be zero, find the voltage across RL, and sketch it for the first period. 

Fig. P2.19. 

2.20 In the network of Fig. P2.20, the input voltage is a rectangular pulse 
of one volt and one second duration. That is 

vg(t) = 
0 t < 0 
1 0 < t < 1 
0 t > 1 

Find vc(t) if the initial voltage on the capacitance is (i) 0, (ii) 1 volt. 

Fig. P2.20. 



3 • MATRIX ALGEBRA 
AND ELEMENTARY TOPOLOGY 

In network analysis, we have to deal with systems of linear (algebraic 
or differential) equations. Matrix notation is a very convenient method 
of writing such equations. And, as with every convenient notation, it 
incidentally gives us new points of view and a better understanding. 
In this respect we might compare it with vector analysis or with Laplace 
transformation. It is certainly possible to study electromagnetic field 
theory without ever writing down a vector equation. However, if this 
is done Maxwell's equations will occupy a whole page and we cannot 
really "see" what they mean. It is only when we learn to think of certain 
field quantities as single vectors that we get any real intuition or "phys
ical feel" for electromagnetic fields. Similarly, it is possible to treat the 
subject of transient analysis of networks on the basis of classical theory 
of differential equations. However, the real intuition about the be
havior of lumped linear networks comes only when we consider Laplace 
transforms, the classical theory appearing artificial by comparison. 
Matrix algebra serves a similar purpose with regard to systems of linear 
equations. It unifies a number of concepts, especially those that are 
common to linear algebraic equations and linear differential equations. 
Just as one learns to think of a vector with three components as one 
"entity," one can learn to think of a system of equations as one matrix 
equation. Much of the value of the matrix notation is a consequence 
of this particular point of view. 

It is on these grounds that we shall justify our adventure into this 
new branch of mathematics. For matrix algebra does not make it any 
easier for US to solve numerical problems. We still have to do the same 
amount of work as always. But we can "see" what we are doing and 
understand why we are doing it. 

Since it is not our purpose to write a treatise on matrix algebra, 
many of the proofs of theorems shall be omitted. Nor shall any com-

54 
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prehensive coverage of matrix theory be attempted. Several excellent 
detailed treatments of the subject exist.* 

3.1 Definitions 
A matrix is a rectangular array of quantities. The quantities involved 

may be real or complex numbers, functions, derivative operators etc. 
In defining the operations of matrix algebra we will assume that the 
entries obey an algebra similar to the algebra of real numbers. (In the 
language of the mathematician, the entries are chosen from a "field.") 
For example the arrays 

are matrices. It is important to note that the whole rectangular array 
is a matrix. It is one entity. We place square brackets around the 
array to indicate this fact. There are also other notations in common 
use for a matrix. Two of these are shown below. 

We should be very careful to distinguish between matrices and de
terminants. A determinant is one single number. A matrix is a whole 
array of numbers. 

The horizontal lines of a matrix are called rows and the vertical lines 
columns. The order of a matrix is given as (m,n) where m is the number 
of rows and n is the number of columns. The order may also be written 
as (m X n), read "m by n." Since we wish to consider a matrix as a 
single entity, we use a single symbol like A, B, etc., for a matrix. (In 
this text bold face letters will be used to denote matrices.) The entries 
of a matrix are denoted by small letters a, b, c, etc. We specify the posi
tion of an entry in a matrix by an ordered pair of subscripts. Thus in 
the matrix A, the element a23 is in the second row, third column. When 
we wish to talk about the elements of a matrix in general terms, as we 
would in definitions, proofs, etc., we use the notation 

(1) 
*Perlis, S., Theory of Matrices, Addison-Wesley Publishing Co., Boston, 1955. 

Hohn, F. E., Elementary Matrix Algebra, Macmillan Co., New York, 1958. 
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This notation means the following. A is a matrix of order (m,n). The 
entries are a11, a12, etc. In other words, equation (1) means the same 
thing as 

(2) 

The symbol aij is called the "typical element" of the matrix A since the 
subscripts i and j may stand for any position in the matrix. We are 
now ready for a few of the matrix operations. 

Two matrices A = [aij] and B = [bij] are called equal if they are of 
the same order and if the entries of the two matrices are identical. 
That is, 

aij = bij all i, j 

We should utter a word of warning here. Matrices obtained by ap
pending rows or columns of zeros to a matrix A are not equal to A. 
They are different matrices. For example 

(3) 

In order to distinguish matrices from ordinary numbers, we call the 
latter scalars. 

The next operation that we shall define is the multiplication of a 
matrix by a scalar. If α is a scalar and A = [aij] is a matrix, 

(4) 

That is, to multiply a matrix by a scalar we multiply each element of 
the matrix by the scalar. The rule is, thus, very different from the 
corresponding rule for determinants. 

The matrix obtained by multiplying a matrix A by the scalar (—1) 
is denoted as —A. We will presently see that this notation is consistent 
with our concept of a negative. 

To add two matrices we add corresponding entries. Thus, addition 
is defined only for matrices of the same order. Formally, if 

(5) 
then 

(6) 
Obviously 

(7) 
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and 
(8) 

from the corresponding properties of the entries. Subtraction is im
mediately defined as 

(9) 
Now we see that 

(10) 

The matrix [0] which has 0 for each entry, is called the zero matrix. For 
each order we have a zero matrix. However it is usual to let the symbol 
0 itself stand for all zero matrices. There will normally be no confusion 
introduced thereby. The zero matrix has the familiar property of zero, 
namely 

(11) 

The next operation of interest is multiplication of two matrices. 
This operation is somewhat more complicated than the ones introduced 
so far. 

If 

then 
(12) 

where the entries are given by 

(13) 

Thus the element in the (i,j) position of the product is obtained by 
multiplying the corresponding elements of the ith row of the first matrix 
and the jth column of the second matrix and adding the products ob
tained. Thus, multiplication is defined only when the number of columns 
in the first matrix is equal to the number of rows in the second matrix. 

Example: 

(14) 
When the product AB is defined, i.e., when the number of columns 

in A is equal to the number of rows in B, we say that the product AB 
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is conformable. The product has the same number of rows as the first 
matrix and the same number of columns as the last matrix. Immedi
ately we see that AB may be a conformable product while BA is not, 
as in the example of Eq. (14). But that is not all. Both AB and BA 
may be defined without being equal. For example, let 

and 

Then 

(15) 
and 

(16) 

It is clear that 
(17) 

so that matrix multiplication is not commutative as a general rule. 
Hence, when referring to the product of A and B we must specify how 
they are to be multiplied. In the product AB, A is postmultiplied by 
B and B is premultiplied by A. In special cases, of course, a matrix 
product may be commutative. 

In contrast with the noncommutative property, matrix multiplication 
is associative and distributive over addition. Thus, if the products AB 
and BC are defined, then 

(18) 
and 

(19) 

Having defined a matrix with properties similar to the number 0, we 
should also define a matrix with properties similar to the number 1. 
This matrix, known as the unit (or identity) matrix is defined as follows: 
The unit matrix of order n is defined by 

(20) 
where 

(21) 

For example the unit matrices of order 2, 3, and 4 are, respectively, 
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We can easily verify that U does have the property of the number 1, 
namely if A is any matrix of order (m.n) then 

(22) 

For simplicity of notation the order of the unit matrix is often omitted. 
The real number .1 is also associated with a different operation. If 

a 0, there is a number b such that 

(23) 

The number b is called the reciprocal of a, written 

(24) 

Since matrix multiplication is noncommutative, the notation A-1 is used 
rather than 1/A. Thus we would like to find the matrix A~l with the 
property that 

(25) 

It is possible to show that such a matrix A-1 will exist if and only if the 
matrix A is square and the determinant of the matrix A is nonzero. 

It is quite evident that we can associate a determinant with a square 
matrix. The determinant of a square matrix A is written as det A or as 
|A|, the former notation being preferable. For example 

(26) 

As a word of warning, if two matrices A and B have the same deter
minant, this does not imply that A = B; the two may even be of dif
ferent orders. The matrix and its determinant are completely different 
species of animal. 

A square matrix with a nonzero determinant is called a nonsingular 
matrix. All other matrices, square or not, are singular matrices. 

Suppose a matrix A is nonsingular. Let Δ be the determinant of A 
and let Δ i j be the cofactor of the element aij. The determinant obtained 
by deleting row i and column j from the matrix A is known as the minor 
Mij. Then Δ i j is related to Mij by the equation 

(27) 
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Let us define a new matrix B as follows. 

(28) 
where 

(29) 

Then, by direct multiplication we can show that 

(30) 

It is apparent that B is the inverse of A. The details of the proof are 
left as a problem. To find the inverse of a matrix A, then, we proceed 
as follows. We replace each entry of A by its cofactor divided by det A; 
then we interchange the rows and columns of the result. 

This process of interchanging rows and columns of a matrix is an 
operation called transposing. If A is a matrix 

(31) 

then the transpose of A, denoted A'(or At), is defined by 

(32) 
where 

(33) 

In network theory we meet matrices with the property 

(34) 

that is, the matrix is equal to its transpose. This means that alj = ajl-. 
Such matrices (which obviously have to be square) are known as sym
metric matrices. 

The operation transpose, satisfies the following properties. 

(35) 

(36) 

(37) 

(38) 

(39) 

Using the operation transpose, we can define the inverse matrix more 
concisely as 

(40) 
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As an example let us find the inverse of the matrix: 

By the usual computations 

Hence 

3.2 Linear Algebraic Equations 
We are now ready to consider linear algebraic equations—which are 

our main interest. Suppose we have a system of linear algebraic equa
tions 

Such a system of equations may be written in matrix notation as 

( 4 1 ) 

which you can verify by carrying out the multiplication on the left. We 
now see by our definitions of matrix multiplication and equality that 
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Eq. (41) is the same as the set of equations immediately preceding it. 
Note that we refer to Eq. (41) as a single equation, a matrix equation. 
This equation may be written more elegantly and concisely as: 

(42) 

with an obvious definition of the matrices A, X, and Y. Once we get 
used to the concept of a matrix, i.e., once equations like (42) begin to 
mean something, we will appreciate the economy of thought offered by 
the matrix notation. 

Let us see some more of the elegance of matrix notation by solving 
Eq. (42) using matrix algebra. First let us consider the simplest case, 
when m = n and det A 0. That is, the coefficient matrix A is non-
singular. Then, premultiplying Eq. (42) on both sides, by A-1 we get 

(43) 

From the associative property and the definition of inverse it follows 
that 

(44) 

Thus we have solved Eq. (42). Let us write out Eq. (44) in detail, 
using the formula for inverse. We get 

(45) 

A little reflection will show that this solution is nothing more than 
Cramer's rule for solving linear algebraic equations. It is merely econ
omy of thought to express the solution in compact form as in Eq. (44). 

We see, incidentally, that if the coefficient matrix is nonsingular, the 
solution is unique. In particular if Y = 0, the unique solution is X = 0. 

For the next case let us consider the system which has more unknowns 
than equations, i.e., m < n, under the hypothesis that the equations 
are independent. Independence implies that at least one (m X m) de
terminant chosen from A is nonzero. Let us straighten out the termi
nology of this statement by defining a submatrix. Given a matrix A, 
a submatrix of A is obtained by deleting a set of rows and a set of columns 
of A (including the possibility of not deleting any rows or not deleting 
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any columns). Let us now restate the condition of linear dependence. 
The system of equations given in Eq. (42), in which A is of order (m, n), 
is linearly independent if and only if A contains a nonsingular submatrix 
of order m (where m is the number of equations). 

Returning to our problem, we are given that the system is independent 
and m < n. Y may or may not be zero. By hypothesis A contains 
(at least) one nonsingular submatrix of order m. Let j 1 , j 2 , ..., j m be 
the columns of this submatrix. By rearranging the variables we can 
rewrite the same equation as 

(46) 

You should verify that this is the same system of equations with which 
we started. If we call the submatrix consisting of the first m columns 
of the coefficient matrix of Eq. (46) An and that consisting of the last 
n — m columns A\2l and similarly let X x and X 2 stand for the cor
responding sets of unknowns, we can rewrite Eq. (46) as 

(47) 

The technique we are using here is known as matrix partitioning and 
is a very useful tool. The matrices A and X are said to be partitioned 
and the partitioning is shown by the dashed lines in Eq. (46). If we 
consider the submatrices An, A12, Xif X2 as elements, the product on 
the left side of Eq. (47) may be written as 

(48) 

This is a legitimate operation and does give the correct answer provided 
the products on the right are conformable and we preserve the order. 
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You can verify this by direct computation. Matrices partitioned in this 
fashion are said to be conformally partitioned. 

Then we can rewrite Eq. (47) as 

or 
(49) 

By our hypothesis and construction, An is nonsingular. Then, pre-
multiplying both sides of Eq. (49) by A 1 1 - 1 , we get 

(50) 

which is the general solution of Eq. (42). For the homogeneous case 
Y = 0, the solution becomes 

(51) 

The variables in X 2 , in both solutions (50) and (51) are arbitrary 
"constants." Thus we have solved for m variables in terms of the other 
(n — m) variables. 

As an example, consider the following set of equations, which are the 
Kirchhoff current law equations of the network of Fig. 1. 

Fig. 1. Illustrative example. 

(52) 
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We notice that columns 2, 4, 6, and 8 form a unit matrix, which is non-
singular. Rewriting the equations as suggested, we get 

(53) 

(Notice the rearrangement of variables.) 
Multiplying according to the indicated partitioning and transposing 

the second term leads to 

(54) 

Since the inverse of the unit matrix is itself, the solution of this equation 
is 

(55) 

Finally, if we include the remaining variables, we get 

(56) 
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The last four rows of Eq. (56) merely state that I1 = I1, I3 = I3, etc., 
which is certainly true. They are included to show a complete solution 
of Eq. (52). For each set of values of I1, I3, I5, and I7, we have a 
solution of Eq. (52). In a physical problem, the values of these variables 
are chosen to satisfy other conditions, and so are not completely arbi
trary. 

There is one case which we have not considered so far, namely m > n. 
That is, a system in which there are more equations than unknowns. 
This case is more complicated than the other two, since we are faced 
with a new question which is very basic. There is no assurance in 
general that such a system of equations will have any solution at all. 
A system of equations which has at least one solution is said to be 
consistent. If it has no solution it is an inconsistent system of equations. 
For example the system of equations 

(57) 

has no solution at all. The first two equations demand that x1 = x2 = 0, 
which does not satisfy the third equation. To answer the question of 
existence of solutions, we have to introduce the concept of rank. The 
rank of a matrix A is the order of the largest nonsingular submatrix 
of A. In terms of this concept we can unify the theory of linear equations 
very elegantly. We will state three typical results to illustrate this 
remark. 

1. The system of equations 

(58) 
is consistent if and only if 

(59) 

(The matrix [A Y] is obtained by appending the column Y to the 
matrix A and is known as the augmented matrix.) 

2. The system of equations 

(60) 

where A is of order (m,n) is linearly independent if and only if 

Rank of A = m 

3. The homogeneous system of linear equations 

(61) 
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is always consistent (with the trivial solution X = 0) . If A is of order 
(m,n), this system has nontrivial solutions if and only if 

Rank of A < n 

The proofs of these results will not be given here. 
Thus for the case m > n, we have to check for consistency. If the 

system is consistent, then it is dependent. It is obvious that the matrix 
cannot contain a nonsingular submatrix of order > n. If the rank of 
A is r (≤n), we select r independent equations from the set (by finding 
a nonsingular submatrix of order r of A and choosing the equations de
fined by these r rows) and solve them by earlier procedures. The 
solutions will automatically satisfy the other equations. 

3.3 Elementary Topology 
Several times in Chapter 1 we had to use the phrase "this fact will 

not be proved here," because we had not developed the necessary 
topological concepts. Network topology is a generic name referring to 
all properties having to do with the geometry of the network. In the 
present section we shall attempt an elementary discussion of network 
geometry as a prelude to the general discussion of loop and node systems 
of equations which follows in the next chapter. We will at the same 
time tie up the loose ends concerning the number of independent K C L 
and K V L equations, which were left dangling in Chapter 1. This section 
is by no means an exhaustive treatment of network topology, it is in
tended merely to give a general idea of the subject. For a more complete 
treatment, see Seshu.* 

The geometrical properties of a network are independent of the con
stituents of a branch and so in topological discussions it is usual to 
replace each network branch by a line segment. The resulting structure 
is known as a linear graph. For example the graph associated with the 
network of Fig. 2a is shown in Fig. 2b. Notice that we take the current 
references over to the linear graph. We say that the linear graph is 
directed; that is, we interpret the arrowhead as an orientation associated 
with the line segments. In the literature on graph theory many different 
terminologies are in vogue. Some of these are listed below. 

Branch edge, 1-cell, arc, element. 
Node vertex, 0-cell. 
Loop circuit, simple closed path. 

Our brief study of network topology will be concerned primarily with 

* S. Seshu and M. B. Reed, Linear Graphs and Electrical Networks, Addison-
Wesley Publishing Co., 1961. 
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Fig. 2. A network and its associated linear graph. 

the coefficient matrices of Kirchhoff's current and voltage law equations. 
As we observed in Chapter 1, Kirchhoff's laws are independent of the 
constituents of a branch, and thus can be defined for the linear graph 
as well. The fact that we have transferred only the current reference 
and not the voltage reference is no serious handicap, as we can make a 
simple convention about it. We make the convention that the reference 
plus for the branch voltage is at the tail of the reference arrow for the 
branch current. Such a convention is permissible since the references 
are arbitrary. 

If we write the current law equations for the network of Fig. 2 in 
matrix notation, we get 

(62) 

This equation can be written concisely as: 

(63) 

The coefficient matrix Aa is the incidence matrix (also called the vertex-
edge incidence matrix or the vertex matrix) of the linear graph. The 
incidence matrix 

(64) 
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is of order Nv X Nb (i.e., it has one row for each node and one column 
for each branch) and its elements aij are defined by Eq. 2 of Chapter 1. 

As we observed in Chapter 1, each column of the incidence matrix 
contains exactly one + 1 and one — 1. Therefore any row of the in
cidence matrix is the negative sum of the others. Thus the rank of the 
incidence matrix Aa is at most Nv — 1. One of the statements that we 
should prove now is that the incidence matrix of a connected graph 
has a rank equal to Nv — 1, so that exactly Nv — 1 of the K C L equa
tions are linearly independent. It is possible to prove this statement 
directly by reducing the matrix Aa by elementary operations (addition 
of one row to another). However, we shall take this opportunity to 
introduce an important topological concept, namely the cut set, and de
vise a devious proof for the rank of Aa. 

To motivate the discussion, let us add some of the K C L equations of 
Fig. 2, say the equations for nodes 1 and 2. The resulting equation is 

(65) 

Let us see what this equation represents. A little thought will reveal 
that branches 1, 3, 4, and 5 which appear in this equation, are exactly 
those branches which have one node in the set of nodes {1,2} and the 
other node in the set of nodes {3,4}. In other words, if we remove these 
branches from the network, the network will be separated into two pieces, 
nodes 1 and 2 being in one part and nodes 3 and 4 in the other. Alterna
tively, if we cut these branches, the network is also cut into two pieces. 
For this reason, we call such a set of branches a cut set. In Fig. 3, this 
cut set is shown by means of a dotted line. 

Equation (65) can also be interpreted as follows: The total current 
crossing the dotted line in the direction of the arrow of Fig. 3 is zero. 
This statement is a familiar one and you may have used it many times 
before. (For instance, the directed sum of line currents in a three phase 
system is zero.) 

Fig. 3. A cut set. Fig. 4. Some cut sets of Fig. 3. 
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Evidently the graph of Fig. 3 has many cut sets besides the one that 
we have shown in Fig. 3. Some of these are represented in Fig. 4. Some 
of these cut sets are merely the sets of branches connected to a node, which 
is understandable, since a node is isolated from the rest of the network 
by cutting the branches connected to it. For each of these cut sets, 
a K C L equation can be written (which equation would naturally be 
the sum of the K C L equations at the nodes on the "tail side" of the cut 
set reference arrow). For instance, for the cut sets of Fig. 4, we get the 
equations 

(66) 

Our objective here is to show that there are Nv — 1 linearly inde
pendent cut set equations. This will prove that there are Nv — 1 K C L 
equations, since cut set equations are linear combinations of K C L equa
tions (at the nodes), and we cannot increase the number of linearly 
independent equations by taking linear combinations of these. To do 
this we shall make use of the concept of a tree introduced in Chapter 1. 

In Chapter 1 we stated that a tree of Nv nodes contains Nv — 1 
branches, but did not prove this fact. Let us first establish this result 
by induction on the number of nodes. 

First we observe that a tree of two nodes (Nv = 2) can have only 
one branch, since it must be connected and must not contain any loops. 
Next suppose that every tree of Nv = k nodes contains k — 1 branches. 
Now consider any tree of k + 1 nodes. Such a tree must contain at 
least one node with only one branch connected to it. We can prove 
this fact by starting from any node of the tree and constructing a max
imal path. Since a tree contains no loops, such a path must end, and 
when it ends, we have a node with only one branch connected to it. 
If we remove this end node and the single branch connected to it, we 
have a tree of k nodes. By the induction hypothesis this tree contains 
k — 1 branches. Putting back the end node and branch, we see that 
the tree of k + 1 nodes contains k branches, which proves the result. 

Getting back to our main objective, we shall now define a set of 
Nv — 1 fundamental cut sets for a connected network, which are analogous 
to the fundamental loops of Chapter 1, and which have independent 
K C L equations. Suppose the network is connected. We first find a 
tree of the network. For each branch bk of the tree we construct a cut 
set as follows. Removing bk from the tree disconnects the tree into 
two pieces (one, or in trivial cases both, of which may consist of an 
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isolated node). Now we find all the links (chords) that go from one part 
of this disconnected tree to the other. These links, together with the 
branch bk constitute the fundamental cut set for bk. For each branch 
of the tree, we have a fundamental cut set. For example, consider the 
graph of Fig. 5. Choosing the tree of branches 3, 4, 5, 6, we get the 
fundamental cut sets shown in the figure, the cut set number correspond
ing to the branch number. The cut set 
references are chosen to agree with the 
corresponding tree branch reference. 

Each fundamental cut set contains a 
tree branch which is in no other cut set. 
Therefore, the K C L equations for the 
fundamental cut sets are linearly inde
pendent. Since there are Nv — 1 funda
mental cut sets, there are at least Nv — 1 
linearly independent K C L equations. 
Since there can't be any more, as we 
have seen, our main result is proved. 

For example, the K C L equations for the fundamental cut sets of Fig. 
5 are the following. 

Fig. 5. Example for fundamental 
cut sets. 

(67) 

We notice the 4 x 4 unit matrix here, showing that the rank of the 
coefficient matrix is four. 

Since the matrix Aa has a rank Nv — 1, we generally delete one row 
(any one row) and denote the resulting matrix by A. 

Next let us turn our attention to Kirchhoff's voltage law. K V L can 
be written in matrix notation as follows. 

(68) 

For example, for the network of Fig. 3, with the choice of loops given 
in Fig. 6, the K V L equations in matrix notation are as follows. 
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Fig. 6. Choice of loops for KVL example. 

(69) 

(Loops 6 and 7 are not shown in the figure to avoid confusion.) The 
matrix 

is called the circuit matrix (or the circuit-edge incidence matrix) and has 
elements bij defined by Eq. (7) of Chapter 1. Remembering our reference 
convention, we can replace the definition of bij by the following: 

bij = 1 if branch j is in loop i and the branch reference agrees 
with the loop reference; 

bij = —1 if branch j is in loop i and the branch reference is opposite 
to the loop reference; 

bij = 0 if branch j is not in loop i. 
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We saw in Chapter 1. that there are at least Nb — Nv + 1 linearly 
independent K V L equations for a connected network. In other words 
the rank of Ba is greater than or equal to Nb — Nv + 1. It remains for 
us to show that this number is also an upper bound, so that the rank 
is exactly equal to Nb — Nv + 1. To prove this fact we make use of 
the following result, which is one of the fundamental theorems in net
work topology. 

If the columns of the matrices Aa and Ba are arranged in the same 
branch order, then 

The proof of this important result is very simple. Each row of Aa 

corresponds to a node and each column of Ba' corresponds to a loop. 
Consider the rth row of Aa and the j th column of Ba'. The product of 
these two is the (r, j) element of the product AaBa'. If loop j does not 
contain node r, loop j does not contain any of the branches at node r. 
Thus when an element in row r of Aa is nonzero, the corresponding 
element in column j of Ba' is zero and vice versa. Thus the product 
is zero. If loop j contains node r, then it contains exactly two of the 
branches at node r. The possible orientations of the loop j and the 
branches at node r which are in this loop are the four shown in Fig. 
7, and four others obtained by reversing the loop reference. 

Fig. 7. Orientations of the loop and branches. 

These two elements contribute the only nonzero products. It is quite 
obvious by inspection that the two products are 1 and — 1, adding to 
zero. Thus the result is proved. 

This result, along with a result known as Sylvester's law of nullity, 
actually sets Nb — Nv + 1 as the upper bound for the rank of the circuit 
matrix of a connected graph. Since we don't know Sylvester's law, we 
shall establish this result directly. 

As we have just proved. 

(70) 

where one row of Aa has been deleted. Let the matrix A be arranged 
so that the first Nv — 1 columns constitute a nonsingular matrix, 
and let Ba be rearranged correspondingly. Partitioning the matrices 
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Ba and A' conformally after the first Nv — 1 columns and rows respec
tively, we get: 

(71) 

where Allf and so An, is nonsingular. Equation (71) may be solved 
for Bn to give 

(72) 

In other words the first N„ — 1 columns of Ba are expressible as linear 
combinations of the last (Nb — Nv + 1) columns. It is now obvious 
that Ba cannot contain a nonsingular submatrix of order greater than 
Nb- Nv+ 1. Thus 

Rank of Ba < Nb - Nv + 1 

Since we know from Chapter 1 that there are at least Nb — Nv + 1 
linearly independent K V L equations (for the fundamental loops), and 
we have now shown that there are no more than this number, then 

Rank of Ba is = Nb — Nv + 1 

for a connected network. 

PROBLEMS 
3.1 Find the indicated sums. 

3.2 Find the conformable products that can be made from the following 
matrices and evaluate them. 

3.3 Prove: If AB and BC are defined (i.e., conformable), 
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3.4 Prove: Under suitable hypotheses about orders (state these) 
A(B + Q = AB + AC 

(A + B)C= AC+BC 

3.5 Is (A + B)2 = A2 + 2AB + B2 in matrix algebra? Give the correct 
formula. 

3.6 Check whether any of the following matrices are nonsingular. Find the 
inverses of the nonsingular matrices. 

3.7 Show that under the definition of A~* (Eq. 28), A~lA = AA"1 = U. 

3.8 Find the condition that be nonsingular. What is the inverse? 

3.9 Prove: The inverse of a symmetric matrix is symmetric. 
3.10 Prove: If A is nonsingular, so is A~K 
3.11 Prove: (A-1 = (A')-1 

3.12 Prove: (AB)' = B' A'; (AB)-1 = B-1A-1, where A and B are non-
singular. 

3.13 Prove: If Z is symmetric, so is (BZB'). 
3.14 Let 

Compute AB and AC and compare them. What law of ordinary algebra fails 
to hold for matrices? 

3.15 Under what conditions can we conclude B = C from AB = AC? 
3.16 Let 

Compute AB. What theorem of ordinary algebra is not true for matrices? 
3.17 If AB = 0, what can we say about A and B? 
3.18 Solve the following equations. 
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3.19 Solve the system of equations. 

3.20 The following three operations are known as elementary operations: 
(i) Multiplication of a row (or column) by a nonzero constant. 
(ii) Addition to any row (or column) of any multiple of another row (or 

column). 
(iii) Interchange of rows (or columns). 

Show that the rank of a matrix remains unaltered under these three operations. 
How can we use this fact to find the rank of a matrix? 
3.21 (Structure of the incidence matrix.) Prove the following statements in 

order. The last statement needs the others for proof. 
(i) If from the incidence matrix A of a connected network, we select the 

columns corresponding to the branches of a tree, these columns constitute a 
nonsingular submatrix. (Hint: Construct the incidence matrix of the tree and 
use the fact that the tree is connected.) A is Aa with one row deleted. 

(ii) If any set of branches of the network contains a loop, the corresponding 
columns of A are linearly dependent. (Hint: BaAa' = 0.) 

(iii) Any set of Nv — 1 branches which does not contain a loop is a tree of 
the network. 

(iv) A square submatrix of order Nv — 1 of the incidence matrix A of a con
nected graph is nonsingular if and only if the columns of this submatrix cor
respond to the branches of a tree. 

3.22 (Structure of the circuit matrix.) State and prove the duals of the 
statements of Problem 3.21, for the circuit matrix B, ending up with the state
ment: 

Let B be the circuit matrix of a connected network, with Nb — Nv + 1 
rows and rank Nb — Nv + 1. Then a square submatrix of B of order 
Nb — Nv + 1 is nonsingular if and only if the columns of this submatrix 
correspond to a set of links for a tree of the network. 

(Hint: The dual of a loop is a cut set.) 
3.23 A cut set matrix is defined as a matrix Qa with elements 1, — 1, or 0 

depending upon the relative orientations of the cut sets and branches. Prove 
that Qa has a rank Nv — 1. Further if Q is a cut set matrix of Nv — 1 rows and 
rank Nv — 1, show that Q has all the properties of A except that each column 
of Q may contain more than one 1 and one —1. (For example, BQ' = 0, 
the statements of Problem 3.21 hold for Q, etc.) 

3.24 Choosing branch orientations for the networks of Problem 2.1, con
struct the matrices A, B, and Q for these networks. 

3.25 In the network of Problem 2.3, let each R and L be a branch, and let 
vg be a branch. Construct the matrices A and B for this network. Find all 
the nonsingular submatrices of maximum order in these two matrices, thus 
verifying the final statements of Problems 3.21 and 3.22. 



4 • GENERAL NETWORK ANALYSIS 

In the second chapter we saw how the fundamental equations of an 
electrical network can be combined to reduce the number of simultaneous 
equations that have to be solved. In the present chapter we will for
malize the development of Chapter 2 in matrix notation, in addition 
to considering certain special cases and the question of duality. 

Before we begin the formal discussion of loop and node systems of 
equations, the philosophical question of the value of formal procedures 
needs to be considered. Formal procedures are not always the simplest 
methods for all problems. In many common problems, inspection and 
short cuts may provide answers much more easily than solving the loop 
or node systems of equations. In some networks (especially active net
works) "mixed variable" equations—that is, equations in which both 
currents and voltages appear as unknowns—are more useful than either 
the loop or the node systems of equations. 

The real value of loop and node equations lies in their generality. 
They can always be used for any lumped network. (We can solve them 
in general only for linear, time-invariant systems.) As such they have 
two principal uses. First, they are very useful as bases for the develop
ment of network theory—active, passive, linear, or nonlinear. Secondly, 
whenever there is disagreement as to the "right answer," one can always 
solve the loop or the node systems of equations to find the right answer. 

The present discussion should not be construed to mean that no one 
uses loop or node equations to solve practical problems. On the contrary 
they are widely used in practice: to check the designs of filter networks, 
for example. We would merely like to caution you not to start "turning 
the crank" on every problem. You should learn to look at the problem 
first and decide on the best method of attack—and the best method for 
a problem is not always the most general one. 

77 
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4.1 Loop Currents and General Loop Equations * 
Since we are going to be concerned only with lumped linear networks 

and are using Laplace transforms to solve them, we will begin our dis
cussion with all the fundamental equations in Laplace transforms. 

Kirchhoff's current law was written in Eq. (2), Chapter 1 as 

(1) 

where akj = ± 1 or 0, depending on the branch reference. Using our 
knowledge of matrix methods from the last chapter, we can rewrite this 
equation in matrix notation. If we simultaneously transform the 
currents, the result will be 

(2) 
where 

(3) 

is of order (Nv, Nb) and akj is as defined in Eq. (2), Chapter 1. Ib(s) is 
the column matrix of Nb rows, consisting of the transformed branch 
currents. 

Since we know that exactly Nv — 1 of the equations in (1) are linearly 
independent for a connected network, we know immediately that the 
rank of the matrix Aa is Nv — 1. Therefore we may delete one row 
(any row) of Aa and write K C L as 

(4) 

where the matrix A has Nv — 1 rows and Nb columns. 
As an example, consider the network shown in Fig. 1. This is the 

same example that we considered in Fig. 4 of Chapter 1. For this 

Fig. 1. Simple network. 

* Some duplication between section 3.3 and this section will be found. This is 
intentional, to allow for the omission of section 3.3 if desired. 
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example Eq. (2), including all the nodes, becomes 

(5) 

(Since we have to deal with loop currents shortly, the double subscript 
notation for branch currents has been used.) If we omit any one of 
the equations, the remaining set will be independent. Omitting the 
third equation, we will get 

(6) 

This corresponds to Eq. (4) for the example. 
Turning next to Kirchhoff's voltage law, let us repeat Eq. (7) of 

Chapter 1 for convenience. 

(7) 

We can write this in matrix notation with transformed voltages as 

(8) 
where 

(9) 

is of order (Nm, Nb) and bkj's are as defined in Eq. (7) of Chapter 1. 
If instead of writing all possible equations, we write only the in

dependent ones, which will be Nb — Nv + 1 in number for a connected 
network, we get 

( 1 0 ) 

For the example of Fig. 1, there are two independent K V L equations. 
Choosing loops 1 and 2 in writing the K V L equations, as shown in the 
figure, Eq. (10) becomes 
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( 1 1 ) 

Suppose we now choose the same two loops to define the two loop 
currents I1(s) and I2(s). (As we noted in Chapter 2, this is not neces
sary. We might choose some other two loops for loop currents.) Then, 
as in Chapter 2, we can express all branch currents in terms of these 
loop currents. Let us write this mesh transformation in matrix notation. 
The result is 

( 1 2 ) 

Comparing Eq. (11) and (12), we see that the matrix of the trans
formation in Eq. (12) is the transpose of the coefficient matrix of K V L 
equations. 

A little reflection will show that this observation is perfectly general, 
as long as the reference plus for the branch voltage is at the tail of the 
reference arrow for the branch current for all branches. In the general 
case, if Kirchhoff's voltage law is written as 

( 1 3 ) 

then the mesh transformation is 

( 1 4 ) 

where Im(s) is the column matrix of loop currents. The proof of this 
statement is left as a problem. 

Let us now return to the example and substitute the mesh transfor
mation for the branch currents given by Eq. (12) into the K C L equations 
given by Eq. (6). This leads to 

( 1 5 ) 
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Thus, when the branch currents are expressed in terms of loop cur
rents, K C L is identically satisfied no matter what the loop currents 
may be. 

This statement is again perfectly general. For the general case, if 
we substitute the mesh transformation of Eq. (14) into the K C L equation 
in Eq. (4), we will get 

(16) 

If K C L is to be satisfied independent of the values of the loop currents, 
this expression must be an identity, which requires 

(17) 

It is easy to show that the last expression is valid as long as the ref
erence convention is used.* To do this note that A and Bf have the 
following forms. 

Focus attention on any one of the columns of B', say column 1 and 
on any one of the rows of A, say row 1. That is, focus attention on a loop 
and a node of the network. Either the loop "goes through" the node 
or not. If it does not, then none of the branches on the loop can be 
connected at the node. This means that corresponding to any non
zero entry in column 1 of Bf, there will be a zero entry in row 1 of A. 
In case the loop goes through the node, exactly two of the branches 
connected at the node will lie on the loop. If these two branches are 
similarly oriented with respect to the node (both current references away 
from the node or both toward the node), they are oppositely oriented 
with respect to the loop, and vice versa. This means that in row 1 of 
A, if the entries corresponding to the two branches are both + 1 or — 1, 
the corresponding two entries in column 1 of B' will be of opposite sign, 
and vice versa. Following these thoughts through shows that all the 
entries in the product AB' will be zero. 

Before proceeding with the development of loop equations, let us 
relate the preceding observations to our discussion of linear equations 

* Knowledge of section 3.3 is not assumed here. 
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in Chapter 3. Kirchhoff's current law 
(18) 

is a system of homogeneous linear algebraic equations. There are 
Nv — 1 linearly independent equations—this being the rank of A—in 
Nb unknowns. Therefore, the complete solution of Eq. (1.8) should 
contain Nb — (Nv — 1) arbitrary constants. 

The mesh transformation 

(19) 
which has been seen to be a solution of (1.8) does contain Nb — (Nv — 1) 
"arbitrary constants," namely the loop currents, provided B' has a rank 
of Nb — (Nv — 1). Thus, in fact, the mesh transformation can be looked 
upon as a complete solution of Kirchhoff's current law—a complete 
solution that we can write down by inspection from the network. 
Another point of view which is equally valid is to consider the mesh 
transformation as being equivalent to Kirchhoff's current law, equivalent 
in the sense that either one implies the other. 

Let us proceed with our derivation of loop equations. To begin with, 
Jet us draw a chart showing the development of loop equations and node 
equations because charts are much more descriptive. 

Fundamental 
equations 
(1) KCL 
(2) KVL 
(3) v-i 

relation
ships 

Substitute (3) 
into (2) to get 
(4) Branch 

current 
equations 

Solve (1) by 

(5) Mesh trans
formation 

Substitute (5) 
into (4) to get 

(6) Loop (mesh) 
equations 

Substitute (3) 
into (1) to get 
(7) Branch 

voltage 
equations 

Solve (2) by 

(8) Node 
transfor
mation 

Substitute (8) 
into (7) to get 
(9) Node 

equations 

The three basic relationships are K C L , K V L , and the branch v-i 
relationships. We haven't yet formulated the branch voltage-current 
relationships in matrix notation, and so let us rectify this omission. The 
relation between branch voltage and current transforms can be expressed 
in matrix notation as 

(20) 



Sec, 4,1] Loop Currents and General Loop Equations 83 

where Vg(s) is the matrix of generators; Rb, Lb, and Db are the matrices 
of branch resistances, inductances, and reciprocal capacitances, with Lb 

containing mutual inductance as well. We are taking the most general 
branch to consist of a series connection of a source, a resistance, a 
capacitance, and an inductance. The form of Eq. (20) is unaltered by 
the presence of dependent generators. When no dependent generators 
are present, the matrices Rb and Db are diagonal (with all off-diagonal 
elements zero), and Lb is symmetric. But when dependent generators 
are present, the matrices Rb, Db and Lb may not be symmetric. 

Equation (20) may be written more concisely as 

(21) 

where Zb(s) = Rb + sLb + (Db/s) is symmetric in the absence of de
pendent generators. As in Eq. (20), vc(0) and iL,(0) are the initial 
(time) value matrices of capacitance voltages and inductance currents. 

Let us now see by means of examples that the Eqs. (20) and (21) 
state the usual relationships between voltage and current. 

In the network of Fig. 2, if we consider R 2 L 2 as one branch, R3L3C3 as 

Fig. 2. Example for v-i relations. 

one branch, and let all the branch voltage reference + ' s be at the tails 
of the branch current references, the transformed v-i relationships are 

(22) 
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Collecting these equations in matrix notation, we have 

(23) 

corresponding to Eq. (20); or adding the parameter matrices together, 
we get 

(24) 

corresponding to Eq. (21). 
As another example, consider the network of Fig. 3, which contains 

Fig. 3. Example for v-i relations. 
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a dependent generator as well as a current generator. The branch rela
tions for this network are: 

(25) 

Collecting these equations together in matrix notation, we get 

(26) 

We notice that the branch impedance matrix Zb(s) is symmetric in the 
first example—Eq. (24)—and unsymmetric in the second example— 
Eq. (26). 

Let us now follow the top row of the chart carefully observing the 
number of equations and the number of unknowns at each step. The 
basic equations are: 

(1) K C L : AIb(s) = 0 Nv - 1 equations 

(2) K V L : BVb(s) = 0 Nb - Nv + 1 equations 

There are Nb equations in 2Nb quantities. Therefore we need Nb more 
specifications, one for each branch, before the system can be solved. In 
the case of some of the branches this additional specification takes the 
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form of a v-i relationship. In the case of branches consisting of inde
pendent generators, this additional specification is the branch voltage 
or current. In the case of dependent generators, the specification is 
the dependence of the generator current or voltage on the other variables. 
We collect all of these as the third set of equations. 

(3) 

We now have 2Nb equations (some of which in set 3 may be trivial— 
those for the independent generators) which can be solved for the 2Nb 

unknowns. 2Nb is a rather large number, even for a very simple net
work. For the simple network of Fig. 1, we would need to solve ten 
simultaneous equations. The loop and node systems are, as we stated 
in Chapter 2, organized procedures to avoid solving 2Nb simultaneous 
equations. Nevertheless our basic objective is to solve these three sys
tems of equations. 

Following our chart, if we substitute set (3) into K V L , we get 

(27) 

This expression, together with Kirchhoff's current law, is known as the 
system of branch current equations and is of historical importance. 
Early writers, including Kirchhoff himself, used branch current equa
tions in their work. The branch current system is a set of Nb equations 
in the Nb branch currents. 

The next step is to substitute the mesh transformation of Eq. (1.9) 
into Eq. (27). The result, the loop equations, can be written 

(28) 

We notice, using Problem 13, Chapter 3, that for a network without 
dependent generators the coefficient matrix of loop equations, which is 

(29) 

is symmetric, if the same set of loops is used for both K V L and the mesh 
transformation. We refer to Zm as the loop impedance matrix. 

Equation (28) represents a system of Nb — Nv + 1 loop equations in 
as many loop currents. Referring back to the chart we notice that we 
can, if we like, reverse the order of the middle two blocks without any 
harm. The final result will be the same. This equation may be written 
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more concisely as follows 

(30) 

where the meanings of the various quantities are obvious. 
Naturally, we would not go through the matrix multiplications of 

Eq. (28) to get the loop equations of a given network. From our earlier 
experience, we know how to write down the final result directly, almost 
by inspection, in all but the most complicated nonplanar networks. Since 
we have seen much of this already in Chapter 2, we need only remark 
on a few points and give one or two examples to illustrate Eq. (30). 

Equation (30) can be solved for Im(s) provided Zm(s) is nonsingular, 
i.e., provided 

(31) 
The solution will be 

(32) 

This gives us the loop currents. Knowing the loop currents we can 
find the branch currents from the mesh transformation of Eq. (19). 
Finally Eq. (21.) can be used to find the branch voltages. This completes 
the formal solution for the transforms. The time functions are found 
by inversion of the transforms. 

Let us next consider the question of choosing an appropriate set of 
loops for loop equations. There are several methods known, which we 
shall list. 

1. Choose a tree and take the fundamental system of loops. This 
method is completely general and will always "work." But generally 
speaking, the loop equations for a fundamental system of loops will 
always be more "complicated," in the sense that the loop impedance 
matrix Zm(s) will contain fewer off-diagonal zeros than the matrices 
obtained by other procedures. 

2. Choose loops in order, such that each succeeding loop contains 
at least one new branch not contained in any of the previous loops. This 
method is also valid but care must be exercised to get Nb — Nv + 1 
loops, since it is quite possible to exhaust all the branches of the network 
with fewer than Nb — Nv + 1 loops. 

3. The dual procedure of arranging the loops such that at least one 
branch is "eliminated" at each step is also valid and is subject to the 
same conditions as procedure 2. 

4. For planar networks the regions bounded by branches—the "win
dows" or meshes—may be chosen. 
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The justification of procedure 1 is obvious. We leave the justification 
of procedures 2 and 3 as problems. We will take up the justification of 
4 in section 4.6. 

Meanwhile let us answer a related question. Suppose we choose a 
completely arbitrary set of loops. How can we find out whether this 
set of loops is suitable for writing loop equations. We can answer this 
question very easily if we look back to our development of loop equations. 
The loops must satisfy two conditions. One, the K V L equations written 
for these loops must be independent, and the K V L equation for any 
other loop must be dependent on these. Two, for any set of branch 
currents satisfying K C L there must be a set of loop currents such that 
the mesh transformation holds. For both of these conditions, it is 
necessary and sufficient that the circuit matrix of these loops—the 
matrix B of KVL—have Nb — Nv + 1 rows and have a rank of Nb — 
Nv + 1. 

When the network contains current generators, loop equations can 
still be used, as we saw in Chapter 2. In fact the presence of current 
generators simplifies life, since some of the loop currents become known 
and fewer equations need to be solved simultaneously. The loops are 
chosen in such a fashion that each current generator is in exactly one 
loop. It is always possible to do so in any solvable problem. 

Let us consider a few examples to illustrate the effect of dependent 
generators and the use of judicious choice of loops in reducing computa
tional effort. As a first example consider the amplifier network of Fig. 4. 

Fig. 4. Example for writing loop equations. 

The voltage of the dependent source is μvgk which must be expressed in 
terms of the branch voltages and currents. From the figure, we can 
write 

(33) 

Let us first write loop equations for the two loops leaving μVgk as in 
Eq. (33) before expressing it in terms of loop currents. From Fig. 4, 
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by inspection, the loop equations are 

(34) 

Now insert the dependence of Vgk on Ix and I2. From Eq. (33) this is 

(35) 

Since I1 and I2 are unknown, we transpose them to the left after inserting 
this expression into Eq. (34). 

(36) 

We notice that the coefficient matrix of Eq. (36) is not symmetric, as 
often happens with dependent generators. We can also note exactly 
where the parameter μ enters the coefficient matrix. It comes only 
in the first row since the dependent generator is in the first loop only. 
The parameter μ appears in both columns 1 and 2, since the dependent 
generator depends on both I1 and I2. 

We may now solve these loop equations for any quantity of interest. 
We may, for example be interested in the voltage gain of the amplifier 
stage, defined as 

(37) 

Since the initial conditions are taken as zero, we evidently have 

(38) 
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From Eq. (36), since the second matrix on the right is zero, we get 

(39) 

with the usual notation. Thus only one element of the inverse matrix 
is required. Performing the indicated operations, we get finally 

(40) 

As a second example consider the network shown in Fig. 5. Suppose 
we are interested in computing V4, the voltage across R 4 , with zero 

Fig. 5. Another example. 

initial voltages. Since we have a current generator, we will make loop 
1 contain the current generator and make 

( 4 1 ) 

by choosing loops as shown. Since we want to compute V4, we have to 
compute the branch current in R 4 . So if we arrange the loops such that 
branch R 4 is in only one loop, we need compute only one loop current. 
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The choice of loops shown in Fig. 3 satisfies this condition. However 
we see from Fig. 3 that loop 1 is coupled to (i.e., has branches in common 
with) all other loops. Thus to compute I2, we would have to compute 
three cofactors and one determinant. (Write the form of the equations 
and the inverse to see this.) A slightly different choice which reduces 
the computation to two cofactors and one determinant is shown in Fig. 6. 

Fig. 6. Alternative choice of loops. 

The loop equations for this network are 

(42) 

Since Vg(s) appears only in the first equation and is unknown, we leave 
the first equation alone. In the others we transpose I1(s) = Ig(s) to 
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the right side, as in Chapter 2, to get 

(43) 

If the initial capacitance voltages are nonzero, we can't save any effort. 
Three cofactors and a determinant have to be computed for I3. If they 
are zero, only two cofactors and the determinant have to be computed. 
Under zero initial conditions we see from the inverse matrix that 

(44) 

where subscripts on Δ correspond to those on I rather than on the posi
tion in the coefficient matrix of Eq. (43). The computation of Δ and its 
cofactors shall be left to you. 

In both of these examples we wrote down the loop equations by in
spection and did not go through the matrix multiplication of Eq. (28). 
It is quite possible to formulate explicit rules for writing the equations 
by inspection in the matrix notation. These rules are usually taught in 
undergraduate ac circuits courses. We will not include these rules here. 
If any difficulty is encountered, the simplest procedure is to write down 
Kirchhoff's voltage law in terms of loop currents before collecting co
efficients for the standard form. We might remark however, that the 
initial inductance currents enter all equations like current generators and 
initial capacitance voltages enter all equations like voltage generators. 

4.2 Node Voltages and General Node Equations 
The node system of equations is exactly dual to the loop equations 

as we can see on the chart given at the beginning of section 4.1. There
fore, we can afford to keep the discussion of the general node equations 
somewhat shorter than the discussion of the last section. Just as we 
observed that the matrix of the mesh transformation is the transpose 
of the coefficient matrix of K V L equations, we find that the matrix of 
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the node transformation is the transpose of the coefficient matrix of 
K C L equations. That is, if K C L is written as 

(45) 

then the expression for branch voltages in terms of node voltages is 

(46) 

There are two assumptions involved here that must be clearly stated. 
First, the reference (or datum) node for the node voltages is taken to be 
the same node as the one omitted in writing the independent K C L 
equations. Secondly, the reference convention (voltage plus at the tail 
of current reference arrow) has been adopted. Clearly, neither as
sumption needs to be made in a network; but they are both convenient 
for theoretical purposes. 

The node transformation is a complete solution of the K V L equations. 
This statement is verified by noting that 

(47) 

The right hand side follows from the fact that 

(48) 

which follows from Eq. (17). This result is also obvious from physical 
considerations. From an alternative viewpoint it is also possible to 
consider the node transformation as being equivalent to K V L . In any 
case, there is no need to consider K V L any further after the branch 
voltages are expressed in terms of the node voltages. 

Let us consider an example to illustrate the relationship shown in 
Eqs. (45) and (46), leaving the proof as a problem. A network is 
shown in Fig. 7. Omitting the equation at node 4, the K C L equations 

Fig. 7. Example for node transformation. 
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at the other three nodes may be written in matrix notation as 

(49) 

We see by inspection that the relationship between the branch voltages 
and node voltages—with 4 as the reference node—is 

(50) 

It is evident by inspection that the matrix of the transformation (50) 
is the transpose of the coefficient matrix of Eq. (49). 

Referring back to our chart we note that the first step in obtaining 
the node equations is to substitute the branch v-i relations into K C L . 
These relations are given in Eq. (21). In order to substitute this into 
K C L we evidently have to solve for the branch current matrix Ib(s) 
first. We may run into some difficulty here because Zb(s) may have 
rows and columns of zeros corresponding to branches consisting of 
voltage or current sources and hence may be singular. Zero rows due 
to current generators do not matter. Let us write 

(δl) 

where the current generators correspond to the first set of rows and 
columns. Let us now define 

(52) 
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Using this expression, the solution for Jb(s) will be 

(53 ) 

where Vg2(s) contains only the voltages of the voltage generators, and 
Zg(s) contains only the currents of the current generators. 

Let us illustrate this procedure by means of an example. Consider 

Fig. 8. Example for v-i relations. 

the network of Fig. 8. The v-i relationships in matrix notation are 

(54) 

(Note the row and column of zeros.) Leaving the first equation alone, 
we get 

( 5 5 ) 
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We now solve this equation for the current transforms. The result will be 

(56) 

where (57) 

Finally, the matrix Ib(s) is given by 

(58) 

which should be compared with Eq. (53). 
Let us now turn to zero rows and columns in Zb(s) due to voltage 

generators. We shall be in some difficulty, since the currents of the 
generators will be unknown. This difficulty may be overcome in at 
least two general ways. One of these is to introduce fundamental cut set 
equations, exactly analogous to our treatment of current generators in 
the loop system. This we shall not do.* The second procedure is to 
introduce a transformation of the network that eliminates the zero rows 
and columns in Zb(s), leaving some property unaltered. This procedure, 
known as the Blakesley transformation or the e-shift, will be considered 
next. 

It is clear that we need such transformations only if there is no network 
element in series with the voltage generator. Otherwise the series 
element, together with the voltage driver, might be considered as a 
branch, thus eliminating the zero row and column in Zb(s). Therefore, 
suppose there are two or more other branches connected to both ends 
of the voltage generator. Let the voltage generator be in branch j 
between nodes k and n as in Fig. 9. If now the voltage generator is 

* We are not assuming the discussion of section 3.3. 
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Fig. 9. Voltage source with two or more branches at each terminal. 

"shifted" through one of the two nodes (k or n) into each of the other 
elements connected to the node, preserving its reference orientation as 
in Fig. 10, the branch currents before and after the transformation will 

Fig. 10. The Blakesley transformation. 

be the same. In other words the Blakesely step is a current invariant 
transformation. We observe the validity of the result by examining the 
loop equations of the network before and after the change. The loop 
equations remain unaltered. 

After the generator is shifted, nodes k and n become the same node. 
Thus, the voltage generator reduces the number of node equations to be 
solved simultaneously. 

Another method of attack is possible if all the voltage generators 
in the network have a common node. This common node can be taken 
as the datum and then some of the node voltages become known. We 
need only solve for the others. Thus voltage generators always simplify 
the node system of equations. We conclude that Eq. (21) can always 
be solved for Ib(s) either in the original network or in the transformed 
network, leading to Eq. (53). 
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Referring back to our chart we see that the solution for the branch 
currents is to be substituted into K C L . If we do this, we will get 

(59) 
This expression, together with K V L , is known as the system of branch 
voltage equations. The branch voltage system is also of historical im
portance. The system consists of Nb equations in the Nb branch voltage 
variables. 

The next step is to solve the K V L equations by means of the node 
transformation given in Eq. (46). When this solution is substituted in 
Eq. (59), the result is the node system of equations. Thus, 

(60) 

Similar to the loop impedance matrix given by Eq. (29), we define the 
node admittance matrix as 

(61) 
If the network contains no dependent sources, then Yn will be symmetric 
in the standard node system. 

The node equations can be written more simply as 

(62) 

The meanings of the terms on the right are found by comparing this 
expression with Eq. (60). If the node admittance matrix is nonsingular, 
this equation can be solved to give 

(63) 

With the node voltages determined, we now find the branch voltages 
from the node transformation. Finally, the branch currents are found 
from the v-i relationships. 

In many practical problems there is a single source and we are in
terested in only one or two currents or voltages, not all of them. In 
such a case, we choose the datum node to be the common node of the 
source and the branch of interest, if they have a common node. If they 
do not, we choose one end of either the source or the load as datum node. 
This reduces the amount of computation required. 
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Once again, this matrix formulation of node equations is mainly for 
theoretical convenience. We would not normally perform these matrix 
multiplications to get the node equations of a network, preferring to 
write them down by inspection. The method of writing down the node 
equations by inspection is familiar and needs no comment. We can, 
however, say one or two things about the matrix formulation that might 
otherwise go unnoticed. First, we have no exceptional networks to 
which node equations cannot be applied. Mutual inductance is freely 
admitted. (See example of Fig. 8.) Secondly a branch may be taken 
to be either a simple R, L, or C or a series combination of elements and 
generators, as we choose. Neither of these remarks applies to the pro
cedure of writing equations by inspection. Mutual inductance cannot 
be admitted easily (see Chapter 2 where the equivalent of the matrix 
inversion Z 2 2

_ - 1 of Eq. (52) is done in scalar notation). If we choose 
a series combination of elements as a branch, we must be very careful 
with initial conditions. 

To illustrate the latter remark let us consider the branch consisting 
of a series combination of R and C as shown in Fig. 11a. For this branch, 
the transformed voltage-current relationship is 

(64) 

or 
(65) 

Fig. 11. Network branches. 

Thus, the initial capacitance voltage does not appear very simply. For 
the series RL branch of Fig. 11b, the transformed voltage-current 
relationship is 

(66) 
or 

(67) 

which is just as complicated. (Equations (65) and (67) are quite reason
able, and easily remembered, if you think of the initial values as drivers.) 
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In practice it is much simpler to choose each R, L, and C (in series 
with voltage generators if any) as a branch, while writing node equations 
by inspection. If any doubt should arise, the easiest procedure is to 
write K C L in terms of branch voltages and then substitute the node 
transformation, before rewriting them in standard form. 

As an example consider the network shown in Fig. 12. The conven-

Fig. 12. Example for writing node equations. 

tional notation of vacuum tube circuitry is used here. (Drawing Lk 

in parallel with R k is not too realistic but is done to simplify the ex
ample.) Again only the minimum of references have been shown. This 
is a good example for node equations as there are eight loops to be con
sidered whereas only three node equations are required. Choosing R 
as the reference node, the node equations are 

(68) 

The terms of the coefficient matrix other than the gm's are easily 
obtained. On the main diagonal we simply have the sum of the ad-
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mittances connected to the node. In the off-diagonal position, say (1, 2), 
we have the negative sum of the admittances between nodes P and G. 

In terms of node voltages, we see immediately that 

(69) 

so that the current of the dependent source is simply 

(70) 

This term enters the equations at nodes P and K. When we transpose 
this term to the left side we get the four gw's in the coefficient matrix. 
The independent driver vo(t) enters the equation for node G. Since it is 
on the right side, the term [V0(s) times series admittance] enters the 
equation at G with a plus sign, as the reference plus is nearer node G. 

The arguments for initial conditions are similar to those in loop equa
tions. In general, the initial inductance currents enter the equations 
as current sources would and the initial capacitance voltages enter as 
voltage sources would. In the next section we will discuss this state
ment more fullv. 

4.3 Initial Conditions 
In deriving the equations for a network up to this point we have 

taken the mathematician's point of view on initial conditions, namely 
that these were "somehow" specified. However, as engineers it is our 
business to find these initial conditions. The only initial conditions we 
need are the initial capacitance voltages and the initial inductance 
currents. We need these as right hand limits as t approaches zero (the 
time zero being some reference time chosen conveniently), as denoted 
by vC(0+) and iL,(0+). These currents and voltages are branch var
iables, not loop or node variables. 

The conditions that we are looking for are the initial values of the 
solutions of the integrodifferential equations. Since they are initial 
conditions, they can be (intuitively) expected to depend upon the past 
history of the system. As they are right hand limits (0+ values), they 
will also be functions of the state of the system after t = 0. Thus we 
should expect to make use of both the past history of the system and the 
configuration for t > 0, in computing iL,(0+) and vc(0+). In general 
they cannot be computed knowing the past history alone or knowing 
the configuration of the network for t > 0 alone. 

Let us elaborate on this point just a little more. The system of 
differential equations written for the network for t > 0 cannot possibly 
tell us what the value of the solution is at t = 0. The specification of 
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initial conditions is unrelated to the system of differential equations. 
There is no standard procedure in mathematics that we can use for 
computing the initial conditions for any physical system. The compu
tation of initial conditions requires additional knowledge of the physical 
system over and above the differential equations. To put it another 
way, we normally choose t = 0 as the time when some change takes 
place in the system; either some switch is closed, or some generator 
voltage or current is discontinuous, etc. Under these conditions we 
cannot expect that the derivatives will exist at t = 0. In other words 
the differential equations are meaningless at such points in time; no 
information can be expected from the differential equations about what 
happens across discontinuities. Something else is needed, something 
that we have not introduced up to this point. 

A question may be asked at this point from a purely physical point 
of view. Why do we have to "compute" iL,(0+) and vC(0+) when we 
"know" that in any physical system the inductance currents and capaci
tance voltages are always continuous. The answer to this question is 
simple: the reason is idealization. The networks that we deal with and 
analyze are models. An inductance should not be thought of as a coil 
of wire. The current in a physical coil of wire will be continuous because 
the model for a coil needs series and/or shunt resistance (and even 
capacitance), in addition to inductance, for its complete representation. 
Similar statements are true for any physical component. If we are 
willing to say that our generators, inductances, and capacitances will 
always come with series and shunt resistances connected as shown in 
Fig. 13, and that we won't admit any single elements in the network 

Fig. 13. Composite elements. 

but will consider these composite devices as units, then all currents and 
voltages of the inductances and capacitances in these units will be con
tinuous and the present section will be unnecessary. 

Although such a procedure is physically justifiable, it is extremely 
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inconvenient from a theoretical point of view. If this procedure is used, 
the equations of a network consisting of even a few of these composite 
units will become very complicated. All of the techniques of network 
synthesis that have been developed will be useless. A great many prac
tical networks—filters, interstage networks, wave shaping networks etc. 
—are designed on the idealized basis, and nobody is going to give them 
up merely to avoid discontinuous currents in inductances and discon
tinuous voltages in capacitances. 

A different question may be asked by those mathematically inclined and 
familiar with the classical theory of differential equations. Most exist
ence theorems and classical procedures are based on the concept that 
initial conditions are "arbitrary." In a system of differential equations 
that has the maximum order which it can possibly have, this is true. The 
system of equations associated with a network will have the maximum 
possible order, if the branches are as shown in Fig. 1.3. Under these 
conditions therefore we may set iL,(0-) = iL,(0+), vC(0-) = vC(0+) 
and expect normal solutions. If idealized R, L, and C branches, voltage 
generators, and current generators are arbitrarily connected together, 
the system may not have the maximum possible order. It is only when 
such degeneracies are present that discontinuities in inductance currents 
and capacitance voltages are encountered. No existence theorems have 
been proved by mathematicians for these cases without making assump
tions about the existence of derivatives higher than those required by 
the differential equations. 

Having disposed of these questions let us ask some practical questions 
from the point of view of the network analyst. How can we recognize 
situations in which discontinuities in inductance currents and capaci
tance voltages are likely to occur? What physical principles are in
volved? Finally, what can we do about them? 

The situations in which these functions may be discontinuous are 
those that demand discontinuities for the satisfaction of Kirchhoff's 
current and voltage laws. In the case of capacitance voltages, loops 
consisting exclusively of capacitances, or capacitances and voltage gen
erators may lead to discontinuous capacitance voltages. Two situations 
are possible. Either we may suddenly establish the loop in question 
(by closing a switch) or the voltage of the generator in the loop may 
be a discontinuous function. In the first case we demand the satisfaction 
of Kirchhoff's voltage law after the closure of the switch, whereas the 
voltages before closure are completely arbitrary. In the second case, we 
demand that the sum of the voltages across the capacitances in the loop 
be discontinuous. Obviously, something has to "give" if we are to have 
a consistent system. 
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Analogously, it may be expected that inductance currents will be 
discontinuous when there are junctions or effective junctions * at which 
only inductances and current generators are present. Here again 
Kirchhoff's current law may demand a discontinuity if we suddenly 
establish the junction by closing or opening a switch, or if the current 
of the generator is discontinuous. Thus, it is quite easy to recognize 
these degenerate situations. (Figure 14 gives a few examples of such net-

Fig. 14. Networks with capacitive loops or inductive junctions. 

works. The dotted lines indicate the degeneracy.) In all other cases 
the functions iL,(t) and vC(t) are continuous and we may let 

* By an effective junction of inductances and current generators we mean a junction 
at which only inductances and current generators would meet if we suitably inter
changed series connected two terminal subnetworks or shorted some branches. 
Thus, an effective junction is the same as a cut set. 
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(71) 

Now for the next question. The physical principles involved are 
those which are one step up in the hierarchy from Kirchhoff's laws— 
namely, conservation of charge and conservation of flux linkages. The 
principle of conservation of charge applied to a network states that the 
total charge transferred into a junction or out of a junction at any time 
is zero. The principle of conservation of flux linkages states that ΣL ji j(t) 
summed over any closed loop is continuous. These two principles cannot 
be derived from Kirchhoff's laws. If they could, we wouldn't need to 
introduce them at all; we could derive everything from Kirchhoff's 
laws. 

Finally, what can we do about these discontinuities? There are two 
avenues open to us, conventional mathematics or unconventional com
putations. If we wish to follow conventional mathematics, getting well-
behaved (ordinary) functions for our currents and voltages, we have to 
compute the discontinuities using the required physical principles and 
put in the (0+) values in the loop and node equations. Or, we may 
disregard mathematical rules and substitute the ( 0 - ) values where 
the loop or node equations ask for (0+) values. Now the solutions 
will not be ordinary functions, but will contain the so-called impulse 
function. We shall consider both of these procedures. 

Let us first consider the procedure within the framework of conven
tional mathematics. We have seen that the only time a capacitance 
voltage needs to be discontinuous is when the network contains loops 
consisting of capacitances only or capacitances and voltage generators. 
In such cases only the voltages of the capacitances within the loop are 
discontinuous. Since we wish to compute these discontinuities only (at 
present), we might as well remove all other branches from the network. 
That is, we can first remove all the resistances, inductances, and current 
generators. If there are any capacitances that are not in a loop, we 
remove them too, since their voltages will be continuous. Now, we are 
left with a subnetwork consisting only of capacitances and voltage 
generators. To this network we apply Kirchhoff's voltage law and the 
equations of conservation of charge. The charge that we are concerned 
with is the charge that is instantaneously transferred, at the time of 
the discontinuity. The equation of conservation of charge says that 
the total charge transferred out of a junction must be zero. This result 
has the same form as Kirchhoff's current law. Therefore, we can use 
the loop charge variables and adopt a method of solution analogous to 
loop equations. Let us illustrate these remarks with an example. 
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Consider the network shown in Fig. 1.5. Since all voltages in this 
network would be expected to remain finite [assuming vg(t) is finite], 

Fig. 15. Network with discontinuous capacitance voltages. 

no charge can be instantaneously transferred through R5, L 6 , or R 7 , and 
therefore also through C 8 . Hence, for the purpose of computing instan
taneous charge transfer we may delete these branches and consider only 
the remaining subnetwork, as shown in Fig. 1.6. In a network of this 

type the capacitance voltage may be dis
continuous either because the network is 
suddenly established by closing a switch 
or because the voltage vg(t) is a discon
tinuous function. 

Let Vk(0-) be the voltage of capaci
tance k before the discontinuity. Let gk 

be the instantaneous charge moved into 
branch k in the direction of the reference arrow. Then the voltage on 
capacitance k after the charge transfer is obviously 

(72) 

Fig. 16. Simplified network. 

This expression will take the place of the v-i relations of a capacitance 
at t = 0, as it should. The equations of conservation of charge transfer 
are 

(73) 

omitting the last node. 
These equations are solved by using the loop charges, which are de

fined in a manner analogous to the definition of loop currents. In the 
present case the loop charges are the same as q1 and q2. The branch 
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charges expressed in terms of the loop charges (the mesh transformation) 
are 

(74) 

Kirchhoff's voltage law, written for (0+), demands that 

(75) 

On inserting the q-v relation of Eq. (72) and the loop transformation 
in Eq. (74) into these K V L equations, we get 

(76) 

We could obviously have written down this equation by inspection 
(without going through the intermediate steps) by analogy with loop 
equations. 

Solving Eq. (76) we find the loop charges g 1 and g 2 . 

where K is given by 
(77) 

These are the loop charges instantaneously transferred at the discon
tinuity. Going back to Eq. (74) we can find the charges transferred 
into the capacitances and finally from Eq. (72) we can find the capaci
tance voltages after the change. In this development we could just as 
well have used nodal analysis if we had liked. 

We shall now proceed to an evaluation of initial inductance currents. 
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Let us first examine the principle of continuity of flux linkage as applied 
to an electrical network before formulating a computational procedure. 
Since flux is a magnetic field concept, we have to appeal to field theory 
in the present discussion. Momentarily, then, let us abandon our model 
and think of a physical network consisting of the interconnection of 
various physical components, including coils of wire. Focus attention 
on a closed path in this network formed by the conductors. (If there 
are capacitors on this path, assume the path is closed across the gap.) 
The surface which is bounded by the conductors forming this closed 
path is of particular interest. This surface is rather contorted because 
part of the contour of the surface is made up of coils of wire. There 
is a certain magnetic flux over this surface which is principally through 
the part of the surface enclosed by the turns of the coil. The principle 
of continuity of flux linkage demands that the total flux enclosed by the 
closed loop be continuous. 

Let us again return to our model. In the model there is no flux stray
ing around the closed loops. The flux is assumed to be completely 
within the confines of the inductance. The flux, or flux linkage, asso
ciated with any inductance L j with a current ij is defined as Ljij. Let 
us see the implications of the principle of continuity of flux linkage at 
a point of discontinuity of the current in an inductance. Let t = 0 be 
the time at which the discontinuity occurs and let the "flux transferred" 
be defined as 

(78) 

This can be rewritten as 

(79) 

The reference direction of λ j is the same as that of ij. Compare the last 
expression with the corresponding one for capacitance voltage given in 
Eq. (72). 

Now, if we sum λ j ' s around a loop, taking the current references into 
account, we get the total instantaneous change in flux, which must be 
zero since the total flux must be continuous. Thus, λ j 's as defined by 
Eq. (78) satisfy the same equations as branch voltages. This is not 
surprising in view of Faraday's law of induction. 

The three systems of equations that we shall use for the computation 
of iz,(0+) are 

1. Continuity of flux linkages, 
2. λ-i relationships (Eq. 78), 
3. K C L , which must be satisfied by ij(0+). 
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These equations have the same general structure as network equations 
themselves, and so we may use the loop or the node method of analysis. 

Let us illustrate the node system with an example. The network is 
shown in Fig. 17. Due to the fact that two inductances and a current 

Fig. 17. Network with discontinuous inductance currents. 

generator are the only branches tied to node 1, we may recognize this 
network as one in which the inductance currents might be discontinuous, 
either due to switching or due to the generator current being discontinu
ous. If the generator current is discontinuous, at least one of the induct
ance currents has to be discontinuous. Thus, the current generators have 
to be included somehow in our computations. Therefore, we shall asso
ciate a λ-variable with a current generator also. (That is, a current 
generator is also a "flux source.") The continuity of flux principle 
applied to the two loops of Fig. 17 will give 

(80) 

Since these equations have the same coefficient matrix as Kirchhoff's 
voltage law, the node transformation is valid and we may write 

(81) 

In this special case the node transformation is seen to be a direct solu
tion of Eqs. (80). 

Kirchhoff's current law applied at junction 1., which is valid at (0+), 
requires 

(82) 

If we substitute the λ-i relations from Eq. (79), this becomes 

(83) 
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Using the node transformation, we have finally, 

(84) 

or 
(85) 

With the λ's known, we can find i 1(0+) and i2(0+), using Eq. (79). 
The same procedure can be used if we have magnetic coupling in 

addition to inductance junctions. We merely have to modify the defini
tion of λ. Instead of the scalar Eq. (78), we write the matrix equation 

(86) 
where 

(87) 

Let us illustrate by means of a second example the use of loop analysis 
and the effect of mutual inductance in the computation of initial cur
rents. 

In the network of Fig. 1.8 we may expect discontinuities in inductance 

Fig. 18. Discontinuous inductance currents again. 

currents due to the inductance junction 1 and the inductance-current 
generator junction 2. As before, the resistances, capacitances, and 
voltage generators make no contribution to the flux, and so for the 
purposes of the present computation the network of Fig. 18a may be 
replaced by that of Fig. 18b. 

Since we wish to adopt loop analysis, we choose the loops in such a 
way that the current generator appears in only one loop. The loop 
initial currents are seen to be 
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Loop 1: ii(0+) (same as the initial current in L 2 ) 
Loop 2: i2(0+) (same as the initial generator current) 
Loop 3: i3(0+) (same as the initial current in L 4 ) 

The continuity of flux linkage equations are 

(88) 

As usual in loop analysis, we neglect the second of these equations since 
the loop current is known. In the others we insert the λ-i relations, 
which are given by 

(89) 

The result will be 

(90) 

In this form the principle of conservation of flux linkage is certainly 
placed in evidence. In this network M23 > 0, because the two magnetic 
polarity marks (dots) are both at the tails of the branch current refer
ences. 

The mesh transformation for this case is 

(91) 
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Inserting this equation into Eq. (90), performing the indicated multi
plications, and transposing the known ig(0+) to the right side, we get 
the final equations. 

(92) 

The right side is written as the sum of two columns simply to place in 
evidence the effects of the ( 0 - ) values and the current generator. On 
solving Eq. (92) we can find the initial values i 1 ( 0 + ) and i4(0+). 
These, together with the mesh transformation ( 9 1 ) , give all the initial 
inductance currents. 

In this development we could just as well have used node equations. 
The only additional step necessary would be to invert the λ-i relations 
(89) to find i L ( 0 + ) in terms of Λ and iL(O-). 

The preceding discussion has demonstrated that it is a simple matter 
to determine when the capacitance voltages and inductance currents 
are likely to be discontinuous. In such cases, a method for computing 
the discontinuities has also been discussed. The techniques are essen
tially the same as the ones we have already learned—namely, loop and 
node analyses. 

Now let us turn to the alternative scheme of using impulse functions. 
First of all we have to know what the impulse function is; so let us 
digress a little to introduce the impulse and the related step function, 
as well as to study their important properties. For ease of reference 
we shall include this discussion in a separate section. 

4.4 The Impulse Function 
The impulse function has been the center of a great deal of contro

versy spread over the last half century. On critically examining the 
arguments pro and con, we can make the following broad statements 
about the impulse function. First of all the impulse is widely used by 
engineers and no "wrong answers" have been obtained by its judicious 
use. Secondly, the properties attributed to the impulse function are 
not justifiable on the basis of conventional mathematics. Finally, if 
one is willing to go to some extra trouble, it is quite possible to avoid 
the impulse function completely in electrical network theory. 

In this section we wish to collect together all the discussion that we 
shall need about the impulse function, point out the mathematical diffi-
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culties, and give one use of the impulse, namely in solving network 
equations. Another use of the impulse function will be introduced in 
Chapter 6. 

Since the impulse is very closely related to the step function, let us 
begin by defining the unit step function. The unit step function was 
used so widely by Oliver Heaviside that it is also called the Heaviside 
unit function. 

The unit step function is defined as 

u(t) = 0 t < 0 
(93) 

u(i) = I t > 0 

This is a perfectly well-defined, well-
behaved mathematical function and 
is illustrated graphically in Fig. 1.9. The unit step as a driver is also 
easily interpretable. As a voltage driver it is simply a d-c source of 1. 
volt connected to the network at a specific time which we can call 
t = 0, the input to the network having been shorted up to that time. 
Figure 20 explains this equivalence. The position of the switch in Fig. 
20b is changed at t = 0. We will also be interested in displaced unit 
step functions, i.e., functions which are zero up to t = r and take on 
the value 1 for t > T. Such a function is obviously representable as 

Fig. 19. Unit step. 

Fig. 20. Unit step voltage source applied to network. 

u(t — τ). The unit step, as we can compute very easily, has the simple 
Laplace transform 1/s. 

(94) 

This fact, that the transform is a very simple function of s, makes the 
unit step useful in some applications. The delayed function u(t — r) 
will have the transform e-sτ/s. 

Let US now turn to the impulse function. The name impulse originated 
in mechanics. A force F acting on a body for a time Δt gives it an 
increase in momentum of F At. Frequently the time Δt is small enough 
so that no appreciable change in the motion of the body has taken place 
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at the end of the interval Δt. The effect of the force at times later than 
Δt is fairly accurately predicted by considering that the increase 
in momentum—the impulse—has been given to the body at t = 0. 
Thus, an "impulsive force" is really an instantaneous change of mo
mentum. 

In a very similar manner, if a current i is applied to a capacitance 
for a time Δt, the charge deposited on one plate is i Δt. Again, if Δt is 
small enough so that very little effect is produced on voltages and cur
rents in other parts of the network in which the capacitance is connected, 
the subsequent behavior of the network is fairly accurately described 
if we consider that the charge on the capacitance has been instantane
ously changed by a nonzero amount. Thus, an "impulse of current" is 
nothing but a nonzero charge transferred instantaneously. 

An analogous discussion applies to an impulse of voltage. This is 
simply a nonzero change of flux in zero time. 

In all of the above situations, a nonzero change in some physical quan
tity takes place in a short but nonzero time. In many cases, this time is 
small enough so that other changes in the state of the system are small. 
The subsequent behavior of the system can be approximated quite 
closely by assuming that the change in the physical quantity occurs in 
zero time. 

For purposes of discussion suppose we think of a short pulse of current 
which is applied to a network. In the idealized approximation, we wish 
to describe the current analytically in such a way that, even though 
it acts for zero time, the same amount of charge is transported into the 
network. There is no reason to believe that such a function exists. 
Nevertheless, the intuitive feeling is that the desired function must look 
like a very narrow, tall pulse. This desired function is the impulse func
tion. 

There are various "definitions" of the impulse function. One of these 
definitions goes as follows. Let fn(t) be a sequence of pulses defined by 

(95) 

For example the functions fi(t)y /2(t), and /4(t) are shown in Fig. 21. 
Thus, each /n(t) is a pulse. As n increases, the pulse width becomes 
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Fig. 21. Definition of impulse. 

smaller and the height increases, both indefinitely. Also, for each n, 
the area under the pulse is unity. That is, 

(96) 

Thus, if e is any positive number ( ε > 0), then 

(97) 

since 1/n becomes smaller than ε for all sufficiently large n. The impulse 
function δ1(t) is now defined as 

(98) 

Quite obviously 

(99) 

It is usually formally written that 

(100) 

(101) 

Equation (100) is justifiable on the basis of Eq. (99). But, if δ1(t) is 
interpreted as an ordinary point function, then Eq. (101) introduces a 
very fundamental inconsistency in our mathematics since the ordinary 
(Riemann) integral is a continuous function of the upper limit, whereas 
u(t) is obviously discontinuous. It is not difficult to determine the source 
of the difficulty. Let us substitute the definition of the impulse function 
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from Eq. (98) into the left hand side of the last equation. The result 
will be 

(102) 

On comparing this with Eq. (97) we see that Eq. (101) implies 

(103) 

This interchange of operations—the limit on n and the integral—is not 
justifiable because the convergence of the integral is not uniform. In 
fact, in the sense of an improper Riemann integral of a real function, 

(104) 

as can be verified directly. 
There are other ways of defining the impulse function, some involving 

continuous and differentiable functions fn(t) but each of them will con
tain the same sort of interchange of operations which is not justifiable. 

The functions fn(t) defined in Eq. (95) have the following Laplace 
transform. 

(105) 

If we expand the exponential function as a power series, we can re
write Eq. (105) as 

(106) 

For any fixed s, the series in the last line of this expression approaches 
0 as n approaches ∞. 

Thus, as n increases, the transform of fn(t) gets closer and closer to 1. 
In other words 

(107) 

Let us now write the Laplace transform of the unit impulse from its 
definition in Eq. (98). If we again interchange the two operations of 
taking the Laplace integral and taking the limit (which is again not 
justifiable if δ1(t) is interpreted as a point function), we get 
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(108) 

Thus, we can make the claim that the Laplace transform of the impulse 
function is unity only if the interchange of operations is permissible. 

Let us now view the situation from transform theory. From the 
theory of Laplace transforms of real functions, we know that for any 
transform function F(s) 

(109) 

provided s approaches ∞ in the sector 

(110) 

The function F(s) = 1 certainly will not satisfy this condition. There
fore, this function is not the transform of any ordinary real-valued (point) 
function f(t). 

The fact that there is no ordinary point function with a transform 1 
does not imply that there is no other entity with a transform 1. Such 
an entity has been invented by the French mathematician Laurent 
Schwarz and is known as a distribution. A distribution is not an ordinary 
point function but a "continuous linear functional," which is a very 
different kind of animal. Its domain of definition is an abstract space 
of functions and its range is another abstract space. The theory of 
distributions is far too complicated for us to give an elementary dis
cussion of the subject with the mathematics assumed in this text.* 

With the aid of this theory it is possible to justify the answers that 
have been obtained using the impulse functions. The "Dirac Distri
bution δ" has properties analogous to those attributed to the impulse 
function. 

Because the impulse function is so widely used we shall continue to 
call it an impulse function in this text and talk about it as if it were 
an ordinary point function. None of these statements are mathemat
ically meaningful unless we interpret the impulse function as a distri
bution. (There are certain philosophical questions to be answered if 

* Interested readers are referred to the following sources: 
(1) Laurent Schwarz, Theorie des Distributions, Hermann et Cie, Paris, 1950-51. 
(2) Sir George Temple, J. London Math. Soc, Vol. 28, 1953, pp. 134-148; Proc. 

Roy Soc. (A) Vol. 338, 1955, pp. 175-190. 
(3) Halperin, Introduction to the Theory of Distributions, Canadian Math. Congress, 

University of Toronto Press, 1952. 
(4) P. W. Ketchum and R. Aboudi, Schwartz Distributions, Second Midwest Sym

posium on Circuit Theory, 1956, pp. 5.1-5.17. 
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we wish to call a current or a voltage, a distribution. We shall not con
cern ourselves with these questions.) 

None of the preceding discussion is affected if we multiply the unit 
impulse by a constant k. In the function kδ1(t) the number k is called 
the strength of the impulse. The name unit impulse or impulse of strength 
1 is given to δ1(t). 

There is one more property of the impulse function that is frequently 
useful. This is the so-called sampling property, defined by 

( 1 1 1 ) 

for a function g(t) which is continuous at r. The result is "proved" by 
methods similar to the ones used earlier. For any continuous function 
g(t), and using the function fn(t) as defined in Eq. (95), we get 

(112) 

Now using the continuity of g(t) at t = τ, we can easily show that 

(113) 

Once again interchanging the limit and integral in Eq. (113), we get 

(114) 

Note that this interchange of limits is again not justifiable on the basis 
of conventional mathematics. 

Since we have obtained the unit impulse by differentiating the unit 
step, there is no reason why we should not repeat this process and 
derive a new function δ2(t), such that 

(115) 
and 

(116) 

Such a function δ2(t) is called a doublet or a second order impulse. It 
is even more peculiar than δ1(t). The function δ2(t) may be alternately 
defined as follows. Let gn(t) be a sequence of functions defined by 
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(117) 

The function gn(t) has the shape shown in Fig. 22. Then the second-

Fig. 22. Definition of doublet. 

order impulse is defined as 

(118) 
Thus 

(119) 

The Laplace transform of δ2(t) can now be "calculated" as 

(120) 

It is clear how this same procedure may be repeated to give higher 
order impulses. For the nth order impulse we find 

(121) 

As far as we are concerned, the following "rules of operation" with 
the impulse function δ1(t) can be stated. 

(k constant) (122) 

(f continuous) (123) 

(124) 
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4.5 Impulse Functions and Initial Values 
Let us now discuss the use of impulse functions in avoiding the 

computation of initial values whenever discontinuities in voltages and 
currents are likely to occur. 

To begin with, let us interpret discontinuities in capacitance voltages 
and inductance currents as impulses. When a capacitance voltage is 
discontinuous, we say that some charge is instantaneously transferred 
from one plate of the capacitance to the other. Thus the charge on the 
capacitance is a step function. Since current is the time derivative of 
charge, we see from our discussion that the current in the capacitance 
contains an impulse occurring at the time of the discontinuity. The 
strength of the current impulse is exactly that which is required to trans
fer the charge. Quantitatively, the current through the capacitance is 

(125) 

where the discontinuity occurs at τ. 
Similarly, when an inductance current is discontinuous at t = τ, we 

say that a voltage impulse occurs across the inductance, instantaneously 
changing the flux linkage associated with the inductance. Quantita
tively, the voltage impulse is 

(126) 

Notice that under both of these conditions, the energy stored (in the 
capacitance and inductance) is also discontinuous. 

Let us now return to the loop and node equations and determine how 
we can avoid calculating (0+) values in those singular networks which 
contain capacitance loops or inductance junctions. The process is very 
simple; we proceed as if all capacitance voltages and inductance currents 
are continuous and substitute ( 0 - ) values whenever (0+) values are 
called for. When we get the transforms of the loop currents or node 
voltages, we will find that these are not proper rational functions; that 
is, they do not go to zero when s approaches ∞. Hence, the solution will 
contain impulses at t = 0. Let us illustrate these remarks by means of 
an example. 

Consider the network shown in Fig. 23. The source voltage and the 
elements are also given. 

(unit step) 
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Fig. 23. Network with impulsive currents. 

Due to the loop vg, C1, C 3 , we may expect discontinuities in the capac
itance voltages. Writing loop equations for the network, we get 

(127) 

It is here that we make the modification. Whereas these equations call 
for vc(0+), we shall, instead, insert vC(0-). Substituting the given 
numbers, the modified equations become 

(128) 
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Solving these equations, we get 

(129) 

In expanded form, these become 

(130) 

where 

Note that the coefficient of s2 in all three numerators is the same. We 
can learn a great deal by examining these solutions. First of all, none of 
these functions is the Laplace transform of an ordinary function. They 
all have the same non-zero value at s = ∞, this value being 



Sec. 4.5] Impulse Functions and Initial Values 123 

(131) 

Notice that the numerator of this expression is simply the amount by 
which Kirchhoff's voltage law is not satisfied by the capacitance-voltage 
generator loop at t = 0, and the denominator is the sum of inverse ca
pacitances in this loop. Thus the quantity on the right of Eq. (131) is 
simply the amount of charge that will be transferred into C1 and C 3 

at t = 0. 
It is thus evident that each loop current contains an impulse, the 

strength of the impulse being exactly the amount required to satisfy 
Kirchhoff's voltage law for t > 0. 

On examining Fig. 23, we may also note that the only branch currents 
that contain this impulse are those in the Vg, C1, and C 3 branches. 
Thus, although we did not choose this capacitance-voltage generator 
loop as one of our loops, the solution gives us an impulse of current in 
only these branches. Actually by choosing loop currents differently we 
would be able to get loop currents only one of which has an impulse. 

We can heuristically generalize from this example, even though the 
formal generalization is rather involved. (For the formal generalization, 
we have to find the degrees of the numerator and denominator in each 
transform, as well as the coefficients of the highest powers, by using 
network topology.) Whenever there is a capacitance loop or a capaci
tance-voltage generator loop in the network, the solution for the branch 
or loop currents may contain impulses. Since we use Kirchhoff's voltage 
law in obtaining the loop equations, the solutions for branch voltages 
will satisfy Kirchhoff's voltage law. Since a loop current impulse of 
strength k carries a charge k around 
the loop, conservation of charge 
transfer is automatically satisfied. 
Thus the impulse technique is 
merely a combination of the two 
steps: initial value computation and 
loop solution. 

By analogy we should expect that 
the branch voltages in a network 
containing inductance junctions will 
contain impulses and we can find 
these if we put iL,(0-) in the equations instead of iL(0+). This shall 
be illustrated with an example in which the node voltage solution con
tains impulses. 

In the network of Fig. 24, the inductance junction is not apparent, 

Fig. 24. Network with impulsive volt
ages. 
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but it is placed in evidence by interchanging R 3 and L 2 . Writing node 
equations and inserting iL(0 —) in the equations in the place of iL(0+), 
we get 

(132) 

If we insert the given numerical values and solve for V1(s) and V2(s), 
the result will be 

(133) 

Here, again, the functions do not approach 0 as s approaches ∞ and 
so the node voltages will contain impulses. Both of these impulses have 
the same strength, whose value is given by 

(134) 

We notice here too that the strength of each impulse is proportional 
to the amount by which the ( 0 - ) values fail to satisfy Kirchhoff's 
current law. And the strength is exactly enough to transfer the required 
flux into L1 and L 2 so that the (0+) values will satisfy Kirchhoff's 
current law. As we can observe, there is no impulse of voltage across R 3 . 

Since the impulses are in the node voltages, Kirchhoff's voltage law 
is automatically satisfied and so is the continuity of flux linkage. Since 
node equations explicitly contain Kirchhoff's current law, the solutions 
of the node equations will also satisfy Kirchhoff's current law as t —> 0 + . 
Thus the use of the impulse here, is equivalent to computing iL(0+) as 
we did earlier. 

4.6 Duality 
A striking parallelism is apparent in sections 4.1 and 4.2 between the 

developments of the loop and the node systems of equations. This 
observation raises the following interesting question. Is it possible to 
find two networks such that the loop equations for one network are the 
same as the node equations of the other network, except for the sym-
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bolism? In other words we would like to know whether the loop equa
tions for one network can become the node equations for the other if 
we interchange the symbols v and i throughout. Looking back over our 
chart in section 4.1, p. 82, we see a possible way in which this might 
happen. If the following two conditions are satisfied, then the node 
equations of network 1 will become the loop equations of network 2, 
on interchanging the symbols v and i. 

1. The Kirchhoff current law equations of network 1 are a suitable 
set of Kirchhoff voltage law equations of network 2 on substituting vj for 
ij. 

2. The expression for branch voltage vj of network 2 in terms of 
branch currents ij becomes the expression for branch current ij of net
work 1 in terms of branch voltages, on interchanging ij and vj. 

Networks N1 and N2 which satisfy conditions 1 and 2 above are called 
dual networks. Strictly speaking we should call N2 the dual of Nx. But 
ft can be shown that if conditions 1 and 2 are satisfied, then we can 
interchange N1 and N2 and conditions 1 and 2 will still be satisfied. 
That is, if N2 is the dual of Nx, then N1 is the dual of N2. 

Condition 1 may be restated in terms of matrix notation as follows. 
Construct the matrix A1 = [akj] where the akj's are defined by the 
Kirchhoff current law equations for network N1. Then, 

(135) 

where the bkj's are obtained from the Kirchhoff voltage law equations of 
network N2. This statement obviously implies that the number of 
branches of the two networks must be equal, and that the number of 
independent K C L equations of one must be equal to the number of 
independent K V L equations of the other. That is, 

(136) 

(137) 

where the numerical subscripts refer to the networks and Nb, Nv are 
numbers of branches and junctions, respectively. Evidently this is a 
condition on the structure of the network. We are asking for two things. 
First, there must be a correspondence between the branches of the two 
networks, as defined by the ordering of columns in the matrices A1 and 
B2 to satisfy Eq. (135). Secondly, there must be a correspondence be
tween the junctions of N1 (rows of A1) and loops of N2 (rows of B2). 

Two structures which are related by Eq. (135) are known as dual 
graphs. The detailed study of the existence and characteristics of dual 
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graphs would take us on a long excursion into topology which we have 
to pass up in this text.* 

We can, however, say the following. If the two networks can be 
superimposed such that each junction of N1 at which a current equation 
is written is inside a loop of N2, and the references of corresponding 
elements are lined up suitably, then the row of A1 and the row of B2 will 
be identical. Such a node and loop are shown in Fig. 25. The branches 

Fig. 25. Dual loop and node. 

of N1 are numbered 1, 2, 3 and the branches of N2 are numbered 1 * , 2*, 
3*, where 1 corresponds to 1.*, etc. Junction 1 corresponds to loop 1.*. It 
is left for you to verify that the equation at junction 1 and the equation 
for loop 1* have the same coefficients. A t junction 2 we will have +1. 
as the coefficient of i2(t) in Kirchhoff's current law. To make + 1 the 
coefficient of v2*(t) we see that loop 2* must be oriented as shown. By 
following through it can be seen that all the loops in N2 must be oriented 
clockwise (or all counterclockwise with branch references reversed). 

If windows are chosen for loops and all loops oriented clockwise (or 
all counterclockwise) then we can also observe that the off diagonal 
terms in loop equations all carry negative signs just as they do in node 
equations. In node equations the off diagonal terms all carry negative 
signs because we choose the conventions of writing Kirchhoff's current 
law as "away from the node" and the node voltages as having + ref
erence away from the reference node. 

It is time for us to state the answer to the basic question of existence 
of dual structures. A network will have a geometrical (structural) dual 
if and only if it can be drawn on paper without cross-overs, i.e., only if 

* Detailed discussions of the subject may be found in the following two papers. 
(1) Whitney, H., "Non-Separable and Planar Graphs/' Trans-American Math. 

Society, vol. 34, No. 2, pp. 339-362, 1932. 
(2) Kuratowski, C , "Sur le Problem des Courbes Gauches en Topologie," Funda

menta Matematicae, vol. 15, pp. 271-283, 1930. 



Sec. 4.6] Duality 127 

it is planar. For a planar network the dual is constructed exactly as 
in Fig. 25. Inside each region of the given network N1 we place a node 
of the dual N2. In addition we have a node outside N1 (the reference 
node). Crossing each branch of N1 we have a branch of N2. These 
two are "corresponding" branches for the rest of the discussion. The 
references are next chosen such that the matrix of the Kirchhoff voltage 
law equations for N1 (with all loops oriented clockwise) will be the same 
as the matrix of the Kirchhoff current law equations of N2. (All the 
voltage references may be taken at the tail of the current reference for 
convenience.) 

Condition 2 is relatively easy to satisfy. We have the dual pairs of 
v-i relationships as given in Fig. 26. The only element with no dual 

Fig. 26. Dual branches. 

relationship is a mutual inductance. Thus, by our definition of duality, 
only planar networks without mutual inductances have duals. 

The construction of the dual of a given planar network is now evident. 
We first construct the structural dual as in Fig. 25. Then we make cor
responding elements duals as in Fig. 26. The node equations of either 
network will be a suitable set of loop equations for the other. In terms 
of the coefficient matrices of the loop and node equations for N1 and N2, 

(138) 

(139) 

Since the matrices are equal, their determinants, cofactors, etc., will 
all be equal. This fact is used to construct so-called inverse networks 
as we shall discuss later. 



128 General Network Analysis [Ch. 4 

We will now illustrate the construction of a dual network by means 
of an example. Consider the diagrams in Fig. 27. The original network 
is the one in Fig. 27a. The geometrical construction of the dual is 
shown in Fig. 27b and the final network, with the branches properly 
chosen, is given in Fig. 27c. The current of the source, ig*, must be the 
same function of t as the voltage of the dual source, vg*. 

Fig. 27. Example of dual networks. 

We can now see the justification of procedure 4 in section 2 for choosing 
loops; namely, for a planar network, we choose the windows of the net-
work for the loops. This is one of the first methods of writing loop 
equations that undergraduate students learn. To justify the procedure, 
we have to consider the dual network. Let the original network be 
N1 and the dual N2. We have constructed a matrix B1 of the network 
N1 by choosing the windows for loops. By our discussion, this matrix 
is also equal to the coefficient matrix of K C L equations for network 
N2. Therefore, it has the rank Nv2 — 1, which by Eq. (137) with the 
subscripts interchanged, is equal to Nb1 — Nv1 + 1, thus making B1 an 
appropriate matrix for K V L and the mesh transformation of N1. 
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4.7 Network Functions, Driving Point and Transfer 
In this text, we have been studying lumped linear networks entirely 

from the Laplace transform point of view. So far we have used Laplace 
transforms mainly as a tool, to compute the complete response of a 
given network to a specified excitation. But the real value of Laplace 
transforms in lumped network theory is that it allows us to associate 
analytic functions with networks, and thus enables us to use all the 
knowledge we have about analytic functions in our study of networks. 
Networks are most usefully characterized by their external behavior. 
This external behavior is most conveniently described by an analytic 
function or a set of analytic functions. It is our purpose, in this section 
to define these analytic functions describing a network, and to show how 
we can compute them using the loop and node systems of equations. 
You have probably met all of the concepts that we shall introduce in 
this section in steady-state circuit analysis. But in steady-state circuit 
analysis, these concepts are introduced as complex numbers, whereas we 
are going to define them as analytic functions of the complex variable s. 
We shall show in the next chapter how these analytic functions are re
lated to the corresponding steady-state concepts. 

By a one terminal-pair network or 
one-port we mean a network with two 
nodes specially designated as input 
terminals. 

The "black box" description of a 
one terminal pair network with the 
conventional notation for the termi
nal nodes is shown in Fig. 28. The 
voltage across the terminals (1, V) is designated as v1(t), with the ref
erence + at the terminal 1, and the current at these terminals is i1(t), 
with the voltage reference plus being at the tail of the current reference 
arrow. Network functions can be (meaningfully) defined only when the 
black boxes (such as Fig. 28) do not contain any independent generators. 
For the present we will make only this assumption (in addition to lumped, 
linear, time-invariant, components). The one terminal-pair network 
may contain dependent generators in addition to R, L, C, M parameters. 

By the driving point impedance Z(s) of a one terminal-pair network, 
we mean 

Fig. 28. One-port network. 

with all initial conditions equal to zero (140) 

where V1(s) and I1(s) are the transforms of the input voltage and current, 
with references as shown in Fig. 28. 
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The driving-point admittance Y(s) is defined simply as the reciprocal 
of the driving-point impedance. 

with all initial conditions equal to zero (141) 

Let us examine these definitions for a moment before getting involved 
in formulas. First let us compare this definition with the a-c steady-
state definition even though we won't relate them until we get to the 
next chapter. In a-c steady-state analysis, we assume that all the cur
rents and voltages are sinusoidal functions of time. In particular the 
functions v1(t) and i1(t) of Fig. 28 may be written as 

(142) 

where the subscript 1 on ω is used merely to emphasize the fact that the 
angular frequency is a constant. Then we construct the complex num
bers U1 and J1 by writing 

(143) 

We define the driving-point impedance Zs as the ratio of these two 
complex numbers. 

(144) 

and the driving-point admittance as the reciprocal. (The subscript is 
to remind us of sinusoids.) By comparison, the general definitions (i40) 
and (141) are more natural. We shall show in the next chapter that our 
definition is a generalization of the a-c steady-state definition. 

These definitions imply something else that is more important. In 
definitions (140) and (141), we did not say anything about the external 
circuitry connected to the terminals 1 and 1'. The implication is that 
it makes no difference. We may, if we like, connect a voltage generator 
or a current generator, or embed the black box of Fig. 28 in any compli
cated network. As long as we make external connections only at the 
terminals 1 and 1' (i.e., as long as we don't make any connection to one 
of the internal nodes inside the black box), the ratio V1(s)/I1(s) remains 
fixed. This fact requires proof, but we will consider it as intuitively 
obvious. A formal proof would have to appeal to Thévenin's theorem. 
It is here that we need the assumption that there are no independent 
generators inside the one terminal-pair network. If it contains any 
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independent generators, the ratio V1(s)/I1(s) will depend on the external 
circuitry and thus will not be a characteristic of the one terminal-pair 
itself. 

Another factor that should be noticed is that we have made no 
assumption as to the nature of the time functions v1(t), i1(t). The net
work may be excited by a battery for all the difference it makes. How
ever we have made the assumption that, if v1(t) is the excitation, then 
i1(t) is the complete response—not just steady state. (Of course, the 
roles of i1 and v1 can be interchanged.) This is implied in the definition 
of the Laplace transforms V1(s) and I1(s). 

These comments will apply to all the network function that we shall 
define and so will not be repeated. 

Now let us turn to the computation of the driving-point functions 
from loop and node systems of equations. Let us begin with the warning 
that the important things to understand are the definitions. Memor
ization of formulas that may be derived from the definitions is a poor 
and misleading substitute. 

Let us first consider the case in which 
the network contains no dependent 
sources. Let us excite the network 
with a voltage source and write loop 
equations, choosing the loops in such 
a way that the voltage source appears 
in only one loop (we label this loop 
1) as illustrated in Fig. 29. The loop equations take the form 

Fig. 29. Calculation of driving-point 
functions. 

(145) 

It is now a simple matter to solve for I1(s) and then take the ratio of 
Vg(s) (which is equal to V1) to I1(s). The result is 

(146) 

The notation z is used to emphasize that the determinant and cofactor 
are those associated with the loop equations. 

We can, quite evidently, write a dual formula in terms of node equa
tions, by considering that the network is excited by a current source. 
Still assuming that there are no dependent sources and choosing one of 
the input terminals as the datum node (say 1'), the driving-point 
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admittance will be given by 

(147) 

The notation y implies that the determinant and cofactor are those 
associated with the node equations. 

The conditions under which these formulas for the driving point func
tions are valid should always be borne in mind. Only one cofactor is 
involved because the voltage source appears in only one loop, in the 
first case, and the current source is connected at only one node (and the 
datum), in the second case. 

Fig. 30. Example for computing driving-point impedance. 

Let us now illustrate by means of an example that these formulas do 
not apply when dependent sources are present in the network. Suppose 
we wish to compute the driving point impedance between cathode and 

ground of a grounded grid amplifier, 
taking the plate-cathode capacitance 
into account. The appropriate net
work is shown in Fig. 30. Since the 
input impedance is independent of 
the method of excitation, we may 
elect to connect a voltage source be
tween the terminals 1 and 1' and use 
loop equations to find the input 
current. A suitable choice of loops 
is shown in Fig. 31. 

Since we have chosen only one 
loop through the source v1, the input current is the same as loop current 
1. By inspection we notice that 

Fig. 31. Example of Fig. 30, cont'd. 

(148) 
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Using this expression and setting initial conditions equal to zero as 
required by the definition, the transformed loop equations are given by 

(149) 

Solving for I1(s), we get 

(150) 
and 

(151) 

where the usual notation for determinant and cofactors has been used. 
Inserting the values of Δ and the cofactors into this expression, we find 

(152) 

Notice that although we were very careful to choose only one loop 
through the generator, V1(s) appears in two places on the right side of 
Eq. (149), and no choice of loops can avoid this circumstance. The 
reason for this is traceable directly to the dependent generator. 

The driving-point functions express a relationship between the current 
and voltage transforms at a single pair of terminals. We are frequently 
interested in such a ratio of current or voltage transforms when the two 
functions are not taken at the same pair of terminals. We refer to such 
functions as transfer functions. In the case of driving-point functions 
the analytic properties of the function and its reciprocal are the same, 
as we shall see in Chapter 9. But in the case of transfer functions this 
is not the case. Therefore to avoid endless confusion, we shall make a 
convention in the definition of transfer functions. The convention we 
adopt will agree with modern usage in network theory. Whenever we 
define a transfer function as the quotient of two transforms, we shall 
always write the response transform (or output transform) in the nu
merator and the excitation transform (or input transform) in the de
nominator. 

For instance, suppose we single out for our attention the voltage or 
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current in one of the branches of a network. Let us draw it outside the 
black box, as shown in Fig. 32. We shall make the assumption, as 
before, that the network N contains no independent generators but may 

Fig. 32. Network relevant to the definition of transfer functions. 

contain dependent generators. We can define four different transfer 
functions (using our convention) as follows. 

(153) 

(154) 

(155) 

(156) 

all of them under the condition that all initial conditions are zero. The 
names associated with these four functions are: 

G21 (s): voltage gain or voltage ratio transfer function, 
α21(s): current gain or current ratio transfer function, 

Z21(s): transfer impedance, 
Y21(s): transfer admittance. 

We should here emphasize several points about the transfer functions. 
First, the ordering of the subscripts in these functions is quite important 
(the first subscript refers to the output and the second to the input). 
Secondly, the references for the currents or voltages appearing in a 
function must be specified, since changing one of the references will 
change the function. Thirdly, G21(s) and α21(s) are unrelated. Finally, 
Z 2 1(s) is not the reciprocal of Y2 1(s). 

The method by which the network is excited is not specified in these 
definitions, and so, by implication, the functions are independent of the 
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excitation. In computing these functions, we may choose a current 
source or a voltage source as the excitation, whichever happens to be 
convenient. 

As in the case of driving-point functions, it is possible to obtain 
formulas for the transfer functions when the network does not contain 
any dependent sources. (These same formulas may be valid under some 
conditions even with dependent sources.) Formulas using loop equa
tions can be derived by assuming a voltage generator at the input. 
Alternative formulas can also be derived starting with node equations 
and exciting the network with a current generator. The choice of loops 
and the datum node are shown in Fig. 33. Remember that, for the 

Fig. 33. Calculation of transfer functions. 

immediately following development, N contains no dependent generators. 
For Fig. 33a the loop equations are 

( 1 5 7 ) 

since the initial conditions are zero and no dependent generators are 
present. Similarly the node equations for Fig. 33b are: 

( 1 5 8 ) 

From these equations we can write down the desired formulas for the 
transfer functions by inspection. These formulas are given below, using 
z to indicate that the determinants and cofactors are from the loop 
equations and y to indicate that they are from the node equations. 
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(159) 

(160) 

(161) 

(162) 

The loop and the node formulas become dual only when V and 2' are 
the same node. 

Let us repeat the statement that the definitions are more fundamental 
than the special formulas for passive networks. You should be able to 
derive the formulas any time you need them and so you should not mem
orize them. 

Before concluding the section, a few examples of computation of 
network functions shall be given, simultaneously illustrating the remarks 
at the beginning of the chapter. That is, we will not use the formal 
procedures of loop and node equations but, instead, will use some of the 
short-cut techniques which are helpful in special cases. 

When all the initial conditions are zero, the transformed equations 
(KCL, K V L , and v-i) are of the same form as the a-c steady-state 
equations, except that s replaces jω. It follows therefore, that we can 
use all the a-c steady-state simplifications in this case; in particular we 
have the familiar rules for series and parallel combinations of impedances 
and admittances, voltage and current divisions for series and parallel 
connections, etc. (In fact even when initial conditions are not zero, we 
can use such simplifications, provided we treat initial conditions as 
sources.) For a first example, let us find the driving point impedance 
of the ladder network of Fig. 34. 

Fig. 34. Ladder network example. 
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To find the driving point impedance we start from the far end, away 
from the input terminals. Looking right from the dotted line a we have 
a resistance R 6 . Coming back to b (and still looking right), we have a 
capacitance C 5 in series with R 6 , so that the impedance here is 

( 1 6 3 ) 

Coming back to c and still looking right, this impedance Zb is in parallel 
with L 4 , giving us 

( 1 6 4 ) 

At the next step R 3 is in series with ZC so that 

( 1 6 5 ) 

Next, L 2 is in parallel with Zd so that 

( 1 6 6 ) 

Finally, coming back to the input terminals, R1 is in series with Ze, 
giving us the required driving point impedance as 

( 1 6 7 ) 

An expression like this is known as a continued fraction and is quite 
characteristic of ladder networks. We can, of course, write Z as a 
rational fraction by clearing the other fractions suitably. 
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The same result is obtained if we start from the input end. Here the 
impedance is written as R1 plus the impedance looking toward the right 
at e. This impedance is the reciprocal of l / s L 2 plus the admittance 
looking to the right at d. If we continue in this manner, Eq. (167) will 
again result. 

From the method of obtaining the continued fraction, we see that this 
result does not depend on the constituents of the branches of the ladder 
network. It is possible for each branch to be any arbitrary passive 
one-port, so long as there is no magnetic coupling between branches. 
The impedance can always be written as a continued fraction. 

As another example where series-parallel manipulations are handy, let 
us find the voltage ratio transfer function of the network of Fig. 35. 

Fig. 35. T network. 

This is again a ladder network. In this case, the transmission network— 
between the generator vg and the load R 3—is called a Tee network (since 
it looks like a T). 

Starting from the load, let V2(s) be the transform of the load voltage. 
Since the current transform is then V2(s)/R3, and this is also the current 
in C 3 , the voltage transform V3 across the series combination of C 3 

and R 3 is: 

(168) 

This is also the transform of the voltage across R 2 . Therefore I2 is given 
by 

(169) 

Using K C L at junction 1, the current transform I1 is 

(170) 
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Since the impedance of the parallel L1C1 combination is 

(171) 

the transform of V1(t) across L1C1 will be 

(172) 

Finally, using K V L for the first window, we get 

(173) 

On solving this equation for V2(s)/Vg(s), we get the desired function. 

(174) 

Notice how we switched between current and voltage in this problem, 
and used the fundamental equations—KCL, K V L and the v-i relation
ships—directly, without using loop or node variables. You should look 
through the argument carefully and see that we actually used all the 
information in the fundamental equations (12 of them in this problem) 
except that the initial conditions were zero. 

As another example where mixed variable equations are more useful 
than loop or node equations, consider the network of Fig. 36. This is 

Fig. 36. Amplifier stage example. 
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the "midband linear equivalent" of an amplifier with potentiometer 
feedback and an unbypassed cathode. (The coupling capacitor is not 
included.) We wish to find the output impedance of this amplifier. 
So we short v1 (t) and connect a generator at the output terminals, getting 
the network of Fig. 37. This network has three nodes and five branches 

Fig. 37. Output impedance computation. 

(counting R 2 R 1 as one branch). Therefore there are two K C L equations 
which, if solved, would leave three branch current variables. Since 
ig, Rp, and gmvgk constitute a chord set, let us express the other two cur
rents in terms of these by mentally solving K C L . The result is 

(175) 

On the other hand, using the fundamental loops for this tree consisting 
of branches R k and R 2 R 1 , we can express the branch voltages of the other 
three branches in terms of tree branch voltages as 

(176) 

(The reference for vg is chosen according to the definition of im
pedance.) 

Now we do not need to know vpk, so we leave Eq. (1766) alone. vg 

and ig are unrelated, so we leave Eq. (i76c) to the end, when we will use 
it to find vg. In the other three equations, we have more than three 
variables, in fact eight. One of these, ig, is the generator. We can now 
use the v-i relationships to eliminate four other variables, leaving us three 
equations in three unknowns. The variables we keep are chord currents 
and branch voltages, in this case i1, ig, vf, VRk. One of the chord currents, 
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gmvgk, is to be eliminated since it is dependent. Elimination of if, ip, 
and v1, is obvious. For vgk we have 

(177) 

Then Eqs. (175a), (175b), (176a) become, respectively, 

(178) 

Or, more clearly, in matrix notation 

(179) 

Since there are no derivatives or integrals involved, no Laplace transform 
is needed, and we can find the output impedance (in this case, a resist
ance) directly. Since we need v/ (see Eq. (176c)), we need find only Δ 
and Δ11. Then, 

(180) 

Hence, the driving-point impedance is given by 

(181) 

Finally, computing Δ and Δ 1 1 , 

(182) 
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In this example we used a mixed variable system of equations. For 
this type of a network, mixed variable systems are extremely useful. 
In fact, in the so-called "signal-flow graph" method which we shall see 
in Chapter 10, exactly the procedure followed above is used. 

4.8 Summary 
In this chapter we have seen some of the general concepts about 

networks, making very few assumptions about the components—other 
than the lumped, linear, and time invariant ones. We have seen two 
general methods that can be used for analyzing any network satisfying 
these conditions, namely loop and node analyses, and we have seen how 
they arise out of the fundamental equations of the network as postulated 
in Chapter 1. 

We considered certain "singular" problems in which the inductance 
currents and capacitance voltages may be discontinuous. In such cases, 
we saw that we can handle the problem either by means of conventional 
methods or by using singular functions (impulse functions). We con
sidered only impulses in the solution, postponing the discussion of im
pulse drivers to Chapter 6. 

Another general concept that we considered (in as much detail as is 
possible at this stage) was that of duality. 

Finally, we defined certain network functions in order to have the 
terminology available for later chapters. 

PROBLEMS 
4.1 For the network of Fig. P4.1. write down, in matrix notation, 
(1.) Kirchhoff's current law equations (independent ones) 
(2) Kirchoff's voltage law equations (independent ones) 
(3) Mesh transformation 
(4) Node transformation 

Fig. P4.1. 
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4.2 Write down by inspection the transformed loop and node equations for 
the networks in Fig. P4.2 and change into matrix notation. 

Fig. P4.2. 

4.3 Write down by inspection the loop equations in transforms for the net
work of Fig. P4.3. Change into a matrix equation. 

Fig. P4.3. 

4.4 Write down by inspection a suitable (linearly independent) set of trans
formed loop equations for the network shown in Fig. P4.4. 

Fig. P4.4. 
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4.5 Find the solution for the branch current i3(t) for t > 0 in the network of 
Fig. P4.5. 

Fig. P4.5. 

Ri = 1 

U = h 

C 3 = 2 

vg1 = sin t 

i2(0+) = 1 
v 3 ( 0 + ) = 2 

4.6 In the network of Fig. P4.6 find the solution for v4(t), the voltage across 
R4, for t > 0. All initial currents and voltages are zero. 

L1 = L 2 = 2 

M = 1 

C3 = i 

R4 = 10 

vg1(t) = 1, t > 0 
= 0, t < 0 Fig. P4.6. 

4.7 In the network of Fig. P4.7 find i3(t) for t > 0, using both techniques for 
initial conditions and both loop and node equations. Comment on any peculi
arities in the solution. 

Fig. P4.7. 

d = 1 

C 2 = 2 

R3 = 3 

vg1(t) = o , t < 0 
= cos t, t > 0 

(This condition implies that C1 and C 2 are discharged up to t = 0.) 
4.8 In the network of Fig. P4.8, find v6(t), using both techniques for initial 

conditions. Comment on any peculiarities in the solution. 
R1 = 1 = R6 

C2 = 1/2 

L3 = L 4 = 1 
L 6 = 1 

M 3 4 = 1/2 

vg(t) = 0, t < 0 

= 1, t > 0 
Fig. P4.8. 
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4.9 In the network of Fig. P4.9, the source vg(t) is a dc source, 

vg(t) = 2 

With the switch in the position shown, the network is allowed to reach a steady 
state. Then the switch is moved to the other position. Find v4(t) after the 
switch is moved. 

Fig. P4.9. 

4.10 Using the matrix expressions for loop and node equations and the 
initial value theorem of Laplace transform theory, find the conditions that the 
solutions of the loop or node equations contain no impulses, neither current nor 
voltage. 

4.11 In the network of Fig. P4.11 

0, t < 0 
1, 0 < t < 1 
0, t > 1 

R1 = R2 = 1 

L3 = 2, L4 = 1 

C5=1, C6 = 1/2 

V C 5 ( 0 - ) = V C 6 ( 0 - ) = 0 

iLs(0-) = iL4(0-) = 0 

Find v6(t) using (a) conventional mathematics and (b) impulse techniques. 
Explain any difficulties you meet in solving the problem. Change R2 to 2 and 
repeat. 

Fig. P4.ll. 

4.12 Find the pulse response of the transformer-coupled amplifier of Fig. 
P4.12. 
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Rk = 100 ohms L1 = 2 mh C 2 = 100 μμf 

μ = 100 L2 = 2 mh R2 = 10,000 ohms 

M = 1 mh Rp = 100,000 ohms 

vs(t) = 
0, t < 0 
1, 0 < t< 1 
0, 1 < t 

All initial conditions are zero. 

Fig. P4.12. 

4.13 Find the duals of the elementary structures shown in Fig. P4.13a. 

Fig. P4.13a. 

What general conclusions can you draw from these examples. (Interpret g 
as a generator and consider series and parallel connections.) Using this principle 
construct the duals of the networks shown in Fig. P4.13b. 

Fig. P4.136. 
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4.14 Construct the dual of each of the networks shown in Fig. P4.14. 

Fig. P4.14. 

4.15 Find the output impedance Z of the cathode follower amplifier of P4.15. 

Fig. P4.15. 

4.16 Find the output impedance of the network of Fig. P4.16. 

Fig. P4.16. 

4.17 Find the gain or the voltage ratio transfer function G(s) = V 2(s)/V 1(s) 
of the network of Fig. P4.17. 

Fig. P4.17. 
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4.18 Find the transfer impedance Z 2 1(s) of the network of Fig. P4.18. 

Fig. P4.18. 

4.19 Find the transfer admittance Y21(s) of the network of Fig. P4.19. Find 
the zeros and poles of Y21(s). R1 = 1, R2 = 2, C 1 = 1, C 2 = 1/2, R3 = 1. 

Fig. P4.19. 

4.20 Find the driving point impedance of the networks of Fig. P4.20. Find 
the poles and zeros of Z(s) and comment on any special properties that you 
observe. Find the residues of Z(s) at all its poles. What can you say about 
them? 

Fig. P4.20. 
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4.21 Repeat Problem 4.20 for the networks of Fig. P4.21. 

Fig. P4.21. 

4.22 Find the current ratio transfer function α21(s) = I2(s)/I1(s) for the 
network of Fig. P4.22. Find the poles and zeros of α21(s). 

Fig. P4.22. 

4.23 The bridged-Tee network shown in Fig. P4.23 is used very often in net
works designed for low frequency operation. Find the transfer impedance 

Plot the location of poles and zeros of Z21(s) in the complex plane. Find v2(t) 
if i1(t) is a unit step and all initial conditions are zero. 
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C1 = C 2 = 1/2 

C3 = 1 

G

4

 = G

5

 = 1/2√3 

Fig. P4.23. 

4.24 In the network of Fig. P4.24, find the voltage ratio transfer function 

Find v2(t) if the network is initially relaxed and if 

v1(t) = sin t 

Fig. P4.24. 

4.25 Compute the voltage ratio G21 = V2/V1 of the ladder network of Fig. 
P4.25. 

Fig. P4.25. 
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4.26 Power is defined in terms of current and voltage as pj(t) = Vj(t) i,(t) 
for branch j , with the voltage + at the tail of the current reference arrow. For 
any electrical network satisfying Kirchhoff's current and voltage laws, show 
that 

Σp j ( t )=O 
j 

where the summation is over all the branches. Show that Kirchhoff's laws 
imply conservation of energy if energy is the integral of power. 

4.27 The network in Fig. P4.27 is a low-pass filter. Find the voltage ratio 
function V2/V1, using both a formal approach and a continued fraction expan
sion. 

Fig. P4.27. 

4.28 In Fig. P4.28 the network inside the rectangle is linear, lumped, passive, 
and time-invariant. A capacitance inside the box is charged and then discharged. 
This is repeated twice, once with the terminals 
of the box shorted and once with them open, as 
indicated in the figure. The first time the cur
rent is measured, whereas the second time the 
voltage is measured. These are found to be 

i(t) = A 1 e - 2 t c o s (2t + φi) 

v(t) = A2e-t cos (3t + φ 2 ) + A3e-2t 

Determine the driving-point impedance function at the terminals of the box. 

Fig. P4.28. 

4.29 In the network of Fig. P4.29 all initial conditions are zero. Find the 
solution for v2(t). 

Fig. P4.29. 
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4.30 In the network of Fig. P4.30 the switch has been closed for a long time 
and is suddenly opened at t = 0. 

(a) Find the currents in L1 and L 2 immediately after the switch is opened. 
(6) Find the voltage across the switch as a function of time. 

Fig. P4.30. 



5 • NETWORK THEOREMS 
AND STEADY-STATE RESPONSE 

In the previous chapters we have discussed procedures for finding 
the complete solution for all the branch voltages and currents in any 
electrical network in response to any (£-transformable) driving func
tions. However, frequently the complete solution is not required; only 
the steady-state response to periodic functions is needed. Similarly, 
the solution for all voltages and currents is often not required, only 
the current or voltage in one part of the network. In such a case it 
would be useful to be able to replace the part of the network which is 
not of interest by a simpler equivalent. 

In this chapter we will discuss some of the major network theorems 
that are useful both in simplifying computations and in theoretical 
developments. We will also discuss the steady-state response of net
works to sinusoids and to other periodic functions. 

5.1 The Principle of Superposition 
The Superposition Principle is usually stated as follows: the response 

of a linear network to a number of excitations applied simultaneously is 
equal to the sum of the responses of the network when each excitation is 
applied individually. This is a very general statement. It will be valid 
only if we consider the initial capacitance voltages and inductance cur
rents themselves to be separate excitations and if we do not consider 
dependent sources as separate excitations. 

To illustrate the remark concerning initial values, consider the simple 
arrangement of Fig. 1. The capacitance is initially charged to a voltage 
vc(0+) = V0 and the switch is closed at t = 0. The solution for the 
current when both batteries are present is easily obtained. The following 
steps are self-explanatory. 

153 
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(1) 

Fig. 1. Illustration of the principle of superposition. 

Now if we apply either one of the two batteries alone, the resulting cur
rent will be zero; adding the two zero responses we will get zero, which 
is certainly not the same as the last equation. What we have overlooked, 
of course, is the initial charge. The trouble is, the initial charge appeared 
twice, once with each battery, when they were applied separately, but 
only once when both were applied simultaneously. If we consider the 
initial capacitance voltage as an excitation, and treat it like the other 
excitations, then the correct result will be obtained. 

The validity of the superposition principle is readily established by 
considering the expression for the general response in an arbitrary net
work as given by Eq. (32) in Chapter 4. Let us repeat this equation 
here for convenience. 

(2) 

Applying the excitations one at a time and adding the partial responses 
so obtained is equivalent to writing 

(3) 
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and 

(4) 

where the summations extend over all of the excitations. Equation (4) 
evidently follows from Eqs. (2) and (3). 

But is it really necessary to thus "prove" the superposition principle? 
A little thought will show that what we outlined in the last paragraph 
is a consequence of our definitions of the R, L, and C elements and the 
fact that multiplication is distributive in our number system. 

It is clear, then, that the superposition principle is intimately tied 
up with the idea of linearity; we can not have one without the other. 
We can say that linearity is necessary and sufficient for the validity of 
the principle of Superposition. 

5.2 The Thévenin and Norton Theorems 
Frequently in network problems we are interested not in the solution 

for all currents and voltages but in the current or voltage of a small 
part of the network. It would be computationally convenient to curtail 
our elaborate schemes for solution and concentrate on replacing the 
entire network, exclusive of the part in question, by a simple equivalent. 
Consider Fig. 2a which shows two parts of a network, the part on the 
right consisting of passive elements only. The two networks are con
nected only at the points shown and there is no magnetic coupling be
tween them. We will initially assume that there are no dependent 
sources in the left hand network. A current whose transform is I(s) 
flows between the two parts of the network. In part (b) of the figure 
a voltage source whose transform is V(s) is added. By the principle 
of superposition the total current will be the sum of the original cur
rent I(s) plus the current due to V(s) alone with the other sources 
(including initial values) removed. Let this current be I1(s) with ref
erence the same as that of I(s). 

Let US assume that it is possible to choose V(s) (whose value we must 
still find) such that I1(s) = — I(s) and the total current transform is 
zero. Let the driving-point impedance of the network on the right be 
Z(s). Since no current flows into the right hand network under the new 
conditions, the voltage at its terminals will be zero, and it may be dis
connected from the other part without affecting conditions to the left. 
After the two parts are disconnected, the voltage at the open terminals 
will still be zero. But from Fig. 2c this voltage is V0(s) — V(s), where 
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with 
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Zero voltage 
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Fig. 2. Development of Thévenin's theorem. 

Vo(s) is the value of the voltage transform at the terminals of the left 
hand network when these terminals are open-circuited. This gives us 
the value of V(s) as 

(5) 

So far we have established that if we place, in the position and with 
the reference polarity shown in Fig. 2, a voltage source with transform 
V(s) = Vo(s) and remove all other sources from the left (this includes 
reducing all initial conditions to zero), we will get a current transform 
I1(s) = Suppose we reverse the polarity of V(s); then we will 
get I1(s) = I(s), which is the same current as before. As far as the right 
hand network is concerned, the network on the left in Fig. 3 is com-

Sources 
removed; 

Zero 
Initial 

conditions 

Passive 
network 

Fig. 3. Thévenin equivalent. 
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pletely equivalent to the original. This consists of the original network 
with all sources removed and all initial conditions reduced to zero, in 
series with a voltage source (with the reference polarity shown in the 
figure) whose voltage transform is the open circuit voltage transform 
of the left hand network. Of course, this voltage will be a function of 
the initial conditions as well as the original sources. 

We should say one word about removal of sources. We have made 
no stipulation as to the kind of source, current or voltage. Both kinds 
may be present. Sources are removed by setting their functions to 
zero. This is done for a voltage source by short-circuiting it and for a 
current source by open-circuiting it. 

The equivalent circuit we have just developed was first stated by 
Thévenin in 1883 and is called Thévenin's equivalent network. The orig
inal network on the left with the sources removed can be represented 
by its driving point impedance Z0(s). This leads to Fig. 4a as the final 

Fig. 4. Thévenin and Norton equivalent networks: (a) Thévenin equivalent; (6) 
Norton equivalent. 

form of the Thévenin equivalent. The current I(s) flowing into the 
network on the right is the same as in the original. It must be empha
sized that the "equivalence" does not extend to any of the voltages or 
currents in the original left hand network. 

Let us now assume that there is a dependent source in the left-hand 
network. When we now apply the superposition principle, this source 
is not removed. The remainder of the argument used in developing 
Thévenin's theorem will remain the same. Thus, Thévenin's theorem 
applies in the presence of dependent sources as well, but in determining 
Z0 only the independent sources are removed. 

As an example, consider the network shown in Fig. 5. This is the same 
as the network of Fig. 3 in Chapter 2. We will assume that the initial 
capacitance voltage is zero. Let us seek the Thévenin equivalent at the 
terminals a-b. 
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Fig. 5. Illustration of Thévenin's theorem. 

The voltage transform of the dependent source is 

(6) 
It is a straight-forward matter to determine V0(s) from Fig. 5b. It is 

(7) 

In obtaining the last step, Eq. (6) was used replacing —RkI(s) by V0(s). 
To determine Z0(s) we set Vi(s) equal to zero. We then assume that 

a source v2 is applied at terminals a-b. The situation is illustrated in 
Fig. 6. The desired Z0(s) will be the ratio of 7 2(s) to I2(s). The de-

Fig. 6. Determination of Z0. Fig. 7. Thévenin equiva
lent of numerical example. 

pendent source voltage transform is now 

(8) 

We can now write the loop equations of the network in Fig. 6 (with an 
obvious choice of loops), simultaneously transposing the terms involved 
in the dependent source. The result is 

(9) 
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The solution of this set for I2(s) is 

( 1 0 ) 

Finally, for Z0(s) we get 

( 1 1 ) 

The final result is shown in Fig. 7. 
Half a century after Thévenin's theorem was stated, the dual theorem 

was given by E. L. Norton. A development of this can proceed in a 
dual manner to that already given. However, the following consider
ations will be sufficient to establish it. 

Let us write the node equations at nodes 1 and V of Fig. 4a, considering 
V0 in series with Z 0 as one branch and choosing the datum as a node 
inside the right hand network. The result will be 

Node 1: 

(contribution of network to the right) 

Node 1': 

(contribution of network to the right) 

(12) 

Suppose now, we replace the Thévenin equivalent network by the net
work within the dotted line of Fig. 4b. The network to the right is the 
same as before. Let us write the node equations for this combined net
work, at nodes 1. and V. We immediately see that the equations are the 
same as Eqs. (1.2). Since the network to the right is unaltered, the node 
equations at all other nodes remain unaltered. Thus the two networks 
of Fig. 4 have the same node equations, hence the same node voltages. 
Therefore the currents and voltages in the network to the right are the 
same. 

In other words, the network within the dotted line of Fig. 4b is 
equivalent to the network within the dotted line of Fig. 4a. Since the 
latter is equivalent to the original network on the left of Fig. 2a, it 
follows that the network within the dotted lines of Fig. 4b is also equiva
lent to the original subnetwork. This is Norton's theorem. In the state
ment of Norton's theorem, V0(s)/Z0(s), is referred to as the short-circuit 
current, which it obviously is (consider shorting the terminals of the 
Thévenin equivalent). 
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In discussing Thévenin's theorem we assumed that the network on 
the right was passive and was initially relaxed. As a matter of fact, the 
theorem is even more general than this and applies equally well if the 
right hand network contains sources. The only restriction is that the 
two networks not be magnetically coupled. It is possible to prove this 
statement but the length and complexity of the proof do not warrant 
its inclusion here. For the purpose of reference we will state these two 
theorems here. 

A. Thévenin's Theorem: Any two terminal linear network, which is 
not magnetically coupled to an external network, is equivalent at the 
two terminals to the network shown in Fig. 4a. The impedance Z0(s) is 
the driving-point impedance at the two terminals when all independent 
sources in the network are removed; V0(s) is the voltage transform at 
the two terminals when these terminals are left open. 

B. Norton's Theorem: Any two terminal linear network, which is not 
magnetically coupled to an external network, is equivalent at the two 
terminals to the network shown in Fig. 4b. The impedance Z0(s) is the 
same as in Thévenin's theorem, and Io(s) is the current between the 
two terminals when these terminals are short circuited. 

5.3 The Reciprocity Theorem 
A theorem which is useful in theoretical investigations is the theorem 

of reciprocity. Whereas linearity is the only condition for the previous 
theorems discussed, the reciprocity theorem applies to a more restricted 
class of networks. Consider the network shown in Fig. 8a. The network 

Fig. 8. The reciprocity theorem. 

explicitly shows two branches only, both of which are assumed to be 
links for a particular choice of tree. One branch is a passive branch 
while the other contains a voltage source as well. We make the following 
assumptions about the network, which are central to reciprocity. 
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1. The network is initially relaxed. That is, all initial inductance 
currents and capacitance voltages are zero. 

2. The source shown in Fig. 8 is the only source in the network. 
3. The network contains only R, L, C, and M elements besides the 

single source. 
The loop currents are chosen so that the jth loop current is identical 

with the branch current of the passive branch and the reference polarity 
of the voltage source is at the tip of the reference arrow of the kth loop 
current. If Δ(s) is the determinant of the mesh impedance matrix, we 
can write for Ij(s) 

(13) 

or 

(14) 

where Y j k (s) is the transfer admittance from loop k to loop j . 
Now let us place the source in the same loop as the passive branch 

retaining the loop current references and insuring that the reference 
plus of the source is at the tip of the loop current reference. The transfer 
admittance from loop j to loop k will become: 

(15) 

Let us examine the cofactors Δ j k and Δ k j . If the network consists of 
bilateral elements only (R, L, C, and M) then the mesh impedance 
matrix and its inverse are symmetric, leading to the result that these 
cofactors are equal. 

We conclude that the transfer admittances in Eqs. (14) and (1.5) are 
equal. Another way of stating the reciprocity theorem is to say that 
the ratio of the response transform to the excitation transform is invariant to 
an interchange of the position of the excitation and the response. 

Of course, the dual theorem, when the excitation is a current source 
and the response is a branch or node voltage, is also valid. This may 
be verified in a similar manner. Note the conditions of the theorem: 
there is only a single source and the network is initially relaxed. Fur
thermore, the network must not contain any dependent sources. We use 
this theorem as the basis of terminology. Networks for which the 
theorem is true are called reciprocal networks. Any elements which 
violate the reciprocity theorem are called nonreciprocal elements. Such 
elements may be either active or passive. 

There are a number of additional theorems which are useful in par-
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ticular cases. Some of these are simply modifications of the ones we 
have discussed. Others are so simple that they are not in the same class 
as the general theorems we have discussed. We will present some of 
these in the form of problems to be solved. 

5.4 The Sinusoidal Steady State 
Although in recent years expressions like "pulse circuits," "square 

wave testing," etc., are becoming more and more familiar, the sinusoidal 
function of time still holds an important place in network theory. Its 
importance is due to several factors. First of all the voltage or current 
waveforms of many actual generators are sinusoidal (at least approx
imately). For this reason alone we would be interested in finding solu
tions to network equations for sinusoidal driving functions. But even 
more important is the fact that any periodic function satisfying certain 
simple conditions (which are not important for the present discussion) 
can be represented by a (Fourier) series of sinusoidal functions with 
harmonic frequencies. The voltage or current waveforms of a large 
number of physical generators, if not sinusoidal, are at least periodic, 
so that a partial sum of the Fourier series can approximate these func
tions as closely as we desire. Since the networks we are dealing with 
are linear, the solution for a periodic driving function can be obtained 
as a summation of solutions for sinusoidal driving functions. Further
more, the same idea can be extended to non-periodic functions (again 
satisfying certain conditions) by means of the Fourier integral formu
lation. 

The sinusoidal function of time 

(16) 

can be described in terms of three quantities; the amplitude |G|, the 
angle (or phase) φ, and the angular frequency ω 0 (this quantity is also 
called the angular velocity). The sinusoidal function can be written in 
terms of the exponential function in one of two ways. 

(17) 

or 
(18) 

where 
(19) 

The complex number G gives the amplitude and angle information of 
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the sinusoid. It is called a phasor or sinor. Thus, the function Gejω0t 

completely describes a sinusoid by means of either Eq. (1.7) or Eq. (1.8). 
Let us go one step further and consider the function Gesot, where G 

is still a complex number given by Eq. (1.9), and s0 = σ 0 + jω 0 is also 
a complex number. We can write 

(20) 

The function Gesot is a complex function of t. Both its real part and its 
imaginary part are sinusoids with amplitudes which are real exponential 
functions of time. The actual waveforms will depend on the values of 
σ 0 and ω 0. Figure 9 shows some typical variations. In the limiting case 

Fig. 9. Sketches of Re esot for various values of σ o and ω o . (a) so = j ω o ; (6) so = σ o; 
(c) so = σo + jωo, σ o < 0; (d) so = σ o + jωo, σ o > 0. 
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of σ 0 = 0, of course, we have a sinusoid. In the other extreme, ω 0 = 0, 
we have increasing or decreasing exponentials, depending on the sign of 
σ 0. Of course, if σ 0 also is zero, there will be no variation with time. In 
the general case when neither σ 0 nor co0 is zero, the waveform is an 
exponentially modulated sinusoid, increasing or decreasing depending on 
the sign of σ 0. 

The complex variable s = σ + jω, of which so is a particular value, is 
often referred to as the complex frequency. This is unfortunate. With 
this designation, if we refer simply to frequency, it is not clear whether 
we mean s or ω. To emphasize the distinction people often say real 
frequency to mean co. But co is the imaginary part of s. Wouldn't it 
be more appropriate to call σ the real frequency? The question may 
arise, why give a name to s at all? Why not call it simply the s variable? 
This is a perfectly good procedure. However, there is a minor disad
vantage; not everyone uses the symbol s for this variable. Other 
symbols in common use are p and λ. 

There is another alternative and that is to coin a name for s, combining 
somehow the names for σ and co. The disadvantage in a coined name is 
that on first appearance it sounds strange, and so is unacceptable to 
people. However, such coined words have found usefulness in science 
and mathematics in the past. Some day a name such asfrequement, com
bining the words frequency and increment or decrement, may be accept
able for s. For the present we will use the term complex frequency variable 
for s. 

Another question that crops up in this regard is: What is a negative 
frequency? From its basic definition, frequency is an inherently positive 
quantity. The number of times an alternating quantity passes through 
zero, in an increasing sense, per unit time is defined as its frequency. 
With this definition there can be no question of a negative frequency— 
a negative number of times the alternating quantity passes through 
zero. So what does it mean for co to be negative? Consider the following 
expressions 

(21) 

where ω may take on positive or negative values. The number of times 
either of the right hand sides passes through zero per unit time from 
negative to positive values is \ω\/2π, whether ω is positive or negative. 
Thus, a negative value of ω does not imply a negative frequency. For 
instance, the point ω = —17 radians per second corresponds to an 
angular frequency of +17 radians per second. There are no negative 
frequencies, only negative values of ω. 
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Let us now turn to a consideration of the solution of the loop or node 
equations of a network when the driving functions are exponentials. 
Let Fig. 10 represent an arbitrary network with an arbitrary number 
of voltage sources, of which one, vgk, is shown explicitly. The sources 
are all exponential with the same exponent and are given by 

(22) 

Our purpose is to find a solution of the loop equations. Of course we 
have already done this for the general case in Eq. (32) of the last chapter. 
The solution can be effected if the 
mesh impedance matrix is nonsingu
lar, which requires its determinant to 
be nonzero. The roots of the equa
tion Δ(s) = 0 lie in the closed left 
half s-plane (i.e., in the left half 
plane or on the j-axis), since it is 
assumed that the network is stable. 
Since Reso > 0, the determinant will 
not be made to vanish unless s0 is 
purely imaginary (s0 = jω 0 ), and this is a natural mode of the network. 
Let us assume that this condition is avoided. 

Let us now find the transform of the jth loop current. In matrix 
notation the complete solution is given by 

Fig. 10. Arbitrary network with expo
nential excitation. 

(23) 

which is Eq. (32) of Chapter 4. Z m is the mesh impedance matrix, 
Vg(s) is the source transform matrix, while vλ(0) and v c (0) are the initial 
value matrices. If we expand this equation and solve for Ij(s), we will 
get a complicated expression which consists of the sum of a number of 
terms. Each term will have Δ(s) in the denominator, and in the numer
ator there will be the product of a cofactor of Δ and the corresponding 
source voltage transform, plus initial values. The poles of Ij(s) will 
consist of the zeros of Δ(s) and the poles of the source voltage transforms. 
In the present case, the source voltage transforms have only a single 
pole at s = s0. Thus, if we write the partial fraction expansion of 
Ij(s) we will get 

(24) 
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In writing this expression we have taken the number of loop equations 
to be n and the number of natural modes to be m. (For simplicity we 
have assumed that all the natural modes are simple.) 

In Eq. (24) the terms in the first summation correspond to the forced 
response, and the terms in the second summation correspond to the 
natural response. Let us assume that none of the zeros of Δ(s) lie on the 
jω axis. Then the terms in the second summation will also correspond 
to the transient solution. 

Let us now look at the transform of the forced response. This has the 
form 

(25) 

where 

(26) 

Note that Jj is a complex number, a phasor. 
Suppose now that the source voltages vgk are the conjugates of those 

given in Eq. (22). Then, the forced loop current transform in the jth 
loop will just be the conjugate of Eq. (25). Finally, if the source voltages 
are sinusoidal, then the forced loop current transform in the jth loop, 
which will also be the steady-state response, will be obtained in terms of 
Eq. (25) and the phasor Jj by the use of Eqs. (1.7) or (1.8) for the condi
tion so = jω 0 . It is clear, then, that to find the steady-state response 
to sinusoidal driving functions, it is sufficient to find the forced response 
to exponential drivers like Eq. (22). 

Let us now digress for a moment and review the procedure used in 
a-c steady-state anslysis, so that we may compare it with the present 
discussion. In a-c steady state we consider the source voltages to be 
sinusoidal functions of time, of the type | U j k | cos (ω0t + φk), where the 
angular frequency ω 0 is a fixed real number. Then we express this sinus
oidal function in terms of the exponential functions e j ω o t and e - j ω o t as 
in Eq. (1.7). By the principle of superposition, the solution to the 
sinusoid can be expressed as the sum of the solutions to the two exponen
tial drivers considered separately. Now since the two drivers are con
jugates and the network parameters are all real, the solutions to con
jugate drivers will be conjugates. Therefore in a-c steady-state analysis 
we find only one of the two solutions. Also, instead of going through the 
Laplace transform as we did here, we use Eq. (26) directly. Since we 
would eventually replace s by s0 = jω 0 , we begin in a-c steady-state 
analysis with s0 = jω 0 . Thus we consider the voltage-current relation
ships of resistance, inductance, and capacitance elements to be 
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(27) 

The equations that we write are essentially the same as the ones we 
would write in Laplace transforms, except that j ω 0 replaces s, no initial 
conditions appear, and we write phasors U and J instead of transforms 
V(s) and I(s). It is clear now that the solution obtained for the phasor 
current Jj will be the same as Eq. (26). To find the current ij(t) we use 
the superposition principle as follows: 

(28) 

Unfortunately, we very rarely compute the real current ij(t) in a-c 
steady-state analysis, which leads to a lot of confusion. We think we 
are working with real currents and voltages, whereas we are really work
ing with phasors. This leads to conceptions like cos ωt = j sin cot, 
Z = v(t)/i(t), etc., which are completely meaningless. 

The a-c steady-state impedance is another quantity we should consider 
briefly, in order to relate it to our generalized concept of impedance as 
defined in Chapter 4. The a-c steady-state impedance is again defined 
in terms of phasor quantities. Given a one terminal-pair network, if 
the sinusoidal steady-state current and voltage are given by 

(29) 

then we define the steady-state impedance as the complex number 

(30) 

(which is very different from v(t)/i(t)). Referring back to Eq. (26) and 
the definition of the driving-point impedance function in Chapter 4, we 
see that the steady-state impedance is the value of the driving point 
impedance function Z(s) at s = j ω 0 . That is 

(31) 
The same remark applies to all the other network functions. 

Thus the concepts that are being developed in this text are true general
izations of those we know from steady-state analysis; and in fact, by 
considering the general method, we are able to justify the method of 
procedure used in a-c steady-state analysis. 
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Another important conclusion can also be drawn from this discussion. 
Suppose that the voltage sources are arbitrary instead of being expo
nential, and suppose that the network is initially relaxed. Eq. (23) 
still applies but v λ and vC are now zero. If we now expand Eq. (23) for 
the jth loop-current transform we will get 

(32) 

Comparison of this expression with Eq. (26) shows a striking resem
blance. In the present case Ij(s) and Vgk(s) are Laplace transforms and 
the determinants are functions of s, whereas in Eq. (26) the variables 
Jj and Ugk are phasors, and the determinants are to be evaluated at 
so, which is a particular value of s. Thus, the expressions that relate 
a response transform and the transforms of the driving functions for 
arbitrary drivers are the same as the expressions that relate the response 
phasor to the driving function phasors in the case of sinusoidal driving 
functions, except that s replaces jω 0 . This means that all the rules of 
simplification of networks, such as series and parallel connection of 
impedances, etc., which we have used in steady-state analysis, also apply 
in the general case, for an initially relaxed network (a fact that we have 
already used in section 4.7). 

5.5 Steady-State Response to General Periodic Excitation 
Besides the sinusoidal function, many other periodic functions com

monly occur in the applications of electric networks. Of particular 
interest is the steady-state response to such functions. The results we 
are seeking do not depend on whether the driving function is a voltage 
or a current, and whether the response is a voltage or a current. Hence, 
we will use the symbols e(t) to represent an excitation and r(t) to repre
sent the response. 

Let the function e(t) shown in Fig. 11 be a periodic function with period 

Fig. 11. General periodic function. 
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a and let e1(t) be the first cycle of this function; that is 

(33) 

Let us assume that e1(t) contains no impulses, has only a finite number 

of finite discontinuities and is absolutely integrable; that is, 

is finite. These conditions permit the function to be representable in a 
Fourier series, and they are more than enough to make e(t) £-trans
formable. 

This function is to be applied to a network whose transfer function is 
H(s), and it is desired to find the steady-state response of the network. * 
Recall that the steady-state response of a network to a periodic ex
citation is identical with the forced response. Furthermore it does not 
depend on the initial conditions. 

One method of obtaining the desired response is to expand the periodic 
excitation function in a Fourier series. Knowing the transfer function, 
the steady-state response to each of the harmonic components can then 
be found. The complete steady-state response is then obtained by add
ing the responses to each of the harmonics. This will generally be an 
infinite series. Briefly, we write 

(34) 

where ω 0 = 2π/a and the bn's are the Fourier coefficients, given by 

(35) 

The steady-state response is then given by 

(36) 

This procedure is at best tedious. It would be very useful to develop 
an alternate procedure which yields the desired steady-state response 
in closed form, possibly as the sum of just a few terms. We will now 
discuss such a procedure based on Laplace transforms. 

The fundamental philosophy of the procedure to be described is very 
simple and intuitive. By contrast the mathematical intricacies that go 
into the proof of the validity of the method are far from obvious. For 
this reason, we shall first try to communicate the basic ideas by means 

* Since we are not committing ourselves to voltage or current for the input and 
output, we are using a generic symbol H(s) to represent the transfer function. It 
stands for any one of the transfer functions or driving point functions. 
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of intuitive arguments plus an example, before attempting mathematical 
precision. 

We first make the assumption that the network function H(s) has 
no poles on the jω axis (including s = ∞), so that the transient response 
eventually dies out and only the forced response remains. Now, the 
excitation is periodic. Therefore, we would intuitively expect the forced 
response also to be periodic and of the same period as the driving func
tion. That is, if r0(t) is the forced response. 

(37) 

This expression should also hold when 0 < t < a, which is the first 
period. In other words, the forced response in the first period should 
be the same as the forced response in any period. Thus all we need to 
find is the forced response in the first period. That will be the steady-
state response. 

Now, it is very easy to find the complete response in the first period. 
For this we note (intuitively at present) that the complete response 
in the first period 0 < t < a cannot be affected by what e(t) does at 
later times. To put it differently, if we replace e(t) by ex(t), as defined 
in Eq. (33), the network will not know the difference until t becomes 
equal to a. Since e1(t) is a much simpler function to work with, we might 
as well use this fact. Thus the complete response in the first period is 
simply 

(38) 

(The initial conditions are neglected, since they affect only the transient.) 
But this is the complete response. We don't want it. We want only 

that part of the complete response which corresponds to the steady state. 
The excess baggage we have collected is the transient. If we can some
how find the transient, and subtract it from r1(t), we'll be in business. 
Let us see how this may be done. 

Since the function e(t) can be described as the first period repeating 
itself periodically, it can be written in terms of e1(t) as 

(39) 

where u is the unit step function. Transforming this expression, we get 

(40) 
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When Re(s) > 0, the last line is a convergent geometric series and so 
we can write: 

( 4 1 ) 

The complete response for all t is therefore 

(42) 

Let us examine this expression carefully and see whether we can find 
the steady state and the transient. As we shall show later, in the mathe
matical justification, the residue theorem is applicable to the inversion 
in Eq. (42); so we can concentrate our attention on the singular points 
of R(s). 

The singular points of the response transform R(s) are those of H(s) 
together with the singularities of E(s). The singular points of H(s) 
are poles in the open left half plane by our assumption, and so give 
rise to terms of the type 

where Re(s k ) < 0. So, in the complete solution, the singular points of 
H(s) contribute only transient terms. The singularities of E(s) consist 
of the zeros of 1 — e~a8 and the singular points of L 1 ( s ) . Let us first 
look for the singularities of E1(s). 

(43) 

The last form follows from the fact that e1(t) is zero for t > a. Thus 
E1(s) has a representation as a finite integral. Furthermore, e1(t) is 
a bounded function. That is 

(44) 

for some real M. Therefore, E1(s) has a finite value for all s, and 
Leibnitz's rule for differentiation under the integral sign applies. That 
is. 

(45) 
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which exists for all finite values of s. Thus, E1(s) is differentiable every
where in the complex plane, and so is an entire function (no singularities 
except at infinity). Hence, the only singular points of E(s) are the zeros 
of 1 - e - a s . 

The zeros of 1 — e-a8 occur when 

e~as = 1 

s = jkω 0 (k an integer) 
(46) 

where ω 0 = 2π/a is the fundamental frequency. Thus E(s) has an 
infinite number of poles on the jω axis, and, as you can verify, all of 
them are simple. Let us compute the residue at one of these poles. 
Residue of R(s)est at s = jkω 0 is equal to 

(47) 

Therefore the partial response due to the poles of E(s) is 

(48) 

We recognize this expression to be a Fourier series. (We will worry 
about its convergence later, along with all the other mathematical 
worries.) In fact, it is the same Fourier series as given in Eq. (36). 
To see this, let us compute E1(jkω0) from Eq. (43). 

(49) 

Comparing with Eq. (35) for the Fourier coefficients, we see immediately 
that 

(50) 

which shows that Eqs. (48) and (36) represent the same function. 
Thus in the complete response for all t, the residues of Rest at the 

singular points of E(s) constitute the steady state and those at the singu
lar points of H(s) constitute the transient. This transient solution can 
therefore be written 

( 5 1 ) 
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This expression is valid for all values of t, but we are going to use it 
only for 0 < t < a. 

Now we have completed our job. All we need to do is to subtract 
this transient from the complete solution for the first period. The result 
will be the steady state solution. Using Eqs. (51), it will be 

(52) 

Let us make a few comments on this equation before giving an ex
ample. We notice that both quantities on the right side have contri
butions only from the singular points of H(s), which are usually asso
ciated with the transient. For this reason the steady-state response to 
periodic functions is sometimes referred to as the "recurrent transient 
response." 

A more important point to be noted, one which makes this whole 
discussion valuable, is that only finite operations are involved. Being 
rational, H(s) has only a finite number of poles, so we do not compute 
an infinite number of residues. The expression for r0(t) is in closed 
form, as the sum of a finite number of functions. 

Now let us try an example. Let the saw-tooth voltage wave of Fig. 
1.2a be applied to the network of Fig. 12b. Let it be required to find the 

Fig. 12. Numerical example. 

steady-state voltage output. For this simple network the voltage ratio 
function can be written down immediately using the voltage divider 
equation. 

(53) 
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The network function H(s) has one simple pole at s = —1/2. Using the 
notation introduced earlier. 

(54) 

To find the Laplace transform easily, we may write this as 

(55) 

The transform of this expression is 

(56) 

(Verify that this function is regular at s = 0.) The complete response 
for the first period is therefore 

(57) 

We cannot simply write this as 

(58) 

since the residue theorem does not apply directly in this case (why?). 
However we can find the inverse transform by using the translation 
theorem for the term multiplied by e - s . Then we get 

(59) 

We notice that the second term is multiplied by u(t — 1.). Therefore 
it contributes nothing to the first period. The reason is not far to seek. 
This is the term that we inserted in e1(t) in Eq. (56) to make it zero 
for t > 1. As far as the response in the first period is concerned, the 
network does not know whether the excitation is e1 (t) as we have defined 
it in Eq. (54) or merely e(t) = t for all t. We can use this fact, if we like, 
to find the complete solution for the first period. If we follow this 
procedure, however, we have to be very careful to use the proper ex
pression, and not the simplified one, for E1(s) when finding the transient 
in the next step. 
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The transient response for this example is 

r,(t) = Σ residues of E(s)H(s)est at poles of H(s) 

(60) 

Using the expressions for E1(s) and H(s) from Eqs. (56) and (53), we 
get 

(61) 

The steady-state response in the first period is found by subtracting 
this expression from Eq. (59) 

(62) 

For all other periods 
(63) 

Since this is the first example that we are working by a new procedure, 
let us verify that this is indeed the correct answer. The correct answer 
to the problem must satisfy the differential equation and the boundary 
conditions. In the present case the response r stands for voltage v2. 
The differential equation to be satisfied by r0(t) = v2o(t) is the node 
equation at node 2 within any one period. 

(64) 

where node 3 is taken as the reference. The boundary condition to be 
satisfied is that the capacitance voltage be continuous for all t (since 
there is no current impulse). This condition can evidently be written as 

(65) 

Substituting the values of C and R and the expressions for vg(t) and 
v20(t), the left side of Eq. (64) becomes 

(66) 
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Similarly, substituting into Eq. (65), the left side becomes 

(67) 

Thus, both conditions are satisfied and we indeed have the correct 
solution. 

As we can observe, the procedure we have just described is both simple 
and intuitive. Let us next plunge into the intricacies of the mathe
matical justification which cannot qualify for either attribute. 

Theorem. Let e(t) be a periodic function of period a. Let e(t) be 
of bounded variation and absolutely integrable within the period. Let 
e(t) be the excitation for a stable network and r(t) the response. Let 
the network function H(s) be regular on the imaginary axis, including 
s = ∞. Then r(t) is asymptotic to a periodic function r0(t) for large 
t. The function r0(t) is independent of the initial conditions and is 
given by 

(68) 

where 

(69) 

By assumption, H(s) is a rational function, regular at ∞. If H(∞) ?± 0, 
we can write 

H(s) =H(∞) + H1(s) (70) 

where H1(s) has a zero at ∞. Such a constant term will contribute 
H(∞)e(t) to the periodic solution. It will contribute nothing to the sum 
of the residues in Eq. (68). Such a contribution is therefore included 
in Eq. (68), and so we may assume without loss of generality that H(s) 
has a zero at s = ∞ (of at least order one). 

It is also clear that the initial conditions contribute nothing to the 
asymptotic solution for large t (since H(s) has no poles on the jω axis 
and certainly none in the right half plane).* Hence we can assume the 
network to be initially relaxed. 

* In certain trivial cases the initial conditions may contribute a constant term to 
the asymptotic solution for large t, which is neglected in this theorem. Such a con
stant is not included in the Fourier analysis either. 
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As we computed earlier 

( 7 1 ) 

Hence the complete solution for all t is given by 

( 7 2 ) 

which can also be written as the complex inversion integral 

(73 ) 

It is not obvious however that this integral can be evaluated by 
closing the path of integration to the left and using the theory of residues. 
There are two obstacles in our way. First of all, there are an infinite 
number of poles to be taken into account; secondly it is not evident that 
Jordan's lemma is satisfied. We have to examine these questions care
fully. 

Let us first observe that if we do find the sum of the residues of the 
integrand in Eq. (73), the infinite sum so obtained will converge. The 
assumption that e(t) is of bounded variation guarantees the absolute 
convergence of the Fourier series for e(t). This result follows from 
a standard result of Fourier series known as Percival's theorem.* 
We have already computed the residue of R(s)eat at s = jkω 0, where 
ω 0 = 2π/a in Eq. (47). From the absolute convergence of the Fourier 
series for e(t) and the boundedness of H(jkω0)y it follows that the infinite 
series of residues on the jω axis given in Eq. (48) converges absolutely, 
and therefore also converges. 

The other residues of R(s)e s t arise from the poles of H(s), of which 
there are only a finite number. Thus the sum 

is meaningful. We have yet to establish that this sum is r(t). 
There are two possible proofs that we can give at this point. The 

simpler proof consists of expanding the integrand of Eq. (73) in an 
appropriate infinite series (the Mittag-Lefler expansion) and integrating 
term-by-term. We shall leave this proof as an exercise and give the 
more difficult "brute force" proof. We shall use parts of this direct 

* See, for instance, E. C. Titchmarsh, Theory of Functions, Oxford University Press, 
1939. 
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proof to establish another result—which is one reason for giving it. It 
will also give us an intuition into the behavior of L 1(s). 

We will now close the path of integration of the complex inversion 
integral in Eq. (73) to the left appropriately, and carefully estimate 
the contributions of the parts of the contour in the left half plane. The 
contour that we shall choose is shown in Fig. 13. It goes exactly midway 

Fig. 13. Contour for integration. 

between the poles on the jω axis and is a rectangle, rather than a semi-
circle. (In dealing with exponential functions a rectangle is generally 
more convenient.) We shall take n so large that 

(74) 

satisfies the following conditions. 
(i) All poles of H(s) are included inside the contour so that |H(s)| 

< a constant K on the contour (and therefore also outside) 

(ii) R > σ 2 = 1/a log e 2. (The need for this condition arises in the 

development.) 
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These assumptions are clearly permissible, since we are going to take 
the limit as n goes to ∞. The number n is a positive integer, so that we 
have an infinite sequence of contours. Thus, R takes on discrete values 
rather than a continuous range of values, but this is clearly permissible. 

Let us begin our estimates, starting with the vertical line to the left. 
On this fine σ = — R. We have the bounds 

where (75) 

Also, 

or 
(76) 

The inequality (76) follows from assumption (ii) about R. Hence 

( 7 7 ) 
Thus 

(78) 

For the horizontal line from σ1 + jR to — R + jR, we split the contour 
into two parts, one from σ1 + jR to — σ2 + jR and the other from 
— σ2 + jR to —R + jR, where 

(79) 

For the first integral 

(80) 

we make the following observations. For each fixed σ, 

(81) 

which is of the form 

the same as one of the Fourier integrals. Therefore, 

(82) 
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Thus for each fixed σ, E1(s) approaches 0 as ω approaches infinity. 
(The result that 

(83) 

for any integrable function f(t), is known as the Riemann-Lebesgue 
theorem, and is fundamental to the theories of Fourier series, Fourier 
transforms, and Laplace transforms.) If we restrict out attention to 
σ's on the closed interval 

— σ2 < σ < σ1 

the limit in Eq. (81) will also be approached uniformly with respect to 
σ. That is, for any given ε > 0, we can find an ω1 such that 

(84) 

provided that ω > ω1; the inequality holding for all σ in the range 
— σ2 < σ < σ1. 

For the denominator of the integral in Eq. (80) we have an exact 
absolute value, since 

(85) 

Hence, 
(86) 

On the horizontal line from σ1 + jR to — σ2 + jR, we have, therefore 

(87) 

provided (2n + l)ω0/2 > ω1. This follows from Eqs. (84) and (86), and 
from condition (i) on R. Therefore, 

(88) 

Now let us look at the remainder of the line. From — σ2 + jR to 
—R + jR, we have 

(89) 
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Since H (s) has a zero at infinity, we may assume R sufficiently large to 
make 

(90) 

where K1 is a constant. Since σ < 0, we have, as in Eq. (75), 

(91) 

Inserting these bounds in inequality (89) and interchanging the limits 
of integration, we get 

(92) 

Therefore 

(93) 

We have now shown that the contribution of the upper horizontal 
line to the complete integral around the contour in Fig. 13 is zero. 
Since the integrand is real on the real axis, the same limits, Eqs. (88) 
and (93), hold also for the lower horizontal line from σ1 — jR to —R 
—jR. So the lower horizontal fine also contributes nothing to the 
closed contour integral. 

Then, with all this trouble, we have proved that 

(94) 

We can obviously rewrite this expression as follows. 

(95) 

from our earlier computation of the residues at poles on the jω axis. 
The first sum in Eq. (95) contains exponential functions with negative 
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real parts for the exponents and so goes to zero as t approaches infinity. 
The second sum, being a convergent Fourier series, represents a periodic 
function, of period a. Now our claim that the solution is asymptotic 
to a periodic function is established. If H(∞) is nonzero, this adds a 
constant multiple of e(t) to the solution which does not destroy the 
periodicity. (The Fourier series expression of Eq. (95) remains valid 
even if H(s) is nonzero at ∞.) 

The periodic solution—the steady-state solution—is therefore given 
by 

(96) 

Using the same arguments that we used in proving that the integral 
from σ1 + jR to — σ2 + jR approaches zero as R approaches ∞, and, 
using a similar sequence of horizontal contours that avoid the poles, 
we can alternatively rewrite Eq. (96) as follows. 

(97) 

where σh < 0 and all poles of H(s) are to the left of the abscissa σh. 
(These two lines are shown as C1 and C 2 in Fig. 13.) We are still dealing 
with expressions that are valid for all t. Since Eq. (97) is periodic, it 
suffices to compute the first period. Therefore we may assume that 

(98) 

For the first integral in Eq. (97), Re(s) > 0, and so | e - a s | < 1. There
fore we have 

(99) 

This series is uniformly convergent on the line σ1 — j∞ to σ1 + j∞. 
Therefore the integration may be performed term by term. The result 
is 

(100) 
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Since E1(s) is a Laplace transform and H(s) is a rational function 
regular in the right half plane and at ∞, it follows that E1(s)H(s) is 
also a Laplace transform. If we denote 

(101) 

then we can write Eq. (100) using the translation theorem as 

(102) 

Thus all the functions of the second sum are zero in the first period. 
This proves the theorem expressed in Eq. (68), and our job is done. 

It is possible to express this result in other useful forms as well. Using 
the last two equations, we can rewrite Eq. (97) as follows. 

(103) 

The paths C1 and C 2 are the ones shown in Fig. 1.3. The integrand in 
the first integral has no singularities to the right of the vertical path 
C 2 . Hence, the path may be moved to C 2 without modifying the result. 
We can therefore write 

(104) 

Although this is a relatively compact form for the answer, evaluating 
it in any particular case involves the same steps. 

Another form can be obtained by noting that only the poles of H(s) 
contribute to the last integral in Eq. (1.03). Suppose we expand the 
integrand in partial fractions and designate by F1(s) the principal parts 
at the poles of H(s) and by F2(s) the remainder. Then, we can write 

(105) 

Only F1(s) contributes to the integral. Hence, Eq. (1.04) can be written 

(106) 

Let us close the chapter with another example. Consider the network 
shown in Fig. 1.4. The triangular voltage v is applied to the network 
and it is required to find the steady-state output voltage v2 (we are not 
using an additional subscript to indicate steady-state in order to avoid 
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Fig. 14. Illustrative example. 

confusion). The first period of the input voltage is given by 

(107) 

(108) 

The transfer function of the network is 

(109) 

The desired response is obtained by substituting the last two equations 
into Eq. (1.03), keeping the differences in notation in mind. Thus, we 
have 

(110) 

with obvious definitions of v21 and v22. The integrand of the second 
integral satisfies Jordan's lemma, so that the path of integration can be 
closed on the left. The value of v22(t) is simply the negative sum of 
the residues of the integrand at the poles of H(s), which are s = — 1. 
and s = — 2. Thus, 

(111) 

Let us now turn to the first integral in Eq. (110). The exponentials 
in the numerator cause the integrand to diverge on the infinite arc to 
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the left. Hence, we cannot simply add residues. Instead, let us write 
the integral as the sum of three integrals corresponding to the terms 
in the numerator of the integrand. Thus, 

(112) 
where 

(113) 

The integrand of A1 satisfies the condition of Jordan's lemma. Hence, 
A1 can be evaluated by the Residue theorem. The result is 

(114) 

In the case of A 2 we see that the range t < a/2 must be handled 
differently from the range t > a/2. For t < a/2, we close the path to 
the right, which means there will be no poles inside the contour. For 
this range, then A2 = 0. For t > a/2, we close the path to the left. 
The poles at s = 0, — 1 and —2 will all be enclosed, and A2 is found by 
adding residues; the result is 

(115) 

(A2 may also be found from A1 using the shifting or translation theorem 
of Laplace transform theory.) 

Finally, by the same reasoning, we find that A3 = 0 in the interval 
0 < t < a and so it contributes nothing to the steady state. 

The desired response is now obtained by adding Eqs. (111), (114), 
and (115). The result is 

(116) 
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A plot of this expression is shown in Fig. 1.5 for the value a = 2. As 
required by the periodicity of the response and the fact that the response 
is continuous, the value v2(0) is the same as v2(a). 

Fig. 15. Steady-state response of numerical example. 

PROBLEMS 
5.1 Consider the network shown in Fig. P5.1. Show that the voltage is 

given by 

This is referred to as Millman's theorem. 

Fig. P5.1. 

5.2 Because of the simple interchange permitted by Thévenin's and Norton's 
theorems between a voltage source in series with a branch and a current source 
in parallel with the same branch, it is often felt that it is simpler if current sources 
always appear in parallel with a branch. 

Suppose there is a current source in a network which is not in parallel with a 
single branch. You have already seen that the number of loop equations that 
need to be satisfied simultaneously is reduced by one. Demonstrate this same 
fact in an alternate way as follows. Think in terms of the Blakesley step in 
which a node is eliminated, with an attendant reduction of the number of node 
equations by one, when a voltage source appears in a network with more than 
one branch connected at each of its terminals. In this procedure the number of 
voltage sources is increased. Show that a similar increase of the number of 
current sources can be made in the present case, permitting each of the sources 
to be placed in parallel with a branch. The use of Thévenin's theorem then 
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eliminates the loops formed by the current sources and these branches. This 
procedure may be referred to as the i-shift. 

Illustrate this procedure on the networks shown in Fig. P5.2, in Fig. 2 of 
Chapter 2, and in Fig. P4.22. 

Fig. P5.2. 

5.3 Obtain expressions for the output voltage transform in the networks of 
Fig. P5.3 by judicious use of the e- and i-shifts and Thévenin's, Norton's, and 
Millman's theorems. 

Fig. P5.3. 
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5.4 The linear equivalent circuit of a vacuum tube network is shown in 
Fig. P5.4. Find the Norton equivalent network at the output terminals, as
suming no initial voltage on C. Note that the network contains a dependent 
source. 

Fig. P5.4. 

5.5 In a-c steady-state calculations, sinusoidal quantities are represented 
by phasors. Let U = |U |e j α and J = |J| be phasors representing a sinusoidal 
voltage and current as shown in Fig. P5.5. Let Pab be the average power 
entering the network. Show that Pav = 1/2 Re (U*J). 

Fig. P5.5. 

5.6 Figure P5.6 shows a network containing sinusoidal sources. Part (b) 
shows the Thévenin equivalent, where U0 is the phasor representing the equiva
lent sinusoidal source. Let Z(jω) =|Z| eiθ and Z0(jω) = |Zo|eJ'θo, and assume 
that | Z | and θ can be independently varied. 

(a) Suppose θ is held fixed. Show that the real power entering the branch Z 
will be a maximum if |Z| = |Zo|. 

(b) Now let |Z| be fixed. Find the condition under which maximum power 
will be transferred. Show that the magnitude of θ, under the condition of maxi
mum power transfer, will be largest when |Z| = |Z 0 | . 

(c) Assuming both |Z | and θ may be varied, show that maximum power will 
be transferred under this condition when Z = Z0*. 

Fig. P5.6. 
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5.7 The periodic functions in Fig. P5.7(l) are the driving functions applied 
to the networks shown in Fig. P5.7(2). Find the indicated steady-state response. 

Fig. P5.7(l). 
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Fig. P5.7(2). 

5.8 What will happen to the periodic solution if we relax the condition that 
H(s) be regular at ∞. Verify your answer by trying to find the periodic solution 
for v2(t) of Fig. P5.8, when i1(t) is given by Fig. P5.7(l)a. First try by the 
method of Chapter 5 and then by the Fourier series method. 

Fig. P5.8. 

5.9 Repeat the second half of Problem 5.8 (both methods), this time letting 
i1 be the squared sine wave of Fie;. P5.7(!)<7. 

5.10 Quite often, Thévenin's theorem can be used to advantage, even when 
we are interested in currents and voltages in both subnetworks of Fig. 2, where 
there may be sources on both sides. The procedure is as follows. We find the 
Thévenin equivalent of each subnetwork, put them together as in Fig. P5.10(1)c, 
and find I1. Then we disconnect the two subnetworks and replace the effect of 
the other network by a current generator I1 as shown in Fig. P5.10(l.)b. Now 
we solve the two pieces separately. The assumption of no magnetic coupling 
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between the two halves is needed here also. (This is a simple case of G. Kron's 
tearing method.) 

Use this procedure to find i1(t) and i2(t) in the network of Fig. P5.10(2) by 
breaking the network at the dotted line. (If you don't believe that the com
putation is simplified, try the problem directly, using loop analysis without 
tearing.) 

Fig. P5.10(l). 

I 

Fig. P5.10(2). 

5.11 Using the solution obtained in Problem 5.10, find the Thévenin equiva
lent of the network of Fig. P5.10(2), at the terminals 2,2', when the generator 
v2(t) is removed from the network. (Hint: Norton's theorem.) 

5.12 Find explicit formulas for the voltage generator of the Thévenin equiva
lent and the current generator of the Norton equivalent in terms of loop and 
node determinants and cofactors. 
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5.13 Prove that the function r(t) of Eq. (73) can be computed as 

by expanding the integrand as an infinite series as suggested in the text. 
5.14 Find the Thévenin equivalent at the output terminals of the feedback 

amplifier shown in Fig. P5.14. Also find the Thévenin equivalent at the grids 
of the first and second stages. 

Fig. P5.14. 

5.15 Prove the following generalization of the reciprocity theorem. Let the 
reciprocal network be initially relaxed. Let Vm1(s) and Vm2(s) be two values 
of the loop excitation matrix, corresponding to two sets of driving functions. 
Let Im1(s) and Im 2(s) be the corresponding loop current matrices. Then: 

Derive the reciprocity theorem as a special case of this general theorem. 
5.16 In the network shown in Fig. P5.16 find the value of the load impedance 

ZL which makes the power transferred into ZL a maximum. Neglect inter-
electrode capacitances. Find this maximum power. 

Fig. P5.16. 

e1(t) = 10 sin 106t 
L1 = 0.1 (henry) 

L 2 = 0.05 (henry) 

M12 = 0.04 (henry) 

R1 = 1000 (ohms) 

R2 = 100 (ohms) 

Rk = 100 (ohms) 

μ = 20 

rp = 10,000 (ohms) 
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5.17 The network of Fig. P5.17 is excited by the periodic function vg(t) also 
shown in the figure. Find the steady state (or recurrent transient) solution for 
i2(t). 

Fig. P5.17. 

5.18 In the network of Fig. P5.18 the capacitance is initially charged to a 
voltage of K volts with the polarity shown. The source voltage is vg(t) = Vm 

cos cot. The switch is closed at t = 0. Find the Thévenin equivalent at the 
open terminals. The element values satisfy the condition R/L = 1/RC = a. 

Fig. P5.18. 

5.19 Find the Thévenin equivalent impedance of the network shown in 
Fig. P5.19 at the terminals (1,2). 

Fig. P5.19. 



6 • INTEGRAL SOLUTIONS 

We have now reached a state of accomplishment where given any 
network and arbitrary (transformable) excitations, the complete response 
can be readily obtained. When the network is initially relaxed, we have 
seen that it can be characterized by its appropriate transfer function. 
Hence, it is not even necessary that the network be given, as long as the 
transfer function is known. 

In this chapter we will be concerned with the problem of determining 
the response of a network to an arbitrary driving function, not when 
the network is given, but when its response to some standard function is 
given. We know, for instance, that the steady-state response of a 
network to a periodic function can be obtained as a Fourier series when 
the steady-state response to a sinusoid is known. The standard func
tions we will consider will be the step and the impulse functions. 

To achieve our purpose we will need a result from the theory of 
Laplace transforms. However, this result is probably less familiar than 
such standard things as partial-fraction expansions, etc. Hence, we 
will spend some time discussing it. 

6.1 The Convolution Theorem 
Suppose a driving function e(t), which may be a voltage or a current, 

is applied to an initially relaxed network and it is desired to find a 
particular response r(t). Let the pertinent transfer function be H(s). 
Then the response transform will be given by 

R(s) = H(s)E(s) (1) 

Our usual method of procedure to find r(t) is to expand the right-hand 
side in partial fractions, or to employ the inversion integral. What we 
would like to do now is to express both H(s) and E(s) in terms of the 
time functions of which they are the transforms [assuming H(s) is an 
ordinary transform function] by means of the definition of a Laplace 
transform. If we can, by subsequent manipulation, express the result 

194 
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in the form 

(2) 

then, from the definition of the Laplace transform, we can conclude that 
whatever is in the parentheses is the desired response. What we plan 
to do does not depend on the interpretations of H(s) as a transfer func
tion and E(s) as an excitation. Hence, we will use more general notation 
in developing this result. 

Let F1(s) and F2(s) be two transform functions whose inverse trans
forms are fi (t) and f2 (t), respectively. That is. 

(3) 

We have used dummy variables different from t in order to avoid con
fusion in the later development. Consider the product of these two 
functions 

(4) 

(The last step is clearly justifiable since each integral in the second line 
is a constant with respect to the other variable of integration.) The 
product of integrals in the second line can be interpreted as a double 
integral over an area whose coordinate axes are u and y. The integra
tion is to be performed over the entire first quadrant, as indicated in 
Fig. la. 

Let us now make a transformation to a new set of variables as follows. 

(5) 

Actually, the second one of these is an identity transformation and is 
included only for clarity. We now need to express the double integral 
in terms of the new variables. The element of area du dy in the old 
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Fig. 1. Region of integration. 

variables is related to the element of area dx dt in the new variables 
through the Jacobian, as follows. * 

(6) 

Computing the partial derivatives from Eqs. (5) and substituting here 
leads to the result that dx dt = du dy. 

To complete the change of variables, we must determine the new 
limits of integration. Note that, since t = u + y = x + y, and since 
y takes on only positive values, then t can be no less than x. The line 
t = x in the x-t plane bisects the first quadrant, so the desired area of 
integration is the area lying between this line and the t-axis, as shown 
in Fig. lb. In order to cover this area we first integrate with respect to 
x from x = 0 to x = t; then we integrate with respect to t from zero 
to infinity. 

With the change of variables given in Eqs. (5) and with the limits 
changed as discussed, Eq. (4) now becomes 

(7) 

This is exactly in the form of Eq. (2), so that we can identify the quantity 
in brackets as f(t) = £—1[F(s)]. It should be clear that, if in Eqs. (3) 
we write F1(s) in terms of the dummy variable y and F2(s) in terms of 
u, then in the result given in Eq. (7) the arguments of f1 and f2 will be 
interchanged. The final result can therefore be written in the following 
two alternative forms. 

(8) 

* See, A. E. Taylor, Advanced Calculus, Ginn and Co., New York, 1955, p. 429. 
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(9) 

The operation performed on two functions f1 (t) and f2(t) represented 
by these expressions is called convolution or Faltung. The two functions 
are said to be convolved. The convolution of two functions is often 
denoted by the short-hand notation f1 * f2. We can state the above 
result in the form of a theorem, as follows. 

Convolution Theorem. Let the two functions f1(t) and f2(t) be 
Laplace transformable and have the transforms F1(s) and F2(s), re
spectively. The product of F1(s) and F2(s) is the Laplace transform of 
the convolution of f1 (t) and f2 (t). That is 

where 
£[f(t)] = F(8) = F1(s)F2(s) (10) 

(11) 

While we are still in this general notation let us state another useful 
theorem concerning the derivative of the convolution of two functions. 
If the functions f1(t) and f2(t), in addition to being Laplace transform
able, are also differentiable for t > 0 (they need only be continuous for 
t = 0), then their convolution will also be differentiable for t > 0. The 
derivative will be 

(12) 

or 
(13) 

where the prime indicates differentiation with respect to t. These expres
sions can be found by applying Leibnitz's formula for differentiation 
under an integral.* In fact we can observe that we don't really need 
the hypothesis that both f1(t) and f2(t) are differentiable. If either func
tion is differentiable and the other continuous, then the convolution f1 * f2 

is differentiable. 

6.2 The Impulse Response 
Let us return to our original problem of finding the response r(t) of 

an initially relaxed network with a transfer function H (s) to an excita-

* For an alternative proof, see Doetch, Handbuch der Laplace-Transformation I, 
Verlag Birkhauser, Basel, 1950, p. 116. 



198 Integral Solutions [Ch. 6 

tion e(t). We now have the desired result in terms of the convolution 
theorem, expressed by Eq. (11). Remembering the condition under 
which the theorem is valid, we must require that H(s) have a zero at 
infinity, otherwise it will not be the transform of an ordinary point 
function. Let us denote the inverse transform of H(s) by rδ(t), for reasons 
which will be clear in a few paragraphs. That is. 

(14) 

Then, with Eq. (1) used in place of Eq. (10), we will get 

(15) 

This is a very valuable result. By this expression we are able to express 
the time response of a network to an arbitrary driving function e(t), 
in terms of the inverse transform of the transfer function of the network. 

A further interpretation is possible, if we are willing to admit the 
impulse function in our discussions. Such an interpretation is not really 
needed since Eq. (15) can stand on its own feet, so to speak. However, 
the interpretation may prove useful in some instances.* 

Let us conceive of the situation in which the driving function is a unit 
impulse δ1(t). Let us label the response of the network to this excitation 
rδ(t), with transform Rδ(s) and call it the impulse response. Since 
£[δ1(t)] = 1, Eq. (1) becomes 

(16) 

In words, the last equation states that the inverse transform of the net
work transfer function is equal to the impulse response of the network. 
We anticipated this result by using the notation of Eq. (14). 

Return now to Eq. (15). We see that this equation expresses the 
fact that once the impulse response of an initially relaxed network is 
known, the response to any other function e(t) is determined. What we 
must do is form the product of the excitation at each point x and the 
impulse response, not at the same point, but at a point (t — x), and then 
integrate. Another viewpoint is to say that the input function is 
"weighted" by the impulse response. This leads to the name of "weight
ing function" used by some authors for the impulse response. 

Let us elaborate on the concept of weighting a little. Perhaps an 
example would be more satisfying as a means of communicating this 

* For instance, one can find a close approximation to rδ(t) experimentally, by using 
this interpretation. 
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point. Therefore let us consider a system with the transfer function 

which is the transfer function F2(s)/V1(s) of the network of Fig. 2. 
Then the impulse response is given by 

Fig. 2. Example for the concept of weighting function. 

A plot of this function is given in Fig. 3. 

Fig. 3. Impulse response of the network of Fig. 2. 

Suppose we wish to compute the response of this network to some 
driving function e(t). For convenience of interpretation, let us take the 
convolution of rδ(t) and e(t) in the second form given in Eq. (1.5). We 
will use x as the running variable. To get the value of the response at 
any given time t, we take the input up to this point and the impulse 
response up to this point. Then we "flip over" the impulse response, 
so that its value at x = 0 multiplies the excitation at t, and its value at 
t multiplies the excitation at x = 0. This is illustrated in Fig. 4, where 
the functions rδ(t — x) and e(x) are shown. Let us see what happens 
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Fig. 4. Illustration of convolution. 

when we multiply these two curves point by point. Since rδ(0) = 0, 
the value of e(x) at the point t contributes nothing to the response at t. 
This, in spite of the fact that e(x) has a maximum value at this point. 
On the other hand the most important neighborhood is around (t — 1), 
for the values of e(x) in this vicinity are multiplied by the largest values 
that rδ assumes. Similarly the values of e(x) for x less than (t — 2) 
do virtually nothing to the response at t. Thus rδ decides how much 
weight to attach to the values of e at various times. In this case, the 
response is decided virtually by the values of e(t) for the previous 2 
seconds; the most significant contribution coming from the values of 
e(t) about the point 1. second prior to the time under consideration. 

The question now arises, what should we do if the network transfer 
function does not have a zero at infinity? In such a case rδ(t) will 
contain impulses. Since we are permitting impulses in the excitation, 
we might just as well relax the original condition on H(s) and permit it 
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to be nonzero at infinity. Let us see what effect this will have. If we 
designate the limit of H(s) as s approaches infinity by #(∞), then we 
can write 

H(s) = H(∞) + H1(s) (17) 

where H1(s) has a zero at infinity. The impulse response will then be 

rδ(t) = H(∞)δ1(t) + h1(t) (18) 

where h1 (t) is a well-behaved function not containing impulses. Let us 
use this expression in the first form of Eq. (15) to find the response of 
the network to an excitation e(t). The result will be 

(19) 

The last step follows from the sampling property of impulse functions as 
given in Eq. (114) of Chapter 4. We see that if the transfer function of 
the network has a nonzero value at infinity, there is a resistance path 
through the network (at least conceptually) over which the input is 
transmitted to the output with a change in scale only. 

6.3 The Step Response and the DuHamel Integral 
In the last section we established that the response of an initially 

relaxed network to any arbitrary excitation can be found simply from 
a knowledge of the response of the same network to a unit impulse. 
In this section we shall show that the same conclusion applies as well 
to a knowledge of the response of the network to a unit step function 
u(t). 

Let us initially assume that a unit step excitation function is applied 
to a network and denote the response of the network to this excitation by 
ru(t), with transform Ru(s). We will call ru(t) the step response or the 
indicia! response. Carson originally referred to this as the "indicial 
admittance" when the response was the current and the excitation was 
a voltage at the same terminals. Since £[u(t)] = 1/s, we write 

(20) 

This expression immediately tells us something about the relationship 
between the step response and the impulse response, since H(s) = Rδ(s). 
To get the relationship between the time responses, we take the inverse 
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transform of Eq. (20), either as it stands or after multiplying through 
by s. The results will be 

(21) 

(22) 

The initial value of the step response is readily found from Eq. (20) 
using the initial value theorem. It will be 

(23) 

provided H(∞) exists and is finite. We conclude that the initial value 
of the step function response of a network will be zero if the transfer 
function has a zero at infinity. If H(∞) is nonzero, the initial value of 
the step response will be nonzero, and the impulse response will itself 
contain an impulse. Note that Eqs. (21.) and (22) together do violence 
to our ordinary concepts of calculus. If rδ(t) is an integrable function, 
then Eq. (21.) tells us that ru(0) should be zero (simply by putting 0 as 
the upper limit). However, if we admit impulses, then our constitution 
must be strong to withstand the violence that will be done to our mathe
matics. Note also that even if rδ(t) contains a first order impulse, ru(t) 
will not be impulsive. Hence, ru(t) is always better behaved than 

Let us now return to our original task and assume that an arbitrary 
£-transformable excitation e(t) is applied to the network. Equation 
(1.) relates the transforms. This equation can be rewritten in one of 
several ways if we multiply numerator and denominator by s. Thus 

(24) 

(25) 

(26) 

In each case we have used Eq. (20) to obtain the far right side. To 
find r(t) we will now use the convolution theorem. Focus attention on 
Eq. (24). This can be written 

(27) 
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where 

F(s) = Ru(s)E(s) (28) 

With the use of the convolution theorem we can write 

(29) 

If we evaluate f(0) we will find it to be zero, unless ru(t) contains an 
impulse. But we saw that this is not possible even if H(s) has a finite, 
nonzero value at infinity. The step response will have an impulse only 
if H(s) has a pole at infinity. Hence, if we admit only those H(s) 
functions which are regular at infinity, then r(t) will be the derivative 
of f(t), based on Eq. (27). Thus, 

(30) 

We now have an expression for the response of an initially relaxed 
network to an excitation e(t) in terms of the step response. This result 
ranks in importance with Eq. (15). Using the theorem we stated in 
Eqs. (12) and (13), we can put the last equation in the following form 

(31) 

(32) 

This will require that ru(t) or e(t), as the case may be, be differentiable. 
These same expressions can be obtained in an alternative manner start
ing from Eqs. (25) and (26). To use Eq. (25) let us first write 

(33) 

We can now use the convolution theorem on Eq. (25). The result will 
be 
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(34) 

which is the same as Eq. (32). In a similar manner Eq. (31) can be 
obtained starting from Eq. (26). The details are left to you. 

For future reference we will collect all of the forms of these expressions 
which we have derived. They are 

(35) 

(36) 

(37) 

These expressions were originally used by DuHamel in 1833 in dynamics. 
They are variously known as the DuHamel Integrals, Carson Integrals, 
and Superposition Integrals. Carson himself called (37) the fundamental 
formula of circuit theory. 

6.4 The Principle of Superposition 
In the preceding sections of this chapter we obtained, in a formal way, 

expressions that relate the response of an initially relaxed network to 
an excitation e(t) with the impulse response or step function response, 
through a convolution integral. It is possible to interpret these in
tegrals as statements of the superposition principle. This will be the 
subject of the present section. 

Consider the excitation function sketched in Fig. 5. We are interested 
in the time interval from 0 to t. Let x represent any value of time in 
this interval and suppose t is temporarily fixed. Let the interval be 
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Fig. 5. Decomposition of function into impulse train. 

divided into n equal subintervals Δx (it is not necessary that they be 
equal but the problem is easier to formulate if they are). 

Now consider the sequence of impulses labelled f(t) shown in Fig. 
5b. The impulse at the point kΔx has a strength Δxe(kΔx), which is the 
area of a rectangle formed by the base Δx and the height of the curve of 
Fig. 5a at the point kΔx. The heights of the arrows in the figure have 
been drawn proportional to this strength. However, remember that the 
impulses are all of infinite height. Hence, for any finite Δx, no matter 
how small, the string of impulses is not a good representation of the 
excitation function which is everywhere finite. Nevertheless, let us 
compute the response of the network to this sequence of impulses. 
For f(t) we can write 

(38) 

Let us denote the response to one of these impulses by Δr k. Then Δr k 

will be equal to the strength of the impulse times the impulse response, 
suitably displaced. Thus, 

(39) 
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Let us now concentrate on a particular point on the axis which we can 
call x. For a given value of Δx this point will be kΔx. If we let Δx get 
smaller, we will have to increase k proportionately so that the value 
x = kΔx will stay the same, since it refers to a fixed point on the axis. 
Hence, Eqs. (38) and (39) can be rewritten 

(40) 

(41) 
The response at any time t is obtained by adding the responses to 

each of the impulses up to time t. Let us denote by r(t) the response to 
the sequence of impulses as we let Δx approach zero. 

(42) 

(The summation has been indicated as extending from x = 0 to x = t. 
Actually, it should be k = 0 to n with the limit taken as n goes to 
infinity. Since x = kΔx, the notation we used is equivalent to this.) 
The indicated limit is by definition the integral written in the last line. 

The question that remains to be answered is whether the sum of 
impulse functions f(t) given in Eq. (40) can represent the original excita
tion e(t) in the limit as Δx approaches zero. In the limit the strength 
of each impulse, being proportional to Δx, will also approach zero. In 
a formal way, the summation in Eq. (40) will become an integral which, 
by the sampling property of impulse functions, becomes e(t). Thus, 
in the limit, the series of impulses represents the excitation. 

In view of the preceding discussion, we can interpret the convolution 
integrals in Eq. (1.5) as expressing the response to an excitation e(t) 
as the superposition of responses to a sequence of impulses which make 
up the function e(t). 

A similar development can be carried out by representing the excita
tion as a sum of step functions as illustrated in Fig. 6. The interval 
from 0 to t is divided into n equal subintervals Δx. The resulting 
"staircase" function is not a very good approximation to e(t) but it 
gets better as n is increased and Δx is made smaller. When Δx is very 
small, the value of each step in the staircase can be approximated by the 
product of Δx and the slope of the curve at the jump, since each of the 
little figures between the curve and the staircase function approaches a 
triangle. 
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Fig. 6. Decomposition of a function into step functions. 

The response of the network to the excitation e(t) can be approximated 
by the response to the staircase function. But this is nothing but a sum 
of step function responses, suitably displaced and multiplied by the value 
of the discontinuity. Let Δr k be the response to the step occurring at 
kΔx. It will be given by 

(43) 

where the prime indicates differentiation. The factor in brackets is the 
value of the step, while ru(t — kΔx) is the response to a displaced step 
function. 

The total response will be the sum of the contributions from each 
step. Again if we focus attention on the point x = kΔx and take the 
limit as Δx approaches zero, we will get 

(44) 

In this development we have assumed that the excitation is a con
tinuous function and that the initial value is zero. Now suppose it has 
discontinuities of value Ki occurring at times ti, respectively. We shall 
consider a nonzero initial value to be a discontinuity at t = 0. The 
total excitation will then be e(t) + ΣKiu(t — ti), where e(t) is the con
tinuous part of the excitation. We have already found the response to 
this part; to this we must now add the response due to the dicontinuities. 
The complete response will be 

(45) 
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In particular, if there are no discontinuities except at t = 0, then the 
total response will be [with e(0) written for K0] 

(46) 

This expression is identical with the first one in Eq. (35). We have 
now demonstrated that the response to an excitation e(t) can be regarded 
as the superposition of the responses to a series of step functions which 
represent the excitation. 

These interpretations that we have given for the convolution integral 
representations have two important applications. One of these is the 
numerical computation of network response (using a computing machine, 
for example), and the other is in time domain synthesis. Let us make a 
few remarks on the first application and briefly mention the latter. It 
makes little difference to the final results whether we take the impulse 
or the step representation. Therefore let us take the former, for the 
present discussion. 

Suppose we wish to find the response of a network to a time function 
that is not easily represented as a sum of elementary functions. For 
instance the time function may be given simply as a curve. Or its 
analytical formula may be very complicated. In such cases the Laplace 
transform E(s) may be either difficult to find, or be so involved as to be 
useless. If we approximate E(s) by a rational function, we will not 
know how good an approximation of the response function we will get 
in the time domain. In such cases, it is more meaningful to approxi
mate e(t) in the time domain by an impulse sequence as in Fig. 5 or by 
a staircase function as in Fig. 6. 

Let us once again resort to an example. Suppose we have a network 
which has the impulse response shown in Fig. 7a. This impulse response 
may have been found experimentally by using a short pulse as an "ap
proximation" to the impulse. Suppose we wish to find the response of 
the network to the excitation in Fig. 7b, which again may be an experi
mental curve or the result of some other graphical computation. 

We now select a suitable interval T such that the variation of n(t) 
and e(t) over an interval T are small enough to be negligible. Then we 
use the approximate representation. 

(47) 

for the excitation, and tabulate the values of n(kT) and e(kT). This 
expression is usually interpreted as the result of multiplying e(t) by the 
impulse train Σ δ1(t - kT). The function e*(t) is referred to as a time 
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Fig. 7. Numerical computation of network response. 

series. It can be shown that the same final results as we shall obtain 
here using these concepts can also be obtained by approximating 

(48) 

by a staircase function and using Laplace-Stieltjes transforms, without 
using the impulse function. Thus, our final results can be justified in 
the realm of rigorous mathematics. 
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Now, using the convolution theorem, the response of the network to 
the time series (47) can be written, 

(49) 

where 

In particular, the value of the response at our chosen points nT will be 
given by * 

(50) 

Let us see the implication of this equation. We notice that the sum on 
the right is simply a sum of real numbers, not functions. Thus we can 
get an approximate idea of the response simply by adding these num
bers, without integrating functions. 

To illustrate this point a little clearer, let us find the approximate 
response at t = 1.0 for the example of Fig. 7. (The intervals chosen are 
too large for any accuracy, but the example suffices as an illustration.) 
Reading the values of e(kT) and n(kT) from the graphs, we have 

Lines 1. and 2 of this table are found from the graphs. Line 3 is obtained 
by copying line 2 backwards. Line 4 is the product of the corresponding 
entries in lines 1 and 3. Now the approximate response at t = 10T 
is simply the sum of the entries in the last row, or 

r1(10T) = 302.54 

Quite often this method of representing the approximate response is 
called the time series representation of the response and is written 

* Since n is the only variable in this equation, we can write this in more conven
tional form as 

and observe that it is the Cauchy product of two time series, for e and rδ. 
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(51) 

This method of representing everything by time series leads to the so 
called z-transform method of analysis used in sampled data systems. 

The same concept of time series is also used in time domain synthesis. 
Quite often the synthesis problem is specified by means of a curve for 
the excitation e(t) and a curve for the response r(t) that is desired. Then, 
one of the procedures in use is to represent e(t) and r(t) as time series 
and use simultaneous equations derived from Eq. (51) to find the time 
series for rδ(t). The synthesis then proceeds by finding H(s). The mathe
matical problems that arise are too numerous for us to consider this 
question any further. Therefore we leave this application to advanced 
courses on synthesis. 

6.5 Representations of Network Response 
At this point we need to step back from all the algebraic (sometimes 

tedious) manipulations of the previous sections in order to obtain a 
broad view of what we have been doing. 

In mathematics and in mathematical physics, of which electric net
work theory forms a part, we are often interested in explicit formulas 
for various functions of interest. For example in the theory of functions 
of a complex variable we write a formula for an analytic function in 
terms of its values on a closed contour—the Cauchy integral formula. 
We write another formula in terms of its derivatives at a point—the 
Taylor series expansion. We write a formula for a rational function in 
terms of its behavior at singular points—the partial fraction expansion 
and its generalization (the Mittag-Leffler formula) to meromorphic 
functions. Similarly, in potential theory we write formulas for the 
potential function in terms of the boundary values (the Poisson integral 
formula for a circle) involving the Green's function of the domain. We 
write another formula in terms of general harmonic functions, etc. All 
of these formulas give us various ways of representing the solution of a 
given problem, and we refer to this process as representation theory. 
Each new representation tells us something about the behavior of the 
solution. Each new representation also tells us how we can completely 
describe the solution for any given arbitrary conditions. Since all these 
representations refer to the solution of the same problem, they must all 
be equivalent. 

We are also interested in establishing the conditions that completely 
specify a solution. In other words we look for minimal criteria that 
fix the solution completely. Then we write uniqueness theorems—the 



212 Integral Solutions [Ch. 6 

identity theorem for analytic functions, uniqueness theorems for 
boundary value problems and differential equations in general, etc. 

In the case of the response of electric networks to arbitrary excita
tions and initially relaxed conditions, we found several representations. 
We saw that knowledge of either the impulse response or the step func
tion response tells us the response to any excitation, through the agency 
of convolution integrals. We also know that the network is specified 
in terms of the pertinent transfer function. Of course, these representa
tions must all be related, and we already saw some of the relationships 
in Eqs. (1.6), (21), and (22). We will now pursue this topic somewhat 
further. 

Let us first look at the impulse response representation of the solution, 
as given in Eq. (1.5). When the network is initially relaxed this expres
sion gives the complete solution for t > 0, steady state, transient and 
all. Thus the impulse response is a representation of the network and 
Eq. (1.5) is a representation of the solution in terms of the impulse response. 

Let us now see what this expression will tell us about the nature 
of the response function r(t). If the function rδ(t) is an ordinary point 
function (i.e., if the transfer function H(s) has a zero at ∞, meaning the 
denominator is of higher degree than the numerator) then the response, 
being an integral, will always be continuous. In fact it will satisfy a 
very strong continuity condition known as "absolute continuity." The 
response r(t) will start from 0 at t = 0. Again if the impulse response 
rδ(t) is an ordinary point function, we know it will be a sum of exponential 
functions and so will have derivatives of all orders. It is an entire 
function of the variable t. Hence, whenever the driving function e(t) 
is continuous, the response function r(t) will be differentiable and the 
derivative will be given by Leibnitz's formula for differentiation under 
the integral sign. 

(52) 

This statement can be generalized. If r$(t) and e(t) are ordinary point 
functions, then r(t) has at least one more derivative than e(t). If e(t) 
has n derivatives, then at each point where e(n)(t) is continuous, we will 
have 

(53) 

Thus, if the impulse response is an ordinary point function, the system 
response is always "better behaved" than the driving function. 
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Another piece of information we can squeeze out of the impulse re
sponse representation is the behavior of the solution near t = 0. The 
behavior near t = 0 is of considerable interest in systems which are 
constantly in a transient state, such as a servo system for example. 
This initial transient response is easily computed from the last equation 
if the impulse response is an ordinary point function. We have, quite 
obviously, 

(54 ) 

etc. The discussion gets slightly more complicated if the impulse 
response is not an ordinary point function. If the impulse response 
contains a first-order impulse then the response function will have as 
many derivatives as the driving function. Higher order impulses in the 
impulse response will cause the response to the excitation e(t) to have 
fewer derivatives than does e(t) itself. Note that what we have done 
in terms of the impulse response in the time domain can be done just 
as well in terms of the transfer function H(s) in the complex domain. 

Let us next take a brief look at the formula for the response function 
in terms cf the step response given in Eq. (36). This is once again a 
representation of the complete solution, including steady state and 
transient, when the initial conditions are zero. If the step response 
starts from zero at t = 0, then the behavior of r(t) is "one step better" 
than the behavior of e(t), as far as differentiability is concerned. If 
e(t) has n derivatives, then r(t) has (n + 1.) derivatives. Conclusions 
similar to those arrived at from our discussion of the impulse response 
representation can be obtained in the present case as well. These will 
be left for vou to carry out. 

Let us now turn our attention to the "specification" problem and see 
if we can get any uniqueness theorems. As a first step in this direction 
let us see what we can learn about the response of a network to our old 
familiar sine function. Let us drive the network with e(t) = sin ωt and 
assume that all the initial conditions are zero. Let rs(t) denote the 
solution. We should emphasize here that rs(t) is the complete solution 
for t > 0, not just the steady state. Let us see what rs(t) will tell us 
about the system. By our earlier discussion we know that rs(t) is related 
to the impulse response by the convolution integral 

(55) 



214 Integral Solutions [Ch. 6 

Formerly we knew rδ(t) and we wrote this equation as a solution for 
rs(t). Now, however, we are assuming that rs(t) is known, so that Eq. 
(55) becomes an integral equation for rδ(t). It is an integral equation 
of the convolution type. Under suitable conditions on rs(t), this equa
tion has a unique solution. In fact the best way to solve this integral 
equation is through Laplace transforms. £-transforming Eq. (55) yields 

(56) 

Solving for Rδ(s) we get 

(57) 

and so 

(58) 

Thus, as soon as we know the response of the network to a sine function 
we know its response to a unit impulse. By our earlier discussion we 
know the response to any arbitrary (£-transformable) function e(t) as 
soon as we know rδ(t). Thus the response to any excitation can be 
computed from a knowledge of the complete response to a sinusoid. 

Going one step further, we see that the restriction to sine functions 
was really unnecessary. We could have computed the transfer function 
Rδ(s) from the response to any arbitrary driver. Hence, the following 
uniqueness theorem can now be stated. 

If two initially relaxed lumped linear systems N1 and N2 have the same 
response rf(t) to a £-transformable function f(t), then their responses (when 
initially relaxed) to any arbitrary £-transformable input function will be 
the same.* 

Let us collect our conclusions here, as a set of uniqueness theorems. 
Suppose N1 and N2 are two networks that satisfy any one of the condi
tions below. Then their responses, when initially relaxed, to any arbi
trary excitation will be identical. 

s-domain: 
(a) H1(s) = H2(s), al ls; 
(b) H1(s) = H2(s) on a line segment of positive length 

in the s-plane; 

* This statement should be qualified, as should any statement involving inverse 
£-transforms, by adding the phrase "except at a set of measure zero," or "except 
for a null-function." A finite or infinite sequence of isolated points is an example 
of a set of measure zero, and a null-function is a function which has non-zero values 
only at such a set of measure zero. The function f(t) in the uniqueness theorem is 
assumed to be a non-null function. 
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t-domain: 
(c) rδ1(t) = rδ2(t); 
(d) ru1(t) = ru2(t); 
(e) rf1(t) = rf2(t) 

where f(t) is any function such that ∫ f(x) dx ≠ 0 
and rf is the complete response to f(t) under initially 
relaxed conditions. 

Steady state: 
(f) Steady-state response of N1 and N2 to sin ωt excita

tion agree over a positive range of frequencies ω1 < 
ω < ω2 (ω2 — ω1 > 0); 

(g) If N1 and N2 have a steady-state response to any 
periodic function and their steady-state responses 
agree for some periodic function f(t) which has an 
infinite number of nonzero Fourier coefficients. 

Of these, we see that (a) is obvious, and (b) follows from the identity 
theorem for analytic functions and the fact that H(s) is rational and 
therefore single-valued in the complex plane. We have just observed the 
validity of (c), (d), and (e). Condition (f) follows from (b) and the proof 
is left as a problem. 

Condition (g) is a consequence of the most general form of the identity 
theorem for analytic functions, which can be stated as follows. 

If F1(s) and F2(s) are two analytic functions which agree on an in
finite set of points having a limit point inside the region of regularity 
of both functions, then F1(s) and F2(s) agree everywhere within their 
common region of regularity.* 

The assumption in condition (g) implies that H(s) is regular at s = ∞. 
The transformation z = 1/s now converts s = ∞ into 2 = 0, and the 
identity theorem can be applied with z = 0 as the limit point. 

The last condition (g) is the basis for the "square wave testing" of 
audio amplifiers, where we describe the frequency response charac
teristics by the steady-state response to a square wave. 

6.6 Relationships Between Frequency and Time Responses 
We will now consider some detailed relationships between the transfer 

function and the step and impulse responses. Let us initially restrict 
ourselves to transfer functions with no poles on the jω axis. For net
works with such transfer functions, the forced response is also the steady-

* For a proof of this theorem see K. Knopp, Theory of Functions, vol. I, p. 87, 
Dover Publications, New York, 1945. 
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state for periodic excitations. That is, as t —> ∞ the total response is 
asymptotic to the steady-state. On the jω-axis the transfer function 
can be written 

(59) 

where U and X are the real and imaginary parts, respectively, and θ 
is the angle. It is easy to show that the real part is an even function of 
ω and the imaginary part is an odd function (do this). That is, 

(60) 

Suppose the excitation is sinusoidal, given by 

(61) 

The usual method of steady-state analysis tells us that the steady-state 
response will be 

(62) 

Let us now write the complete response to the sinusoidal excitation 
in terms of the superposition integral given in Eq. (35). The result will 
be 

(63) 

(The notation rs(t) refers to the complete response to a sine function, 
while rsS(t) means steady-state response.) Note that the integral from 
zero to t has been written as the sum of two integrals. This is possible 
only if the improper integrals converge. It is clear that the integrals 
will converge if the absolute value of ru(t) is integrable over the infinite 
range. This will require that ru(t) —> 0 as t —> ∞. Using the final-
value theorem, which is valid because H(s) is assumed regular on the 
jω-axis, we will get 

(64) 

If we require the limit on the left to be zero, this means the transfer 
function must have a zero at the origin. Let us assume that this condi-
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tion is met by the transfer function. Then the last integral in Eq. (63) 
will approach zero at t —> ∞. Hence, we can interpret the first integral 
in that equation as the steady-state response. Thus, 

(65) 

The last step is obtained by expanding cos ω(t — x). 
This equation gives a representation of the steady-state response of 

a network to a sine wave when the transfer function of the network has 
no poles on the jω-axis and has a zero at s = 0. Another representation 
of the steady-state response was given in Eq. (62). On comparing the 
two equations, we can make the following identifications. 

(66) 

(67) 

These same expressions could have been obtained, perhaps more 
easily, from the definition of the Laplace integral. Thus 

(68) 

We have already assumed that H(s), and hence also R u(s), has no poles 
on the jω-axis. Hence, the integral will converge if we set s = jω, pro
vided ru(x) —> 0 as x —> ∞, which is the same condition we found before. 
We can now write 

(69) 

This, of course, agrees with Eqs. (66) and (67). 
Additional useful relations can also be obtained by starting from the 

inversion integral for the step response. In view of Eq. (20), we can 
write 

(70) 
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We are still assuming that H(s) has no poles on the jω axis, but let us 
not restrict H(s) to have a zero at the origin for this development. Then 
the integrand in the last expression might have a pole at the origin. If it 
weren't for this pole the Bromwich path could be taken as the jω-axis. 
Instead, let us take the path shown in Fig. 8 which consists of the jω-axis 

Fig. 8. Contours of integration. 

except for a semicircular arc which by-passes the origin. As the radius of 
the semicircle approaches zero, the path approaches the entire jω-axis. 
The three parts of the path have been labelled C x , C 2 , and C 3 . Equation 
(70) can now be written. 

(71) 

On the parts C1 and C 3 , s = jω and ds = jdω. On the part C 2 , which is 
shown expanded in part (b) of the figure, we can write 

(72) 

Hence, Eq. (71) becomes 

(73) 

The last integral on the right involves the radius R in a complicated way. 
However, we intend to let R approach zero, in which case the integral 
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reduces to H(0)/2 (justify this). Note that if we place the additional 
restriction that H(s) has a zero at s = 0, then this term will disappear. 
When we let R —> 0, the remaining two integrals in Eq. (73) combine 
to give the principal value of the integral running from —∞ to +∞. 
Hence, finally 

(74) 

(Note that, although it is not explicitly shown, we are to understand the 
last integral as representing the principal value.) This expression can 
be further simplified by writing H(jω) in terms of its real and imaginary 
parts, expanding the exponential and using the odd and even properties 
of the resulting functions to change the range of integration to the 
positive ω axis. The details will be left to you. The result is 

(75) 

We have replaced H(0) by 17(0), since X(0) = 0. 
Let us pause now and consolidate our results. In Eq. (69) we ob

tained an expression for the network transfer function along the jω-
axis in terms of the step function response. The inverse relationship, 
giving the step response in terms of the real and imaginary parts of 
H(jω), was obtained in Eq. (75). Note that this expression is valid for 
negative as well as positive values of t. However, ru(t) = 0 for negative 
values of t. Hence, 

(76) 

or 

(77) 

When we substitute the last equation into Eq. (75) we obtain the final 
result 

(78) 

(79) 

Up till now we have performed various mathematical manipulations 
to put the relationships between H(jω) and ru(t) in various equivalent 
forms. But now we have something new. The last equation shows that 
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the step response of the network can be computed knowing only the real part 
of the transfer function along the jω-axis. Note that this relationship 
does not require that U(0) = H(0) be zero. With the step response 
determined, Eq. (67) can be used to compute the imaginary part of 
H(jω). However, the asymptotic value of the step response which is to 
be used in Eq. (67) must be zero. Hence, before using ru(t) as computed 
from Eq. (79), we first subtract the asymptotic value in case U(0) is 
not originally equal to zero. In this way H(jω) is completely determined 
from a knowledge of its real part alone. 

Similarly, starting with the imaginary part X(ω), we can compute the 
step response from the integral in Eq. (78). The step response computed 
from this integral will approach zero as t approaches infinity. This fact 
is evident from the Riemann-Lebesgue theorem given by Eq. (83) in 
Chapter 5. (Note the interchange of the roles of ω and t.) To the value 
of ru(t) thus computed we can add any constant, which will become the 
zero-frequency value of H(jω), denoted by C7(0) in Eq. (78). However, 
omitting this step, we can now compute the real part U(ω) from Eq. (66). 
Thus, H(jω) will be completely determined, except for an additive constant, 
from a knowledge of the imaginary part alone. 

Let us now turn to the impulse response. Everything we did starting 
from Eq. (68) can be duplicated (with appropriate changes) in terms of 
the impulse response. We will list the results and leave the details of 
the development to you. It will still be required that H(s) be regular 
on the jω-axis, but now it need not have a zero at s = 0. Instead, appli
cation of the inversion integral to H(s) will require that H(s) have a 
zero at infinity. If we retrace the steps starting at Eq. (68), we will get 
the following equations. 

(80) 

(81) 

(82) 

(83) 

The first two of these are the counterparts of Eqs. (66) and (67), whereas 
the last two are to be compared with Eqs. (78) and (79). As a matter 
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of fact, the last two equations can be obtained from Eqs. (78) and (79) 
in view of the fact that the impulse response is the derivative of the step 
response. (No impulses will be involved since we assumed H(∞) = 0.) 

Equation (83) shows that the impulse response of the network can be 
computed knowing only the imaginary part X(ω). Note that X(ω) will 
approach zero as ω —> ∞ even though H(∞) may not be zero. With 
the impulse response computed, the real part U(ω) can now be found 
from Eq. (80). Similarly, starting from a knowledge of just the real 
part U(ω), the impulse response can be computed from Eq. (82). How
ever, this will be valid only if U(ω), and so also H(jω), goes to zero as 
ω —> ∞. Having found the impulse response, the imaginary part X(ω) 
is now calculated from Eq. (81). Thus again we find that a transfer 
function is completely determined from a knowledge of either its real 
part or its imaginary part along the jω-axis. Again note that the transfer 
function calculated from a given X(ω) will have a zero at infinity; to this 
we can add any positive constant without affecting the imaginary part. 

In each of the above cases, once the step response or impulse response 
is calculated from a given U(ω) or X(ω), it is then only necessary to find 
the Laplace transform, since £[ru(t)] = H(s)/s and £[rδ(t)] = H(s). 
In this way one of the integrations can be avoided. 

The relationships which we have derived between the step response, 
or the impulse response, and the transfer function, and between the real 
and imaginary parts of the transfer function, are important mostly for 
their theoretical implications. As far as actual computations are con
cerned, they are not renowned for their simplicity. In the next chap
ter we shall discuss other relationships between the real and imaginary 
parts of network functions which are much more useful for computation. 

Let us terminate this section with an example illustrating the applica
tion of the results we have derived. Suppose the following is specified 
to be the real part of a network function on the jω-axis. 

(84) 

We see that this has a nonzero value at infinity and so Eq. (82) cannot 
be used directly. If we subtract its infinite frequency value, we will get 

(85) 

We can now apply Eq. (82), which leads to 
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(86) 

The second line follows from the use of the exponential form of cos ωt. 
If in the second integral in this line we replace ω by — ω and appropriately 
change the limits, the last line will follow. 

Now consider the following contour integral in the complex s-plane. 

(87) 

The contour consists of the entire jω-axis and an "infinite" semi-circle 
to the left. The integrand satisfies the conditions of Jordan's lemma, 
since the rational function in the integrand vanishes at infinity as 1/s2. 
Hence, the contribution of the infinite arc will be zero, and the complete 
integral reduces to its value along the jω-axis. By the residue theorem, 
the value of the integral is equal to 2πj times the sum of the residues at 
the left half plane poles. In the present case there are only two simple 
poles, at s = —1 and s = — 2, and their residues are easily computed. 
Hence, we get 

(88) 

When this expression is substituted into Eq. (86), we get 
(89) 

The transfer function can now be found by taking the Laplace transform. 
The result will be 

(90) 

This function has a zero at infinity. To this we should add the infinite-
frequency value of U(ω), which is H(∞) and which we subtracted from 
the original function at the start. Thus 

(91) 

(Refer to the discussion following Eq. (17) for further clarification.) 
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This is the desired transfer function. We can easily verify that it 
has the function in Eq. (84) as its j-axis real part. The imaginary part 
can now be simply calculated if desired. Note that for this purpose we 
may use either H1(s) in Eq. (90) or H(s) in Eq. (91.) since they have the 
same imaginary part. 

Note that the impulse response corresponding to the original U(ω) 
differs from Eq. (89) by having an impulse at t = 0. This statement 
is verified by reference to Eq. (1.8). 

PROBLEMS 
6.1 In the text the concept of the convolution of two functions is introduced; 

extend the concept to more than two functions. 
6.2 Prove that the convolution shares the following algebraic properties 

with ordinary multiplication. 

If f1, f2, and f3 are integrable functions (so that f1*f2 = ∫ f1(x)f2(t — x) dx 

is defined and so is f1 * f3) 

(a) f1 * f2 = f2 * f1 (commutative law) 
(b) f1 * (f2 *f3) = (f1 *f2) *f3 (associative law) 
(c) u*f = f*u=f, where u is the unit step function (identity) 
(d) f1 * (f2 + f3) = f1 * f2 + f1 * f3 (distributive law) 
6.3 Find the impulse response and the step response of the networks given 

in Fig. P5.7(2) in the previous chapter assuming initially relaxed conditions. 
The desired responses are indicated in the figures. Demonstrate that Eq. (22) 
is satisfied. 

6.4 Use Eqs. (66) and (67) or (80) and (81) to compute the real part and 
imaginary part of H(jω) for the same networks. Check your answers by com
puting H(s), then U(ω) and X(ω) directly. 

6.5 Find the indicated response of the same networks to the following excita
tion functions, using the impulse response or the step response and a superposi
tion integral. 

Fig. P6.5. 
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6.6 The response (complete response) of an initially relaxed network is given 
by 

when the excitation is e(t) = sin 2t. Find the response of the system when e(t) 
is the triangular wave shown in Fig. P6.6. 

Fig. P6.6. 

6.7 The equivalent circuit of a two stage RC coupled amplifier is shown in 
Fig. P6.7. Find the response of the amplifier to the excitations given in Problem 
6.5 using a superposition integral and the impulse response or step response. 

Fig. P6.7. 

6.8 Solve the following integral equation of the convolution type. 

The unknown function is f(t), and gi(t) and g2(t) are known (integrable) functions. 
6.9 Obtain a solution of the following integral equations. 

6.10 Given the differential equations 
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get an explicit formula for y(t)—the solution—by first finding 

Use this formula to find the solution when f(t) is a pulse of unit height and width; 
that is 

6.11 Find the impulse response for i2(t) in Fig. P.6.11a and use it to find the 
complete solution for the first period, when vg(t) is the periodic function given in 
Fig. P6.116. Compare the answer with that obtained in Problem 17 of Chapter 
5. 

Fig. P6.ll. 

6.12 In a certain network problem the response transform is found to be 

when the excitation is e(t) = cos 2t, and the network is initially relaxed. Find 
(a) the steady-state solution, (b) the transient solution, and (c) the step response. 

6.13 The triangular pulse of voltage shown in Fig. P6.13a is applied to the 
network of Fig. P6.13b. Find the output voltage response for all time, using 
the convolution theorem. 

Fig. P6.13. 

6.14 Use the convolution integral theorem to prove the translation (shifting) 
theorem of Laplace transform theory. 
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6.15 The network of Fig. P6.136 is excited by the function 

Find the approximate response of the network for 0 < t < 2, using time series 
representations. Estimate the maximum error in the solution for the chosen 
interval. 

6.16 Repeat Problem 6.15, but using the excitation 

Use the staircase approximation and the step response. Estimate the error. 
6.17 The network of Fig. P6.17a is excited by the function of Fig. P6.176, 

Find the approximate response v2(t) for 0 < t < 5. 

Fig. P6.17. 

6.18 A voltage v(t) = Ke-st is applied to an initially relaxed network and an 
oscillographic trace of the response voltage v2(t) is obtained. Discuss the pro
cedure for finding the impulse response of the network. 

6.19 Prove the following theorem. Any two initially relaxed networks which 
have the same steady-state response over a positive range of frequencies will 
have the same total response to any excitation function. 

6.20 Using the inversion integral prove that 



7 • REPRESENTATIONS 
OF NETWORK FUNCTIONS 

In the previous chapter we saw how the response of a network may be 
represented in a number of different ways. Toward the end of the 
chapter we also saw how the value of the network function itself can 
be calculated from a knowledge of the network response. We shall now 
subject the network functions to a similar treatment. It is our purpose 
in the present chapter, to study the different methods of representing 
network functions and to see what we can learn from the different 
representations. We shall also study the relationships that exist be
tween parts of a network function—real and imaginary parts, magnitude 
and angle—and represent the function in terms of any one of its com
ponent parts. 

It is here that we begin to make real use of the Laplace transform. 
As a matter of fact, the mere computation of the solution of a set of 
ordinary linear differential equations with constant coefficients is a 
very trivial, and mundane, application for this elegant tool of analysis. 
Our real purpose in starting with a knowledge of Laplace transforms 
as a prerequisite, was to associate analytic functions with a network 
and hence make use of the extensive theory of analytic functions that 
has been developed by mathematicians over the last century. In 
this chapter we shall see the beginnings of the elegant science of Net
work Function Theory that owes its existence to W. Cauer, O. Brune, 
and H. W. Bode. Much of the present chapter is based on the work of 
Bode. 

Network functions naturally fall into two classes depending on whether 
the terminals to which the output (response) relates are the same, or 
different from, the input (excitation) terminals. The two classes are 
called (1) driving point (or input) functions, and (2) transfer functions. 
The analytic behavior of driving point functions is significantly different 
from that of transfer functions. In addition to characterizing network 
functions this way (as driving point and transfer) we also characterize 

227 
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networks themselves depending on which functions are of interest. If 
we are only interested in the behavior of a network as viewed from one 
pair of external terminals (hence only in the driving point functions) 
we say that this network is a one terminal-pair, or a one-port. If, on the 
other hand, we are interested in the currents and voltages at two pairs 
of external terminals (hence in driving point and transfer functions) the 
network is a two terminal-pair or a two-port. A two-port is to be dis
tinguished from a four terminal network. (This distinction will be 
discussed in more detail in Chapter 8.) Some n-ports are illustrated in 
Fig. 1. 

Fig. 1. Some n-ports. (a) One-port; (6) Two-port; (c) Five-port. 

7.1 Representation by Poles and Zeros 
Let us begin our discussion of network functions by observing a few 

elementary properties that should have become obvious to you by now, 
even though we have not stated them explicitly. 

First of all we observe that in lumped, linear, time-invariant net
works, the network functions we have seen are all rational functions. For, 
we saw in Chapter 4 that the network functions can be computed from 
loop or node systems of equations. They appear as ratios of deter
minants and cofactors, or linear combinations of such ratios (even when 
dependent generators are present). The elements of the loop impedance 
matrix and the node admittance matrix are themselves rational func
tions. For instance, if we choose each R, L, and C to be a network ele
ment, we have for the loop impedance matrix 

with (1) 

Since sums, products, differences and quotients of rational functions are 
also rational functions, and these are the only operations involved, we 
see that all network functions are rational. This is indeed a fortunate 
circumstance, since rational functions are the simplest analytic functions. 
(We shall soon see the difficulties that arise when we take the logarithm 
of one of these.) 



Sec. 7.1] Representation by Poles and Zeros 229 

Network functions have another very simple, but very useful, prop
erty. The coefficients in the numerator and denominator of the rational 
function that is a network function, are all real numbers.* Thus if 
F(s), given by 

(2) 

is a network function, then am, am-1, ..., a0, bn, ..., b0 are all real 
numbers.† We observe this fact through the same line of reasoning as 
above. Namely, the elements of the loop impedance matrix and the 
node admittance matrix are rational functions with real coefficients; and 
this characteristic is invariant under the arithmetic operations (addition, 
subtraction, multiplication and division). 

From this simple observation follows the important property that all 
network functions are real on the real axis in the s-plane. If a function 
of a complex variable is real on the real axis, it is called a real function. 
Thus all network functions that we have so far seen are real rational 
functions. This result immediately leads to the reflection property 

(3) 

That is, network functions assume conjugate values at conjugate points 
in the complex plane. 

A rational function is a quotient of polynomials, and a polynomial 
can be expressed as a product of linear factors. Thus we can write a 
network function as 

(4) 

The complex numbers sok are the zeros of the function F(s) and the com
plex numbers spk are the poles of the function F(s). We refer to each 
factor (s — sok) in the numerator as a zero factor and each factor (s — sρk) 
in the denominator as a pole factor. 

We immediately have a representation of the function F(s), and a way 
to specify a network function completely. A rational function F(s) can 
be specified completely by giving its poles and zeros and the number K, 
which is merely a scale factor, and is known as soon as the value of the 
function at any point (other than a pole or zero) is known. The scale 

* This statement should be qualified in a trivial way, since it is possible to multiply 
every coefficient in the numerator and denominator by an arbitrary complex number 
without changing the function. This difficulty is overcome by fixing, say, the coeffi
cient of the highest power in the denominator to be 1. 

† In the last two chapters we used H as a generic symbol for a network function. 
We are now using F. This should cause no confusion. 
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factor, however, is not too significant. The analytic properties of F(s) 
are determined by its poles and zeros. Therefore, we generally dis
regard K and represent F(s) (or F(s)/K, to be precise) in the complex 
plane as in Fig. 2. The small circles refer to the zeros of F and the small 

crosses to the poles of F. We refer to 
such diagrams as pole-zero patterns or 
pole-zero constellations. Due to the 
reflection property of Eq. (3), the 
poles and zeros of a network function 
are either real or occur in complex 
conjugate pairs. 

Fig. 2. Pole-zero constellation. 
Another simple property possessed 

by network functions follows from a 
consideration of stability. We know 

that the transient response is governed by the poles of the network 
function. Since 

(5) 

we immediately conclude that the network function of a stable network 
cannot have any poles in the right half plane, and any poles on the 
jω-axis must be simple. For otherwise, the transient response will be 
unbounded and the network will be unstable. 

This conclusion can be strengthened in the case of the driving point 
functions. For, both the driving point impedance and the admittance 
are ratios of response to excitation transforms. Hence the driving point 
functions can have neither poles nor zeros in the right half plane; poles 
and zeros on the jω-axis must be simple. 

In the case of the transfer functions, the reciprocals are not ratios of 
response to excitation transforms (in general). Hence we can say nothing 
about their zeros. They may lie anywhere in the complex plane, subject 
only to the symmetry requirement. 

We will leave a further study of readability of network functions to 
Chapter 9 and presently see what we can learn from the pole-zero rep
resentation of a network function. 

7.2 Frequency Response Functions 
For general complex values of s the network functions will take on 

complex values. These values can be represented either in terms of the 
real and imaginary parts, or in terms of the magnitude and angle. How
ever, we are not usually interested in network functions for all complex 
values of s; of particular significance is the jω-axis. We are often in-
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terested in the behavior of one or more of the quantities: real part, 
imaginary part, magnitude, or its logarithm, and angle for purely 
imaginary values of s. We can refer to any one of these as a frequency 
response function. As we know, these values determine the steady-
state response of the network to sinusoidal functions. 

Let us formalize this discussion by writing 

(6) 

The real and imaginary parts can be expressed in terms of F(jω) as 
follows. 

(7) 

(8) 

Here we have used the information that F(—jω) = F*(jω), since F(s) is 
a real function of s. To express the magnitude and angle in terms of 
F(jω), let us write the square of F(jω) as 

(9) 

Hence 
(10 ) 

( 1 1 ) 

The first of these two expressions is trivial; it is included for emphasis. 
(The second one has to be interpreted properly since the logarithm is 
multiple-valued.) 

Once we know F(s) these equations permit us to compute U(ω), X(ω), 
|F(jω)|, and φ(ω). We can, of course, then plot these expressions in 
order to get a graphical picture. However, if a graphical representation 
is desired, there is another alternative to first computing the desired 
magnitude, real part, etc. This alternative procedure will give us much 
intuition into the relation between steady state and transient response of 
networks. For values of s restricted to the jω-axis, the function shown 
in Eq. (4) can be written as 

( 1 2 ) 

In the following discussion let us take the value of K to be unity since 
it affects the frequency response functions only as a scale change. 
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To find the magnitude of F(jω) at any value of ω, we find the magni
tudes of each of the zero and pole factors, then divide the product of the 
zero factor magnitudes by the product of the pole factor magnitudes. 
Similarly, the angle of F(jω) at any frequency is found by adding the 
angles of all the zero factors and subtracting from this the sum of the 
angles of all the pole factors. 

This procedure is easily performed graphically. By way of illustra
tion consider the diagram in Fig. 3 where a pair of conjugate zeros is 

Fig. 3. Graphical calculation of frequency response. 

shown. The complex number represented by the factor (jω1 — s01) can 
be represented by a directed line from s01 to jω1. The magnitude of the 
factor is simply the length of the directed line, and its angle is the one 
labelled θ1 in the diagram. A similar discussion applies to the factor 
(jω1 — so1*), and to all other zero and pole factors in a given rational 
function. 

To find the magnitude of a rational function for any point on the 
jω-axis when the poles and zeros are known, we simply measure the 
distances from the given point on the axis to each of the zeros and poles. 
The desired magnitude will be the product of the line lengths to the 
zeros divided by the product of the line lengths to the poles. If we do 
this for a number of points on the jω-axis, we will be able to make a 
plot of the magnitude as a function of frequency. In a similar way, a 
plot of the angle of F(jω) can be drawn as a function of frequency. 

As an illustration consider the impedance of the tuned circuit shown 
in Fig. 4. This can be written 

(13) 
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where 

Fig. 4. Tuned circuit and its pole-zero configuration. 

The pole-zero pattern is also shown in the figure. The geometrical 
construction for the magnitude and angle leads to the sketches shown 
in Fig. 5. From these curves it is possible to sketch the real part and the 
imaginary part as well, since 

(14) 

Fig. 5. Magnitude and angle functions. 

These sketches are shown in Fig. 6. Note that the sketches are drawn 
for positive values of ω only. We have already noted that U and X 
are even and odd functions of ω, respectively. The same is true of 
|Z(jω)| and φ(ω).* Hence, it is only necessary to show the behavior 
for positive ω. 

* We will discuss the oddness of φ(ω) a little later. In some cases it may require 
some jugglery to make it an odd function of ω. 



234 Representations of Network Functions [Ch. 7 

Fig. 6. Real and imaginary parts. 

We can relate these curves to familiar discussions of the tuned circuit 
and observe all the familiar properties, such as Q, bandwidth, the three 
resonant frequencies, etc. However our purpose at this point is not a 
discussion of the tuned circuit, and so we leave this digression as an 
exercise for you. 

In this graphical sketching of the magnitude and angle of the func
tion, or the real part and the imaginary part, we have another way of 
representing a network function. It is a complete representation, as we 
know from Problem 6.19. 

7.3 Bode Diagrams 
Let us now consider the magnitude function in somewhat greater 

detail. Many formulas and statements become simpler if we consider the 
logarithm of |F(jω)| rather than |F(jω)| itself as the function of interest, 
and if we consider the logarithm of ω to be the variable. Let us begin 
by writing 

(15) 

We refer to α(ω) as the logarithmic gain or simply the gain. Its unit is 
the neper. Alternatively we can define a quantity α'(ω) as 

( 1 6 ) 

The two α's are related by 
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(17) 

The same name is commonly given to α' as to α. The unit of α' is the 
decibel (contracted to db) and the last equation relates the neper and the 
decibel. Since the two differ by simply a constant factor, it is common 
practice to use the definition of α in Eq. (1.5) for α' also and to say this 
is the logarithmic gain "measured in db." Although it sometimes may 
lead to confusion, we will continue this practice. 

Turning next to the frequency variable let us write 

(18) 

The new variable u is the logarithmic frequency. Let u2 and U1 cor
respond to two frequencies ω 2 and ω x , respectively. The interval u2 — 
u1 on the u-axis will be 

(19) 

Hence, a unit interval on the u-axis corresponds to a frequency interval 
ω 2 = 10ω1, which is one decade. Thus, the unit of u is the decade. 

Another way of transforming the frequency is also in common use. 
We write 

(20) 

A unit of u' corresponds to a change in ω of two to one, which is an octave. 
The last expression shows that the number of decades corresponding to a 
given frequency range is approximately three tenths the number of 
octaves. 

Let us now turn back to the network function in Eq. (1.2) and find its 
logarithm. We get 

(21) 
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We immediately see the advantage of the change to the logarithm. 
Multiplication has been replaced by addition; and each zero factor and 
each pole factor appears separately. What we shall do next is to study 
the contribution to the frequency response of the various types of pole 
and zero factors that can occur in a network function. Then, to find 
the behavior of a network function as a whole, we merely have to 
add the curves. If we had taken the constant multiplier K into con
sideration, the term l n | K | would have been added to the right side 
of Eqs. (21a) and (21b); in case K is a negative number, jπ and π have to 
be added to Eqs. (21a) and (21c), respectively. The effect, in so far as 
the frequency response curves are concerned, is merely a translation of 
the axes (0 db level and 0° phase). 

Let us begin our study with the factor corresponding to a real pole or 
zero, using the more familiar db notation. The function under considera
tion is therefore 

(22) 

where a is a real number. It may be one of the zeros or one of the poles. 
At ω = 0 this function is simply α1 = 20 log a. For small values of ω 
such that ω < < a , this function is still approximately 20 log a. For large 
values of ω, such that ω >> a, the function reduces to 20 log ω = 20 u. 
That is for large ω, α1 becomes a linear function of u with a slope of 20. 
The gain rises (or falls, if it is a pole factor) at the rate of 20 db per 
decade, or 6 db per octave. Figure 7 shows the asymptotic behavior for 
large and small ω. (Plot this on a linear scale, | F ( j ω ) | vs. ω, to see the 
simplicity introduced by the change to logarithmic scales.) We can use 
this asymptotic plot to obtain an approximate idea of the variation of 
gain with frequency. Suppose we assume that the asymptotic values 
of αi apply for all values of u. The point of intersection of the asymptotic 
values, labelled u1 in Fig. 7, is called the break frequency or corner fre-

Fig. 7. Asymptotic behavior of αi. 
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quency. It occurs when ω = a or u = log a (why?). The greatest error 
in using the asymptotic values instead of actual values occurs at the 
break frequency. Since ω = a at this point, Eq. (22) shows that the 
actual value of α i is 

(23) 

This differs from the approximate value by 3 db, so that a 3 db error 
will be made at the break frequency if the asymptotic values are used. 
(Actually 3.01.0 db to four significant figures.) 

Each of the terms in Eq. (21) which is due to a real pole or zero will 
make a contribution similar to Fig. 7 to the over-all gain. The con
tributions of the poles will have a negative slope beyond the break fre
quency. A good idea of the behavior of the gain can be obtained from 
the asymptotic curves, only if the break frequencies are separated widely 
enough so that at each break frequency the contributions from the 
other terms can be accurately represented by their asymptotic values. 
This approximate representation of gain (by straight line segments) is 
referred to as a Bode diagram, after the inventor. 

In the case of complex poles or zeros, the above discussion requires 
some modification. Let us consider a quadratic factor s2 + as + b in 
the rational function due to a pair of complex zeros or poles. Its con
tribution to the gain will be 

(24) 

the + sign applying for a zero and the — sign for a pole. The low fre
quency asymptote is again a constant, ± 2 0 log b, but the high fre
quency asymptote now becomes 

(25) 

This is again a straight line but this time with a slope of 40 db per decade 
instead of 20. The break frequency can be found by equating the two 
asymptotic values. We see that the break frequency is ω = \/b, which 
is the distance of the pole or zero from the origin. In the present case, 
the actual value of α i is not necessarily closely approximated by the 
asymptotic values except near very small and very large frequencies. 
This fact is easy to appreciate from a consideration of Eq. (24). The 
coefficient a is here twice the real part of the pole or zero. If the pole 
or zero is very close to the jω-axis, then a will be small. The actual 
value of α i at the break frequency ω = √b is 

(26) 
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If a √b is very small, then its logarithm will be a large negative number. 
In the limit, if the complex pair falls on the jω-axis, a = 0 and αi(√b) = 
± ∞. Figure 8 shows the possible behavior of the contribution of a pair 
of complex poles to the gain. It is clear that when the complex poles 
or zeros are not very close to the jω-axis, the asymptotic values form 
a fairly good approximation to the actual value of the gain contributed 
by the complex pair. 

Fig. 8. Contribution of complex poles to gain. 

The behavior of a complex pair of poles or zeros is thus somewhat 
more complicated. In the case of the real poles, one plot of —20 log 
|F(jω)| vs. log ω suffices to describe all poles, and if tipped over, to 
describe all zeros. With complex poles and zeros, we need a number of 
curves depending on the "damping." These curves are available how
ever, and can be found in any text book on servomechanisms. The 
plots of quadratic factors, such as shown in Fig. 8, are known as second 
order corner plots as contrasted with plots of simple factors, which are 
referred to as first-order corner plots. 

One other point should be mentioned before this subject is terminated. 
It is an easy matter to determine the asymptotic value of the over-all 
gain in Eq. (21.) for large values of ω. Since each term contributes 
±20 log ω, the overall gain becomes 

(27) 

That is, the gain will fall linearly with u, with a slope which is 20 times 
the difference between the number of finite poles and the number of 
finite zeros (which is the number of zeros at ∞). 

The gain plots can be simplified if all the zeros soi and the poles spi 

are factored in the rational function in Eq. (1.2), leaving each zero 
factor as (jω/soi — 1) and each pole factor as (jω/s p i — 1). The con-
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stants that are factored can then be lumped with the multiplier K. 
This constant has the effect of moving the entire gain curve in the 
vertical direction an amount 20 log K db. The low frequency asymp
totic value of the gain will then simply be zero (except for the value 
20 log K). 

As an example, consider the function 

(28) 

On the jω-axis, we can write the gain as 

(29) 

The zero frequency gain is 20 db and the first break frequency occurs at 
ω = 1. (u = 0). The break is downward with a slope of 40 db per decade. 
At ω = 5 (u = 0.7) there is a break upward with a slope of 20 db per 
decade. Finally, at ω = 10 (u = 1.) there is another break downward 
at a slope of 20 db per decade. For larger frequencies, the gain falls at 
a rate of 40 db per decade. The asymptotic plot is shown in Fig. 9. 

Fig. 9. Gain plot of numerical example. 
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The actual plot is also shown, by the dotted curve. It is clear that the 
asymptotic behavior approximates the actual behavior quite closely. 

7.4 Minimum-phase and Nonminimum-phase 
Transfer Functions 

As we observed earlier in this chapter, the zeros of transfer functions 
can occur in any part of the complex plane. However, those functions 
that have no zeros in the right half plane have certain properties which 
are quite important. For this reason we give these functions a distinctive 
name for ease of identification. We define a minimum-phase transfer 
function as one that has no zeros in the right half plane. Conversely, any 
transfer function that has zeros (even one zero) in the right half plane 
is labelled nonminimum-phase. The reason for these names will become 
apparent in the sequel. 

In order to determine the effect of right half plane zeros on the magni
tude and angle of a transfer function, consider the diagram of Fig. !0a. 

Fig. 10. A quadruplet of zeros. 

This shows a pair of conjugate zeros in the right half plane and the 
left half plane image of this pair. Let Pa(s) and Pb(s) be quadratics 
which have the right half plane pair of factors and the left half plane 
pair of factors, respectively. That is, 

(30) 

It is clear that Pa(s) = Pb(—s). The geometrical construction in the 
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figure indicates that the magnitudes of Pa and P b are the same when 
s = jω. As for the angles, we find 

(31) 

Note that, in order for the angle of Pa to be zero at ω = 0 as it must be 
if the angle is to be an odd function, we have written the angle of (s — s0*) 
as — (π + α2) rather than π — α2. 

This desire to have the angle function φ(ω) an odd function of ω is 
quite deep seated in network theorists. The main reason for this desire 
is that it simplifies the statements of many theorems that we shall state 
later in the chapter. To achieve this aim, we do many peculiar things, 
such as change the sign of the function as we have done here, or introduce 
a discontinuity of 2π in φ(ω) at ω = 0, as we shall do in another example. 
The basic difficulty is the following. Although the realness of F(s) on 
the real axis is a natural consequence of real network parameters, there 
is no valid reason why F(s) should be a real positive number at s = 0, 
except for a driving-point function. The fact that the logarithm is a 
multiple-valued function adds to the fun. 

Changing the sign of the function as we have done here, has the simple 
interpretation of changing one of the references (excitation or response) 
in the network. Since the procedure may be necessary only in transfer 
functions, the change of one reference is not serious. 

Introduction of a discontinuity of 2π in φ(ω) at ω = 0 corresponds to 
jumping from one Riemann surface to another at ω = 0 (presumably 
from fright at the mere thought of negative frequencies). 

It is clear from the figure that α1 + α2, the angle contributed by the 
left half plane zeros, is positive for all positive ω. It runs from zero at 
ω = 0 to π at infinity. This is illustrated in Fig. 11. It follows, then, 

Fig. 11. Sketch of angle of a pair of complex left half plane zeros. 

that the angle of a pair of right half plane zeros is always negative for 
positive values of ω, running from zero at ω = 0 to — π at infinity. 
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Let us now consider the situation in Fig. 10b which shows a real zero 
on the positive real axis and its left half plane image. Again, the magni
tudes of the two factors (jω — a) and (jω + a) are equal. The angle of 
the left half plane factor (jω + a) is α for positive ω. (It will be —α 
for negative ω.) We will choose the angle of the right half plane factor 
(jω — a) to be — (π + α) for positive ω and π — α for negative ω in 
order to make the angle an odd function. Sketches of these angles are 
shown in Fig. 12. Note that there is a discontinuity of 2π in the second 

Fig. 12. Sketches of angle functions, (a) arg (jω + a); (b) arg (jω — a). 

figure which is introduced simply by our desire to make the angle an 
odd function. 

If we consider two real right half plane zeros, we can define the angles 
in such a way that this discontinuity is eliminated. The situation be
comes similar to the case of a pair of complex right half plane zeros. 
The only difficulty occurs when there is only a single right half plane 
zero (or an odd number of such zeros). The alternative procedure in the 
case of an odd number of right half plane zeros is to reverse the reference 
of the output voltage or current. This will change the right half plane 
factor (s — so) to (so — s). The angle will then be the negative of the 
angle of the corresponding left half plane zero, just as in the case of the 
complex pair of zeros. 

With this discussion as a background, let us now consider the following 
two transfer functions. 

(32) 

(33) 

where so and its conjugate lie in the right half plane. These two func
tions are identical except that F1 (s) has a pair of right half plane zeros, 
whereas in F2(s) these are replaced by their left half plane images. The 
common function F(s) may have additional right half plane factors. 
Suppose we multiply numerator and denominator of F1(s) by the left 
half plane factors (s + s0)(s + so*)- The result will be 
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(34) 

where 

(35) 

Let us define an all-pass function as a transfer function all of whose 
zeros are in the right half plane and whose poles are the left half plane 
images of its zeros. A consideration of the last equation now shows that 
F0(s) is an all-pass function. It is a second-order all-pass function, the 
order referring to the number of poles. From the previous discussion 
it is clear that an all-pass function has a unit magnitude for all values 
of s = jω. (This is the reason for its name.) From Eqs. (31) the angle 
of Fo(jω) is found to be 

(36) 

For positive frequencies this is a negative angle. Thus, the angle of an 
all-pass function is negative for all positive frequencies. 

Using this equation and Eq. (34) we can now write 

(37) 

This result tells us that, at all positive frequencies the angle of a function 
having right half plane zeros is less than that of the function obtained 
when a pair of these zeros is replaced by its left half plane image. 

This procedure of expressing a transfer function as the product of two 
others may now be repeated. At each step a pair of complex zeros or a 
real zero from the right half plane may be replaced by their left half 
plane images. A sequence of functions, of which Fx and F2 are the 
first two, will be obtained. Each member of the sequence will have 
fewer right half plane zeros than the preceding one. The last member 
in this sequence will have no right half plane zeros. Let us label it 
Fm(s). By definition, Fm(s) is a minimum-phase function (as the sub
script is meant to imply). Using Eq. (37), and similar results for the 
other functions, we can write 

(38) 

Each of the functions in this sequence will have the same j-axis magni
tude but the angles will get progressively larger. Paradoxically, the 
minimum-phase function will have the largest angle of all (algebraically, 
but not necessarily in magnitude). The reason for this apparent in
consistency is the following. We have defined transfer functions as 
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ratios of output transform to input transform. When the concept of 
minimum-phase was first introduced by Bode, he defined transfer func
tions in the opposite way. With this definition the inequalities in Eq. 
(38) will be reversed and the minimum-phase function will have the 
smallest angle. 

At each step in the above procedure a second-order or first-order all-
pass function is obtained. The product of any number of all-pass func
tions is again an all-pass function. It follows that any nonminimum-
phase transfer function can be written as the product of a minimum-
phase function and an all-pass function. 

We can establish one other result from a consideration of the varia
tion of the angle of an all-pass function as ω increases from zero to 
infinity. Equation (36), together with Fig. iOa, shows that the change 
in angle Δφ, defined as the angle at infinity minus the angle at ω = 0, 
for a second-order all-pass function is — 2π. Similarly, for a first-order 
all-pass function, we can find from Fig. 12, that this change is Δφ = 
—π (not counting the discontinuity at ω = 0). It is easy to appreciate 
that for an nth-order all-pass function the change in angle is — nπ. 

Consider now a nonminimum-phase function that has n zeros in the 
right half plane. This can be expressed as the product of a minimum-
phase function and an nth-order all-pass function. The net change in 
angle of the nonminimum-phase function as ω varies from zero to infinity 
will be the net change in angle of the corresponding minimum-phase 
function plus the net change in angle of the all-pass function. Since 
this latter is a negative quantity, it follows that a nonminimum-phase 
function has a smaller net change in angle, again only algebraically, as 
ω varies from zero to infinity, than the corresponding minimum-phase 
function, the difference being nπ, where n is the number of right half 
plane zeros. 

It is also of interest to determine what the net change in angle of a 
minimum-phase function will be as ω varies from zero to infinity. The 
angle contributed by each zero to this net change is π/2, whereas that 
contributed by each pole is —π/2. Hence, the net change in angle will 
be π/2 times the number of finite zeros minus the number of finite poles. 
Thus if the transfer function is regular at s = ∞, the minimum phase 
function will have a smaller | Δφ | than the corresponding nonminimum 
phase function, since both angles are nonpositive. 

7.5 Complex Loci 
In the previous sections of this chapter we described two ways in 

which the network functions can be represented. One way involves 
specifying the locations of the poles and zeros in the s-plane. The 
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second method involves an analytical or graphical presentation of the 
real part and imaginary part, or the magnitude and angle, as a function 
of frequency. Since the network functions are analytic functions of the 
complex variable s, we can also represent the function graphically as a 
mapping of the s-plane. This is best done by plotting families of curves 
in the F plane which are loci for constant values of σ and ω in the s 
plane. However, since our main interest lies in the jω axis, we usually 
plot only one locus, the map of the jω axis on the F plane. We refer 
to this as the complex locus (or complex plot) of the network function. 

In simple cases the locus may have a simple geometrical shape but 
generally it will not. As an example let us consider the impedance 
function given in Eq. (1.3). The magnitude and angle functions are 
shown in Fig. 5 while the real and imaginary parts are shown in Fig. 6. 
From these figures it is possible to sketch the locus quite rapidly. The 
result is shown in Fig. 1.3. 

Fig. 13. Complex locus. 

The locus starts at ω = 0 with a zero imaginary part and a nonzero 
real part. Corresponding to the points in Fig. 6 at which U and X are 
equal, the locus crosses the 45° line twice, the imaginary part reaching 
a maximum between these two frequencies. The real part reaches a 
maximum soon after the imaginary part becomes zero. Finally both the 
real part and the imaginary part become zero at infinity, so the locus 
approaches the origin at high frequencies. For negative frequencies 
the locus will be the image of that for positive frequencies due to the 
even and odd symmetries of the real and imaginary parts. This part of 
the locus is shown by the dotted curve. 

According to a theorem in the theory of conformal mapping with 
analytic functions, if a closed path in the plane of the complex variable 
encircles in the clockwise direction an area throughout which the func
tion is regular, the map of that closed path in the function plane will 
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encircle the corresponding area also in the clockwise direction (see 
Problem 7.1.0). In the present case the area in the s-plane is the entire 
right half plane, the boundary being the jω-axis and an "infinite semi
circle," as shown in Fig. 136. * In accordance with the theorem, the locus 
does encircle an area in the clockwise direction. 

As another illustration consider the complex locus of an all-pass func
tion. Since this function has a unit magnitude for all ω, the locus is the 
unit circle in the F plane. As we saw in the last section, the angle of an 
nth order all-pass function changes by nπ as ω varies from zero to in
finity, so the change will be twice this amount for the entire frequency 
range. This means that the locus of the nth order all-pass function will 
go around the unit circle n times (in the clockwise direction, as we saw). 
The locus is sketched in Fig. 14. 

Fig. 14. Complex locus of all-pass function. 

This result is a special case of a more general result which we shall 
now discuss. Let F(s) be a function which is regular on a closed contour 
C in the s plane and whose only singular points inside the contour are 
poles, as sketched in Fig. 1.5a. Suppose the map C in the F plane of this 
s plane contour is the one shown in Fig. 156. Both contours are trav
ersed in the clockwise direction. According to a theorem in function 
theory, which is referred to as the Principle of Argument, the number of 
times the contour C' encircles the origin in the F plane is equal to the number 
of zeros minus the number of poles of F(s) inside the contour C in the s-plane. 

* This phrase "infinite semicircle" can be very confusing and so let us explain 
what we mean by it. We mean that we are going to start with a semicircle in the 
right half plane of finite radius R. We perform whatever operations are desired (in 
this case map the contour), with the finite semicircle. Then we find the limit of 
the result (of whatever operations were performed) as the radius R goes to infinity. 
By saying that we have the map of the infinite semicircle, we mean that only this 
limit is shown, not the pre-limit curve. Certainly Fig. 136 shows only a finite semi
circle. An infinite semicircle can neither be drawn nor be seen. However confusing 
this phrase may be, it is part of the electrical engineer's jargon. 
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Fig. 15. Principle of the argument. 

If there are any multiple order poles or zeros, these are counted according 
to their multiplicity. (See Appendix.) 

In applying this theorem to complex loci of network functions, note 
that the closed contour in the s plane consists of the entire jω axis and 
the "infinite semicircle" in the right half plane, as shown in Fig. 13b. 
The theorem requires that the function have no poles on the jω axis 
or at infinity. According to the theorem, then, the number of times the 
complex locus encircles the origin in a clockwise direction in the F plane 
is equal to the number of zeros minus the number of poles in the right 
half s plane. 

This theorem is very useful in determining whether or not a given 
rational function is the transfer function of a stable network.* If the 
denominator is of relatively high degree, factoring it in order to determine 
stability may require a large amount of work. On the other hand, a 
sketch of the complex locus can be made relatively easily. Whether 
or not the locus encircles the origin will give information concerning 
the stability. Of course, conclusive information is not always obtained, 
because the number of clockwise encirclements of the origin depends on 
the difference between number of right half plane zeros and poles. If 
there are a net number of counterclockwise encirclements of the origin, 
this indicates the definite existence of right half plane poles. On the 
other hand, if there are no net encirclements of the origin, we can only 
conclude that the number of right half plane poles is equal to the number 
of right half plane zeros. However, if we know the function to be 
minimum-phase, we can then definitely say there are no right half 
plane poles. A similar discussion applies if there are a number of clock
wise encirclements of the origin. In a passive network we can use this 
test to see whether the transfer function is minimum phase. 

* A detailed discussion of this subject is included in Chapter 10. 
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7.6 Calculation of Network Function from a Given Magnitude 
Up to the present time, we have concentrated on the problem of 

representing a given rational function in one of several ways. One 
method is to plot its j-axis real and imaginary parts, or magnitude and 
angle as a function of frequency. 

We would now like to discuss the inverse operation; that of recon
structing a rational function knowing only its real part, or imaginary 
part, or its magnitude or angle. We have already seen in the last 
chapter that the real and imaginary parts of analytic functions are 
related through certain integral formulas. In this section we shall con
centrate on the magnitude function. Since it is easier to talk about the 
square of the magnitude rather than the magnitude itself, we will do 
so from now on. Of course, if a magnitude function is given we can 
always square it. We assume that the magnitude squared function is 
given as a rational function of s and not as a curve to be approximated. 

Suppose now that a rational function of ω, say G(jω), is given and that 
it satisfies the necessary conditions for being the square of the magnitude 
of a network function. What are these conditions? Actually, they are 
very simple; the function should be an even function of ω, and the 
degree of the numerator should not exceed that of the denominator by 
more than two. This is because the network function cannot have more 
than a simple pole at infinity. In addition, if G(jω) has any finite j-axis 
poles, they must be double, since poles of a network function on the 
jω-axis must be simple. 

Glance back at Eq. (10). The given function can be written 

(39) 

Our task, then, is to determine the function F(jω), knowing the function 
G(jω). As a matter of fact, we can think of G as being a function of the 
complex variable s, G(jω) being its value on the jω-axis. That is, we 
can write the relationship 

(40) 

which is valid for all values of s, not only s = jω. However G(s) is not 
equal to the square of the magnitude of F(s), except for s = jω. 

Suppose we now imagine factoring the numerator and denominator 
of G(s). We must assign some of these factors to F(s) and some to 
F(—s). Let US first determine what the pole-zero pattern of G(s) will 
be. Remember that G(s) is the ratio of two even polynomials. Now 
the factors of an even polynomial must take one of the following forms. 
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(41) 

For the function G(s) the last factor can only appear as (s2 + a2)2. 
The first of these will lead to a pair of real zeros, one on the positive real 
axis, the other its image on the negative real axis. The second factor 
will lead to four complex zeros symmetrically arranged around the 
origin. The third leads to a pair of j-axis zeros. The distribution is 
shown in Fig. 16. Such a symmetrical distribution of zeros (or poles) 

Fig. 16. Zeros arranged in quadrantal symmetry. 

is referred to as quadrantal symmetry. We say, then, that the poles and 
zeros of C(s), to which we can refer as the magnitude squared function, 
occur in quadrantal symmetry. 

The question now is how to pick the poles and zeros of F(s) from among 
those of G(s). For the poles the answer is simple. We know that F(s) 
must be regular in the right half plane. Since the poles of F(—s) are 
the negatives of the poles of F(s), it follows that F(—s) is regular in 
the left half plane. Hence, the poles of G(s) can be uniquely distributed; 
the left half plane poles of G(s) belong to F(s), whereas those in the 
right half plane belong to F(—s). Poles on the jω-axis are evenly 
distributed. They will be double in G(s) and simple in F(s) and F(—s). 

As for the zeros, the answer is not so clear-cut. It is not essential 
that F(s) have no zeros in the right half plane unless it is a driving point 
function. Hence, we need not assign all the left half plane zeros of 
G(s) to F(s). However, if it is specified that F(s) is to be minimum-
phase, then all the left half plane zeros of G(s) are assigned to F(s). 
Otherwise, it is possible to assign some right half plane zeros to F(s). 
Remember, however, that a pair of complex zeros must be kept to
gether since F(s) must be a real function of s. Thus F(s) is uniquely 
determined by G(s) only if F(s) is required to be minimum-phase. 
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Finally, zeros on the jω axis must be equally divided between F(s) 
and F(—s) just as the poles were. 

Let us now consider some examples which illustrate this procedure and 
which are of practical interest. The requirements of most common 
electrical filters involve transfer functions whose j-axis magnitudes are 
ideally constant over a given frequency interval, which is referred to as 
the pass band, and are ideally zero over the rest of the jω-axis, which is 
referred to as the stop band. It is not possible for the j-axis magnitude 
of a rational function to behave in this ideal manner. (Why?) How
ever, it is possible to find transfer functions whose j-axis magnitudes 
approximate the desired magnitude in some fashion or other. 

Consider the ideal low-pass filter function shown in Fig. 1.7a. Two 

Fig. 17. Butterworth and Tchebyscheff approximations of low-pass filter, (a) Ideal; 
(6) Butterworth; (c) Tchebyscheff. 

possible ways of approximating this ideal function are shown in parts 
(b) and (c) of the figure. The first of these is called a maximally-flat or 
Butterworth approximation, while the second one is called a Tchebyscheff 
(or equal ripple) approximation.* The maximally flat approximation 
is monotonic in both pass-band and stop-band, the maximum error 
occurring near the edge of the band. On the other hand, the Tcheby
scheff approximation is oscillatory in the pass-band, the peaks of the 
ripples being equal. In this way, the error is distributed more uni
formly over the pass-band. 

The analytical forms of these functions, aside from a scale factor, are 
given by 

(42) 

(43) 

* We will see more of these approximations in Chapter 11. 
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in which δ is a small number which controls the ripple amplitude and in 
which ω = 1 corresponds to the edge of the passband. The function 
Tn(ω) is a Tchebyscheff polynomial which is defined by 

(44) 

which reduces on substituting s = jω to 

(45) 

Our problem now is to find the transfer function F(s) knowing its 
j-axis squared magnitude. Let us first consider the Butterworth re
sponse. According to the previous discussion, we first replace ω 2 by 
-s2 in Eq. (42). The result is 

(46) 

This function has no finite zeros, so we need only factor the denominator. 
In the present case, this is a relatively simple task. The zeros of the 
denominator are found by writing 

which is simply (47) 

where the minus sign applies for n even. Taking the 2nth root in Eq. 
(47a) we find the poles of G(s) to be 

(48) 

Thus, there are 2n poles each of which has unit magnitude. The poles 
are uniformly distributed on the unit circle as shown in Fig. 18 for the 
case n = 4. 

Fig. 18. Butterworth pole distribution: n = 4. 
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To form F(s) we simply take the n left half plane poles of G(s). These 
are the ones given by values of k from 1 to n. For n = 4 these will be 

(49) 

Finally, for the case n = 4, 

(50) 

Next let us consider the Tchebyscheff response in Eq. (43). The 
first step is to replace jω by s. We then set the denominator equal to 
zero in order to locate the poles. The result will be 

(51) 

In order to solve this equation, let us define a new variable w = x + jy 
and write 

(52) 

If we now expand cosh nw in the last equation and set reals and imagi-
naries equal on both sides of the equation, we will find the values of x 
and y which will satisfy the equation. When these values are sub
stituted into Eq. (52a) we find the corresponding values of s. These are 
the pole locations. If we designate them by sk = σ k + j ω k , the result 
of the indicated operations will be 

(53) 

In order to get some interpretation for these seemingly monstrous 
expressions, we note that if we divide each of them by the hyperbolic 
function, square both sides and add, we will get 

(54) 
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This is the equation of an ellipse in the s-plane. The major axis of the 
ellipse will lie along the jω-axis, since the hyperbolic cosine of a real 
variable is always greater than the hyperbolic sine. The pole locations 
for n = 4 are shown in Fig. 1.9. 

Fig. 19. Tchebyscheff pole distribution: n — 4. 

Finally, the left half plane poles of G(s) are allotted to F(s) and the 
task is again complete. 

For a typical case, if the permissible ripple is given to be δ = 0.1 and 
the order n = 4, the pole locations are found from Eq. (53) and we get 
the transfer function 

7.7 Calculation of Network Function from a Given Angle 
In the last section we found that, starting with an even rational 

function which satisfies necessary conditions for realizability as the 
square of the magnitude of a network function, we can determine a 
rational function F(s) (often more than one) such that the square of the 
j-axis magnitude of F(s) is equal to the given function; the function 
becomes unique when it is required to be minimum-phase. 

In the present section we will discuss the possibility of a similar 
procedure for determining a rational function from a given function of 
frequency which is claimed to be an angle function. In Eq. (11) we 
wrote an expression for the angle of a transfer function F(jω). Let us 
repeat it here. 
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(55) 

or 
(56) 

In the following discussion we shall assume that the function which is 
given is the tangent of Φ(ω), to which we will refer as the tangent func
tion* In addition, since we shall be using the ratio on the left side of 
Eq. (56) quite often, let us denote it with a single symbol. As a matter 
of fact, we would like s to take on all values rather than simply j-axis 
values in this ratio. Hence, we define 

(57) 

We will refer to this function simply as the A function. 
With these preliminaries behind us, let us now tackle our problem. 

In the first place, note that for tan φ(ω) we can write 

(58) 

The last step follows from Eqs. (56) and (57). If we now invert this 
last equation and solve for A(jω), we get 

(59) 

Let us now inquire into the conditions that the tangent function must 
satisfy if it is to be a realizable function. Note that. 

(60) 

where U and X are the real and imaginary parts of the network function. 
We know that these are respectively even and odd functions of ω. Hence, 
tan φ(ω) must necessarily be an odd rational function. There are no 
other requirements that we can place on this function unless we specify 
whether the desired F(s) is to be a driving point function or a transfer 
function. 

If an odd rational function is prescribed, the first step will be to form 
A(jω) according to Eq. (59). If we now replace jω by s, this will im-

* Once again we assume that tan φ(ω) is given as a rational function of ω, and not 
as a curve to be approximated. 
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mediately give us the ratio of F(s) to F(—s) according to Eq. (57). 
The question now is, how do we extract F(s) from this ratio? The 
situation here is not as simple as it was in the case of the magnitude 
function. 

In order to carry on, let us write F(s) as the ratio of two polynomials. 

(61) 

Then A (s) can be written 

(62) 

Our problem can now be restated as the problem of finding P1(s) and 
P2(s) when the function on the right side of the last equation is known. 
Note that A (s) will always have zeros in the right half plane and it will 
usually have poles in the right half plane also. It differs from an all-
pass function in that it may have poles in the right half plane as well as 
zeros. On the other hand, it is similar to an all pass function in that 
each zero is the negative of a pole. As a matter of fact, it can be ex
pressed as the ratio of two all-pass functions, but this has no utility for 
our present purpose. It can have neither zeros nor poles on the jω-
axis, since, if P1(s) has a pair of such zeros, so also will F1(—s) so that 
they will cancel in the ratio; similarly if P2(s) has j-axis zeros. 

Let us now consider assigning the poles of A(s) to P1(—s) or P 2(s). 
If A(s) has any right half plane poles these must belong to P1(—s), 
since F2(s) cannot have right half plane zeros. On the other hand, the 
left half plane poles cannot uniquely be assigned to either P2(s) or 
P 1(—s). If we assign one of the left half plane poles of A(s) to P 1(—s), 
then P1(s) will have the corresponding right half plane factor, indicating 
that the transfer function is nonminimum-phase. Of course, the distribu
tion of poles and zeros will be dictated by the permissible degrees of 
numerator and denominator of F(s). 

Once F2(s) and P1(—s) have been established from the denominator 
of A(s) it is not necessary to examine the numerator since the transfer 
function will now be known; it is only necessary to replace — s by s 
in P 1 ( - S ) to get P1(s). 

Let us now illustrate this procedure with an example. Suppose we are 
given 

(63) 

The first step is to substitute this into Eq. (59) to obtain A(jω). The 
result is 
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(64) 

If we now replace jω by s, we get 

(65) 

We find that all the poles of A (s) are in the left half plane, whereas all 
the zeros are in the right. Hence, there is no unique way to assign the 
zeros and poles of F(s). Any one of the following functions will be 
suitable. 

(66) 

Notice that the last two have right half plane zeros. Each of these 
functions will have the same angle for all values of ω, but their magni
tudes will be quite different. If F(s) is required to be minimum-phase, 
the answer is once again unique—in this case the first function of Eq. 
(66a).* 

In our computations so far, we have assumed that φ(ω) is specified to 
be a continuous function of ω. If however, the function F(s) has either 
poles or zeros on the jω-axis the corresponding phase function φ(ω) will 
have discontinuities of ± π at each pole and zero. In such cases we 
consider the discontinuities separately, applying the procedure above 
to the "continuous part" of the function. That is, we write 

(67) 

where φc(ω) is a continuous function. The index j runs over all zeros 
and poles on the jω-axis; the minus sign applying to the poles. 

We now have to identify the step discontinuities. For this, we re-
member our earlier discussion about the F(jω) locus. F(s) is regular 
in the right half plane. Therefore the locus of F(jω) as ω varies from 
— ∞ to +∞ must have the right half plane to its right as it goes through 
the origin or the point ∞ (think of the Riemann sphere for the latter). 
Therefore as we go through a zero on the jω-axis, in the direction of 

* Even this uniqueness is only to within a constant multiplier. The angle is ob
viously independent of a real positive gain constant. 
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increasing ω, the angle of F(s) increases abruptly by π; and as we go 
through a pole, φ(ω) decreases by π. We can draw the same conclusions 
by examining a typical factor in F(s) (pole or zero factor) 

(68) 

Obviously this factor changes from —j to + j as ω increases through ω 0. 
Thus we can restore all the poles and zeros of F(s) on the jω-axis. 

7.8 Calculation of Network Function from a Given Real Part 
In the last two sections we discussed the possibility of determining a 

network function from a specified rational function of ω which is to be 
the j-axis magnitude of the function or the tangent of its angle on the 
jω-axis. We found that in most cases it is not possible to obtain a unique 
answer unless the function is minimum-phase. Nevertheless, it is pos
sible to calculate a number of functions that will satisfy the require
ments. In the case of a specified magnitude, we are able to find a number 
of transfer functions which have the given j-axis magnitude but which 
differ from each other in their angles. Similarly, from a given tangent 
function, we are able to find a number of transfer functions which have 
the same angle on the jω axis but which differ in magnitude. 

In Chapter 6 we derived some relationships between the j-axis real 
and imaginary parts of a network function. These are in the form of 
integral formulas. Although they are quite useful for theoretical con
siderations, they are extremely unsatisfactory for computational pur
poses. In the present section we will discuss some computational 
procedures which will permit us to calculate a network function from 
its j-axis real part. 

Again the question of uniqueness must be answered. Is a network 
function uniquely determined if its j-axis real part is known? We can 
very quickly think of several different networks whose network functions 
have the same real part, so that the question must be answered in the 
negative. As an example, suppose the desired function is a driving point 
admittance function. Consider the network shown in Fig. 20a. In part 

Fig. 20. T w o networks whose admittances have the same real part. 
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(b) of the figure an additional branch is connected at the input terminals. 
The admittance of the second network is 

(69) 

Its j-axis real part is 

(70) 

That is, the real parts of both admittances are the same, yet the admit
tances themselves are different. Y1(s) differs from Y(s) by having a 
pair of poles on the jω-axis. If the real part is given, we can't tell 
whether to choose Y(s) or Y1(s) corresponding to this real part. As a 
matter of fact, an infinite number of functions which differ from Y(s) 
by having additional poles on the jω-axis will have the same real part 
on the jω-axis. What we can hope to do from a given real part, then is 
to find that function which has no poles on the jω axis.* This is in 
agreement with the results of Chapter 6, where we required the network 
function to have no poles on the jω-axis in deriving those results. 

Turn back to Eq. (7). The j-axis real part of a function is expressed as 

(71) 

Suppose we now replace jω by s on the right-hand side. This will no 
longer be the real part of F(s). However, it will be the even part of F(s). 
That is, if we express F(s) as 

(72) 

where the notation "Ev" means "even part of F(s)" and "Odd" means 
"odd part of F(s)," then it will follow that 

(73) 

The even part of F(s) is not related to the real part of F(s), except when 
s = jω; then they are the same. 

When the j-axis real part, which is U(ω), is specified, we replace jω 
by s (or ω 2 by — s2). The result is the even part of F(s). The question 
now is how to find F(s) from its even part. Note from Eq. (73) that 
" E v " F(s) has the poles of both F(s) and F(—s); those of F(s) are in 
the left half plane, whereas those of F( —s) are in the right. Note also 
that if F(s) has a nonzero value at infinity, F( —s) will have this same 
value. Now it becomes clear how we can find F(s); we expand " E v " F(s) 

* Such a function is a minimum susceptance function if it is an admittance, and a 
minimum reactance function if it is an impedance. This condition on driving point 
functions is the analog of the minimum-phase condition on the transfer function. 
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in partial fractions and group all the terms contributed by poles in the 
left half plane. If there is a constant term in the expansion, we add half 
of this to the group. Finally, we multiply by 2 and this is F(s). This 
procedure was first described by Bode, and we shall refer to it as the 
Bode procedure. We don't really need to find the entire partial fraction 
expansion of "Ev" F(s). All we need do is to find the principal parts at 
the left half plane poles. 

The same result can be obtained in an alternative manner by a proce
dure which was first developed by Gewertz. To outline this procedure, 
let us write F(s) as the ratio of two polynomials 

(74) 

where the m's refer to the even parts of the numerator and denominator 
and the n's refer to the odd parts. We would like to be able to express 
the even part of F(s) in terms of the even and odd parts of the numerator 
and denominator. Suppose we multiply numerator and denominator 
by m2 — n2 (this is equivalent to rationalizing when s = jω). The 
result will be 

(75) 

The first term on the right is obviously even, whereas the second term is 
odd. Hence, we can write 

(76) 

This is the function which is given (it is obtained by setting ω 2 = — s2 in 
the given j-axis real part). It will be given in the form 

(77) 

Let us first go to work on the denominator. We have already seen 
that the poles of " E v " F(s) are those of both F(s) and F(—s). The ones 
belonging to F(s) are those that lie in the left half plane. The procedure 
here is the same as the one we discussed in connection with finding a 
network function from its magnitude. We factor the denominator of 
"Ev" F(s) and assign all the left half plane factors to F(s). 

Turn now to the numerator on the right side of Eq. (76). In the 
previous step we determined m2 and n2 so that only m1 and U1 are un
known. Suppose we now write F(s) as a ratio of polynomials as in Eq. 
(74) with unknown coefficients in the numerator but with known denomi-
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nator coefficients. We then form the expression m1m2 — n1n2 and set 
it equal to the numerator of the given function in Eq. (77). Equating 
coefficients of like powers of s on the two sides of this equation will permit 
us to solve for the unknowns. Note that three sets of coefficients are 
involved: the small a's, the capital A's and the small b's. Of these the 
last two sets are known at this point; only the small a's are unknown. 

Let us carry out the process just indicated. Identifying mx, m2, nx 

and n2 from Eq. (74), we can write 

(78) 

Equating the coefficients yields 

(79) 

To find the unknown a's, we must solve this set of linear equations 
simultaneously. 

Let us now illustrate these procedures. Suppose the following func
tion is given as the real part of a network function. 

(80) 

The first step is to replace ω 2 by — s 2. The resulting function will be 
" E v " F(s). 

(81) 

We have already discussed the pole locations of this particular function; 
it is a third-order Butterworth response function, and the denominator 
is easily factored. From the left half plane poles, we can immediately 
write the denominator of the desired F(s) as 

(82) 

Since the given real part function is zero at infinity, this must also be 
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true of the desired network function (why?). Hence, the numerator of 
F(s) must be of the form 

m1 + n1 = a2s2 + a1s + a0 (83) 

Using the last two equations in Eq. (78) and the fact that all the capital 
A coefficients are zero except A0 which is unity, we get 

(84) 

Finally, solving these equations, we get a0 = 1., a1 = 4/3 and a2 = 2/3. The 
desired function is, therefore, 

(85) 

As for the Bode procedure, note that the given function will have no 
constant term in its partial fraction expansion. So it is only required 
to calculate the residues of " E v " F(s) in Eq. (80) at the left half plane 
poles. Of course, the final result will be the same. The details are left 
to you. 

7.9 Integral Relationships Between Real and Imaginary Parts 
Let us now contemplate our achievements in relating the components 

of a network function (by components of a function we will mean one of 
the quantities: real part, imaginary part, magnituie, gain, or angle). 
In the first place, the driving point and transfer functions of the net
works under consideration are analytic functions of a complex variable. 
Hence, their real and imaginary parts are related through the Cauchy-
Riemann equations. However, these are implicit relationships, and one 
component is not expressed directly in terms of the other. 

In the preceding chapter explicit relationships were found relating 
the real and imaginary parts of a function satisfying certain additional 
conditions. This was done by first relating the frequency response and 
the time response. Finally, in the last three sections of this chapter, 
we were able to determine a network function as a rational function of s 
by algebraic methods, given one of the components of the function as 
a rational function. The drawback here is that the given component 
of the desired function must already be in a realizable rational form. 
If, say, the real part is given graphically, or even analytically in some 
other form, we must first find a realizable rational approximation before 
we can proceed. In this section we shall discuss a number of relation-
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ships first used in network theory by Bode, which are generally referred 
to as "Bode formulas," that enable us to get some information about 
one component when the other component is given merely as a graph. 
In addition to this advantage, these formulas have many useful implica
tions, as we shall see. 

Since we are dealing with analytic functions of a complex variable, 
we should be able to use our knowledge of such functions to establish 
additional relationships among the components. One point of departure 
might be Cauchy's integral formula (see appendix) which states 

(86) 

In this expression C is a closed contour within and on which F(s) is 
regular, and z represents points on the contour, whereas s is any point 
inside. If we let the contour be a circle and express both z and s in 
polar coordinates, we shall be able to express the real and imaginary 
parts of F(s) in terms of either its real part or its imaginary part on the 
circle. Finally, by means of a transformation the circle is mapped into 
the imaginary axis. The resulting expressions relating the real and 
imaginary parts are referred to as Hilbert transforms.* 

An alternative approach is to start with Cauchy's integral theorem 
(see appendix). This theorem states that the contour integral of a func
tion around a path within and on which the function is regular will 
vanish. In order to apply this theorem, two things must be known: the 
integration contour and the function to be integrated. In the present 
problem, the contour of integration should include the jω-axis, since we 
want the final result to involve the j-axis real and imaginary parts of a 
network function. Since the functions we are dealing with are regular 
in the entire right half plane, then the contour of integration we will 
choose will consist of the jω-axis and an infinite semicircular arc in the 
right half plane. By Cauchy's theorem the complete contour integral 
will be zero. Hence, it remains to calculate the contributions of each 
part of the contour. 

Let F(s) be a network function, either driving point or transfer, and 
in the usual way write 

(87) 

(88) 

where α(ω) = ln|F(jω)| is the gain function, and φ(ω) is the angle 

* See E. A. Guillemin, Mathematics of Circuit Analysis, Wiley, 1949, New York, 
for a detailed discussion of these. 
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function. If F(s) is a driving-point function it will have neither zeros 
nor poles in the right half plane. Hence, ln F(s) will be regular there. 
If F(s) is a transfer function, then ln F(s) will be regular in the right 
half plane only if F(s) is minimum-phase. Hence, the results we develop 
will apply both to F(s) and to ln F(s) so long as F(s) is minimum-phase. 

Let us now consider possible poles of F(s) on the jω-axis. We know 
that any such poles must be simple. In carrying out the contour integra
tion such poles must be by-passed by a small indentation. The contribu
tion of this indentation to the total integral is 2πj times half the residue 
of the integrand at the pole (see Appendix). Our objective is to be able 
to obtain expressions relating the real part of a network function to the 
imaginary part, so that when one of these is given, the other can be 
calculated. Thus, we are not likely to know the residues at j-axis poles. 
Hence, we will assume that F(s) has no poles on the jω-axis; this includes 
the points zero and infinity as well, so that F(s) is assumed regular at 
zero and infinity. 

If F(s) has a pole on the jω-axis, then ln F(s) will have a logarithmic 
singularity there. If the integrand in question involves ln F(s), we shall 
again indent the contour about this singularity. But because the 
singularity is logarithmic, this indentation will contribute nothing to the 
contour integral (see Appendix). Hence, in case the integrand we choose 
involves ln F(s), we can permit F(s) to have simple poles on the jω-axis. 
In the following discussion we will always take the function in the in
tegrand to be F(s). However, identical results apply if we replace F(s) 
by ln F(s). 

Let US now consider integrating a network function F(s), which is 
regular on the jω-axis including zero and infinity, around the contour 
shown in Fig. 21a, which consists of the entire jω axis and an infinite 

Fig. 21. Path of integration. 

semicircular arc to the right. By Cauchy's theorem the integral will 
be zero. Our procedure will be to evaluate the contributions of those 
parts of the contour which we can evaluate, and then express the remain-
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ing parts in terms of these. With these ideas, we can readily appreciate 
that we will not be able to obtain the type of relationship we are looking 
for with F(s) alone as the integrand. No particular point on the jω-axis 
is singled out and attention directed thereto. 

Suppose we divide F(s) by s —jω0 before integrating, where ω0 is 
any value of ω. This will put a pole of the integrand on the jω-axis. In 
order to apply Cauchy's theorem, we shall have to by-pass this pole 
with a small semicircular arc C 2 , as shown in Fig. 21b. The complete 
contour now consists of three parts, and the contribution of arc C 2 will 
have to be evaluated. This will focus attention on the value of F(s) 
at s = jω 0. Note that the result of the integration will not be a function 
of s, which is only a dummy variable of integration, but of ω0, which is 
an arbitrary point on the jω-axis. It will be convenient to use a different 
symbol for the dummy variable; let us use z = x + jy. Then the point 
jω 0 can be relabelled jω. 

If F(s) is a network function which is regular on the entire jω axis 
as well as the right half plane, application of Cauchy's theorem leads to 
the result 

(89) 

where the closed contour is the one shown in Fig. 216. 
The complete contour consists of three parts: the large semicircle C 1 , 

the small semicircular indentation C 2 about the point z = jω, and the 
imaginary axis. The contribution of the small indentation to the over
all integral is 2πj times half the residue of the integrand at z = jω, which 
is simply F(jω). (See Appendix.) To compute the contribution of the 
"infinite" semicircle, let us initially assume it to be of finite radius, with 
z = R0ejθ. Then 

(90) 

where F(∞) is the value of F(s) at s = ∞. Thus as R approaches ∞, 
the integral on C1 approaches — jπF(∞). Since the imaginary part must 
be zero at infinity, F(∞) is also equal to U(∞). 

Now it remains to consider the remainder of the contour. This can 
be written 

(91) 
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Note that the integration along the imaginary axis must avoid the pole 
at z = jω in a symmetrical manner. This will yield the principal value 
of the integral on the right. In all the subsequent integrals we must 
keep this point in mind. Now collecting all these results and substituting 
into Eq. (89) we can write 

(92) 

If we now write F(jω) and F(jy) in terms of real and imaginary parts, 
then equate reals and imaginaries, we get finally 

(93) 

(94) 

We are leaving the algebraic details of these steps for you to work out. 
The message carried by these two expressions is very important. The 

second one states that when a function is specified to be the real part of 
a network function over all frequencies, the imaginary part of the func
tion is completely determined, assuming the network function has no 
poles on the jω-axis. Similarly, if the imaginary part is specified over 
all frequencies, the real part is completely determined to within an 
additive constant. 

Remember that the same results apply if F(s) is replaced by its log
arithm. However, now we must require that F(s) be minimum-phase 
(if it represents a transfer function). On the other hand we can relax 
the requirement of regularity of F(s) on the jω-axis. A simple pole of 
F(s) on the jω-axis becomes a logarithmic singularity of ln F(s), and such 
a singularity will contribute nothing to the integral (see Appendix). 
Thus, for minimum-phase transfer functions Eqs. (93) and (94) relate 
the gain and phase functions over all frequencies. 

Let us now obtain alternative forms for the two basic expressions in 
Eqs. (93) and (94) which will throw additional light on the relationships 
and will bring out points which are not at once apparent from these 
expressions. 

Remember that the real and imaginary parts are even and odd func
tions of frequency, respectively. Let us use this fact. Equation (94) 
can be written 

(95) 
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In the first of these integrals, replace y by —y and change the limits 
accordingly. The result is 

(96) 

The last step follows from the fact that U(y) = U(—y). Substituting 
this into Eq. (95) we get 

(97) 

In a completely similar way, starting with Eq. (93) we will get 

(98) 

In the last two expressions it still appears that the integrand goes to 
infinity on the path of integration at the point y = ω. This is really 
illusory, since we must understand the integral as the principal value. 
Even this illusory difficulty can be removed if we note by direct integra
tion that 

(99) 

again using the principal value of the integral. Hence, we can subtract 
U(ω)/(y2 — ω 2 ) from the integrand in Eq. (97) and ωX(ω)/(y2 — ω 2 ) 
from the integrand in Eq. (98) without changing the values of these 
integrals. The results of these steps will be 

(100) 

(101) 

A very important feature of the results which we have established is 
the fact that it is unimportant to have the real part (or the imaginary 
part) as a realizable rational function. Corresponding to any given real 
part, whether in analytical or in graphical form, an imaginary part can 
be computed from the integral. As a matter of fact, the expressions are 
quite useful when a desired real part is specified in a vague sort of way 
and it is desired to obtain an approximate behavior of the imaginary part. 

For example, suppose it is desired to know the approximate behavior 
of the angle function in the pass band of a low-pass filter. In this dis-
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cussion we will interpret U and X to represent the gain a and the angle 
φ, respectively. In the pass band the gain is approximately zero up to 
some frequency ω 0 . Hence, in Eq. (101) the lower limit becomes ω 0 . 
Furthermore, the point ω, which lies in the pass band, is less than ω 0 , 
so that in the integrand we can neglect ω compared with y, since y 
varies from ω 0 to infinity. Furthermore, the pass band gain U(ω) is 
zero. Thus, an approximate value is given by 

(102) 

Now make the change of variable y = 1/p; then dy/y2 = —dp. After 
appropriately modifying the limits of integration as well, this equation 
becomes 

(103) 

Note that the integral is no longer a function of ω, and, for a given value 
of the band edge ω 0 , it will be simply a constant. Thus, the angle will 
be approximately a linear function of ω within the pass band.* Of 
course, the approximation will get progressively worse as we approach 
the band edge, since then ω can no longer be neglected in comparison 
to y in the integrand. 

The relationships between the real and imaginary parts can be placed 
in a still different form which is more convenient for computation. This 
form is most relevant when ln F(s) (the gain and angle) is involved, 
rather then a network function itself. The first step is to change to a 
logarithmic frequency variable according to Eq. (1.8). However, it is 
more useful to use the natural logarithmic base rather than base 1.0. 
Accordingly, let us define 

(104) 

To be completely consistent, we should use a symbol other than u for 
the logarithmic variable defined here, since it is different from the one 
defined in Eq. (18). One difference is that here we have "normalized" 
the frequency variable by setting y/ω, instead of y, equal to eu. The 
second difference is in the base of the logarithm, which simply introduces 
a constant factor, ln 1.0 = 2.3, in the variable here defined, when com
pared with the u in Eq. (18). In order to avoid introducing new notation 

* Such a linear phase characteristic corresponds to a constant time delay in the 
transmission of sinusoidal functions over this range of frequencies. Therefore for 
signals that have essentially only this frequency range, we get a distortionless trans
mission. For this reason, a linear phase characteristic is desirable. 
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we will use the same symbol for the logarithmic frequency variable, 
always remembering the slight differences involved. 

Let us now start with Eq. (101) and perform some preliminary ma
nipulations utilizing the change of frequency variable. 

(105) 

Note the change in the lower limit, since u = — ∞ when y = 0. The 
argument of U(y) has been retained as y, although in reality we should 
write it as U(ωeu). Alternatively, we can define a new function U1(u) 
which is equal to U1(ωeu), and use this in the integrand. However, 
this introduces additional new notation, which is a disadvantage. 
One thing we should not do is simply to write U(u) instead of U(y). In 
all the subsequent equations, we shall retain U (y) in the integrand with 
the understanding that we mean to convert to a function of u by the 
substitution y = ωeu before performing any operations. 

As the next step, we integrate the last form by parts. Using the 
general formula 

(106) 

we set 

(107) 

Hence, Eq. (105) becomes 

(108) 

Note that coth u/2 is an odd function of u, being strictly positive when 
u is positive and strictly negative when u is negative. Hence, its log
arithm for negative u will be complex, the imaginary part being simply π. 
For negative u it can be written 
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(109) 
When u = +∞, ln coth u/2 = 0, and when u = — ∞, ln coth u = jπ. 
Hence, the integrated part of the last equation becomes simply j[U(0) — 
U(ω)]. Now consider the remaining integral. If we use Eq. (109) for 
negative values of u, the result will be 

(110) 

Finally, using all of these results in Eq. (108), we will get 

(111) 

This equation is quite easy to interpret even though it looks some
what complicated. Note that the real part U is not an even function of 
the logarithmic frequency u and so, it is not possible to integrate over 
only half the range. The equation states that the imaginary part at any 
frequency depends on the slope of the real part at all frequencies (when 
plotted against logarithmic frequency), the relative importance of dif
ferent frequencies being determined by the weighting factor 

(112) 

This function is shown plotted in Fig. 22. It rises sharply in the vi
cinity of u = 0 (y = ω), falling off to very small values on both sides of 
this point. This means that most of the contribution to the imaginary 
part at a frequency ω comes from the slope of the real part in the im
mediate vicinity of ω. 

Another useful form can be obtained by simply adding and sub
tracting the slope evaluated at u = 0 (y = ω) under the integral in 
Eq. (111). We will leave the details of this operation to you. The 
result will be 

(113) 
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Fig. 22. Plot of weighting factor 

Note that by dU(ω)/du we mean the slope of the real part as a function 
of u, evaluated when u = 0 (y = ω). 

Suppose X refers to the angle and U to the gain function. The slope 
dU(ω)/du is measured in nepers per unit change of u. A unit change 
of u means a change in frequency by a factor e, which is 1/ln 1.0 decade. 
Thus, a gain slope of 20 db per decade is the same as a neper per unit 
change in u. This means that if the gain slope is expressed in db per 
decade we should first divide by 20 before using it in this equation. 

Let us continue interpreting U and X as gain and phase. We see 
that the angle at any frequency is π/2 times the gain slope at the same 
frequency plus another term given by the integral. If the gain is a 
continuous function, then the difference which appears in the integrand 
will be small in the vicinity of y = ω, just where the weighting factor 
has large values. Hence, in this case the contribution of the integral to 
the angle will always be small. As a first approximation, then, we can 
say that the angle will have a value of π / 2 radians whenever the gain 
slope is 20 db per decade, a value of π radians when the gain slope is 40 
db per decade, etc. 

Now suppose a gain function is given in graphical form. We can first 
approximate the curve by a series of straight line segments. An ap
proximation to the (minimum-phase) angle function corresponding to the 
given gain function can now be quickly sketched according to the discus
sion of the last paragraph. 

As an example of this procedure, suppose the Bode plot shown in 
Fig. 23 is given. An approximate sketch of the angle is the discontinous 
function shown by the solid lines in the figure. The actual angle func
tion might have the form shown by the dotted curve. 

The expressions which we have obtained so far have related the 
imaginary part at any frequency to the real part at all frequencies; 
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Fig. 23. Approximate angle corresponding to a given gain function. 

or the real part at any frequency to the imaginary part at all frequencies. 
We should be able to find limiting forms for these expressions when 
frequency approaches zero or infinity. 

Consider, first of all, Eq. (1.00) when ω approaches zero. This im
mediately leads to the result 

(114) 

This expression is referred to as the reactance integral theorem (it is also 
called the phase area theorem since the result remains valid when F(s) 
is replaced by its logarithm). In fact, if we make the change to log
arithmic frequency as in Eq. (18), then dy/y becomes du and the last 
equation can be written 

(115) 
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Thus, we see that the area under the curve of the imaginary part, when 
plotted against logarithmic frequency, is proportional to the net change 
in the real part between zero and infinite frequency. 

Next let us multiply both sides of Eq. (101) by ω and then take the 
limit as ω approaches infinity. Remember that the upper limit on the 
integral means that we integrate up to R 0 and then let R o approach 
infinity. Thus, Eq. (101) becomes 

(116) 

There are two limiting operations involved on the right-hand side. If 
we interchange these two operations, the expression can be evaluated 
readily. But we must inquire whether this interchange is permissible. 
The answer is affirmative if the integral is uniformly convergent for all 
values of ω, which it is. Hence interchanging the two operations and 
taking the limits leads to 

(117) 

The result expressed by this equation is referred to as the resistance-
integral theorem. (It is also called the attenuation integral theorem, since 
the result remains valid if F(s) is replaced by its logarithm.) If the 
asymptotic behavior of the imaginary part of a network function is 
specified, then no matter how the j-axis real part behaves with frequency, 
the area under the curve of the real part, with the horizontal axis 
shifted upward by an amount U(∞), must remain constant. Looking 
at it from the opposite viewpoint, when the integral of the real part of a 
function over all frequencies is specified, then the infinite frequency 
behavior of the imaginary part is fixed. 

Consider the special case in which F(s) has a simple zero at infinity; 
then F(∞) = U(∞)= 0. Observe that in this case 

(118) 

But, according to the initial value theorem, the limit on the right hand 
side is simply the initial value of the impulse response of the network 
represented by F(s). In this case, then, Eq. (117) becomes 

(119) 

where rδ(t) = £-1F(s) is the impulse response. Note that the dummy 
variable has been changed to ω to suggest the physical meaning. 
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The resistance integral theorem can be used to develop an important 
result about a particular class of networks. Consider the impedance of 
the network shown in Fig. 24a. The feature of this network is that its 
terminals are shunted by a capacitance. This impedance is 

Fig. 24. Illustration of resistance integral theorem. 

We see that Z(s) will have a simple zero at infinity no matter what the 
impedance Z1 (s) may be. We will still require that Z(s) be regular on 
the jω-axis, including the origin. Note that, even if Z1 (s) has poles on 
the jω-axis, Z(s) will not, except if Z1(s) has a pole at s = 0. Hence, 
we will not permit Z1(s) to have a pole at s = 0. This means that a 
network such as the one shown in Fig. 24b will be excluded. Similarly 
Z1 (s) should not have a zero at infinity. If it does, then the network can 
be represented by one shunted by a capacitance. This capacitance can 
then be lumped with C. 

In the present case Eq. (118) is valid with F(s) = Z(s). When, we 
evaluate the limit, we get 

(120) 

Hence, for this case Eq. (119) becomes 

(121) 

Thus, the capacitance across the input terminals limits the area under 
the curve of the real part. 

Remember that this result applies only to impedance functions which 
have no poles on the jω-axis. If a function does have poles on the jω-
axis, the contour of integration must be indented around these poles 
and the contribution of these poles must be taken into account. If you 
go through the preceding development carefully, you will find that 
additional terms will be subtracted from the right side of Eq. (121), these 
terms being proportional to the residues of F(s) at the poles on the jω-
axis. In Chapter 9 we will show that all such residues of driving point 
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functions are real and positive. Hence, when Z(s) has poles on the jω-
axis, the right side of Eq. (121) is reduced. This means that we can 
write 

(122) 

which will apply for any driving-point impedance function whether or 
not it has poles on the jω-axis, so long as the corresponding network has 
a shunt capacitance C across the input terminals. 

In deriving the integral relationships of this section we started with 
the integrand in Eq. (89) and the contour shown in Fig. 21. The same 
expressions can be derived in alternate ways using different integrands 
but the same basic contour of integration. Of course, if the integrands 
introduce additional poles in the jω-axis, we must avoid these poles by 
small indentations. For example, the resistance integral theorem can 
be derived in short order by integrating the function [F(s) — U(∞)] 
around the basic contour. Similarly, the reactance integral theorem 
follows readily when we integrate the function F(s)/s around the basic 
contour with an indentation around the origin. 

From this discussion it seems likely that additional relationships be
tween the real and imaginary parts can be established by choosing 
different integrands. In fact a great variety of relationships can be 
derived, but we have already presented the most important and useful 
ones. If we consider the two cases mentioned in the preceding para
graph, the criterion for choosing an integrand appears to be to choose it 
in such a way that the term in which the known component of the net
work function appears is an even function of frequency, whereas the term 
in which the unknown component appears is an odd function. In this 
way the unknown component will disappear from the integration along 
the jω-axis and will appear only in the contributions from the indenta
tions and from the infinite arc. It seems that this consideration in 
choosing an integrand will apply quite generally. 

So far in this section we have found that, for a suitably restricted 
network function, when the real part is specified over all frequencies, 
the imaginary part is completely determined. Similarly, when the 
imaginary part is specified over all frequencies, the real part is com
pletely determined (to within a constant). The question now may be 
asked: suppose the real part is specified over some frequency intervals 
and the imaginary part over the remainder of the entire frequency 
spectrum; what then? 

Instead of considering this problem in a completely general form, let 
us suppose that the real part is known for all frequencies less than ω 0 
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and the imaginary part for all frequencies greater than ω 0 . We wish to 
find an expression which will give the unknown parts of the two com
ponents. The discussion concerning the choice of integrand suggests 
that if we can choose an integrand which changes character at ω 0 so that 
below ω 0 the term involving the real part is even while above ω 0 the 
term involving the imaginary part is even, our problem will be solved. 
What we need is a multi-valued function in the integrand. 

Suppose we choose the following function as integrand 

Again z = x + j y is taken as a dummy variable. The irrational factor 
in the denominator is multivalued, with branch points at z = ± j ω 0 . 
We must choose the branch cut in such a way that the integration along 
the j-axis will stay on a single sheet of the Riemann surface. This will 
be the case if, when z = jy, we take 

√1 — y2/ω0

2 real and positive for — ω 0 < y < ωo 

√1 — y2/ω0

2 imaginary and positive for y > ω 0 

√1 — y2/ω0

2 imaginary and negative for y < — ω 0 

With this choice, √1 - y2/ω0 is an even function in the interval 
—ω 0 < y < ω 0 , whereas over the remainder of the axis it is odd. 

The contour of integration consists of the basic contour shown in 
Fig. 21 with indentations at z = ±jω. In the present case the infinite 
arc contributes nothing since the integrand goes down at least as fast 
as 1/z3 at infinity. The contributions of the indentations are jπ times 
the residue of the integrand at the corresponding pole, which is easily 
evaluated. There remains the integration along the jω-axis. This is 
broken up into two parts, one between 0 and ω 0 , the other between ω 0 

and ∞. The details will be left to you to work out. The result will be 

(123) 

We have now answered the question posed at the start of this discus-
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sion, insofar as the present problem is concerned. If we are given the 
real part of a function over part of the imaginary axis and the imaginary 
part over the rest of the axis, then the function is completely defined. 
Our method of obtaining the result in the last equation can be extended 
if there are more than two intervals over which one or the other of the 
two components are known. Additional irrational factors are introduced 
giving additional branch points at appropriate points on the axis. The 
resulting expressions, however, become rather complicated and hence, 
limited in usefulness. 

Let us now summarize the results of this section. Our objective is to 
obtain relationships between the real and imaginary parts of a net-
work function F(s) (or between the gain and the phase), so that when 
one of these is prescribed the other can be calculated. The point of 
departure is Cauchy's integral theorem, the contour of integration 
consisting of the imaginary axis with an infinite semicircular arc joining 
the ends. An integrand is chosen which involves F(s) or ln F(s), mul
tiplied or divided by additional factors. The contour is indented to 
by-pass poles of the integrand introduced by these factors. 

If the integrand involves a network function F(s), then the only 
restriction is that F(s) be regular on the jω-axis, including the points 
zero and infinity. If the integrand involves ln F(s), then F(s) need not 
be regular on the jω-axis, but now it must have no zeros in the right half 
plane. 

The over-all contour is divided into the straight segment consisting 
of the imaginary axis, and the semicircular contours which by-pass j -
axis poles deliberately introduced into the integrand, plus the one at 
infinity. The contributions of the semicircular contours can be com
puted, leaving only the integral along the imaginary axis. 

A very useful feature of these expressions is the fact that the prescribed 
function need not be given in a realizable analytical form. An approxi
mate graphical form is sufficient. Furthermore, the integrations them
selves can be performed graphically. 

7.10 The Potential Analog 
The driving-point and transfer functions of electric networks are 

analytic functions of a complex variable. We know that the real and 
imaginary parts of such a function satisfy Laplace's equation; they are 
called harmonic functions. Thus, the real and imaginary parts of net
work functions can be interpreted as potentials arising from some electric 
charge or current distributions. It remains to determine the types of 
such charge and current distributions whose potentials represent the 
real and imaginary parts of network functions of lumped networks. 
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Consider an infinitely long static line charge distribution, the charge 
per unit length being q. The potential of such a charge distribution in a 
plane perpendicular to the line charge can be found as a two-dimensional 
problem. Let this be the s-plane and let the line charge pierce the plane 
at a point s = si. At a point s located a distance r from the line charge, 
the potential is given by 

(124) 

with a suitable reference for potential, where e is the dielectric permit
tivity. 

Now turn back to the logarithm of a network function given in Eq. 
(21.). Consider particularly the expression for the gain. Each term in 
that expression has the form just given for the potential of a line charge. 
Suppose we were to place a set of parallel line charges which pierce the 
s-plane at the points determined by the poles and zeros of a network 
function F(s). The lines which go through the zeros of the function are 
to have negative charges while those that go through the poles are to 
have positive charges. Furthermore, the magnitudes of these charges 
are all to be the same and equal to 2πe. For simple reference purposes, 
we will refer to these charges as unit charges. The potential at any 
point s = jω due to all of these line charges, will be given precisely by 
Eq. (21.). Thus, the variation of potential along the jω-axis due to a set 
of parallel lines carrying unit positive or negative charges is exactly the 
same as the variation of the gain function with zeros located at the 
positions of the negative charges and poles at the positions of the posi
tive charges. As a matter of fact, this equality of potential and gain 
will hold at any point in the plane, but our main interest lies on the jω-
axis. 

Consider the situation in which, instead of having discrete line charges 
perpendicular to the s-plane, we have continuously distributed charge 
on a cylindrical surface which is perpendicular to the s-plane, and cuts 
the plane in one or more contours. Instead of being a sum of discrete 
terms such as given in Eq. (21.), the potential will now be an integral. 
If we let z represent points on the contour along which the cylindrical 
surface cuts the s-plane, and q(z) represent the charge distribution, the 
potential along the jω-axis will be 

(125) 

The contours along which the charge is distributed correspond to poles 
and zeros of a network function. In the present case this would mean a 
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continuous distribution of poles and zeros, which is certainly not pos
sible for lumped networks. 

Let us pursue this topic somewhat further. Due to the presence of the 
line charges, there will be an elec
tric field parallel to the s-plane. 
Let us consider the component of 
this field located at the jω-axis, 
perpendicular to the jω-axis and in 
the direction of the negative σ axis. 
This is illustrated in Fig. 25. Since 
the electric field is the negative 
gradient of the potential, the nor
mal component (E-σ) we are inter
ested in is simply dV/dσ evaluated 
at σ = 0. 

Fig. 25. Component of electric field 
normal to jω-axis. 

Now consider the flux of the electric field across the jω-axis in the 
direction of the negative σ-axis between two points ω1 and ω 2 . This is 
given by 

(126) 

(Note that the flux is given by a surface integral but we are taking a unit 
width perpendicular to the s-plane.) 

Let us turn back temporarily to the gain and angle functions. These 
are the real and imaginary parts of an analytic function and hence 
satisfy the Cauchy-Riemann equations. The total differential in the 
angle anywhere in the complex plane if both σ and ω vary is given by 

(127) 

If we restrict ourselves to the jω-axis, dσ will be zero. The change in 
angle as ω goes from ω1 to ω 2 will be 

(128) 

The right-hand side follows from the use of the Cauchy-Riemann equa
tion dα/dσ = dφ/dω. If we compare this expression with Eq. (126) and 
we note that the potential and the gain are analogous quantities, we 
see that the flux of the electric field across a portion of the jω-axis is 
analogous to the change in phase over the same interval. 

As a matter of fact, comparing Eq. (1.26) and Eq. (128) we see that 
the normal component of the electric field across the jω-axis (in the 
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direction of negative σ) is analogous to the slope of the phase along the 
jω-axis. The delay function is defined as the negative derivative of the 
phase on the jω-axis. Hence, the delay is analogous to the normal 
component of the electric field in the direction of the positive σ-axis. 

In arriving at the analogy between the gain and phase on the one hand 
and the electrostatic potential and E-field flux on the other, we used the 
fact that the functional form of the potential of a set of line charges is 
the same as that of the gain function of a lumped network. Other anal
ogies may be possible if we can find other quantities whose functional 
form is also the same as that of the gain. 

Suppose the s-plane is covered with a conducting sheet having a 
finite conductivity p. Current having a surface density i s is assumed to 
flow on the surface. (i s is a vector 
quantity.) Assume that there are 
regions having zero dimensions at 
which current can be generated; we 
will call these "current sources." 
Consider an arbitrary closed contour 
C encircling a region R, as shown in 
Fig. 26. 

Fig. 26. Region in s-plane. 

If there are no sources within the contour C, no net current can flow 
out of the contour. If there are sources within the contour, the net 
outward current flow must be equal to the total current generated. 
This can be expressed as 

(129) 

where dl is an element of arc along C. This line integral can be replaced 
by a surface integral according to the divergence theorem (applied to 
two dimensions). Suppose the current sources are distributed over the 
region R with a density Is. (This is a scalar quantity.) Then, applying 
the divergence theorem, Eq. (129) becomes 

(130) 

where dA is an element of area in R and the symbol "div" stands for 
divergence. Since R is an arbitrary region, it follows that 

(131) 

Since the conducting sheet has a finite conductivity p, the current density 
can be expressed in terms of the electric field E. The field itself can 
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then be written as the negative gradient of the potential. These results 
can finally be substituted into the last equation. The steps are as follows. 

(132) 

where Δ2V stands for "divergence of the gradient of V." The last 
expression is Poisson's equation, whose solution under the present condi
tions is 

(133) 

where r is the distance from the sources to the point at which the poten
tial is computed, and a suitable level of potential has been chosen. 

In the preceding discussion it is assumed that the current sources are 
distributed throughout region R. Let us now consider the case of a 
single discrete source located at the point si and let the current generated 
by this source be 2πρ. We will refer to this as a unit current. The 
source density function Is then becomes an impulse of strength 2πρ 
situated at si. Equation (133) becomes 

(134) 

The right-hand side follows from the sampling property of an impulse, 
which is as valid in the case of a surface integral as it is for a simple 
integral. 

If instead of a single discrete source there are a number of such sources, 
some positive some negative but all having unit value, then the expres
sion for the potential will have the exact form of the gain function given 
in Eq. (21) for s = jω. (A negative source current means that current 
is removed from the conducting sheet at a point instead of being gener
ated there.) 

We have now established a second analog for the gain. If equal 
steady electric currents are injected on and removed from discrete points 
of a conducting (but not perfectly conducting) sheet, the potential at 
any point in the plane (and in particular, on the jω-axis) will be the 
same as the gain function of a network, if the corresponding network 
function has simple zeros at the points of current injection and simple 
poles at the points of current removal. The flux of the E-field across 
an interval of the jω-axis and the change in phase over this same interval 
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will still be analogous, since the preceding discussion on this point remains 
unmodified. 

The analogy which we have just discussed provides a basis for the 
construction of an experimental device which can be used for both 
analysis and synthesis. The current injection or removal is achieved 
by feeding current to the conducting plane through very thin con
ductors, needle points. In a very simple form of such a device, called 
Teledeltos Paper,* a conducting material is coated on paper. In more 
elaborate devices, which are called electrolytic tanks, the conductor is a 
layer of electrolyte, the needle points being immersed into the electrolyte. 

Consider what can be accomplished with the use of such an analog 
device. If a network function is given, the poles and zeros are set up 
by introducing current probes at the appropriate points, currents 
entering at the zeros and leaving at the poles. A sampling of the poten
tial at various points on the jω-axis is quickly obtained by means of 
another probe. This permits a plot of the gain function along the jω-
axis in rapid fashion. What is perhaps more interesting, a determination 
of the effect on the gain due to the perturbation or motion of one or 
more poles or zeros is rapidly obtained simply by moving the current 
probes a given amount and again sampling the potential. As a matter 
of fact, this measuring of the j-axis potential can be performed auto
matically and a plot of the gain obtained on recording paper. 

The phase can also be measured, although not quite as satisfactorily, 
by utilizing the analogy to the flux. The recording probe is moved 
perpendicularly off the jω-axis small equal distances to the right and 
left. The difference in the readings is divided by the total excursion 
off the jω-axis to yield an approximate value for dV/dσ. If this is done 
at several points along the axis, the integral in Eq. (126) can be ap
proximated. 

In a synthesis problem in which, say, the gain is specified along a 
portion of the jω-axis, a first guess as to the locations of suitable poles 
and zeros can be set up in the electrolytic tank. A scan of the jω-axis 
with the probe quickly shows the error between the desired gain and 
the one given by the chosen poles and zeros. The poles and zeros can 
now be moved around and an optimum pole-zero configuration can be 
obtained experimentally which will give the "best" (according to some 
criterion) approximation to the desired gain. 

At this point a few very disconcerting questions may arise. In the 
first place the s-plane extends to infinity whereas any physical analog 
device must of necessity have finite dimensions. How can this difficulty 
be overcome? Secondly, if there are more finite poles than there are 

* This is a copyrighted name. 
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finite zeros, it appears that more current must be removed from the 
conducting plane than is being supplied to it. Such a condition ob
viously cannot be maintained. This second difficulty is easily remedied. 
If we count zeros at infinity as well, a rational function will always have 
the same number of zeros as poles. Hence, the total current supplied 
will be equal to the current removed if we supply as many units of cur
rent through a probe located at infinity as the order of the zero at 
infinity demands. But, where in the analog is the point at infinity? 
This brings us back to the first question. 

One solution of this problem is as follows. Let us choose the scale 
in the electrolytic tank in such a way that the edges of the tank are far 
from the locations of pole-zero constellations, at least as compared with 
the points at which the gain is to be computed. Then, the fact that the 
plane is not infinite will have little effect. The edge of the tank can be 
made conducting and the required amount of current introduced there. 

An alternative solution of the problem can be obtained if we apply 
a conformal transformation which maps the s-plane into another plane 
in which infinity in the s-plane becomes a finite point in the new plane. 
The jω-axis will be transformed to some other curve, as well, so that now 
we will be interested in the potential along this new curve. Many such 
transformations are possible. Here we will simply be content to point 
out this possibility and will not explore the details any further. 

We have seen that the potential analog provides an experimental aid 
for both network analysis and network synthesis. This would be reason 
enough for us to discuss the topic here. However, the analogy between 
the gain and phase of a lumped network and the two-dimensional 
potential and flux field of discrete line charges is a very useful con
ceptual tool. It allows us to formulate network problems in analog 
terms, the solutions of which may be facilitated in the domain of the 
analog. If nothing else, it gives a new vantage point from which to 
survey network problems. The insight thus obtained serves to sharpen 
our perceptions regarding these problems. 

In network analysis, the problem is to find the response of a given 
network when a given excitation is applied. We have been examining 
this problem in great detail in all of its facets. In potential analog terms, 
we might say this problem is equivalent to finding the potential and 
flux of a given set of charges. But if the charge locations are known, 
this corresponds to knowing the pole and zero locations in the network 
analog. In such a case it is not necessary to resort to the potential 
analog to solve the network analysis problem. 

Now consider the inverse of this problem. Suppose a gain or phase 
function is prescribed over an interval of the jω-axis, and it is desired to 
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find a network having the given function as its gain or phase. The given 
function is likely to be an ideal one, such as, say, the low-pass filter 
function shown in Fig. 17a, and so, not exactly realizable. The first 
problem is to determine a realizable network function such that the 
given gain or phase is approximated (in some manner). This is referred 
to as the approximation problem in network synthesis. In terms of 
the potential analog, the problem is to find a charge distribution which 
will produce a prescribed potential along a given curve (a portion of 
the jω-axis) or a prescribed normal derivative of potential across a given 
curve. Such problems have been studied in potential theory and we 
may find solutions to our approximation problems if we think in terms 
of the potential analog. 

Let us pursue this line of thought somewhat further. For concreteness, 
let us suppose that the gain is prescribed along a portion of the jω-
axis. In analog terms, the potential is prescribed on the same part of 
the jω-axis. In potential theory when a potential function is given, 
known methods can often be employed to determine a continuous charge 
distribution over some convenient contour (or more than one) which 
gives rise to the prescribed potential. In order to be applicable to 
lumped networks, such a continuous charge must first be approximated 
by a set of lumped charges, all of unit value, spaced on the same contour. 
We refer to this process as quantization. The continuous charge is said 
to be quantized. In order to establish the unit of charge, we must 
compute the total charge on a contour and choose the unit of charge 
such that there are an integral number of unit charges on the whole 
contour. Then we must divide the contour into segments each carrying 
a unit charge. Finally, we must place a discrete unit charge somewhere 
on each segment. If the continuous charge is uniformly distributed, the 
lumped charges can be placed in the center of each segment. More 
generally, the best approximation is probably obtained if each lumped 
charge is placed at the center of charge of the corresponding segment. 

In a given problem, more than one contour may be involved, each 
carrying charge of a different sign. Remember that positive charges 
correspond to poles and negative charges to zeros. If the charge distribu
tion is to lead to a realizable network function, several conditions must 
be satisfied. In the first place, the charge distribution must be sym
metrical with respect to the real axis, because complex poles and zeros 
must be accompanied by their conjugates. Secondly, there must be no 
positive charges in the right half plane. For special types of network 
function, other conditions must also be satisfied. For example, if the 
network function is to be regular at infinity, the net charge cannot be 
negative. 
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Let us now illustrate these ideas by means of some simple examples. 
As a first example, suppose it is desired to design a network such that 
the phase is a linear function of frequency along a portion of the jω-axis, 
say in the range — ω 0 < ω < ω 0. This means a constant delay is re
quired over this range. In terms of the potential analog, what is re
quired is a constant value of electric field normal to the jω-axis in this 
same frequency range. From previous experience we know that if we 
have a pair of infinitely long oppositely charged parallel plates, the 
field is constant between the plates and directed from one plate to the 

Fig. 27. Potential analog solution of the linear phase problem. 

other. The potential problem is then solved by placing the jω-axis 
between such a pair of parallel plates. This gives a constant normal 
component of electric field over the whole jω-axis, which is more than 
we actually require. We can make the plates finite without introducing 
much error in the desired frequency range due to fringing effects by 
extending the plates somewhat beyond the desired frequency range so 
long as the spacing between plates is kept small relative to their length. 
The situation is illustrated in Fig. 27a. We must place the positively 
charged plate in the left half plane in order that the corresponding net-
work function be regular in the right half plane. For convenience let 
us assume a uniform charge density on the plates.* 

The next step is to quantize the continuous charge. Because the 
continuous charge density is uniform, the spacing between the lumped 
charges will be the same. They will be located at the points σ1 ± jkω 1 , 
where k goes from zero to n, as shown in Fig. 27b. Here we have chosen 
an odd number of lumped charges so that one appears on the real axis. 
We can just as well choose an even number. If we let ±jω e represent 

* Such a uniform charge distribution over a finite conductor is impossible in a po
tential field; but this is only one of several approximations. 
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the ends of the plates and qa the charge per unit length (remembering 
that a unit width perpendicular to the s-plane is always assumed), 
then the total charge on a plate is 2ω eqd. The unit of charge is then 
taken as 2ω eqd/(n + 1), since there are n + 1 lumped charges; the value 
of ω1 is 2ωe/(n + 1). 

There are two sources of error in this procedure. One of these is due 
to using finite plates instead of the infinite ones. This source of error 
will not always be present in other problems; it will arise whenever an 
infinite contour is replaced by a finite one. We refer to this error as the 
truncation error. The second source of error is due to quantizing the 
continuous charge. It is referred to as the quantization or granularity 
error. This error will always be present. 

Note that the network function defined by the poles and zeros shown 
in Fig. 27 is an all-pass function. From our knowledge of such functions 
the gain should be constant; its derivative with respect to ω should then 
be zero. Note that the analog of the gain slope is the negative of the 
electric field along the jω-axis. Now the field along the jω-axis produced 
by any one of the poles is exactly canceled by the field due to the zero 
which is its image. Hence, the net field along the jω-axis is zero. This 
means that the gain slope is zero, in agreement with our previous 
knowledge. 

Having noted that a pole in the left half plane and a zero located at 
the image point in the right half plane produce exactly opposite electric 
fields along the jω-axis, we can also note that they produce identical 
fields normal to the jω-axis. If we were to remove all of the right half 
plane zeros, nothing serious would happen; the delay would be simply 
cut in half. This factor of two can be restored by placing a pole in the 
left half plane at the mirror image of each removed zero. Since there is 
one there already, this step implies doubling the order of all the poles 
when all the zeros are removed. As a matter of fact, it is not necessary 
to remove all zeros and double all poles. Any number of zeros can be 
removed so long as the order of the corresponding pole is doubled. In 
this way a large variety of network functions are obtained, for each of 
which the delay is exactly the same. However, the gain function will 
now be different for each of these. 

As a second example, consider the filter problem. Here we require the 
gain to be high and constant over one or more frequency bands; it must 
be low, but not necessarily constant over the rest of the jω-axis. For 
concreteness, let us consider a low-pass filter. Here we require a constant 
high gain over the interval —ω 0 < ω < ω 0 . In terms of the potential 
analogy, what we want is an equipotential line along the jω-axis from 
—ω 0 to ω 0 . An equipotential suggests a conductor since the potential 
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on a conductor is constant. However, laying a charged conductor on 
the jω-axis may solve the potential problem but it does not help the 
filter problem. When we eventually quantize the charge on the con
ductor, we will end up with a set of poles on the jω-axis right in the region 
where we want a constant gain. 

The idea of using a conductor need not be lost, however. The poten
tial is constant not only on a conductor, but everywhere in a region 
bounded by a conductor. This suggests surrounding the desired region 
of the jω-axis by a conductor as shown in Fig. 28a. We have here shown 

Fig. 28. Potential analog solution of the filter problem. 

an elliptical contour but this is not necessary; any shape will do so 
long as it is symmetrical with respect to the σ-axis. However, the 
quantization error will be different for different shaped contours. If 
there are no other charges anywhere, then the charge on this contour 
should be positive. (It can't be negative because the network function 
will then have a multiple pole at infinity.) But this means there will be 
positive charge (which corresponds to poles) in the right half plane. 
This is disconcerting, to say the least, but not devastating. Recall 
that the j-axis magnitude of a pole factor such as jω — si, and hence the 
gain, depends only on the distance from the pole to the jω-axis. This 
means that the gain on the jω-axis will not change if we move all right 
half plane poles to their left half plane images, since the distances from 
any point on the jω-axis will remain the same. If the original contour 
is symmetrical this means removing the right half and doubling the 
charge density of the left half. This step, while keeping the gain in
variant, does change the phase. The final step is again the quantization 
of charge. 

The discussion of the potential analog in this section must be con
sidered only as an introduction to the subject. Much in the way of 
details has been omitted. However, the basic principles have been 
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outlined. Actual solution of any but the simplest problems would of 
necessity take us far afield into potential theory and conformal mapping. 
We will leave the further development of the subject to books on net
work synthesis.* 

PROBLEMS 
7.1 Figure P7.1 shows a double-tuned transformer. The coupling coefficient 

k = M/L, and Q are variable. For the network in (a) Q = ( 1 / R ) √ L / C while 
for the network in (b Q = R√C/L. Also let ωo2 = 1/LC. Determine the 
poles and zeros of the transfer impedance function, V2/Ii, in terms of k, Q, and 
ωo. Sketch the variations in the locations of these points as k and Q vary. 
Sketch | Z 2 1 ( j ω ) | as a function of ω for different values of k and Q. 

Fig. P7.1. 

7.2 The network in Fig. P7.2 is called a capacitance-coupled double-tuned 
circuit. Again let Q = R√C/L and ω o

2 = 1/LC. Determine the locations 
of the poles and zeros of the transfer impedance function Z21(s) = V2/I1 in 
terms of ωo, Q and the coupling capacitance Cc. Sketch the variations in these 
locations as Q and Cc vary. Compare the rate at which the logarithmic gain 
decreases in this and in the previous problem as s = jω approaches infinity. 

Fig. P7.2. 

7.3 The following functions are given as the tangent functions of a transfer 
function. Find the corresponding transfer function. In case the answer is not 
unique, give all possibilities. 

* For further reading see S. Darlington, The Potential Analogue Method of Net
work Synthesis, BSTJ, 30, pp. 315-365, April, 1951; and D. F. Tuttle, Jr., Network 
Synthesis, Vol. I, John Wiley and Sons, New York, 1958. 
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7.4 Suppose an odd rational function of ω is prescribed as a tangent function, 
the odd power of ω appearing in the denominator instead of the numerator. 
What does this imply about the transfer function? How should the procedure 
for finding F(s) given in section 7.7 be modified? Illustrate on the following 
functions. 

7.5 For each of the following functions sketch the complex locus and the 
gain and phase plots. Also find the value of ω at which F(jω) = 1 + ,?0. 

7.6 The following even rational functions of ω are given. Assume that each 
one is the real part of a network function F(s). Find this function using both 
the Bode and the Gewertz procedures. Now assume that each given function 
is the ./-axis magnitude squared of a network function. Find the corresponding 
function. If there is more than one possibility, find them all. 

7.7 The twin Tee R-C network shown in Fig. P7.7 can be used in a feedback 
network to produce a selective amplifier at very low frequencies. The function 
of interest in this application is z2i(s) = V2(s)/Ii(s). Find the locus of z2i(jω). 
Find the condition that the locus should pass through the origin at a given fre
quency ωo(?≤0, ∞). 

Fig. P7.7. 
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7.8 With reference to the tuned circuit of Fig. 4, compute the frequencies 
at which 

are maximum and the frequency at which Im|Z(jω)| = 0. The first of these is 
the frequency of amplitude resonance and the last is the frequency of phase 
resonance or unity power factor. Relate these concepts as well as the familiar 
concepts of Qo (= ωoL/R) and half power bandwidth Δ ω / ω o to the magnitude and 
angle of the pole. (Δω is the difference between the two frequencies at which 
|Z(jω)| is equal to l √ 2 times the maximum value of |Z(jω)|.) 

7.9 Design two networks such that the voltage ratio transfer function G21(s) 
of each network is a minimum-phase function but the sum of the two functions 
is nonminimum-phase. Show how we can get the sum as a voltage ratio transfer 
function. (Isolating amplifiers may be used.) 

7.10 By applying the argument principle to the function F(s) — F(so) where 
so is any point in the right half plane, show that the image of the contour of 
Fig. 13b must enclose the area in the F-plane in the clockwise direction, assuming 
that F(s) is a network function. 

7.11 Let Z(s) be the driving-point impedance function of a passive network; 
further let Z(s) be regular on the jω-axis inclusive of s = ∞. From the fact 
that a passive network cannot generate energy, we have the familiar conclusion 
Re [Z(jω)] > 0, for all ω. By using the results of Problem 7.10 and this fact 
prove that Re[Z(s)] > 0 for all s in the right half plane. (We will prove this 
result in Chapter 9 without the additional hypothesis of regularity on the 
jω-axis using a different argument.) 

7.12 Extend Problem 7.11 to stable active networks as follows. Continue 
the assumption of regularity on the jω-axis and s = ∞, so that Re[Z(jω)] has 
a finite minimum value on the jω-axis. Now show that the real part of Z(s) in 
the right half plane is never less than this minimum. Thus an active driving 
point function can differ from a passive one only by an additive constant. 

7.13 Use the corner plot technique to obtain a rapid sketch of the locus of 
G21(jω) for the RC coupled amplifier of Fig. P7.13. Remark on any significant 
points, such as phase shift near 0 and infinite frequencies, other critical points 
that are easily computed etc. 

Fig. P7.13. 

7.14 Using what you know about corner plots, find a function F(s) that has 
approximately the frequency response characteristic 20 log |F(jω)| shown in 
Fig. P7.14. 
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Fig. P7.!4. 

7.15 Derive Eq. (113) in the text starting from Eq. (111). 
7.16 Derive Eq. (123) in the text. 
7.17 Derive the resistance integral theorem by integrating the function 

F(s) — U(∞) around the basic contour consisting of the jω-axis and an infinite 
semicircle to the right. 

7.18 Derive the reactance integral theorem by integrating the function 
F(s)/s around the basic contour with a small indentation around the origin. 

7.19 Derive Eq. (97) by integrating the function F(z)/(z2 + ω 2 ) around the 
basic contour with indentations at z = ±jω. 

7.20 Derive Eq. (98) by integrating the function z[F(z) - U(∞)]/(z2 + ω 2 ) 
around the basic contour with indentations at z = ±jω. 

7.21 By integrating the function [F(z) — U(0)]/z(z2 + ω 2 ) around the basic 
contour with indentations at z = ±bjω, derive the following relationship. 

Compare this with Eq. (100). 



8 • TWO-PORT NETWORKS 

As mentioned in the last chapter, networks can be classified according 
to the number of terminals that are available for external connection. 
When we are interested in the transmission of energy or information 
from one point to another, the number of pairs of terminals becomes 
important. If there are n pairs of terminals, we refer to the network as 
an n-terminal-pair or n-port. The two-port network is the most common 
and the most important of this class of networks. 

A two-port is defined as a network with two accessible pairs of ter
minals, the network being electrically and magnetically isolated except 
for these two pairs of terminals. By calling these "terminal-pairs," or 
"ports," we imply that external connections are not to be made between 
one terminal of a terminal-pair and an
other terminal of a different terminal-pair. 
For example, if the black box of Fig. 1 
denotes a two terminal-pair network 
where (1,1') is one terminal-pair and 
(2,2') is another terminal-pair, no connec
tion is to be made, externally, between 
terminals 1 and 2 or 1' and 2' (or 1 and 2' or 1' and 2). Thus the ex
ternal network is considered to be in two different pieces which are in
terconnected by the two port as shown in Fig. 2, where N denotes the 

Fig. 1. Two port. 

Fig. 2. External connection to a two-port. 

two-port network. The name "port" arises from microwave network 
theory where the "terminal-pair" becomes the cross section of a wave
guide. In network theory "port" and "terminal-pair" are used inter
changeably. Because of the applications of two-ports as transmission 
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networks, one of the terminal-pairs is called the "input" and the other 
terminal-pair, the "output." Normally the terminals are known 
as the input terminals and (2,2') as the output terminals. 

By focussing attention on the terminal-pairs (1,1'), (2,2'), we are 
implying that we are interested in the behavior of the network only in 
so far as it modifies the signals transmitted from one side to the other 
and are not too interested in its internal structure. Thus the variables 
of interest to us, in the study of two-ports, are the voltages and currents 
at the terminal-pairs only and not the voltages and currents of the 
branches inside the network N. We therefore establish a convention 
for the references of these voltages and currents as in Fig. 3. 

Fig. 3. Reference convention. 

Our discussion in this chapter will be entirely in terms of transformed 
functions under the assumption of zero initial values and so capital 
V's and I's are used in Fig. 3. Some authors choose a reference for I2 

opposite to the one shown in Fig. 3. In comparing formulas among 
textbooks it is necessary to find out the reference convention adopted 
by each. 

We look upon the network as something interrelating the quantities 
V1, V2, I1, and I2. Since we are dealing with linear networks, we can 
expect this interrelationship also to be linear. In this chapter we are 
going to study the different ways of interrelating these quantities as 
different descriptions of the two-port. 

The discussion of this chapter may appear somewhat unmotivated to 
you. When we are immersed in some of the details which will follow, 
you may question the need for all this. In restricting ourselves to 
analysis, we have lost much of the motivation for finding various ways 
of describing the behavior of two-port networks. The need for these 
various schemes arises from the demands made by the many applica
tions of two-ports. The usefulness of the different methods of descrip
tion comes clearly into evidence when the problem is one of synthesizing 
or designing networks—filters, matching networks, wave-shaping net
works, and a host of others. A method of description which is convenient 
for a power system may be less so for a filter network, and may be 
completely unsuited for a transistor amplifier. For this reason we will 
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describe many alternate, but equivalent, ways of describing two-port 
behavior. 

Often, in the problem of synthesizing a network for a specific applica
tion, it is very convenient to break down a complicated problem into 
several parts. The pieces of the over-all network are designed separately 
and then put together in a manner consistent with the original decomposi
tion. In order to carry out this procedure, it is necessary to know how 
the description of the behavior of the over-all network is related to 
the behavior of the components whose interconnection makes up the 
over-all network. For this reason we will spend some time on the 
problem of interconnecting two-port networks. 

Many of the results obtained in this chapter require a considerable 
amount of algebraic manipulation which is quite straightforward. We 
will not attempt to carry through all the steps, but will merely outline 
the desired procedure leaving for you the task of filling in the omitted 
steps. 

8.1 Two-Port Parameters and Their Interrelations 
It is conventional practice to begin the discussion of two-port param

eters by defining them as coefficients in certain equations relating the 

Fig. 4. Loop analysis of two-port. 

quantities V1, V2, I1, and I2. In this text we shall deviate from this 
convention and start at a familiar point, namely the loop or node equa
tions for the network. 

Consider the two-port network "terminated" in V1 and V2, shown in 
Fig. 4. That is, let us replace the external networks connected to 
terminals (1,10 and (2,20 by their 
terminal voltages so that we can 
deal with the two-port alone. 

Let us choose our loops so that 
loop 1., and only loop 1., contains V1 

and similarly loop 2 alone contains 
V2. Except in degenerate two-ports 
of the type shown in Fig. 5, it will 
always be possible to choose loops 1 Fig. 5. Degenerate two-port. 
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and 2 in this fashion. If the two-port network contains no independent 
generators, the loop equations will have the following general form.* 

(1) 

We note that the right side contains only two nonzero terms V1(s) 
and V2(s). There are no initial conditions; we assume that the network 
is initially relaxed. What we wish to do now is somehow to extract 
from Eq. (1) an equation that contains only the terminal variables 
V1, V2, I1, and I2. For this we make use of the fact that the right side 
contains only two nonzero terms. To do this, we solve Eq. (1.) for the 
loop current transforms. The result will be 

(2) 

By appropriately partitioning the right-hand matrices, we get 

(3) 

Since we are interested in the terminal currents only, we solve for these 
only. The result will be 

(4) 

* We are assuming that any dependent sources not on loops 1 or 2 do not depend 
explicitly on V1 or V 2. The general results are still valid in this case also, but the 
specific forms in the first four equations will be different. 
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We have now achieved our objective—namely, to get an equation 
relating the terminal variables. As we anticipated, the relationship is 
a linear one. Since the coefficient matrix in Eq. (4) multiplies voltage 
transforms to give current transforms, the entries are dimensionally 
admittances. So we write 

(5 ) 

The coefficient matrix of this transformation is known as the "short-
circuit admittance matrix" and the entries—for which the lower case y 
is reserved as the standard symbol—are short-circuit admittance param
eters or the y parameters, for short. The reason for the name "short-
circuit" becomes obvious on noting from Eq. (5) that 

(6) 

The short-circuit admittance matrix is denoted by Y s c . A given voltage 
is made zero by short circuiting the proper terminals. For example, to 
get y12 we short-circuit terminals (1,1') and connect a voltage generator 
across (2,2'). Then the ratio of the transform of the current at the short-
circuited end to the transform of the voltage input is the short-circuit 
transfer admittance y12. Similarly, y11 and y22 are short-circuit driving-
point admittances. 

Equation (5) relates the four terminal quantities, the two currents 
being given in terms of the two voltages. Once we have these equations, 
we may rearrange them in any order we choose. One possible rearrange
ment is to invert and solve for the V's in terms of the I's. If we do this 
we get 

(7) 

In the last step we defined a new set of parameters whose relationships 
to the y parameters are evident by comparing the last two steps. Di-
mensionally they are impedances and they are called the open-circuit 
impedance parameters, or simply the z parameters. We will consistently 
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use the lower case z for these parameters. The open-circuit impedance 
matrix is denoted by Z o c . 

The reason for the name becomes clear by noting from Eq. (7) that 

The currents are made zero by leaving the corresponding pair of 
terminals open. Thus, to find z 2 1 we leave the (2,2') terminals open 
and we connect a current source at the terminals (1,1'). Then, the 
ratio of the transform of the voltage at the open-circuited end to the 
transform of the input current is z 2 1(s). Similarly, zn and z 2 2 are the 
driving-point impedances at the ports when the other port is open-
circuited. 

Up to this point the only restrictions on the network have been the 
linear, lumped and time-invariant restrictions. If we now restrict the 
network to be reciprocal, we know that the loop impedance matrix Zm 

will be symmetric, so that 
Δ 1 2 = Δ 2 1 (9) 

Hence for reciprocal networks we find that 
y12 = y21 (10) 

Z12 = Z 2 1 

This result is likewise evident from the reciprocity theorem (which also 
is established from the condition Δ 1 2 = Δ 2 1 ) . 

Another rearrangement of Eq. (5), which was historically the first 
set of terminal relationships used in transmission line analysis, can be 
obtained by solving for the input quantities in terms of the output 
quantities. The result will take the form 

(11) 

The relationships between this new set of parameters and the y or z 
parameters are obtained easily by going through the steps of actually 
rearranging Eq. (5) in the form of Eq. (11). 

The parameters introduced in Eq. (1.1) are called the ABCD param
eters, or the chain parameters. The last name follows from the fact 
that these parameters are natural ones for describing the tandem, or 
cascade, or chain connection of two-ports, as we shall soon see. Make a 
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note of the negative sign in — I2 which is a consequence of our choice of 
reference for I2. 

From Eq. (11) we can interpret the ABCD parameters as follows. 

(12) 

These expressions show that A is the reciprocal of the open-circuit 
voltage gain for transmission from terminals to (2,2'), whereas D 
is the negative reciprocal of the short-circuit current gain for the same 
direction of transmission. Similarly, B and C are reciprocals of short-
circuit transfer admittance and open-circuit transfer impedance, again 
for the same direction of transmission. 

By direct computation, it is possible to find an expression for the 
determinant of the ABCD matrix. If we denote this determinant by 
the symbol |ABCD|, then we will find that 

(13) 

For the important case of reciprocal networks, this simplifies to 

(14) 

For the case of reciprocal networks, then, we can invert Eq. (11), using 
the last expression, to get 

(15) 

This expression relates the output quantities to the input quantities. 
We see that, in addition to the interpretations in Eq. (12), the ABCD 
parameters have alternate interpretations from this inverse expression 
in the case of reciprocal networks. 

(16) 

In this case the ABCD parameters refer to transmission from terminals 
(2,2') to (1,1') . 
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We have now obtained four sets of equations relating the terminal 
voltages and currents. Two of these sets express the two voltages in 
terms of the two currents, and vice-versa. The other two sets express 
voltage and current at one pair of terminals in terms of voltage and 
current at the other. Two other sets of equations can be obtained by 
expressing I1 and V2 in terms of I2 and V1, and vice-versa. These are 
obtained by rearranging Eq. (11). Again we will leave the details for 
you to work out. The results will take the following forms. 

(17) 

and 

(18) 

The interpretations of these parameters can be easily determined from 
the preceding equations to be the following. 

(19) 

(20) 

Thus, we see that the h and g parameters are interpreted under a 
mixed set of terminal conditions, some of them under open-circuit and 
some under short-circuit conditions. The h parameters are referred to 
as the hybrid parameters, although both the h and g parameters deserve 
this name. 

From Eq. (1.9) we see that h11 is the reciprocal of y11, and h22 is the 
reciprocal of z 2 2 . However, h12 is the open-circuit voltage transfer 
function for transmission from right to left. Similarly, h21 is the short-
circuit current transfer ratio for transmission from left to right. 

From Eq. (20) we see that g11 is the reciprocal of z11 and g22 is the 
reciprocal of y22. But g12 and g21 are dimensionless; g12 is the short-
circuit current transfer ratio for transmission from right to left, whereas 
g21 is the open-circuit voltage transfer ratio for transmission from left to 
right. 
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By direct computation we can find the following relationships 

(21) 

In the special case of reciprocal networks these expressions simplify 
even further. We can see that in this case h12 = —h21 and g12 = —g21. 
In words, this means that the open-circuit voltage gain for transmission 
in one direction through the network is equal to the negative of the short-
circuit current gain for transmission in the other direction. (The nega
tive sign appears only because of the chosen reference direction of I2.) 

We need to make one remark here about the various equations that 
we have written relating V1, V2, I1, and I2. Although the various 
parameters have interpretations only under suitable open- or short-
circuit conditions, the basic equations defining these parameters—Eqs. 
(5), (7), (11), (17), and (18)—are valid for all two-ports, for all types of 
external connections, not just for open- or short-circuit conditions. The 
restrictions are needed only for the purposes of interpreting individual 
parameters. (Incidentally, these interpretations lead to methods of 
experimental determination of the parameters.) 

A special kind of reciprocal two-port, but one that is very important, 
is a symmetrical two-port. We say that a two-port is symmetrical when 
there is no effect on the external behavior when the terminal-pairs, or 
ports, are interchanged. We can easily find the effect of two-port sym
metry on the various parameters by interchanging V1 and I1 with V2 

and I2. We find that 

(22) 

One other point should be mentioned. The starting point of the 
discussion in this chapter was the loop equations. We can just as 
easily start with the node equations and solve for the terminal voltages 
initially, rather than the loop currents. The z and y parameters, and, 
through them, all the others, will then be expressed in terms of the node 
admittance determinant and its cofactors. 



300 Two-Port Networks [Ch. 8 

The preceding discussion is in rather great detail and can become 
tedious if you lose sight of our objective of developing methods of 
representing the external behavior of two-ports by giving various re
lationships among the terminal voltages and currents. Each of these 
sets of relationships finds useful applications. For future reference we 
will tabulate the interrelationships among the various parameters. The 
result is given in Table 1. Note that these relationships are valid for 
a general nonreciprocal two-port. 

Let us now give some illustrative examples of the computation of 
two-port parameters. As the first example consider the network shown 

TABLE 1 
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in Fig. 6, which can be considered as a model for a vacuum triode under 
certain conditions. (The capacitances are the grid-plate and plate-

Fig. 6. Example for calculating two-port parameters. 

cathode capacitances.) Let us compute the y parameters for this net
work. The simplest procedure is to use the interpretations in Eqs. (6). 
If we short-circuit the output terminals, the resulting network will take 
the form shown in Fig. 7. As far as the input terminals are concerned, 

Fig. 7. Example with output 
terminals shorted. 

Fig. 8. Example with input 
terminals shorted. 

the dependent source has no effect. Hence, y11 is the admittance of the 
parallel combination of Rg and C 1 . 

(23) 

To find y21, let us assume that a voltage source with transform Vi(s) 
is applied at the input terminals. By applying Kirchhoff's current 
law at the node labeled 1 in Fig. 7, we find that I2 = g mV 1 — sC1V1. 
Hence, y21 becomes 

(24) 

Now let us short-circuit the input terminals of the original network. 
The result will take the form of Fig. 8. Since V\ is zero, the dependent 
source current is also zero. It is now a simple matter to compute y22 

and y12. They are 
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(25) 

We see that y12 is different from y21, as it should be, because of the 
presence of the dependent source. 

Knowing the y parameters we can now compute any of the other sets 
of parameters using Table 1. Note that even under the conditions that 
C1 and C 2 are zero and Rg infinite, the y parameters exist, but the z 
parameters do not (both z 2 2 and z 1 2 will become infinite). 

As a second example, consider the model of a transistor (in the common 
base connection) shown in Fig. 9. Let us compute the open-circuit 

Fig. 9. Transistor model. 

parameters for this model. With the output end left open, it is clear 
that the dependent source will have no effect on the input voltage-
current relationship. Hence, z11 is the impedance of Re and R b in series. 
On the other hand, the output voltage transform will be affected by the 
dependent source. In Fig. 9b from Kirchhoff's voltage law around the 
loop labeled 1, we find that V2 is —αRcI1 + R b I 1 . Thus, we have 

Z11 = R e + R b 

z 2 1 = R b — αRc 

(26) 

With the input terminals left open (I2 = 0) the dependent source 
will vanish. Hence, z 2 2 and z 1 2 are immediately found to be 

z 2 2 = Rb + Rc 

z12 — Rb 

(27) 

Again we find that the 12 parameter is not the same as the 21 parameter. 
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8.2 The Scattering Parameters 
Two other methods of expressing the external behavior of two-ports 

are in common use. Unlike the parameters discussed so far, these 
parameters are not obtained by a simple rearrangement of Eq. (5). 
Nevertheless, the description of the terminal behavior afforded by these 
parameters is just as good as that of the other sets of parameters. 

The classical theory of filters is based on the image parameters. Con
sequently, these parameters have been extensively studied and a great 
deal is known about them. We will defer discussion of these parameters 
to Chapter 11, which will be devoted exclusively to image parameters and 
classical filter theory. 

The set of parameters that we shall discuss in this section are known 
as the scattering parameters. They are sufficiently different from the 
other sets to warrant a section all to themselves. Like the image param
eters, scattering parameters originated in the theory of transmission 
lines. They are particularly useful in microwave network theory. In 
microwave networks the concept of power is much more important than 
the concepts of voltage and current. In fact the latter become artificial. 
The scattering parameters are defined in such a fashion that the various 
quantities of interest in power transmission have very simple expressions 
in terms of scattering parameters. This fact also makes scattering 
parameters useful in the design of lumped power transmission networks 
—filters designed for specified insertion loss, for example. It is possible 
for us to define scattering parameters starting with the two-port equa
tions; but such a definition would perforce be artificial. Therefore, we 
shall start from a different point and freely use concepts from trans
mission line theory, in order to motivate the discussion. 

It will perhaps be instructive to begin by considering a one-port. 
Figure 10 shows a one-port whose driving-point impedance is Z'. It can 

Fig. 10. Scattering one-port. 

be considered as a load on another network whose Thévenin equivalent 
is shown to the left of terminals (1,1') . Using the picture and termi
nology of wave propagation, we say that if the load is matched to the 
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"source," there will be no reflection at the terminals; otherwise, there 
will be. 

The voltage transform V' at the terminals is pictured as having con
tributions from the "incident wave" arriving from the left and the 
"reflected wave" coming back from the load. Similarly for the current 
transform I'. (We are using primed quantities here because we wish 
to reserve the unprimed symbols for normalized quantities later.) Thus, 
we can write 

(28) 

where the subscripts i and r refer to incident and reflected, respectively. 
Suppose we think of R 0 as the "characteristic impedance" of the trans
mission system to the left of terminals (1,1'). Then, the incident and 
reflected quantities are related by 

(29) 

Using this result. Eqs. (28) will become 

(30) 

When we solve these equations for Vi' and Vr', we get 

(31) 

It is now possible to define a reflection coefficient or scattering coefficient 
S11 as the ratio between the reflected and incident voltage transforms. 
(The usual symbol for reflection coefficient is p but we shall use S11 in 
order to conveniently generalize to a two-port or n-port later.) Thus, 

(32) 

The wave propagation concepts which we used in the preceding discus
sion are artificial in the case of lumped networks. Nevertheless, it is 
possible to look upon Eqs. (31) as formal definitions of Vi' and Vr', 
without attaching any interpretive significance to these quantities which 
reflect their intuitive origin. In the development, we used R 0 as the 
Thévenin source resistance or as the characteristic impedance. How-
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ever, neither of these ideas is necessary in the definitions expressed by 
Eqs. (31) or (32); R 0 is simply an arbitrary real positive number which 
has the dimensions of impedance. 

Although it is not obvious from the preceding discussion, it is quite 
convenient to normalize all current and voltage transforms, and there-
fore also impedances. We define the normalized quantities as follows. 

(33) 

In terms of these, the incident and reflected voltage transforms in Eq. 
(31) become 

(34) 

Eq. (29) now becomes 

(35) 

The scattering coefficient in Eq. (32) becomes 

(36) 

where Z = Z ' / R 0 is the normalized impedance. When using the preced
ing expressions, always keep in mind that all voltages and currents are 
normalized. The normalization can be interpreted in terms of the net-
work shown in Fig. 11. From the diagram it is clear that 

(37) 
On comparing this with Eq. (34a), we find that 

(38) 

Fig. 11. Normalized network. 
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That is, the normalized incident voltage is equal to half the normalized 
source voltage. 

Now let us return to the case of a two-port as shown in Fig. 12. The 
voltage source in series with a resistance at each end of the two-port 

Fig. 12. Terminated two-port. 

can be looked upon as a model for a physical generator. In the most 
usual case V'g2 = 0 and R 0 2 represents the load resistance. The terminal 
voltage and current transforms have again been primed because we 
intend to use unprimed symbols for the corresponding normalized 
quantities, which we define as follows. 

(39) 

(40) 

The network inside the dashed lines in Fig. 12 is known as the augmented 
network. We can interpret the normalization in terms of the network in 
Fig. 13. An ideal transformer with the turns ratio shown is connected 

Fig. 13. Normalized augmented network. 

at each pair of terminals. The normalized voltage and current trans
forms are those at the far sides (looking out from the network) of the 
ideal transformers. 

We now define incident and reflected voltages at each of the ports in 
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a manner quite similar to the corresponding quantities for a one-port 
as given in Eq. (34). Thus, 

(41) 
(42) 

What we wish to do now is to express the relationship between the 
incident voltages and the reflected voltages, which will serve the same 
function for the two-port that the scattering coefficient in Eq. (36) 
serves for the one-port. We write this relationship as 

(43) 

The coefficient matrix of this transformation is called the scattering 
matrix and is designated S; the entries are the scattering parameters. 
These parameters can be interpreted as follows. 

(44) 

(Lower case letters, s11, s12, etc., are usually used for the scattering pa
rameters in the literature. We will use capitals to avoid possible con
fusion with the complex variable s = σ + jω.) 

Let us now relate the scattering matrix with the short-circuit admit
tance or open-circuit impedance matrix of the two-port N. We should 
point out that N may not have a y matrix or a z matrix (as, for example, 
the network in Fig. 7). Nevertheless, the augmented network will 
always have a y matrix because of the augmenting unit resistances. Let 
us designate this matrix by Y a . That is, 

(45) 
where 

(46) 

It is always possible to relate the scattering matrix to Y a . In order 
to do this, let us first solve Eqs. (41) and (42) for I1 and I2. We will get 

(47) 
where 

(48) 
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Next, from a consideration of Fig. 13, we find the generalization of 
Eq. (34) to the two-port to be 

(49) 
This expression throws new light on the interpretations of the scattering 
parameters in Eqs. (44). We now interpret the ratios expressed in those 
equations to apply when the pertinent terminals of the augmented network 
are shorted. Thus, the scattering parameters are short-circuit parameters 
(but not admittances) of the augmented networks. 

By substituting Eqs. (45) and (49) into Eq. (47), and solving for the 
reflected voltage matrix, we get 

(50) 

where U is the unit matrix. Hence, the scattering matrix is 

(51) 

This is the desired relationship. It is valid whether or not the network 
N has an admittance or impedance matrix. However, when N does 
have an admittance matrix Y s c , or an impedance matrix Z o c , it is possible 
to express in terms of one of these and, thus, to express the scattering 
matrix in terms of Y s c or ZOC. 

First of all, we should normalize the impedance and admittance 
matrices. Let the normalized matrices be designated Z n and Y n , re
spectively. We define Z n as 

(52) 

with a similar definition for Y n . These relationships can be expressed 
concisely as 

(53) 

where 

(54) 

(You can verify these by carrying out the indicated multiplications.) 
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The next job is to express the admittance matrix of the augmented 
network in terms of Z n or Y n . This is easy, since the impedance matrix 
of the augmented network is U + Z n , and is simply the inverse 
of this. Hence, 

(55) 

is one form of the desired relationship. Several alternative forms can 
be obtained with some algebraic manipulation. We will present them 
here but leave the derivations to you. They are 

(56) 

Everything we have done up to this point is valid for both reciprocal 
and nonreciprocal networks. However, if network N is reciprocal, then 
the scattering matrix will be symmetric, as evidenced most clearly by 
Eq. (51). 

Let us now consider a simple example in order to illustrate some of 
the concepts which have been introduced. We wish to calculate the 
scattering parameters of an ideal transformer, shown in Fig. 14. The 

Fig. 14. Scattering parameters of ideal transformers. 

series resistances are equal. (If they are unequal to start with, we can 
change the turns ratio). The augmented network is formed as in part 
(b) of the figure. But the cascade connection of the three ideal trans
formers reduces to the original transformer. (This is most easily seen 
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by calculating the chain matrix according to the discussion in section 
8.5.) 

Note that the ideal transformer alone has neither a z matrix nor a y 
matrix. Hence, Eqs. (55) and (56) will be of no use; we fall back on 
Eq. (51) which involves calculating the y matrix of the augmented net
work. But this is a relatively easy task. By direct calculation we find 

to be 

(57) 

Hence, using Eq. (51), the scattering matrix is 

(58) 

Note that S 2 2 is the negative of Sn. Two-ports which satisfy this con
dition are called antimetric two-ports (in contrast with symmetric two-
ports for which S11 = S 2 2 ) . In order to check on the reasonableness of, 
at least, S11 and S22, go back to Fig. 14a. Shorting the output terminals 
and calculating the reflection coefficient between the series resistance R 
and the input impedance at the terminals of the transformer, we get the 
same S11. We should be able to obtain S22 simply by replacing n by 
1/n, which is also correct. 

Let us now restrict ourselves to passive, reciprocal two-ports and 
interpret the scattering parameters in terms of power transfer. Up until 
now we have been dealing with transforms of voltage and current. Let 
us continue to use the same symbols but think of the variables as 
phasors which represent sinusoidal quantities. From the discussion 
in Chapter 5 we know that such a procedure is valid. 

Refer to Fig. 1.3 and let Vg2 = 0; we then have a transmission net
work excited on the left. The maximum power available from the 
source (with the unit resistance fixed) is |V g i | 2 /2, of which half is dis
sipated in the unit resistance. The maximum power available to the 
two-port is then 

(59) 

The last step follows from Eq. (49). The power output at the unit 
resistance load is 
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(60) 

The last step follows from the fact that V12 = 1/2V12 = 0; the preceding 
step follows from Eq. (42). The ratio of the power output to the maxi
mum power available is 

(61) 

Since Vr2 and Vi1 are phasors, S21 in the last step is to be evaluated on 
the jω-axis only, as indicated. Note that this power ratio is invariant 
under normalization, so that the same result applies to the unnormalized 
network. In a similar manner, we can interpret the j-axis squared 
magnitude of S12 to be equal to the ratio of power output to maximum 
power input when transmission is from right to left. 

The preceding brief discussion of scattering parameters is by no 
means exhaustive. However, we shall not discuss the subject any 
further in this text.* 

Let us here restate the reasons why we use so many different sets of 
parameters to describe the behavior of a two-port when they are all 
admittedly equivalent descriptions. The main reason is to obtain 
algebraically simple formulas for the various quantities of interest under 
many different operating conditions. In particular the way in which 
the network is to be operated and the methods in which two-ports are 
to be interconnected decide the choice of parameters to be used. For 
example, when a two-port network is used as an interstage coupling 
network between vacuum tubes, it is (approximately) operating between 
open circuits and so the open-circuit parameters are the most suitable 
set. On the other hand, in a transistor circuit one end is approximately 
an open circuit, whereas the other is approximately a short circuit. 
Then the hybrid parameters are the most natural method of description. 
If we are interested in combining networks in parallel it would seem 
reasonable to expect that the short-circuit admittance parameters will 
lead to the simplest formulas for the composite network parameters in 
terms of the individual network parameters. Similarly in cascading two 
terminal pairs, the ABCD parameters lead to the simplest formulas. In 
conventional filter design image parameters are used mainly because 
the components of a lattice are very simply related to the image param
eters, thus leading to simple computations. 

* M a n y good papers on scattering parameters appear in Transactions, I R E , Vol. 
C T - 3 , June, 1956. (This is the scattering matrix issue of the Professional Group on 
Circuit Theory.) 
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8.3 Equivalence of Two-Ports 
When it is desired to design a network to satisfy certain given perform

ance criteria, it may be that the design procedure gives a network that 
contains many undesirable features. These features may be in the 
structure of the network, in the number of elements in the network, or 
in the type of elements. It would be desirable to replace this network 
with another which would be "equivalent" to the first in some sense. 
The same is true if the objective is to analyze a given network. If the 
network can be replaced by a simpler "equivalent" of some sort, the 
analysis will be simplified. For these reasons we are quite interested 
in the topic of equivalence of networks. 

We already have available the Thévenin or Norton equivalent of a 
network. These are equivalent to a given network at a single pair of 
terminals. We would now like to discuss equivalence of two-ports. We 
say that a two-port N1 is equivalent to a second two-port N2 at the two pairs 
of terminals if replacing N2 by N1 leaves the terminal voltages and currents 
unchanged independent of external networks connected at the terminals. 
This is illustrated in Fig. 15. 

Fig. 15. Equivalence of two-ports. 

The same networks are connected to corresponding pairs of terminals 
in the two parts of the figure. The three parts A,N1, and B are isolated 
(electrically and magnetically) except for the interconnections shown. 
Similarly A , N2, and B are isolated except for the interconnections 
shown. 

The definition of two-port equivalence implies that the relationships 
among the terminal voltages and currents remain unchanged if N1 is 
substituted for N2. Hence, two equivalent two-ports have the same z 
or y, or A B C D , or any other set of parameters. Thus, if we have a two-
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port and we wish to find a second two-port, perhaps one whose structure 
we specify, to be equivalent to the first, we require that one of the sets 
of two-port parameters be equal for both networks. The simplest set 
to use may depend on the structure of the networks and on the ultimate 
application that is to be made of the equivalent two-port. 

Let us now consider two simple but very general two-ports which are 
to be equivalent to an arbitrary two-port. The first of these is based 
on a consideration of the z parameters. The pertinent equations are 
repeated here. 

(62) 

These equations suggest the two-port shown in Fig. 16. By direct cal
culation we can verify that the voltages and currents of this two-port 

Fig. 16. General two-port equivalent. 

satisfy Eqs. (62). Note that the two-port contains two dependent 
voltage sources. 

In a completely similar manner, the system of y parameter equations, 
which are 

(63) 

leads to the equivalent two-port shown in Fig. 17. This one contains 
two dependent current sources. Other such equivalent two-ports can 
be found, either based on the z and y parameters, or based on the other 
sets of two-port parameters. Some of these are suggested as problems 

Fig. 17. Another general two-port equivalent. 
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at the end of the chapter. These equivalent two-ports find their greatest 
use when dealing with nonreciprocal networks. 

Let us now discuss some simple equivalent two-ports for the case of 
reciprocal networks. Consider the Tee network shown in Fig. 18. Since 

Fig. 18. Tee equivalent. 

for reciprocal two-ports z 1 2 = z 2 1 , we can immediately write the z 
parameters of the Tee by inspection. They are 

(64) 

If we now consider that the z parameters on the left are given, or that 
they are calculated from a given two-port, we must adjust the branch 
impedances of the Tee in order to satisfy these equations. Solving for 
the branch impedances, we get 

(65) 

Hence, if the Tee is to be equivalent to any other reciprocal two-port 
the branch impedances of the Tee must satisfy these equations. This is 
illustrated in Fig. 18b. 

Note that the Tee equivalent is a mathematical equivalent. No claim 
is made that it can actually be constructed as a realizable network. 
Nevertheless, the results of any mathematical operations performed with 
the Tee equivalent used in place of any reciprocal two-port will be valid. 

Let us now illustrate with an example the use of the Tee equivalent in 
deriving analytical results in the analysis of networks when a specific 
network is not involved, just a set of two-port parameters. It is desired 
to develop the formula for the driving point impedance at the terminals 
(1,1') of a general reciprocal two-port when an impedance (Z L ) is con
nected at terminals (2,2') as in Fig. 1.9a. Let the open-circuit parameters 
of the two-port be Z11, zl2, and z 2 2 . Then, we can replace the two-port 
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Fig. 19. Use of Tee equivalent. 

by its Tee equivalent as in Fig. 19b. The loop equations for the two loops 
shown in the figure are 

(66) 

Immediately we get the driving-point impedance as 

(67) 

This is the desired result. Note that the same result can be obtained 
directly from the z system of equations without using the Tee equivalent 
by setting V2 = —Z LI 2 . Equation (66) (and its consequences) then 
follows immediately. However, it may sometimes be more helpful and 
satisfying to have a network to analyze rather than some equations to 
manipulate. 

Fig. 20. Pi equivalent. 

As a second simple equivalent of reciprocal two-ports consider the Pi 
network shown in Fig. 20a. We can easily compute its y parameters 
by inspection; they are 

(68) 
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If the Pi network is to be equivalent to any arbitrary two-port, then the 
branch admittance must be adjusted to satisfy these equations. Solving 
these equations for the branch admittances, we get 

(69) 

The resulting network is shown in Fig. 20b. It is again clear that these 
branch admittances do not necessarily represent realizable networks. 
However, the mathematical equivalence is valid and useful. 

Of course, since the Pi and Tee are themselves two-ports, we can find 
a Tee equivalent of the Pi or a Pi equivalent of the Tee. To find the 
relationships among the branch impedances and admittances when a Pi 
and a Tee are equivalent, we must set one of the sets of two-port param
eters of the Tee equal to the corresponding ones of the Pi. For example, 
using the relationships between the y and z parameters from Table 1, 
we can compute the y parameters of the Tee from Eqs. (64) and then 
set them equal to the y parameters of the Pi given in Eqs. (68). The 
result will be the well-known Tee to Pi (or Y — Δ) transformation. 
The details are simply algebra and will be left to you. Note, however, 
that the Tee equivalent of a Pi (or Pi equivalent of a Tee) may not be a 
realizable network. 

Before leaving the topic of equivalent two-ports, let us emphasize 
that the ideas of equivalent two-ports that have been developed are 
valid only for two-ports and not for arbitrary networks with four termi
nals. As an example consider the network shown in Fig. 21a which 

Fig. 21. Erroneous use of equivalent network. 

contains a transformer. What will happen if the transformer is replaced 
by a Tee "equivalent"? Clearly the voltage source at the bottom of the 
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figure will become short-circuited. The voltages and currents at the 
original terminals of the transformer will not be the same as they were. 
This should be expected, because the equivalences we have been discuss
ing are for two-ports only, and the transformer in this figure does not 
constitute a two-port. 

8.4 Transformer Equivalents 
Very often in the analysis of networks containing transformers it is 

convenient to have an equivalent of the transformer. Somehow, we feel 
more at home with a connected network with no mutual coupling. Quite 
often such equivalent networks suggest other networks by which the 
transformer may be replaced while providing the same type of behavior 
that was expected of the transformer. (An example of this is the double-
tuned, capacitively coupled circuit. See Problem 7.2.) The usefulness 
of a transformer equivalent is sometimes felt in the opposite direction as 
well. That is, in a synthesis situation it may be possible to arrive at a 
network which is not realizable as it stands, but may be replaced by an 
equivalent transformer. (An example of this is the famous Brune 
synthesis of a driving-point function.) For these reasons we will devote 
a separate section to a discussion of transformer equivalent two-ports. 

To start with, let us look for a Tee equivalent of the transformer 
shown in Fig. 22. The z system of equations can be written down im-

Fig. 22. Transformer Tee equivalent. 

mediately from the definition of the v-i relationships of a transformer. 
It is 

(70) 

Hence, the Tee equivalent takes the form of Fig. 22b. Since each 
impedance in this Tee equivalent is s times a constant, we might be 
tempted to call the elements "inductances" and draw the network as in 
Fig. 22c. There is nothing wrong with this procedure provided we keep 
in mind that some of the inductances so drawn may be negative, since 
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it is possible for M to be larger than one or the other of the self-induct
ances, or for M to be negative. As a matter of fact, we shall follow this 
practice. 

Next let us consider a Pi equivalent. For this we should invert Eq. 
(70) and obtain the y parameters. As we saw in Chapter 2 from a 
different viewpoint, this can be done except in the case of a perfect 
transformer. For a perfect transformer the z matrix is singular. As
suming that this is not the case, the inversion of Eq. (70) gives 

(71) 

Hence, the Pi equivalent takes the form shown in Fig. 23. Again 
note that some of the branch inductances may be negative, depending 
on the value and sign of M. 

Fig. 23. Transformer Pi equivalent. 

In both of these equivalent circuits of a transformer, a connected net
work is obtained. One of the features of a transformer, that of isolation, 
is thus lost. Let us now use a slightly different approach and transform 
the output current and voltage. Let us write 

(72) 

where n is a real number. We immediately recognize this transformation 
to represent an ideal transformer (see Chapter 1) in which n is the turns 
ratio. With these changes, the z system of equations given in Eq. (70) 
can be written 

(73) 

It is now a simple matter to find the Tee network whose z system of 
equations is given by this expression. The complete equivalent, in
cluding the ideal transformer, takes the form of Fig. 24. 
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Fig. 24. Transformer equivalent. 

No restriction has been placed on the turns ratio n other than realness. 
For special values of n, the transformer equivalent shown in Fig. 24 
will take on special forms. In particular, when n = 1 the ideal trans
former is no longer necessary and the Tee equivalent of Fig. 22 results. 
For the case n = kL1/M = M/kL2, where k is the coupling coefficient, 
the equivalent takes the form shown in Fig. 25a. In the still further 

Fig. 25. More transformer equivalents, (a) n = kL1/M = M/A;L2; (b) n = L1/M 
= M/L2. 

case in which k = 1, corresponding to a perfect transformer, the network 
of Fig. 25b is obtained. This agrees with Fig. 13 in Chapter 1, as it 
should. 

8.5 Interconnection of Two-Port Networks 
Practical two-port networks are built by combining simple two-port 

structures as "building blocks." There are two simple reasons for this 
procedure. From the design engineer's point of view it is much easier to 
design simple blocks and interconnect them, than to design a complex 
network in one piece. The second reason is practical. It is much 
easier to shield smaller units and to reduce the effect of parasitic capaci
tances to ground. 

There are three basic methods in which simple two-ports can be inter
connected to make up a complex two-port. These three combinations 
are known as the series, parallel, and tandem interconnections. The 
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tandem connection is also called a cascade connection. Of these, the 
cascade connection is the most common, the parallel is less common, and 
the series is the least popular. We will study these interconnections in 
their order of importance. 

Two two-ports are said to be connected in cascade, if the output 
terminals of one two-port are the input terminals of the second, as in 
Fig. 26. 

Fig. 26. Tandem connection of two-ports. 

Our main interest in the problem of "interconnection" is, from the 
analysis point of view, to study how the parameters of the over-all net
works are related to the parameters of the individual building blocks. 
The tandem combination is most conveniently studied by means of the 
A BCD parameters. From the references in the figure, we see that 

(74) 

Hence, for the ABCD system of equations of the Nb network we can 
write 

(75) 

If we now write the ABCD system of equations for the Na network and 
substitute the last equation, we get 

(76) 

Thus the ABCD matrix of the over-all network is equal to the product of 
the ABCD matrices of the individual networks; that is, 

(77) 

Once we know the relationship between the parameters of the over
all network and those of the components for any one set of parameters, 



Sec. 8.5] Interconnection of Two-Port Networks 321 

it is merely algebraic computation to get the relationship for any other 
set. For example, the open-circuit parameters of the over-all network 
can be found in terms of those of the two cascaded ones by expressing the 
z parameters in terms of the ABCD's, and then using Eq. (77). The 
result will be 

(78) 

The details of this computation and the corresponding computation of 
the short-circuit parameters are left as exercises. 

One important feature of Eqs. (78)(b), (c) should be emphasized. 
The zeros of z 1 2 or z 2 1 of the composite network (which are known as 
"zeros of transmission") are the zeros of the corresponding parameters 
of the individual networks. This fact is the basis of some of the well-
known methods of two-port synthesis. 

Let us next turn our attention to the parallel combination of two-
ports. Two two-ports are said to be connected in parallel if the cor
responding terminals (1,1' , 2,2') of the two are connected together as 
in Fig. 27. This condition forces the equality of the terminal voltages 

Fig. 27. Parallel connection of two-ports. 
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of the two networks. If we can assume that the relationships among 
the voltages and currents of the individual networks Na and Nb remain 
unaltered when the two are connected in parallel, then we can write 

(79) 

Thus the short-circuit admittance matrix of the composite network is 
the sum of the short-circuit admittance matrices of the individual net
works. 

We must now inquire into the conditions under which the two net
works can be connected in this way without causing the voltage-current 
relationships at the terminals of each to be modified in any way. For 
example, we can see that if there is a straight-through connection be
tween terminals 1' and 2' of network b but not in network a, then the 
branch between terminals 1' and 2' of network a will be shorted when 
the parallel connection is made. Equation (79) will not be valid in such 
a case. 

In order for the voltage-current relationships of the individual net
works to remain unaltered under interconnection, the following condi
tion (due to O. Brune) is necessary and sufficient. When the two two-
ports are interconnected at either of the two ends and the other ends 
are short-circuited as in Fig. 28 the voltage marked V must be zero. 

Fig. 28. Brune's test for parallel-connected two-ports. 

If this condition is not satisfied, the matrix addition will not give the 
correct answer for the parameters of the composite network, unless 
isolating ideal transformers are introduced at one of the two ends. It is a 
simple matter to prove this result by calculating the voltage between 
terminals 1' and 2' of both networks. The details will be left to you. 

An important special case of the parallel combination of two-ports, 
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which is useful in practical applications, is the parallel connection of 
common terminal networks, that is, networks in which the terminals 
V and 2' are the same. A typical example is the "parallel ladders" 
network of Fig. 29. You should verify (by Brune's test) that the matrix 
addition is valid for this structure. 

Fig. 29. Parallel ladders network. 

Finally, let us consider the series connection of two-ports. We say 
that two two-ports are connected in series if they are connected as 
shown in Fig. 30. 

Fig. 30. Series connection of two-ports. 

If, as before, we assume that the voltage-current relationships of the 
individual networks are unaltered, the open-circuit impedance matrix 
of the composite network is the sum of the open-circuit matrices of the 
individual two-ports; that is, 

(80) 

The proof of this result is left as an exercise. 
Brune's test to verify whether matrix addition is valid for the series 

combination is the following. Connect one end of the two networks in 
series as in Fig. 31 leaving the other terminals open. Then the matrix 
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Fig. 31. Brune's test for series connection. 

addition is valid if and only if the voltage marked V is zero. (This must 
be true for both ends.) Once again, by introducing an isolating ideal 
transformer at one pair of terminals or the other, this condition can be 
dispensed with. 

Variations of the series and parallel types of interconnection are ob
tained by connecting the terminals in series at one end and in parallel 
at the other. These are referred to as the series-parallel and parallel-
series connections. As we might surmise, the h and g parameters of the 
individual two-ports are added to give the over-all h and g parameters, 
respectively. We will not pursue this topic any further here. * 

8.6 Certain Simple Reciprocal Two-Ports 
In the preceding parts of this chapter we have concentrated heavily 

on the general description of the behavior of two-ports. It is now time 
for us to take up some examples of the most common two-port networks 
and briefly study their transmission properties and frequency response. 
We shall here restrict ourselves to passive, reciprocal and time invariant 
networks. 

Let us start by noting that two-ports can be classified broadly in two 
categories: (1) common-terminal and (2) noncommon terminal. Some
times these classes are called unbalanced and balanced, respectively. In 
the common-terminal two-port, one terminal of each pair is common to 
both. Such a two-port is essentially a three terminal network, one 
terminal belonging to the input, a second to the output, and the third is 
common to both. 

The most common example of a common terminal two-port is a ladder 
network as shown in Fig. 32. None of the branches is assumed to be 
coupled magnetically to any other branch. Of course, the ladder may 
start or end, or both, with a shunt branch instead of a series branch. 

Purely from physical intuition we can make some interesting observa
tions about a ladder. These observations can also be confirmed by 
formal analysis. Suppose the ladder is excited from the left. Quite 

* For further details, see E . A . Guillemin, Communication Networks, Vol. I I , John 
Wiley and Sons, 1935. 
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Fig. 32. General ladder network. 

evidently, the output voltage can go to zero only under one of two condi
tions. Either one of the series impedances Z 1 , Z 3 , etc., becomes an 
open circuit at some value of s, or one of the shunt impedances Z 2 , Z 4 , 
etc., becomes a short circuit. Such values of s are zeros of z 1 2 and are 
referred to as transmission zeros. However, if a series impedance Z k 

has a pole at some value of s (thus effectively open-circuiting the branch), 
and the impedance of the rest of the network to the right of Z k also has 
a pole there, this value of s will not be a transmission zero. This fact 
is clarified from a consideration of Fig. 33. If both Z k and Z have a pole 

Fig. 33. A section of a ladder. 

at the same point, then the voltage Va will divide between them ac
cording to the voltage divider law (in accordance with the values of the 
residues) and will cause Vb to have a nonzero value. A similar state
ment applies when a shunt branch impedance becomes a short circuit 
and the impedance of the rest of the network to the right also becomes 
shorted at the same value of s. These results can be proved more for
mally. (See, for example, Problem 10.9.) (The words "rest of the net-
work to the right" should be changed to "rest of the network to the left" 
if transmission is from right to left.) 

Since the branch impedances of a ladder can have zeros and poles only 
in the left half plane or on the imaginary axis, it follows that the transfer 
impedance z 1 2 of a ladder cannot have any zeros inside the right half 
plane. In other words, a ladder is always a minimum-phase network. 
This condition is no longer true if we admit mutual coupling between 
the branches, for then the network may become nonminimum-phase. 

Let us now consider some specific examples of ladders. A typical 
interstage RC coupling network for an audio amplifier is shown in Fig. 
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34. R P represents the equivalent load resistance (including the plate 
resistance of the tube); C c is the coupling capacitance; R T and CT 

constitute the tone control; R1 and R 2 represent the volume control, and 

Fig. 34. Interstage coupling network. 

Cgk represents the grid-cathode capacitance of the following stage. For 
a typical circuit we may have the following values. Both actual and 

normalized values are given. The relationship between the actual and 
the normalized values was first given in Chapter 2 and is repeated here. 
The normalizing constants are chosen to be R 0 = 10 5 and ω 0 = 10 4. 

Let us calculate the open-circuit transfer impedance of this network. 
Perhaps the simplest method is to use the procedure outlined in section 
4.7. We assume a unit voltage output and work back through the 
ladder to calculate the input current. The details will be left to you. 
The result is 

We find that the transmission zeros lie at zero and infinity. This is 
disconcerting, because we expect a transmission zero at the zero of the 
RT-CT branch, which lies at s = -1/10. However, if we compute the 
impedance of C c in series with R p , we find it to be (10s + 1)/10s. This 
also has a zero at s = -1/10 Hence, according to our earlier deductions, 
even though a shunt branch becomes a short circuit, the impedance of the 
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rest of the network to the left also becomes a short circuit, and so there 
should be no transmission zero at the corresponding value of s. 

A S another example of a ladder network let us take a conventional 
filter for a power supply, with a 120 cycle "trap." The network is 
shown in Fig. 35. Let us again calculate the open-circuit transfer imped
ance by the same method we used before. Without normalizing this 
time, the result will be 

Fig. 35. Power supply filter. 

The zeros of z 1 2 are at s = ±j240π (120 cps) and at ∞. The poles of 
z 1 2 are at s = 0, 0 ±j288 and 0 ±j290 (45.8 and 46.2 cps). The fre
quency response is shown in Fig. 36. 

Since ladder networks can have zeros of transmission only where the 

Fig. 36. Frequency response of power supply filter. 
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branches of the ladder have zeros or poles, they are somewhat inflexible. 
In many applications it is desirable to have zeros of transmission more 
or less unrestricted. But it is still required that the network be common-
terminal, like the ladder. Some networks that satisfy this requirement 
are the twin-Tee and the bridged-Tee. Let us now examine these two 
networks briefly. 

A bridged-Tee network is the network shown in Fig. 37. It is a Tee 
network with a branch "bridging" the top terminals. Each of the 

Fig. 37. The bridged-Tee structure. 

branches may itself be a complex one terminal-pair network. The 
bridged-Tee can be redrawn as a Wheatstone bridge as shown in Fig. 
38. The element F L is the load between terminals (2,2') and G is the 

Fig. 38. Bridged-Tee drawn as a bridge. 

source connected between (1,1'). The load now becomes one of the 
bridge arms. Thus, the bridged-Tee is somewhat similar to a lattice 
(which we will discuss shortly) and is essentially different from a ladder. 

We can also consider the bridged-Tee as a parallel connection of two 
simpler two-ports as shown in Fig. 39. To find the short-circuit param
eters of the bridged-Tee we simply add the short-circuit parameters 
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of the two simpler two-ports. The result is 

(81) 

Fig. 39. Bridged-Tee as parallel connection of components. 

Alternatively, we can look upon the bridged-Tee as a series connec
tion of two simpler two-ports as shown in Fig. 40. The open-circuit 
parameters of the bridged-Tee can then be computed as the sum of the 

Fig. 40. Bridged-Tee as series connection of components. 

open-circuit parameters of the two simpler two-ports. If we do this, 
the result will be 
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(82) 

We shall now consider two specific examples of a bridged-Tee network 
and we shall examine the pole-zero locations and the other representa
tions. The network of Fig. 41 is a typical RLC "equalizer" network. 
For this network the branch admittances are 

(83) 

Fig. 41. An equalizer. 

The z parameters are obtained by substituting these into Eqs. (82). 
Thus, 

(84) 
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The poles and zeros z 1 2 , the gain-phase plot and the z 1 2 locus are shown 
in Fig. 42. 

Fig. 42. Frequency response of equalizer. 

As a second example of a bridged-Tee network we will take an RC 
network of a very simple type as shown in Fig. 43. By substituting 
into Eqs. (82) we find the open-circuit parameters to be 

The poles and zeros, frequency response 
and locus for z 1 2 are shown in Fig. 44. 

Let us now turn to the twin-Tee net
work shown in Fig. 45. This is a simple parallel-ladders network. Since 
it is a parallel connection of two-ports, its short-circuit parameters can 
be obtained by adding the short-circuit parameters of the two Tee's. 
In terms of the branch admittances, the result will be 

Fig. 43. A bridged-Tee network. 

(86) 
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Fig. 44. Frequency response of bridged-Tee network in Fig. 43. 

Fig. 45. Twin-Tee structure. 

A simple example of an RC twin-Tee used in the design of equalizers 
is shown in Fig. 46. Let us compute only the open-circuit transfer 

Fig. 46. An RC twin-Tee structure. 

impedance. This can be found by first using Eqs. (86) to get the y 
parameters and then using the z-y relationships. The details will be 
left to you. The result is 
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(87) 

The pole-zero configuration is shown in Fig. 47a. It is seen that the 
two zeros of transmission are on the jω-axis, even though this is only an 

Fig. 47. Frequency response of the twin-Tee in Fig. 46. 

RC network. The gain and phase plots and the complex locus are shown 
in the other parts of the figure. Note that the phase plot has a positive 
discontinuity of π at the j-axis zero of z 1 2 , in accordance with the discus
sion in section 7.7. 

All of the two-ports we have been studying in this section have been 
common-terminal. Let us now turn our attention to noncommon termi
nal two-ports. The most important structure of this type is the sym
metrical balanced lattice shown in Fig. 48. It is usually drawn with 

Fig. 48. Symmetrical balanced lattice. 

dotted lines replacing two of the branches, as in the second part of the 
figure, to avoid cluttering up the diagram. The lattice is the same net' 
work as a Wheatstone bridge. This is illustrated by redrawing the 
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lattice as in Fig. 49. The zeros of transmission (the zeros of the transfer 
function) may now be interpreted as the frequencies at which the bridge 
is balanced. 

Fig. 49. Lattic drawn as a bridge. 

The lattice owes its place of prominence to two factors. First, it can 
be proved that every symmetric (passive, reciprocal, lumped, and time-
invariant) two-port has a physically realizable lattice equivalent. Thus 
the lattice is the "most general" symmetric two-port. Secondly, the 
lattice network plays an important role in the general image parameter 
theory of filter design, which has occupied a large portion of the interest 
in networks in the past. 

To start with, let us compute the open-circuit parameters of the 
lattice. We shall do this by using the interpretive results given in 
Eq. (8). From Fig. 49 we see that with terminals (2,2') open, the net
work at terminals (1,1') looks like the parallel connection of two branches 
each of which is the series connection of ZX and ZY. Hence, 

(88) 

This is also equal to z 2 2 by symmetry. 
To compute z 1 2 = z 2 1 remember that what we want is the ratio of the 

voltage across terminals (2,2') to the current into terminal 1. It is clear 
from Fig. 49 that 

(89) 

Each of the voltages on the right can be expressed in terms of the volt
age V11' by means of the voltage divider law. Thus 

(90) 
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If we substitute these expressions into Eq. (89) and divide both sides 
by I1; the current at the input terminals, we get 

(91) 

But the left-hand side is simply z 2 1 , whereas the ratio V 1 1 '/I 1 on the 
right is z11. Hence, using Eq. (88) we get, finally. 

(92) 

Having obtained the z parameters of the lattice we can now determine 
any of the other sets of two-port parameters using the proper relation-
ships. 

Notice that the expression for z 2 1 involves a subtraction of two imped
ances. That is, the transmission zeros occur at those values of s for 
which the two branch impedances have equal values. This can happen 
for any value of s; hence, the locations of the transmission zeros of a 
lattice are unrestricted and may occur anywhere in the s-plane. 

Let US now consider some examples of lattice networks. One very 
common lattice is shown in Fig. 50. This lattice is the prototype of 

Fig. 50. Classical filter. 

image parameter filters. If Lx = Ly = L and Cx = Cy = C then from 
Eqs. (88) and (92) we get 

(93) 
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Besides poles at zero and infinity there are a pair of poles on the jω-
axis at s = ± j ω 0 , where ω 0 = 1 / √ L C . The zeros of z11 are all on the 
jω-axis at the points 

(94) 

and the zeros of z 1 2 are in quadrantal symmetry. They are located at the 
points 

(95) 

The corresponding plots are shown in Fig. 51. 

Fig. 51. Representations of open-circuit parameters. 

We note that there are two zeros of z 1 2 in the right half plane. Thus, 
this lattice is a nonminimum-phase network. 

As another example of a lattice let us take the all-pass lattice shown in 
Fig. 52. For this network 

(96) 

Hence, from Eqs. (88) and (92) we get 

(97) 
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Fig. 52. All-pass network. Fig. 53. Pole-zero locations of 
z12 for all-pass network. 

The location of the poles and zeros of z 1 2 are illustrated in Fig. 53. 
They exhibit a very special symmetry. The poles are the mirror images 
of zeros with respect to the jω-axis. When s = jω, we therefore get 

(98) 

This verifies our previous knowledge that the magnitude of an all-pass 
function is independent of ω. The gain and phase plots and the complex 
locus are shown in Fig. 54. As we already know, the locus is a circle 
which encloses the origin twice, since there are two right half plane zeros. 

Fig. 54. Frequency response of all-pass network. 
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PROBLEMS 
8.1 Find the ABCD parameters, and scattering parameters of the Tee and Pi 

networks of Fig. P8.1. 

Fig. P8.1. 

8.2 Find the Tee equivalent of Fig. P8.1a and the Pi equivalent of Fig. 
P8.16, thus obtaining the Δ — Y and Y — Δ transformations. 

8.3 Find the ABCD parameters of each of the networks in Fig. P8.3. 

Fig. P8.3. 

8.4 Fig. P8.4 shows a two-port N terminated in an impedance Z L . Show that 

Fig. P8.4. 
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8.5 Find the zeros and poles of the transfer voltage ratio g21(s) of the net
works of Fig. P8.5. Plot them in the complex plane. Find the scattering param
eters of the same networks. Plot the zeros and poles of S21(s) and compare 
with those of G 2 1(s). 

Fig. P8.5. 

8.6 In the network of Fig. P8.6 the transformers are perfectly coupled. Use 
matrix methods to find the ABCD parameters of the over-all network. 

Fig. P8.6. 

8.7 Find the scattering parameters of Fig. P8.6. Does this network have a 
Z o c or Ysc matrix? 

8.8 Given a reciprocal two-port N1, it is desired to find another two-port N2 

such that the open-circuit impedance matrix Z o c of one of them is equal to the 
short-circuit admittance matrix Y s c of the other. We will refer to such networks 
as two-port duals. One method of doing this is to find the dual of the given two-
port by geometrical means, according to the procedure outlined in Chapter 4. 
However, this is not possible for all two-ports, even if the terminated network 
can be drawn planar (for instance Fig. 49). Find the condition which the given 
two-port must satisfy in order for this procedure to be possible. 

8.9 Using the method of the last problem, show that the two-port dual of 
the bridged-Tee network shown in Fig. P8.9 is also a bridged-Tee with branches 
4 and 3 interchanged and each branch replaced by its dual. Also find the two-
port duals of Figs. P8.1 and P8.3. 
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Fig. P8.9. 

8.10 Consider the series-parallel and parallel-series connections of two-ports 
shown in Fig. P8.10. Determine the sets of two-port parameters which lead to 
the simplest relationship of the over-all parameters in terms of those of the 
components. Find expressions for these over-all parameters. 

Fig. P8.10. 

8.11 Prove Brune's test for the validity of the series and parallel connection 
of two-ports. State and prove similar tests for the series-parallel and parallel-
series connections. 

8.12 Derive a pair of equivalent two-port networks based on the h and g sets 
of parameters. 

8.13 Consider the cascade connection of two two-ports shown in Fig. P8.13. 
Show that the short-circuit transfer admittance and the open-circuit transfer 
impedance of the over-all two-port are given by 

where the subscripts a and b refer to the component two-ports. These expres
sions are sometimes referred to as the partitioning theorem. Use the definitions 
of z21 and y21 in arriving at the answers. 

Fig. P8.13. 
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8.14 Consider a reciprocal two-port N which is both structurally and electri
cally symmetrical. Its z and y parameters are denoted by z11 = z 2 2 , z 1 2 and y11 = 
y22, y12, respectively. If we consider bisecting the two-port at its structural 
line of symmetry, a number of terminals (two or more) will be created at the 
junction between the two halves. Assume that none of the leads from which 
these terminals are formed are crossed. Now consider the two cases shown in 
Fig. P8.14 in which these terminals are left open and are short-circuited, re
spectively. The input impedance and input admittance are designated z11h 

and y11h in the two cases, respectively, where the subscript h stands for half. 
Show that 

or 

(Hint: Apply voltages V1 = V2 = V at the terminals of the original network 
and show that no current will flow across the structural line of symmetry. Then 
apply voltages V1 = — V2 = V and show that the voltage at each point on 
the structural line of symmetry will be the same.) This result is known as 
Bartlett's bisection theorem. 

Fig. P8.14. 

8.15 Find the short-circuit admittance parameters of the networks in Fig. 
P8.15 by decomposing the networks into suitable series or parallel connected 
two-ports. 

Fig. P8.15. 
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8.16 Find "two-generator equivalent networks" for the networks in the last 
problem. (See Problem 8.12 and Figs. 16 and 17 in the text.) 

8.17 A three terminal network is shown in Fig. P8.17. This network is to 
be used as a common-terminal two-port in three ways, each time with a different 
terminal acting as the common terminal. When b is the common terminal, the 
h parameters are known. That is, the coefficients in the following equations 
are known. 

The subscript on the h parameters indicates the common terminal. Express 
the h parameters of the other two connections in terms of the known h pa
rameters. (Can we hope to do a similar thing with a noncommon terminal 
two-port?) All the current references are directed into the network. 

Fig. P8.17. 

8.18 The driving point impedance of a reciprocal network is denoted by 
Z(s). Figure P8.18 shows such a network with one of the resistances shown 
explicitly. Consider cutting the branch in which the kth resistance of the net
work is located; assume that the terminals so formed are the (1,10 terminals 
of a two-port whose (2,2') terminals are the external terminals of the network. 
Designate the g21 parameter of this two-port by g21k(s). Show that if the net
work contains n resistances, the real part of Z(jω) is given by 

Fig. P8.18. 

8.19 Complete Table 1 of section 1 by adding two columns, one giving the 
expressions for the parameters in terms of loop determinants and cofactors, and 
the other, the corresponding expressions in terms of node determinants and co
factors. 



9 • ANALYTIC PROPERTIES 
OF NETWORK FUNCTIONS 

In Chapter 4 we defined various network functions as ratios of Laplace 
transforms of an output (response) to an input (excitation), under 
initially relaxed conditions. In the later chapters, we hinted at several 
analytic properties that the network functions possess. It is now our 
purpose to provide reasonable proofs for all the properties that we have 
hinted at, as well as to carry the analytic discussion deeper. Such 
analytic properties as we shall discuss are of the greatest interest in the 
theory of network synthesis. On this basis, the present chapter could 
well be titled "Foundations of Network Synthesis." 

Before we begin our formal discussion, let us collect together all the 
properties of network functions that we have stated so far. The only 
networks which we will consider in this chapter are linear, passive, 
reciprocal, lumped, and time-invariant networks. Let F(s) denote a 
general network function (driving-point or transfer impedance or admit
tance, or voltage or current ratio) defined as the ratio of a response 
transform to an excitation transform with all initial conditions zero. 
Then F(s) has the following general properties. 

1. F(s) is a rational function with real coefficients. 
2. Poles and zeros of F(s) are either real or occur in complex conjugate 

pairs. 
3. F(s) has no poles in the right half s-plane and poles on the jω-axis 

are simple. 
4. On the jω-axis the real part of F(jω) is an even function of ω and 

the imaginary part of F(jω) is an odd function of ω. 
5. On the jω-axis, |F ( jω) | is an even function of ω. If arg F(jω) is 

zero when ω = 0 (corresponding to a suitable choice of references in the 
network), then arg F(jω) is an odd function of ω. 

The first property expresses the fact that the network elements are 
real, whereas the third one is a consequence of the stability of the net-

343 
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work. The other three are a direct consequence of the first property. 
In case F(s) is a driving point (impedance or admittance) function, it 

has the following additional properties. 

1. F(s) has no zeros in the right half plane. 
2. Re F(jω) > 0. 
3. Poles and zeros on the jω-axis are simple, including s = 0, ∞. 

9.1 Preliminary 
In this section we are going to make strong use of the matrix formula

tion of loop and node equations in sections 1 and 2 of Chapter 4. There
fore it is advisable to review these sections before proceeding. 

Consider a general one terminal-pair network N (a one-port), driven 
by a voltage generator as shown in Fig. 1. The network N is assumed to 

Fig. 1. One terminal-pair network. 

consist of linear, passive, lumped, reciprocal, and time-invariant elements 
only. Since we wish to discuss network functions, we will assume that 
all initial conditions are zero. 

The loop equations of the network can be written in matrix form as 

(1) 
or in the alternative form 

(2) 

Remember that Zm(s) is the loop impedance matrix, whereas R m , Lm, 
and D m are the loop resistance, inductance, and inverse capacitance 
matrices, respectively. We saw in Chapter 4 that the loop parameter 
matrices can be written in terms of the branch parameter matrices as 
follows. 

(3) 

where B is the coefficient matrix of Kirchhoff's voltage law equations. 
Equations (1) and (2) are transform equations valid for any excita-
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tion. In Chapter 5 we saw that, when the excitation is sinusoidal, loop 
equations can be written in terms of voltage and current phasors. Thus, 
if the driving voltage in Fig. 1 is V1(t) =|U1| sin (ω0t + φ), we can write 
phasor (steady-state) loop equations as 

(4) 

where capital J and U are used for current and voltage phasors, re
spectively, and the matrix Z m ( j ω 0 ) is obtained by replacing s by j ω 0 in the 
loop impedance matrix in Eq. (1). Thus, the parameter matrices R m , 
Lm, and Dm in Eqs. (2) and (4) are the same whether we are using phasor 
equations or transform equations. 

Let us now assume that the excitation is sinusoidal and deal with the 
phasor equations. We shall derive some properties of the parameter 
matrices R m , Lm, and D m , and later use these properties in connection 
with the transform equations, Eq. (1). Note that due to the choice of 
loops in Fig. 1, only loop 1. has a source. Thus, the phasor source volt
age and loop current matrices can be written 

(5) 

Let us now compute the power supplied to the network, the "complex 
power." In terms of the phasors this is given by J 1*U 1. To obtain 
this result from the matrices in Eq. (5), you can see that we should 
premultiply U m by the conjugate transpose of J m , which is 

(6) 

If we now premultiply both sides of Eq. (4) by J m * ' , the right side will 
be the complex power supplied to the network. The result will be 

(7) 

This is a scalar equation. On the left side there are three terms each of 
which contains the product of three matrices in an ordered manner. 
Quantities such as these appear quite often and have been extensively 
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studied. We shall now digress slightly in order to develop some of the 
mathematical properties of these terms which we will need in the sub
sequent discussion. In order to indicate that the results are general 
we will use a general notation. 

9.2 Quadratic Forms 
Let A = [aij] be a real square matrix and X = [xi] be a column 

matrix, real or complex. The expression 

(8) 

when X is a real matrix, and the expression 

(9) 

when X is a complex matrix, are called quadratic forms. The reason for 
the name becomes clear when we perform the indicated matrix multi
plications and get 

(10) 

when the x's are real, and 

(11) 

when the x's are complex. We see that these are homogeneous expres
sions of degree 2 in the variables X1, x2, ..., xn. 

The matrix A in Eqs. (8) through (11) is called the matrix of the 
quadratic form. We consider the x's to be variables, so that the matrix 
essentially defines the quadratic form. We shall concern ourselves with 
quadratic forms in which the matrix A is real and symmetric. Actually, 
any real quadratic form with a real matrix can be converted into a 
quadratic form with a symmetric matrix. For, if the x's are real and 
the aij's are real, we can write 

(12) 
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We see that the contribution to the quadratic form of the two terms on 
the left of this equation will remain unchanged if we replace both aij 

and aji in the matrix by half their sum. Thus, if A is not symmetric, we 
define the symmetric matrix B as 

(13) 

The matrix B is called the symmetric part of A. This operation leaves 
the diagonal elements of A unchanged while the off-diagonal elements 
are modified in the manner just described. From the preceding discus
sion it follows that 

(14) 

Let us now turn our attention to a quadratic form in which the matrix 
of the variables X is complex. We can show that, so long as the matrix 
A of the quadratic form is real and symmetric, then the quadratic form 
X * ' A X is real. To prove this result, observe that 

(15) 

The second line is a consequence of A being symmetric, whereas the 
last term in the last line is a result of the fact that xj*xi is the conjugate 
of xi*xj. Everything in the last line is now real, thus proving the result. 

Although the quadratic forms we are considering are real, their sign 
will normally depend on the values of the variables, the x's. However, 
it may happen that a quadratic form remains of one sign, independent of 
the values of the variables. Such forms are called definite. In particular, 
a real quadratic form X * ' A X is positive definite if for any set of complex 
or real numbers x1, x2, ..., xn, not all zero, the value of the quadratic 
form is strictly positive. Similarly, we say the quadratic form is positive 
semidefinite if 

(16) 

for all X ≠ 0, provided there is at least one set of values of the variables 
for which the equality holds. Since the positive property of such a 
quadratic form is not dependent on the values of the variables, it must 
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be associated with the matrix A of the quadratic form. It appears 
natural, then, to refer to the matrix A as positive definite or semi-
definite according as the quadratic form itself is positive definite or semi-
definite. 

Quadratic forms having these particular qualifications are very im
portant in network theory. It is important for us to know some of the 
properties of definite quadratic forms. However, a thorough discussion 
will take us far afield in the theory of linear transformations. Hence, 
in establishing the results that are important for us, we will prove only 
some of them and attempt to show the reasonableness of the others. 

To start with, let us look at a few examples of positive definite quad
ratic forms. As the first example consider the following quadratic form 

(17) 

This is obviously positive definite, since it is the sum of magnitudes 
squared of the variables. We can easily extend this result to see that 
any diagonal matrix of positive elements defines a positive definite 
quadratic form. 

As a more complicated example, consider the following. 

(18) 

If we expand this quadratic form, we get 

(19) 

It is not easy to see whether or not this expression is positive definite, 
since the result is not in the form of a sum of magnitudes squared. How
ever, after some manipulation, Eq. (19) can be put in the form 

(20) 

If we now make the substitutions 

(21) 
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the quadratic form finally becomes 

(22) 

We have succeeded in writing the quadratic form as a sum of magni
tudes squared. It is clear from Eqs. (21) that if the x's are not all zero, 
then the y's also will not all be zero. Hence, the quadratic form is 
positive definite. 

As the last example take 

(23) 

The last line is obtained with the substitution 

(24) 

It is clear that the quadratic form can become positive, negative, or 
zero depending on the values of y1 and y2, and, through Eqs. (24), on the 
values of X1 and x2. Hence, it is neither positive definite nor semi-
definite. 

These examples have illustrated a procedure for determining whether 
or not a given quadratic form is positive definite or semidefinite. In 
the examples we "reduced" the quadratic form to an expression such as 
Eq. (22) or the last line of Eq. (23), involving squares of magnitudes. 
We did this by means of linear transformations as in Eqs. (21) and (24). 
On examination we see that these transformations are nonsingular. * The 
question arises whether it is always possible to do this for any given 
quadratic form. The answer can be given in the following theorem. 

Theorem 1. Every quadratic form X*'AX in which A is a real, sym
metric matrix can be reduced by means of a real nonsingular transformation 
X = BY to the canonical form 

(25) 

where r is the rank of the matrix A. 
The number p is called the index of the quadratic form. Suppose now 

that the index p is equal to the rank r so that all the signs in Eq. (25) 
are positive. There are two cases to consider: (1) the rank r equal to 

By this we mean that for any set of yk's there is a unique solution for the xj's. 
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the order n of matrix A, and (2) r < n. In the second case we can choose 
y1 = y2 = ... = yr — 0 and the rest of the y's nonzero. Hence, with 
X = BY, not all the x's will be zero, but according to Eq. (25) the 
quadratic form will be zero. For any other choice of the variables the 
quadratic form will be positive. Hence, the quadratic form will be posi
tive semidefinite. 

If the rank of A is equal to its order (in addition to the index being 
equal to its rank) then every nonzero choice of the y's (and hence of the 
x's) will lead to a positive value of the quadratic form, indicating that it 
will be positive definite. This shows that a positive definite matrix is 
always nonsingular and a positive semidefinite matrix is always singular. 

This theorem is a standard one in the theory of quadratic forms. We 
will forego the proof here, since it will require a lengthy discussion of 
linear transformations.* We have seen the validity of the theorem in 
the case of two of our examples. 

Actually the theorem constitutes an existence proof and does not 
help very much in testing a given quadratic form for positive definiteness. 
However, we can develop such a test by using the theorem. Suppose a 
quadratic form X'AX is positive definite. We are using a real matrix X 
but the same conclusion will apply for a complex X. According to the 
theorem we can find a transformation X = BY in which B is real and 
nonsingular such that 

(26) 

the right-hand side being simply a sum of squares of the y variables. 
If we substitute the transformation X = BY into the quadratic form, 
we will get 

(27) 

Here we have used the result that the transpose of a product of two 
matrices is equal to the product of the individual transposed matrices, but 
in the opposite order. On comparing the last two equations, we see that 

(28) 

Thus, the theorem is equivalent to the statement that a real, symmetric 
positive definite matrix A can be reduced to a unit matrix by a non
singular transformation B applied symmetrically. 

Let us now find the determinant of both sides of Eq. (28). The 
determinant of a unit matrix is unity, while the determinant of a product 
of matrices of the same order is equal to the product of the determinants. 

* For a more complete discussion of quadratic forms see Birkhoff and MacLane, 
A Survey of Modern Algebra, Macmillan, New York, 1955; or Bocher, Introduction 
to Higher Algebra, Macmillan, New York, 1927. 
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Hence, 
(29) 

Since matrix B and its transpose have the same (nonzero) determinant, 
we get 

(30) 

This result expresses the fact that the determinant of a positive definite 
matrix is positive. Furthermore, suppose we set the last variable xn in 
the quadratic form equal to zero. Then none of the coefficients ani 

or ain of the matrix A will appear in the quadratic form. This is most 
easily seen from the expression in Eq. (10) with xn = 0. Hence, we 
might as well remove the last row and column of A and consider it to 
be of the (n — l)th order. For this new matrix Eq. (30) still applies. 
But the determinant of the new matrix is the principal cofactor * of the 
old matrix, with the last row and column removed. Since permuting 
the variables has no effect on the quadratic form, which one of the 
variables we call xn is immaterial. It follows that all the first principal 
cofactors of a positive definite matrix will be positive. 

This argument can now be repeated by setting two of the variables 
equal to zero, then three, and so on, up to all but one. We shall find 
that all the principal cofactors of A will be positive. In the last case, 
with all but one of the variables equal to zero, we find that all the ele
ments of A on the principal diagonal must be positive (these elements 
are the (n — l)th principal cofactors of A). 

What we have succeeded in proving is that, if a matrix is known to be 
positive definite, then its determinant and all its principal cofactors will 
be positive. Actually, what we need for testing a given matrix is the 
converse of this result, which is also true. The proof, however, is quite 
lengthy and will not be given. For future reference we will list this 
result as Theorem 2. 

Theorem 2. A real symmetric matrix A is positive definite if and only 
if its determinant and principal cofactors are all positive. It is positive 
semidefinite if and only if its determinant and principal cofactors are all 
nonnegative and at least one is zero. (In fact the determinant of a posi
tive semidefinite matrix is necessarily zero.) 

* By principal minor of a determinant we shall mean the determinant formed by 
removing one or more rows and their corresponding columns from the original de
terminant. First, second, etc. principal minors refer to those with one, two, etc. rows 
and columns removed. Since in all these cases the cofactor has the same sign as 
the minor, we shall refer to these quantities as the first, second, etc. principal cofactors. 
Examples are Δ2266, Δ33, where Δ is the determinant. 
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9.3 Energy Functions 
After this digression into a discussion of quadratic forms, let us return 

to Eq. (7) which we will repeat here. 

(31) 

With our recently acquired knowledge, we recognize the terms on the 
right as quadratic forms. Let us now attempt to interpret these quad
ratic forms taking first the one involving the loop resistance parameters. 
If we substitute for Rm from Eq. (3), the result will be 

(32) 

To obtain the last step we have used the fact that the transpose of a 
product of matrices is equal to the product of the transposes in the 
reverse order, in addition to the fact that B is real and hence B = B*. 
That is, 

(33) 

Remember that B is the coefficient matrix of Kirchhoff's voltage law 
equations, and according to the mesh transformation expressed by Eq. 
(19) in Chapter 4, we have 

(34) 

where J b is the (column) matrix of phasor branch currents. Hence, Eq. 
(32) can now be written 

(35) 

We have now brought the quadratic form to a point where we can 
interpret it. Since the branch resistance matrix R b is diagonal, the 
quadratic form in the last equation is simply 

(36) 

where Jk is the phasor branch current in branch k. Thus the quadratic 
form is simply twice the average power dissipated in the resistances of 
the network. 

Tracing through identical arguments for the other two quadratic forms 
involving the loop inductance and capacitance parameters, we find 

(37) 
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(38) 

The extreme right side of Eq. (37) is valid only if the loop inductance 
matrix is diagonal. This will be the case if there is no mutual inductance. 
In this case, then, Eq. (37) represents four times the average energy 
stored in the inductances. If mutual inductance is present, the L b 

matrix will not be diagonal and the right side of Eq. (37) will not be 
valid. The quadratic form still represents four times the average 
stored magnetic energy, but to prove this we must appeal to field theory. 
Similarly, the right side of Eq. (38) represents 4ω 0

2 times the average 
energy stored in the capacitances. 

We have now obtained physical interpretations for the three quad
ratic forms appearing in Eq. (31). Let us define some notation in order 
to refer to these quadratic forms conveniently. 

(39) 

Because of the physical interpretations, we call these quantities energy 
functions. Again from the physical viewpoint, we know that the energy 
functions can never be negative but may be zero; hence, they are positive 
semidefinite quadratic forms. 

From a mathematical point of view, R b and D b are diagonal matrices 
of nonnegative real numbers, and so they are positive semidefinite. 
Hence, the quadratic forms in Eqs. (36) and (38), which we have named 
F(jωo) and V(jωo), are positive semidefinite. The same argument 
applies to T(jω 0) also when there is no mutual inductance. In the 
presence of mutual inductance, the positive semidefiniteness of L b (and 
hence of L m) is essentially a postulate based on empirical observations. 
If every transformer has only two coupled coils, this postulate is equiva
lent to the usual constraint that the coefficient of coupling cannot exceed 
1. If more than two coils are magnetically coupled, the restriction of 
the coupling coefficient to values less than unity is not sufficiently strong 
to insure positive semidefiniteness. That is, in the case of more than 
two magnetically coupled coils, physical readability imposes the condi
tion of positive semidefiniteness on the inductance matrix, which is a 
stronger requirement than unity coupling. At the end of the chapter 
a problem is suggested to illustrate this point. 

Let us consider an example to clarify these concepts. A network 
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supplied with a sinusoidal voltage source of frequency ω 0 is shown in 
Fig. 2. For this network the parameter matrices are 

(40) 

Fig. 2. Network to illustrate energy functions. 

Let us now form the energy functions 

(41) 

The energy interpretations are immediately seen since J1 and J2 are 
the phasor branch currents of branches 1 and 2 and J1 — J2 is the 
branch current in the capacitance. 

To summarize the results we have obtained so far, we can state that, 
for a linear, passive, lumped, reciprocal, and time-invariant network, the 
loop resistance, inductance, and reciprocal capacitance matrices R m , Lm, and 
D m are positive semidefinite. We established this result with the help 
of sinusoidal steady-state analysis. Now, however, we can return to 
the more general formulation in terms of Laplace transforms. 

The starting point is the loop equations given in Eq. (2). Let us 
repeat it here for convenience. 

(42) 
where 

(43) 
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Let us now parallel the steps we took in the case of the phasor equations. 
Premultiply both sides of Eq. (42) by Im*'(s); the result will be 

(44) 

We again get quadratic forms which are the same as we had before; only 
now the variables are loop current transforms rather than phasors. 
The quadratic forms in this equation do not have an energy interpreta
tion like those of Eq. (31). However, the matrices of these quadratic 
forms are identical with the former ones. Hence, these quadratic forms 
are positive semidefinite. We therefore give these quadratic forms 
symbols similar to those of Eq. (39) and continue to call them energy 
functions although even dimensionally they do not represent energy. 

(45) 

Using this notation, Eq. (44) becomes 

(46) 

The choice of symbols for the energy functions is an unfortunate one 
as we mentioned in Chapter 1. However, these symbols have become 
standard notation and we will continue to use them. 

Let us digress here for a moment. This entire development started 
from the loop equations. Alternatively, a completely dual development 
can proceed on the basis of the node equations. Instead of the loop 
parameter matrices R m , Lm, and D m , the node parameter matrices G n , 
Γ n , and C n will appear, where G, Γ, and C refer to conductance, inverse 
inductance, and capacitance, respectively. Energy functions can now be 
defined in terms of these parameter matrices and the node voltage 
matrix V n . These will have the same form as Eqs. (45) with V n in 
place of Im and the node parameter matrices in place of the loop param
eter matrices. An equation similar to Eq. (46) can now be written 
with these new energy functions, but with V1 and I1 interchanged. This 
alternative development is not needed to carry on the subsequent discus
sion, just as the node system of equations itself is really superfluous. 
However, just as node equations provide helpful viewpoints and often 
simplify computation, so also this alternative approach may sometimes 



356 Analytic Properties of Network Functions [Ch. 9 

be useful. If you are interested, you can supply the details in the 
procedure which was outlined. 

Up to this point everything we have done may be considered as pre
liminary to our major effort, which is to establish analytic properties of 
network functions. We are now ready to embark on this task. As a 
first step we can compute the driving-point impedance of the network of 
Fig. 1 from Eq. (46). (Remember that there are zero initial conditions.) 
To do this divide both sides by the real positive quantity I1(s)I1*(s) 
and get 

(47) 

This is an important equation; the properties of driving-point imped
ance functions follow directly from it. Suppose we now separate the 
right side into real and imaginary parts. The result will be 

(48) 

(49) 

Notice that these equations apply no matter what the value of s may 
be, except at zeros of I1(s). These two are extremely important equa
tions from which we can draw some interesting conclusions. For later 
reference let us state these results as a theorem. 

Theorem 3. Let Z(s) be the driving-point impedance of a linear, 
passive, lumped, reciprocal, and time-invariant network N. Then the 
following statements are true. 

(a) Whenever σ > 0, Re [Z(s)] ≥ 0. 

(b) If N contains no resistances (Fo(s) = 0), then 

σ > 0 implies Re [Z(s)] > 0 

σ = 0 implies Re [Z(s)] = 0 

σ < 0 implies Re [Z(s)] < 0 

(c) If N contains no capacitances (Vo(s) = 0), then 

ω > 0 implies Im [Z(s)] > 0 

ω = 0 implies Im [Z(s)] = 0 

ω < 0 implies Im [Z(s)] < 0 
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(d) If N contains no inductances (T0(s) = 0), then 

ω > 0 implies Im [Z(s)] < 0 

ω = 0 implies Im [Z(s)] = 0 

ω < 0 implies Im [Z(s)] > 0 

These results follow immediately from Eqs. (48) and (49). Part (a) 
leads to the discussion of positive real functions which we shall take up 
next. Part (b) leads to the historically important Reactance Theorem 
of Foster. Parts (c) and (d) lead to Cauer's results on RL and RC net
works. 

9.4 Positive Real Functions 
A positive real function F(s) is an analytic function of the complex 

variable s = σ + jω which has the following properties. 
(a) F(s) is regular in σ > 0, 
(b) F(σ) is real, 
(c) σ > 0 implies Re [F(s)] > 0. 

This is a mathematical definition and defines a class of mathematical 
functions. Our motivation in making this definition is the fact that a 
network function of interest, namely the driving-point impedance, 
possesses these properties. By making a mathematical study of positive 
real functions we can perhaps determine things about impedances which 
we could not establish from physical reasoning alone. The concept of 
a positive real function, as well as many of the properties of positive 
real functions which we will consider, are due to Otto Brune. 

We will now show that if a func
tion is rational and satisfies the last 
two of these conditions, it will auto
matically satisfy condition (a). We 
will do this by showing that a pole 
of order n of a real rational function 
is surrounded by 2n sectors in which 
the real part of the function is alter
nately positive and negative. Let s0 

be a pole of order n of the rational 
function F(s). The case n = 3 is 
illustrated in Fig. 3. In the neighborhood of the pole of order n, the 
function has a Laurent expansion of the form 

Fig. 3. Pole of order 3. 

(50) 
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If a sufficiently small neighborhood of so is chosen, the first term of 
the Laurent expansion can be made much larger in magnitude than the 
rest; so that the real part of F(s) in this neighborhood will be positive 
or negative according as the real part of the first term is positive or 
negative. If we write 

(51) 

then 

(52) 

Since θ is a fixed angle and φ can vary from 0 to 2π in this neighborhood, 
we see that the real part of the dominant term changes sign 2n times as 
φ varies from 0 to 2π. Therefore the real part of F(s) also changes sign 
2n times (although not necessarily at the same values of φ, due to the 
other terms in the Laurent expansion). 

Now suppose that the function F(s) satisfies the last two conditions 
in the definition of a positive real function but it has a pole in the interior 
of the right half plane. According to what we have just proved, the 
real part of F(s) will then take on both negative and positive values in 
the right half plane, which contradicts condition (c). 

We conclude that in the case of rational functions, whose only singular 
points are poles, condition (a) of the definition of a positive real function 
is a consequence of the other two conditions and hence, is unnecessary. 

Let us now interpret the definition of a positive real function as a 
mapping property of the function so that we can use our knowledge of 
conformal mapping to advantage. A positive real function W = F(s) 
maps the real s-axis into the real W-axis, and maps the right half s-
plane into the right half W-plane. This is illustrated in Fig. 4. 

Fig. 4. Mapping by positive real functions. 

An immediate consequence of this interpretation is the fact that a 
positive real function of a positive real function is itself positive real. 
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That is, if F1(s) and F2(s) are pr (this is used as an abbreviation for 
positive real), then 

F3(s) = F1[F2(s)] (53) 

For, the right half s-plane goes into the right half F2-plane since F2(s) 
is pr. Also, the right half F2-plane goes into the right half F1-plane 
since F1 is pr. The composite mapping therefore maps the right half 
s-plane into the right half F3-plane. The real axis is preserved through
out. 

This is a useful result. We can use it to show immediately that if 
F(s) is pr so are 1/F(s) and F(l/s). To prove this result we merely 
observe that 

(54) 

is a pr function. Now we use 1/s and F(s) as F1(s) and F2(s) in Eq. (53) 
both ways, and the result follows immediately. 

From the fact that the reciprocal of a pr function is itself pr, it follows 
that a pr function can have no zeros in the right half plane. For if it 
did, then its reciprocal would have poles in the right half plane, which is 
impossible. 

From a conformal mapping point of view, the points F(s) = 0 and ∞ 
(these are the zeros and poles of the function), which are on the boundary 
of the right half F-plane, cannot be images of any interior points of the 
right half s-plane. Let us now inquire into the possibility of boundary 
points of the right half F-plane being images of boundary points of the 
right half s-plane. That is, let a point on the jω-axis be mapped by a pr 
function F into a point on the imaginary axis of the F-plane. If j ω 0 

is the point in question, then 

F(jω0) = jX0 (55) 

where X0 is real (positive, negative, or zero). 
Consider a neighborhood of j ω 0 in the s-plane and the corresponding 

neighborhood of jX0 in the F-plane as shown in Fig. 5. Let s1 denote a 

Fig. 5. Conformal mapping by pr functions. 
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point in the right half plane, in this neighborhood of j ω 0 . Let us now 
expand F(s) in a Taylor series about j ω 0 and evaluate it at s = s1. The 
result is 

(56) 

where F(n)(jωo) is the first nonvanishing derivative of F(s) at j ω 0 . 
A S S1 approaches j ω 0 the dominant term on the right will be the first 

term. Let us define 

(57) 

Then, in the limit, we will find from Eq. (56) that 

(58) 

But the pr condition requires that |φ|≤ π/2 as long as |θ| ≤ π/2. 
Therefore we conclude from Eq. (58) that 

(59) 

Thus the first nonvanishing derivative is the first one and its angle is 
zero at s = j ω 0 . This is a very important result. For future reference 
we will state it as a theorem. 

Theorem 4. If any point on the jω-axis is mapped by a pr function 
F into a point on the imaginary axis in the F-plane, then at this point the 
derivative dF/ds is real and positive. 

A number of other results follow from this important theorem. Note 
that if F(s) has a zero or a pole on the jω-axis, the conditions of the 
theorem are satisfied. In the case of a zero (X0 = 0), a point on the 
jω-axis is mapped into the origin of the F-plane, which is on the imaginary 
axis. Hence, the derivative dF/ds is real and positive. This also implies 
that the zero is a simple one, since at a higher order zero the first deriva
tive will be zero. If F(s) has a pole on the jω-axis, its reciprocal will have 
a zero there and the theorem will apply to the reciprocal. However, 
d(l/F)/ds evaluated at a pole of F(s) is the reciprocal of the residue of 
F(s) at the pole (see appendix). These considerations can now be stated 
as the following theorem. 

Theorem 5. If a pr function has any poles or zeros on the jω-axis (in
cluding s = 0, ∞) such poles or zeros must be simple. At a simple zero on 
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the jω-axis the derivative is real and positive. At a simple pole on the jω-
axis, the residue is real and positive. 

We have up to this point collected quite a number of necessary condi
tions that a positive real function satisfies. What we should like to do 
is to find a set from among these necessary conditions which proves to 
be sufficient as well. The result is contained in the following theorem. 

Theorem 6. A rational function F(s) with real coefficients is positive 
real if and only if 

(a) F(s) is regular in σ > 0; 
(b) Poles on the jω-axis (including s = 0, ∞) are simple and with real 

positive residues; 
(c) Re [F(jω)] ≥ 0 for all ω, except at poles. 

That these conditions are necessary is obvious from the definition 
of a pr function and from the immediately preceding theorem. There
fore, only the sufficiency needs to be proved. That is, let us assume that 
a function F(s) satisfies these conditions and show that the function 
must be pr. Let ω1, ω2, ..., ωk be the poles on the jω-axis and let us 
examine the principal parts at these poles. If there is a pole at the 
origin, the principal part is 

(60) 

where k0 is real and positive. It is evident that Fo(s) is itself pr and 
that 

(61) 

Similarly, the principal part at a possible simple pole of F(s) at infinity is 

(62) 

where k∞ is real and positive. F∞(s) is also pr and its real part on the 
jω-axis is zero. That is, 

(63) 

Any other poles on the jω-axis must occur in conjugate pairs and with 
conjugate residues, since F(s) is a real function. Since the residues are 
real by hypothesis, the two residues are equal. Taking the principal 
parts at the conjugate poles jωj and — jωj together, we get 

(64) 

where kj is real and positive. This function is also positive real and 
has the property 

(65) 
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(We may note parenthetically that Fo(s) is the impedance of a capaci
tance, F∞(s) that of an inductance, and Fj(s) that of a parallel tuned 
circuit.) 

Thus we can subtract from the given function F(s), the principal 
parts at all of its poles on the jω-axis, including s = ∞. Since each 
principal part has a zero real part on the jω-axis, the remainder function 
Fr(s) still has property (c) of the theorem. That is, 

(66) 

The remainder function Fr(s) is a function which is regular in the right 
half plane and its entire boundary, the jω-axis, including the point 
infinity. For such a function, the minimum value of the real part 
throughout its region of regularity lies on the boundary. This can be 
proved using the maximum modulus theorem (see appendix) in the 
following way. Let G(s) = e-Fr(sK This function will have the same 
region of regularity as Fr(s). Hence, according to the maximum modulus 
theorem, the maximum magnitude of G(s) for all σ ≥ 0 lies on the jω-
axis. But (67) 

The maximum magnitude of G(s) will correspond to the smallest value 
of Re [Fr(s)]. This proves the desired result that the minimum value of 
Re [Fr(s)] for all σ ≥ 0 occurs on the jω-axis. But according to Eq. 
(66) this value is nonnegative. Hence, the real part of Fr(s) must be 
nonnegative everywhere in the right half plane. That is. 

(68) 

Since in addition Fτ(σ) is real, Fr(s) is a positive real function. Now we 
can write 

(69) 

We have shown that each term on the right is pr. You can easily show 
that the sum of two (or more) pr functions is itself pr. Hence, F(s) is 
pr. This completes the proof of the sufficiency of the stated conditions. 

Since the reciprocal of a pr function is also pr, we can restate these 
necessary and sufficient conditions in terms of the zeros of F(s). 

Theorem 7. A real rational function F(s) is positive real if and only 
if 

(a) F(s) has no zeros in σ > 0. 
(b) Zeros on the jω-axis (including s = ∞) are simple and with real 

positive derivatives. 
(c) Re [F(jω)] ≥ 0 for all ω, except at poles. 
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This theorem follows directly from the previous one if we remember 
that the residue of a function at a simple pole is the reciprocal of the 
derivative of the reciprocal of the function. 

In testing a given function to determine positive realness, it may not 
always be necessary to use the necessary and sufficient conditions listed 
in the preceding two theorems. It may be possible to eliminate some 
functions from consideration by inspection because they violate certain 
simple necessary conditions. Let us now discuss some of these condi
tions. 

We have seen that a rational positive real function has neither zeros 
nor poles in the right half s-plane. We define a Hurwitz polynomial as 
one that has no zeros in the right half s-plane. This definition permits 
zeros on the jω-axis. To describe a polynomial which has zeros neither 
inside the right half plane nor on the jω-axis, we say the polynomial is 
strictly Hurwitz. With this terminology, we see that a pr function is 
the ratio of two Hurwitz polynomials. 

The factors which constitute a strictly Hurwitz polynomial must have 
one of the following two forms: (s + a) for real zeros or (s2 + as + b) 
for a pair of complex zeros, both a and b being positive. If any number 
of such factors are multiplied, the result must be a polynomial all of 
whose coefficients are strictly positive, that is, no powers of s can be 
missing. Note, however, that even though this is a necessary condition 
for a Hurwitz polynomial, it is not sufficient, as the following counter
example readily demonstrates. 

(70) 

This polynomial has no missing powers of s and all coefficients are posi
tive, yet it has a pair of zeros in the right half plane. 

Hence, if a rational function is presented as a candidate for positive 
realness, this criterion can serve as a negative type of test. If the 
numerator or denominator polynomials have any negative coefficients, 
or missing coefficients, the function can be discarded.* On the other 
hand, if this test is passed, nothing definite can be said about the 
function. 

Another simple test follows from the fact that a pr function can have 
no more than a simple pole or a simple zero at zero or infinity (which 
are on the jω-axis). This requires that the highest powers of s in nu
merator and denominator not differ by more than unity; and similarly 
for the lowest powers. 

* Of course, if every other coefficient in both numerator and denominator is miss
ing, the candidate function might be a reactance function, which is a positive real 
function. We will discuss reactance functions and their properties in the next section. 
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Before leaving the general theory of positive real functions, let us 
briefly examine the behavior of the real part of such a function F(s) on 
the jω-axis. Remember that the j-axis real part of F is equal to the 
even part evaluated at s = j ω . That is, 

U(ω) = Re [F(jω)] = "Ev"F(s) | s = j ω = 1/2[F(jω) + F(-jω)] (71) 

SO that statements made about the even part can easily be interpreted 
in terms of the real part on the jω-axis. 

We already know that U(ω) is necessarily an even function of ω and 
nonnegative for all ω. It is also easy to establish that the even part of 
F(s) can have no poles on the jω-axis. Any poles of the even part would 
also have to be poles of F(s). But on the jω-axis, these are simple. If 
we consider F(s) expanded in partial fractions as in Eq. (69), the func
tion F(-s) will contain the same terms but all those involving the poles 
on the jω-axis will have a negative sign. Hence, in forming the even 
part, F(s) + F(-s), these will all cancel, leaving a function with no 
poles on the jω-axis. Interpreted in terms of the real part, this means 
that U(ω) must be bounded for all ω. 

Now let us consider a possible zero of U(ω). Figure 6 shows a sketch 
of U(ω) versus ω in the vicinity of a zero. Because of the pr requirement, 

Fig. 6. Sketch of real part of a pr function. 

U(ω) must remain positive on both sides of the zero. It follows that a 
zero of U(ω) on the ω-axis cannot be of odd multiplicity; it must be of 
even multiplicity. 

We have here determined certain necessary conditions for the j-axis 
real part of a positive real function. Let us now list a set of necessary 
and sufficient conditions as a theorem. 

Theorem 8. A real function U(ω) of a real variable ω is the j-axis 
real part of a rational pr function F(s) if and only if: 

(a) U(ω) is an even rational function with real coefficients. 
(b) U(ω) is bounded for all ω. 
(c) U(ω) ≥ 0 for all ω. 

We have already seen that these conditions are necessary. As a matter 
of fact we have already demonstrated in Chapter 7, by actual construe-
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tion, that conditions (a) and (b) are sufficient to find a real rational 
function. If condition (c) is included as well, this is sufficient to make 
the rational function in question, a positive real function. 

The discussion of this section is by no means an exhaustive treatment 
of the general properties of positive real functions. However, we will 
not go any further, since elaboration on this subject will take us into 
topics which are primarily of interest in network synthesis. * 

Let us now summarize the broad results we have obtained so far in this 
chapter. We started with a class of networks (linear, passive, lumped, 
reciprocal, and time-invariant). For such networks we found an expres
sion for the driving-point impedance in terms of the energy functions. 
Because of the known physical properties of the energy functions, we 
were able to establish that the driving-point impedance of the class of 
networks under consideration is necessarily a member of the class of 
functions called positive real. We then studied many properties of 
positive real functions, one of which states that the reciprocal of a posi
tive real function is also positive real. This means that the admittance 
function, as well as the impedance, is necessarily positive real. 

The converse of these results, namely, that any given positive real ra
tional function can be realized as the driving-point impedance or admit
tance of a network in the class of networks under consideration, is also 
true and was first established by Brune in 1931. We will not discuss this 
aspect of the subject any further since discussion of this theorem and 
elucidation of its consequences would take us far afield into network 
synthesis. 

9.5 Reactance Functions 
Let us now turn our attention to some special types of positive real 

functions. We shall find that these arise from a consideration of net
works containing only two types of elements (LC, RC, RL). Historically 
such networks were studied before the more general ones, starting with 
the work done by Foster in 1924. 

We shall initially consider networks that have no resistance. Such 
networks are referred to as lossless or reactance networks. In section 
9.3 (Theorem 3) we noted that the driving-point impedance of a loss
less network is purely imaginary on the jω-axis; that is, Re [Z(jω)] = 
0. Stated in terms of a transformation, the impedance of a lossless net-

* The interested readers are referred to: 
1. 0. Brune, J. Math. Phys., vol. 10, 1931, pp. 195-236. 
2. P. I. Richards, Duke Math. J., vol. 14, 1947, pp. 777-786. 
3. E. A. Guillemin, Mathematics of Circuit Analysis, Wiley, 1949, pp. 395-422. 
4. N. Balabanian, Network Synthesis, Prentice-Hall, Inc., 1958. 
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work maps the imaginary axis of the s-plane into the imaginary axis of 
the Z-plane. We shall make this property the basis of a definition. We 
shall define a reactance function as a positive real function which maps 
the imaginary axis into the imaginary axis. These functions are also 
called pri functions (i standing for imaginary). In this terminology the 
driving point impedance of a lossless network is a reactance function. 

Let us now establish some properties of reactance functions. In the 
first place we will show that the poles and zeros of a reactance function all 
lie on the jω-axis. 

T O prove this theorem, note that, just as a function that maps the 
real axis into the real axis has symmetry about the real axis [that is, 
F(s*) = F*(s)], SO a function that maps the imaginary axis into the 
imaginary axis has symmetry about the imaginary axis. To see this 
clearly let us rotate the two planes (the s-plane and the F-plane) clock
wise by π /2 radians. We do this by defining 

(72) 

The function φ(s) has been renamed φ(z) on the extreme right. These 
transformations are illustrated in Fig. 7. Note that the real s-axis 

Fig. 7. Transformation which rotates axes by π/2 radians. 

becomes the imaginary z-axis and vice versa. Similarly for the other 
transformation. When z is real, the argument of F(jz) is imaginary, so 
by hypothesis F(jz) will also be imaginary. Hence ψ(z) will be real 
when z is real. It follows that 

(73) 

If we now translate back through the transformations in Eqs. (72) this 
relation becomes 

(74) 

Note that the point — s* is the image of the point s with respect to the 
imaginary axis. Likewise for the points —F* and F. Hence, the result 
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in Eq. (74) states that image points with respect to the imaginary axis 
in the s-plane go into image points with respect to the imaginary axis in 
the F-plane. 

It follows that, if F(s) has a pole or a zero in the left half plane, then 
the image point in the right half plane is also a pole or a zero which is 
not possible for a pr function. Hence, the poles and zeros of a reactance 
function must all lie on the jω-axis. 

Let us turn back to Theorem 4 for a moment. There we saw that if a 
pr function maps a point on the jω-axis into a point on the imaginary 
axis, then the derivative of the function at that point is real and positive. 
But according to Theorem 3 a reactance function maps the entire j ω -
axis into the imaginary axis in the F-plane. Hence for such a function, 
the derivative property will hold at all points on the jω-axis (except at 
poles). This is the basis of another very important property, namely, 
that the poles and zeros of a reactance function alternate on the jω-axis. 
That is, between any two poles is a zero and between any two zeros is a pole. 

A S we just mentioned, theorem 4 applies at all points on the jω-
axis except at poles. Hence, the derivative dF/ds evaluated at s = j ω 
is real and positive. Let us compute the derivative along the jω-axis, 
which we are permitted to do since the derivative exists. The result will be 

( 7 5 ) 

We have used the usual notation F(jω) = U(ω) + jX (ω) , and, since F 
is here a reactance function, U(ω) is zero. Notice that X(ω) is a real 
function of a real variable. Therefore, if there is no pole between two 
zeros of X(ω), the derivative will become negative somewhere in between, 
which, as we have just shown, is impossible. A similar conclusion applies 
to successive poles. Figure 8 illustrates the form of X(ω) required for 
successive zeros or poles without intervening poles or zeros, respectively. 

Fig. 8. Impossible behavior of a reactance function. 
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The property which we have just proved is referred to as the alterna
tion property of the poles and zeros. From this property it is clear that 
the plot of X(ω) vs ω must have the general shape shown in Fig. 9. 

Fig. 9. Behavior of a reactance function. 

Since X(ω) is an odd function of ω and the alternation of poles and 
zeros must hold on the entire imaginary axis (positive and negative 
values of ω), we conclude that the point s = 0 is either a zero or a pole of a 
reactance function. 

Note that, if F(s) is a pr function mapping the imaginary axis into 
the imaginary axis, so is the function F(l/s). With the transformation 
s —> 1/s, the point ∞ in the s-plane goes into the origin in the 1/s-plane. 
Hence, using the immediately preceding result we find that the point 
s = ∞ is either a zero or a pole of a reactance function. 

We have now discussed several properties of reactance functions. We 
should also note that certain properties of general pr functions apply in 
particular to reactance functions. Thus, since we have shown that 
poles and zeros of a pr function which lie on the jω-axis are simple and 
that residues at such poles are real and positive, we conclude that all 
poles and zeros of reactance functions are simple and that residues at all 
poles are real and positive. 

We are now in a position to consolidate our results about reactance 
functions and to state necessary and sufficient conditions for a rational 
function of s to be a reactance function. 

Theorem 9. A real rational function ψ(s) is a reactance function if and 
only if (a) all of its poles are simple and lie on the jω-axis; (b) the residues 
are all real and positive; (c) the function has either a pole or a zero at s = 0 
and at s = ∞; and (d) Re ψ(jω) = 0 for some ω. 

Notice that this statement involves only the poles and the residues, 
not the zeros. We have already shown these conditions to be necessary; 
it remains to prove that they are sufficient. That is, assuming a rational 
function to satisfy the stated conditions, we must show that the function 
is a reactance function. This is most easily done by considering the 
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partial fraction expansion of such a function. If we combine the two 
terms due to conjugate poles, the most general form of the partial frac
tion expansion will be 

(76) 

where the summation runs over all the poles, and all the k's are positive. 
Of course, the pole at the origin or at infinity, or both, may be absent. 
This expression is consistent with Eq. (69) with Fr(s) = 0, since in the 
present case there are no other poles except those on the jω-axis. The 
desired result follows immediately. Each term in this expansion is 
imaginary for imaginary values of s, so that ψ(s) maps the imaginary 
axis into the imaginary axis, which makes ψ(s) a reactance function by 
definition. 

The alternation property of the poles and zeros forms the basis of an 
alternate set of necessary and sufficient conditions as follows. 

Theorem 10. A real rational function of s is a reactance function if and 
only if all of its poles and zeros are simple and lie on the jω-axis, and alter
nate with each other. 

Again, we have already proved that a reactance function necessarily 
satisfies these conditions. It remains to show that the conditions are 
sufficient. A rational function which satisfies the given conditions must 
have the following form. 

(77) 

where 

(78) 

and K is a positive constant, with k = 2n — 2 or 2n accordingly as ψ(s) 
has a zero or a pole at infinity. Similarly, if ψ(s) has a pole at s = 0, we 
take ω0 to be zero. 

The desired result now follows immediately. Each of the quadratic 
pole and zero factors in Eq. (77) is real when s is imaginary. This 
means that ψ(s) is imaginary when s is imaginary due to the factor s. 
Hence, ψ(s) is a reactance function, by definition. 

At the start of this discussion of reactance functions we showed that 
the driving-point impedance of a lossless network is necessarily a react
ance function. Note that the driving-point admittance of a lossless 
network is also a reactance function. That is, 

(79) 

is also imaginary for imaginary values of s. 
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The question now arises whether the converse of this condition is also 
true. That is, given a reactance function, is this the driving-point 
impedance or admittance of some lossless network? In order to answer 
this question in the affirmative, we shall have to construct a lossless 
network which has the given reactance function as its impedance or 
admittance. The question was answered by Foster in his famous 
Reactance Theorem in 1924 (although not in the form given here). 

Theorem 11. A rational junction of s is a reactance function if and 
only if it is the driving-point impedance or admittance of a lossless network. 

We have already established the sufficiency. It remains to show that, 
given a reactance function, it is necessarily the impedance or admittance 
of a lossless network. To show this, turn back to the partial fraction 
expansion of a reactance function given in Eq. (76). We can recognize 
each of the summands of the partial fraction expansion to be the imped
ance or admittance of a very simple reactance structure. The structures 
are shown in Fig. 10. Thus if ψ(s) is to be an impedance, we can represent 
it as a series combination of the elementary one-port networks in column 
2 of Fig. 10. Or if ψ(s) is to be an admittance we can represent it as a 

Fig. 10. Representation of partial fraction summands. 

parallel combination of the elementary one-ports in column 3. The 
forms of the resulting networks are shown in Fig. 11. They are referred 
to as Foster's first and second form. 

We have now proved the theorem with a vengeance. We found that 
a given reactance function can be both impedance and admittance of 
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Fig. 11. Foster's forms of lossless one-ports. 

some lossless network (not the same network, of course). In fact, an 
infinite number of lossless networks can be found which are equivalent 
to the ones shown in Fig. 11. However, we will stop the discussion here 
since we wish to present only the fundamentals in this book. We shall 
leave the further exploration of this subject to the books on network 
synthesis. 

9.6 RC and RL Impedances 

Let us now turn to the other two types of two-element networks, 
RL and RC. We can, if we like, carry out a complete discussion of these 
two cases, without referring to the discussion of LC networks. How
ever, this would be a waste of time, since we can interrelate the driving-
point functions by means of suitable transformations. The procedure 
we will follow was first used by W. Cauer in extending Foster's work to 
RC and RL networks. Cauer also gave a realization procedure in the 
form of ladder representations of driving-point functions of RL, RC, 
and LC networks but we will leave this subject also to the synthesis 
books.* 

Let Z(s) be the driving-point impedance of an RC network N. With 
the usual choice of loops, let the loop impedance matrix of N be 

(80) 

where the elements of the matrix are 

(81) 

Let us replace each resistance in N by an inductance of equal value 
(R ohms becomes R henries). Then the loop impedance matrix of the 
new network N' becomes 

(82) 

* For example, N. Balabanian, Network Synthesis, Prentice-Hall, 1958, and E. A. 
Guillemin, Synthesis of Passive Networks, Wiley, 1957. 
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Remembering the effect on the determinant of multiplication of a matrix 
by a scalar s, we shall find the driving-point impedance of the network 
N' to be 

(83) 

The network N' contains only capacitance and inductance, so that ψ(s) 
in the last equation is a reactance function. Thus, we have found that 
the impedance of an RC network can be transformed to a reactance 
function by replacing s by s2 and then multiplying by s. 

It would be of interest to see if the converse is also true; that is, 
given a reactance function ψ(s), can we convert to the impedance of an 
RC network with the opposite transformation? To do this, consider the 
reactance function to be expanded in partial fractions as shown in 
Eq. (76). Now replace s by √s (or s2 by s) and divide the entire result 
by (This is the opposite of the transformation just used.) The 
result will be 

(84) 

Each term on the right can be recognized as the impedance of a simple 
RC structure. As a matter of fact, the representations of column 2 
in Fig. 10 will apply but with inductances replaced by resistances. For 
convenient reference let us state this result as follows. 

Theorem 12. If Z R C ( S ) is the driving-point impedance of an RC net
work, then 

(85) 

is a reactance function. Conversely, if ψ(s) is a reactance function, then 

(86) 

is the driving-point impedance of an RC network. 
A similar theorem can be established for RL impedances using a 

similar method. We shall state the result and leave the details of the 
proof as an exercise. 

Theorem 13. If Z R L ( S ) is the driving-point impedance of an RL net
work, then 

(87) 
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is a reactance function. Conversely, if ψ(s) is a reactance function, then 

(88) 

is the driving-point impedance of an RL network. 
The last two theorems have involved impedances. Let us now con

sider the admittance of an RC network. Using Eq. (86) the admittance 
of an RC network can be expressed as 

(89) 

But the reciprocal of a reactance function is itself a reactance function. 
Hence, the right side of this equation is the same kind of function as 
the right side of Eq. (88), which is the impedance of an RL network. 

In a similar manner, starting from Eq. (88) we can show that the 
driving-point admittance of an RL network is the same, functionally, 
as the driving-point impedance of an RC network. 

We see here a basic distinction between reactance functions and RC 
or RL functions. Whereas the reciprocal of a reactance function is 
again a member of the same class of functions, the reciprocal of an RC 
impedance is a member of the class of RL impedances, and vice versa. 

With the preceding transformations we are in a position to translate 
all the properties of reactance functions into properties of RC and RL 
driving-point functions. The procedure for establishing these results is 
quite straightforward. To start with, let us apply Eqs. (86) and (88) 
to the partial fraction expansion of a reactance function given in Eq. 
(76). The results will be 

(90) 

(91) 

where the k's and σ's are all real and positive. Note that we have used 
the same symbols for the residues and poles in both cases, but these are 
general expressions and the two are not supposed to be related. 

Equation (91) is not a partial fraction expansion of ZRL(s). Rather 
it is an expansion of ZRL(S)/S, after which the result is multiplied through 
by s. If we divide Eq. (91) by s, we find that the form is identical with 
Eq. (90). This shows that an RL impedance function (or RC admittance) 
divided by s is an RC impedance function. We see that the poles of both 
these functions are all negative real and the residues of ZRC and ZRL/S 
are all positive. 
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By differentiating the last two equations along the real axis (s = σ), 
we obtain a result which is the counterpart of the positive slope property 
of a reactance function. That is, 

(92) 

Thus, the curves of RC and RL driving-point functions plotted for 
real values of s are monotonic; ZRC(σ) and YRL(σ) are strictly decreasing, 
whereas ZRL(σ) and YRC(σ) are strictly increasing. Just as in the case 
of reactance functions, this implies that the zeros and poles of both must 
alternate. 

Sketches of typical RC and RL driving-point functions for real values 
of s are shown in Figs. 12 and 13. In Fig. 12 note that the first pole 
near the origin may in fact move into the origin making F(0) infinite. 

Fig. 12. Typical ZRC(σ) or YRL(σ). Fig. 13. Typical ZRL(σ) or YRC(σ). 

Also, the last zero on the negative real axis may move out to infinity 
causing F(∞) to become zero. Similarly, in Fig. 13 the first zero may 
be at the origin causing F(0) to be zero. Also, the final pole may move 
out to infinity causing F(∞) to become infinite. 

Let us now collect all of these results and state them in the form of 
theorems. 

Theorem 14. (First characterization of RC impedances and RL ad
mittances.) A rational function F(s) is the driving-point impedance of an 
RC network or the admittance of an RL network if and only if all of its 
poles are simple and are restricted to the finite negative real axis (including 
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s = 0 but excluding s = ∞) with real positive residues at all poles and 
with F(∞) real and nonnegative. (This is the counterpart of theorem 9 
for reactance functions.) 

Theorem 15. (Second characterization of RC impedances and RL 
admittances.) A rational function F(s) is the driving-point impedance of 
an RC network or the admittance of an RL network if and only if all the 
poles and zeros are simple, lie on the negative real axis and alternate with 
each other, the first critical point (pole or zero), starting at the origin and 
moving down the negative real axis, being a pole. (This is the counterpart 
of theorem 10 for reactance functions.) 

Theorem 16. (First characterization of RL impedances and RC ad
mittances.) A rational function F(s) is the driving-point impedance of an 
RL network or the admittance of an RC network if and only if all of its 
poles are simple and are restricted to the negative real axis, excluding the 
point s = 0 (but including infinity), with F(0) real and nonnegative, and 
with all the residues of F(s)/s real and positive. 

Theorem 17. (Second characterization of RL impedances and RC ad
mittances.) A rational function F(s) is the driving-point impedance of an 
RL network or the admittance of an RC network if and only if all the poles 
and zeros are simple, lie on the negative real axis and alternate with each 
other, the first critical point (pole or zero), starting at the origin and moving 
down the negative real axis, being a zero. (The only difference between 
this theorem and theorem 15 is the last word.) 

We have already sketched the proofs of all these theorems in the 
preceding discussion. You can organize the proofs as an exercise. 

We have now stated several sets of necessary and sufficient conditions 
for a rational function to be the driving-point impedance or admittance 
of RC or RL one-ports. Generally, when it is desired to prove the 
sufficiency of a set of conditions that a given function be the driving-
point (or transfer) function of a class of network, it is done by showing 
that a network (at least one) of the given class can be realized from the 
given function. In the present case, we tied up the proof with reactance 
functions by showing that the given function can always be transformed 
to a reactance function. This function can then be realized as an LC 
network. The desired RC or RL network is then obtained by performing 
the inverse transformation. (This step amounts to replacing, in the 
LC network, each L with an R of equal value for RC networks or each 
C with an R of value 1/C for RL networks.) 

Alternatively, we can work on the given RC or RL driving-point 
function itself, expanding it in partial fractions just as we did for react
ance functions. We have already obtained the desired forms in Eqs. 
(90) and (91). Each term in these expressions can be recognized as the 
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impedance or admittance of a simple RC or RL structure. The series 
or parallel connection of these structures (depending on whether the 
function is to be impedance or admittance) gives the desired result. 
The networks have the same form as the Foster forms of lossless net
works shown in Fig. 11. Hence, they are referred to as Foster realiza
tions of RC and RL networks, although it was Cauer who first gave 
these results. Figure 14 shows the realizations of the terms in Eqs. (90) 
and (91). 

Fig. 14. RL and RC Foster components. 

This will terminate our discussion of RC and RL one-ports. However, 
this does not exhaust the subject by any means. The discussion can 
be extended in two directions: (1) additional analytic properties of the 
driving-point functions can be derived, and (2) alternative realizations 
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of a given RC or RL driving-point function can be investigated. Some 
of these extensions will be suggested as problems at the end of the 
chapter. 

9.7 Open- and Short-Circuit Functions 
In the last three sections we studied some of the most important 

properties of driving-point immittance functions of linear, passive, 
lumped, reciprocal, and time-invariant networks. Let us now extend our 
scope and take up the functions which describe the behavior of two-
ports. We shall consider only the open-circuit and short-circuit matrices. 

The open-circuit and short-circuit parameter matrices are defined as 
the coefficient matrices in the following systems of equations 

(93) 

(94) 

with the reference conventions shown in Fig. 15. As we observed 
earlier, for reciprocal networks these two matrices are symmetric; that is, 

(95) 

Fig. 15. Two-port and its references. 

To derive the more important analytic properties of these two 
matrices, we follow a procedure analogous to the one adopted in section 
9.3, when only one pair of terminals was involved. The starting point is 
again the set of loop equations for the network of Fig. 15. These are 

(96) 

where, in the present case, 

(97) 
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Again, we premultiply Eq. (96) by Im*'(s) obtaining 

(98) 

The three quadratic forms on the left side of this equation are precisely 
the energy functions defined in Eqs. (45). Hence, we may rewrite this 
equation as 

(99) 

But as we saw in section 9.3, the left side of this equation is a positive 
real function. Hence, the right side is also. That is, 

(100) 

Note that the right side of Eq. (99) can be modified by substituting 
Eq. (93) for V1 and V2, or substituting Eq. (94) for I1 and I2 after first 
taking the conjugate. The result of these steps will be 

(101) 

and 

(102) 

Since the left sides of these two equations are conjugates, their real 
parts will be equal. But we have already shown the left side of Eq. 
(101) to have a positive real part when s lies in the right half plane. 
Hence, we conclude that the quadratic forms on the right sides of Eq. 
(101) and Eq. (102) are both positive real. 

This conclusion remains valid if I1 and I2 in Eq. (101) or V1 and V2 

in Eq. (102) are complex (or real) constants instead of being Laplace 
transforms. To see this fact, note that the positive realness of the left 
side of Eq. (99) is a result of the positive definiteness of the energy 
functions, which, in turn, is a function of the loop parameter matrices 
and not the variables. Just as we say that the matrix of a positive 
definite quadratic form is positive definite, so we say that a matrix 
W(s) which satisfies the condition that X*'WX is positive real for all 
nonzero complex (or real) values of X is itself a positive real matrix. 

We have now established the fact that the open-circuit impedance and 
short-circuit admittance matrices of a linear, passive, lumped, reciprocal, 
and time-invariant network are positive real matrices. This result was 
initially stated by Gewertz. 
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The same result was demonstrated by Brune in a different way. 
Consider the network shown in Fig. 16. The two pairs of terminals of 
the two-port are connected in series through ideal transformers whose 
turns ratios are x1:1 and x2:1, respectively. The voltage and current 
at the input terminals will be given by 

(103) 

Fig. 16. Brune's demonstration that the z and y matrices are pr. 

If we now compute the driving-point impedance Z(s) = V/I at the in
put terminals, we will get 

(104) 

Since the impedance is positive real, this proves that the quadratic 
form on the right is also positive real. To prove the condition for the 
y matrix, the two pairs of terminals can be connected in parallel through 
ideal transformers and the over-all input admittance calculated. This 
is left for you as an exercise. 

Gewertz's Theorem has a very important consequence known as the 
residue condition. Let x1 and x2 be two arbitrary real numbers. Since 
the quadratic forms 

(105) 

are positive real functions, it follows that any pole of these functions 
on the jω-axis must be simple and the residue at such a pole must be 
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real and positive. Suppose, for instance, that the z parameters have a 
pole at s = j ω i . Since this pole is a simple pole of the quadratic form, 
the residue of Qi is 

(106) 

If we give the residues of z11, z21( = z12), and z22 at the pole s = j ω i the 
labels k11

(t), k21

(l) and k22

(i), respectively, then the residue of the 
quadratic form will become 

(107) 

Thus, the residue itself is a quadratic form whose matrix is the matrix 
of residues of the z parameters. However this residue must be real and 
nonnegative for all values of x1 and x2. Hence, the matrix of residues 
of the z parameters at any poles on the jω-axis must be positive definite 
or semidefinite. As discussed in section 9.2, this requires that the de
terminant of the matrix and all of its principal cofactors be nonnegative. 
That is, 

(108) 

(109) 

The first of these equations we already know, since z11 and z22 are 
driving-point functions and therefore positive real. But Eq. (109) is 
a new and important result. It is known as the residue condition. 

We have shown that the z matrix of a two-port, in the class of networks 
under consideration, is positive real and, by definition, positive realness 
is linked with the real part of a function. Hence, we should expect to 
obtain some relationship among the real parts of the z parameters. Let 
us denote these real parts r11, r21( = r12), and r2 2. The real part of the 
quadratic form Q1 in Eq. (105) can then be written 

( 1 1 0 ) 

Whenever s lies in the right half plane or on the jω-axis, this quadratic 
form must be positive semidefinite or definite, since Q1 is a positive real 
function. As in the case of the matrix of residues, it follows that 

(111) 
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This important result is known as the real part condition. In fact, it 
alone is a sufficient condition that the open-circuit impedance matrix 
be positive real. (Demonstrate this fact.) 

Although we derived these two results, the residue condition and the 
real part condition, for the z matrix, they are equally valid for the y 
matrix, as you can show by repeating the same steps on the quadratic 
form Q2 that we performed on Q1. 

Let us now briefly consider the special case of two-ports with two 
kinds of elements only. In the case of a lossless network the z or y 
parameters must have all their poles on the jω-axis. Hence, the residue 
condition must apply at all the poles. One of the implications of this 
fact is that it is impossible for z21 to have a pole which is not also a 
pole of both z11 and z22. (Likewise for the y parameters.) For, if either 
k11 or k22 is zero when k21 is not, the residue condition will be violated. 
On the other hand, it is possible for either z11 or z22 (or both) to have a 
pole not shared by the remaining parameters. We refer to such poles 
as private poles of z11 or z22. 

What we have just said about lossless two-ports applies equally well 
to RC and RL two-ports through the Cauer transformations, with ap
propriate and obvious modifications. For these networks the z and y 
parameters have all their poles on the negative real axis and the residue 
condition will apply at all these poles; z21 cannot have poles not possessed 
by z11 and z22, and so on. 

We will terminate this discussion rather abruptly at this point. The 
subject is by no means exhausted; however, further pursuit of the subject 
will be left to more advanced treatises. 

9.8 Topological Formulas for Network Functions 
In the preceding part of this chapter we have been concerned with 

establishing the analytic properties of the functions pertinent to linear, 
lumped, passive, time-invariant, and reciprocal networks. We have 
been careful to prove each of the results that were established. 

In the present section we will change our objective somewhat. 
Whereas previously we developed general properties of the functions of 
certain classes of networks, we shall now be concerned with the calcula
tion of the network functions when a specific network is given. We 
shall discuss some old methods due to Kirchhoff and Maxwell which 
permit the evaluation of network functions simply by inspection. The 
techniques which we will discuss are based on topological considerations. 
Hence, a review of section 3.3 will be advisable at this point. However, 
to prove many of the results we will discuss, would require careful 
development of the concepts of topology and matrix algebra. In this 
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section we will often be content to give "reasonableness" arguments in 
the interest of maintaining a manageable size.* 

To start the discussion, let us recall the loop and node equations of a 
network under zero initial conditions from Chapter 4. These are 

(112) 

(113) 

where A and B are the incidence and circuit matrices; Z b and Y b are 
branch impedance and admittance matrices; and Im and V n are loop 
current and node voltage matrices, all respectively. In addition to the 
already listed restrictions on the type of network under consideration, 
we will assume that there are no mutual inductances. Under this condi
tion the matrices Z b and Y b are diagonal. 

Let us also recall some of the properties of the incidence and circuit 
matrices from section 3.3 and from Problems 3.21 and 3.22. 

The Incidence Matrix. 
1. The incidence matrix Aa is of order (Nv, Nb) and rank Nv — 1. If 

any row of Aa is deleted the resulting matrix A is also of rank Nv — 1. 
2. A square submatrix of A of order Nv — 1 is nonsingular if and only 

if the columns of this submatrix correspond to the branches of a tree. 

The Circuit Matrix. 
1. The circuit matrix B a is of order (Nm, Nb) and rank Nb — Nv + 1. 
2. Let B be a circuit matrix of order (Nb — Nv + 1., Nb) and rank 

Nb — Nv + 1. (That is, we delete from B a a number of rows equal to 
the difference between the total number of loops and the number of 
independent loop equations.) Then a square submatrix of B of order 
N6 — Nv + I is nonsingular if and only if the columns of this submatrix 
correspond to a set of links for some tree of the network. 

Let us now interpret these statements in terms of Kirchhoff's laws 
before proceeding. Kirchhoff's current law states 

(114) 

Property 1 of the incidence matrix states the fact that exactly Nv — 1 
of these equations are linearly independent. (The network is assumed 
to be connected.) Suppose we order the columns of the matrix A ac
cording to the tree branches and the links for some tree, and then 

* Proofs of all the topological formulas in this section may be found in Mayeda, W., 
and Seshu, S., "Topological Formulas for Network Functions," Bulletin No. 446, 
Engineering Experiment Station, University of Illinois, 1956. 
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partition it. Then, partitioning ib(t) correspondingly, we can write 
Eq. (114) as 

(115) 

(The subscripts T and C stand for tree and chord.) 
Now property 2 of the incidence matrix can be interpreted as saying : 

the tree branch currents can be expressed as linear combinations of the 
chord currents. For, since AT is nonsingular by property 2, we can 
solve Eq. (115) for iT and get 

(116) 

We know this interpretation to be true from the following argument. 
Suppose we form the fundamental loops for this tree. Then the link 
currents are the same as the loop currents. We know that all the tree 
branch currents can be expressed as linear combinations of loop cur
rents, which in this case are the link currents. This is all that Eq. 
(116) says. Property 2 of the incidence matrix makes a stronger state
ment, namely, the converse is also included. 

Similarly, property 1 of the circuit matrix B a states that exactly 
Nb — Nv + 1 of the K V L equations, which can be written 

(117) 

are linearly independent, which we know. To interpret property 2, let 
us order the columns of B as tree branches and chords for a tree, and 
then partition, getting 

(118) 

We see from property 2 that this equation can be solved for vC yielding 

(119) 
This last statement can be interpreted to state that link voltages are 
linear combinations of branch voltages. This statement is again seen 
to be valid by considering fundamental loops. Property 2 includes the 
converse as well. 

In order to carry on with our development, we will need one more 
property of the incidence matrix, which states that the determinant of a 
nonsingular submatrix of A is equal to + 1 or -1. We shall refer to this 
as property 3 of the incidence matrix. 

To prove this result let us recall the structure of A, namely that each 
column contains at most a single 1 and a single -1, all others being zero. 
In a nonsingular submatrix there can be no column in which all entries 
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are zeros. Also every column cannot contain both a + 1 and a — 1, for 
then the rows would be linearly dependent. Therefore, there is at least 
one column in which there is only one nonzero element, ± 1 . We expand 
the determinant by this column, which yields 

(120) 
where Δ i j is the cofactor of this nonzero element. Δ i j has the same 
structure as the original determinant, namely, it has at most a single 
+ 1 and —1 per column. Therefore, it also must have a column with 
a single nonzero entry, ± 1 . Hence we may expand Δ i j by this column. 
Continuing this way, we find that 

(121) 
thus establishing the result. 

A similar statement is not true in general of the circuit matrix.* 
However, in two special cases we can assert that a nonsingular submatrix 
of B has a ± 1 determinant. One of these is the case where we choose 
the regions (meshes) of a planar graph as loops. (In this case the above 
proof holds.) Another special case is the matrix Bf of fundamental 
loops. We will assume in this section that fundamental loops have 
been chosen, so that the analog of property 3 holds for the circuit matrix 
as well. 

Recall that, for the type of network under consideration here, the 
network functions, be they driving-point or transfer, are expressed as 
the ratio of a loop or node determinant and a cofactor, or as the ratio of 
two cofactors. In order to express the network functions as rational 
functions, the determinants must be expanded. But in the usual method 
of expanding determinants, much effort is wasted due to the fact that a 
large number of terms cancel in the final result. Considerable effort 
will be saved, if these terms that cancel are not brought into the picture 
at all. The formulas which we shall now discuss accomplish precisely 
this objective. 

All of these results are based on a theorem from matrix algebra called 
the Binet-Cauchy Theorem. This theorem goes as follows. 

Let P of order (m,n) and Q of order (n,m) be matrices of elements 
from a field (real or complex numbers or functions, for our purposes). 
Let m <n. Then the determinant of the product PQ is given by 

(122) 
the summation being over all such majors. 

* In the general case the determinant of a nonsingular submatrix of B is ±2i 

where i is a nonnegative integer, fixed for a given matrix B. See Okada, Proc. 
I.R.E., vol. 43, 1955, p. 1527. 
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By a major or a major determinant is meant the determinant of a 
largest square submatrix (in this case of order m). The phrase "cor
responding major" implies that if we choose columns i1, i2, ..., im of P 
for a major, we should choose rows i1, i2, ..., im of Q to form the cor
responding major. 

The proof of this result is too long to be given here, but it is readily 
available in the literature. * We shall be content to illustrate it with an 
example. Let 

(123) 

In this case m = 2 and n = 3. By direct multiplication we find that 

(124) 

The determinant of this matrix is easily seen to be 18. Now let us apply 
the Binet-Cauchy theorem. We see that there are 3 determinants of 
order 2 to be considered. Applying Eq. (122), we get 

(125) 
This agrees with the value calculated by direct evaluation of the de
terminant. 

Let us now proceed to use this result in calculating the node admit
tance determinant Δ n . From Eq. (113) this is the determinant of the 
matrix AY bA'. Let us identify AY b with the matrix P in the Binet-
Cauchy theorem and A' with the matrix Q. Remember that Y b is a 
diagonal matrix; let us designate the diagonal elements yj, j = 1, 2, ..., 
Nb. Therefore, the product AY b has the same structure as the matrix 
A except that column j is multiplied by yj, j = 1,2, ..., Nb. Therefore 
the nonsingular submatrices of (AY b) still correspond to the trees of 
the network, but the value of the determinant of each nonsingular sub
matrix instead of being ± 1 is now 

( ± 1 ) y i 1 y i 2 . . . y i k , where k = Nv - 1 
* See, for instance, F. E. Hohn, Elementary Matrix Algebra, Macmillan Co., New 

York, 1958, or M. Bocher, Higher Algebra, Macmillan Co., New York, 1938. 
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and i1, i2, ..., ik are the branches of a tree. The corresponding sub
matrix of A' is merely the transpose of the submatrix of A, and so it is 
also nonsingular, and has the same determinant (±1 ) as the submatrix 
of A. The product of the two is simply yi1yi2 ... yik, which we will call 
the tree admittance product. All the other majors, which do not cor
respond to trees, are zero and hence do not contribute anything to the 
sum on the right side of Eq. (122). Hence, using the Binet-Cauchy 
theorem, we get 

(126) 

This result is referred to as Maxwell's rule or formula. In order to 
calculate the node admittance determinant, this expression says we 
must locate all the trees of the network, multiply together the branch 
admittances of each tree, then add the resulting products for all the trees. 

Before Maxwell developed the formula we have just discussed, Kirch
hoff gave the corresponding one for the loop impedance determinant. 
This is simply the dual of Maxwell's formula and is proved by the same 
argument. We will merely state it and leave the details of the proof to 
you. From Eq. (113), the loop impedance determinant Δm is the de
terminant of the matrix BZ bB'. Let us define a chord set impedance 
product as the product of the branch impedances of all the chords, or 
links, corresponding to a given tree. Then Kirchhoff's rule or formula for 
the loop impedance determinant states 

(127) 

Thus, to find the loop impedance determinant, we must locate all the 
trees, multiply together the chord impedances for each tree, then add 
the resulting products for all the trees. 

Fig. 17. Example for Maxwell's and Kirchhoff's rules. 
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Let us now illustrate these rules by means of an example. Consider 
the network shown in Fig. 17. For this example, there are four nodes, 
so the trees will have three branches. All the trees are easily found to 
be: g12, 134, 235, g45, g13, g23, g43, g53, 125, 145, 124, 245, 135, 234, g15, 
g24; where Rg in series with the source is counted as a single branch, 
labeled g. 

Inserting the values of the admittances and collecting coefficients, 
Maxwell's formula gives 

(128) 

The chord sets will also contain three branches. They are easily found, 
by taking the complements of the tree branches, to be: 345, g25, g14, 123, 
245, 145, 125, 124, g34, g23, g35, g13, g24, g15, 234, 135. 

Inserting the values of the impedances and collecting coefficients, 
Kirchhoff's formula gives 

(129) 

It is left for you to verify that the same answers are obtained by 
evaluating the determinants directly, but that considerably more effort 
is required in evaluating a number of terms that eventually cancel. 
Notice that it is not necessary to write the loop or the node equations to 
find these determinants. 

But let us observe a more important fact implied in these two for
mulas.* Suppose we multiply a tree admittance product by the product 
of all the branch impedances of the network. Then the tree branch im
pedances cancel with the tree branch admittances, leaving a chord set 

* This was first pointed out by N. F. Tsang, J. Math. Phys., vol. 33, 1954, pp. 185-
193. Since then it has been extended in the form given in Eq . (131) to networks with 
mutual inductances by I . Cederbaum, J. Math. Phys., vol. 34, 1956, pp. 236-244, 
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impedance product. Hence, since the node admittance determinant is 
simply a sum of tree admittance products, and the loop impedance deter
minant is a sum of chord impedance products, it follows that 

(130) 

Since the branch impedance matrix Z b is diagonal, the product of imped
ances on the right is simply the determinant of Z b . Hence, this equation 
can be written in the form 

(131) 

This is a very significant result. Equation (130) states that the loop 
and node determinants, although they arise from different matrices 
(which are in general of different orders) are related in a very simple 
way. In particular, if we take each R, L, and C to be a branch of the 
network, the two determinants can differ at most by a multiplicative 
factor ksp. Thus, for instance, the loop and the node determinants 
always have the same zeros, except possibly at s = 0 and ∞. That is, 
the finite nonzero natural modes of a network are independent of 
whether the loop or the node basis is chosen for analysis. In fact, 
Kirchhoff's rule in this form was stated by him for the branch current 
system of equations. (Loop currents were invented by Helmholtz about 
30 years after Kirchhoff published his rules.) Thus the loop and the 
branch current systems have the same system determinant. 

We have now gone part of the way in evaluating network functions. 
It remains now to find simple expressions for the cofactors as well. Let 
us first consider symmetrical cofactors, that is, cofactors of the form 
Δ j j . 

To get a cofactor Δ j j of the node admittance matrix, we have to delete 
row j and column j . Therefore, the same result is obtained if, in the 
expression AY bA' we delete row j of the first matrix and column j of the 
last matrix. But column j of A' is row j of A. Therefore, if we delete 
row j of A and denote the resultant matrix by A_ j, we get 

(132) 

Let us interpret the matrix A_ j. Suppose we short node j to the 
reference node and write the incidence matrix of the resultant network 
Ni, using this combined node as reference. Obviously none of the other 
nodes are affected and so the incidence matrix of the new network N1 

will simply be A_ j. Therefore Δ j j of Eq. (132) is simply the node de
terminant of N1. Therefore, by Maxwell's rule: 

(133) 
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It is useful to interpret trees of N1 in terms of the original network. 
Since N1 has Nv — 1 nodes, trees of N1 have Nv — 2 branches. There
fore, these can't be trees of N, which require Nv — 1 branches. But 
they will contain no loops since they don't contain loops in N2. The 
only reason they are not trees of N is that they are not connected in N. 
In other words, they will be in two pieces (one "piece" may be simply 
an isolated node). The node j and the reference node will be in the two 
different pieces (otherwise shorting them will produce a loop). Such a 
structure is called a 2-tree and in this case a 2-tree (j,r), where r stands 
for the reference node. 

For example, the network N1 corresponding to the network N of 
Fig. 17 with node 4 as reference and j = 1, is given in Fig. 18. Branch 

Fig. 18. Network N1 corresponding to Fig. 17. 

sets 13, 43, 45, 24 are four of the trees of this network. In the original 
network, these branch sets have the configurations shown in Fig. 19. 

Fig. 19. Some 2-trees (1,4) of Fig. 17. 

We notice that each of these is a 2-tree with nodes 1 and 4 in different 
parts. In Fig. 19a, node 4 is isolated. In Fig. 19b and c, node 1 is 
isolated. In Fig. 19d neither is isolated. Each of these contributes to 
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the right side of Eq. (133). There are four other 2-trees (1,4) in this 
network which also contribute to Eq. (133). We can, therefore rewrite 
Maxwell's formula for a symmetrical cofactor as 

(134) 

where r is the reference node. This is the desired result. 
We adopt a similar procedure to evaluate a symmetrical cofactor of 

the loop impedance determinant. The cofactor Δ j j of the loop imped
ance matrix is of interest only when there is a branch bk in loop j that 
is in no other loop. Therefore we shall make this assumption. We 
notice that (135) 

where B_ j is the matrix obtained when row j of matrix B is deleted. 
Deleting row j from the matrix means that loop j in the network is 
destroyed. Now, to destroy loop j is easy; we merely delete branch bk 

from the network. The loop impedance matrix of the derived network, 
which we will call N2, will simply be Δ j j of Eq. (135). Applying Kirch
hoff's rule to this network, we find the cofactor Δ j j of the loop impedance 
matrix to be 

(136) 
We are now ready to use these results to evaluate driving-point im

pedance and admittance functions. Let the network N of Fig. 20 
be a network of the class under consideration. We shall interpret the 
source as a voltage source for loop equations and a current source 
for node equations, for convenience. 

Fig. 20. Driving-point functions. 

Taking node equations first, and using 
1' as the reference node, the driving-
point admittance is 

(137) 

where the subscript y reminds us that 
the node admittance determinant is 

involved. Now, if we disregard the source (current driver) completely, 
we will get the same node admittance matrix, and so the same de
terminant and cofactor, as in Eq. (137). Therefore, we may write 

(138) 

This is the desired expression for the driving-point admittance. 
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The situation is different with respect to loop equations. The loop 
impedance matrix of the total network of Fig. 20 contains one more 
row and column (corresponding to loop 1) than the loop impedance 
matrix of N alone. Further, as far as the loop impedance matrix is 
concerned, the voltage generator is a short circuit. Therefore the loop 
impedance matrix of Fig. 20 is the same as the loop impedance matrix 
of N1 obtained by shorting nodes 1 and 1'. And the cofactor 11 of the 
loop impedance matrix of Fig. 20 is the same as the loop impedance 
determinant of N alone. Using Kirchhoff's formula, we can therefore 
write 

(139) 

(The primed quantities correspond to the total network including the 
source.) Remembering the 2-tree interpretation given earlier, we can 
rewrite this as 

(140) 

where both quantities are computed with respect to N alone, without 
the generator. 

We have now obtained two alternate expressions for the driving-point 
functions, given in Eqs. (138) and (140), both of which may be referred 
to as minimum effort formulas, since there is no subtraction of terms 
involved. Let us introduce notation which will shorten these expres
sions and will also be useful in the further extensions which we will 
discuss. Define 

(141) 

The subscripts in Wi,j are separated by a comma. This implies that the 
nodes corresponding to the subscripts fall on separate parts of the net
work. This interpretation applies even if additional subscripts are 
included. These expressions take care of Eq. (138). For Eq. (140) we 
introduce the following convention first given by W. S. Percival. Given 
a polynomial V(Y), the complementary polynomial C[V(Y)] is obtained 
by replacing each product in V(Y) by the product of the factors not 
appearing in this product. Finally C[V(Z)] is obtained by replacing 
y j by zj in C[V(Y)]. 
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With these definitions, Eqs. (138) and (140) can be written 

(142) 

(143) 

It remains for us to discuss the unsymmetrical cofactors of the loop 
and node matrices; that is, determinants of the form Δ i j . Let us first 
take the node admittance matrix. In this case, with considerations 
similar to the case of symmetrical cofactors, we get 

(144) 

To this we apply the Binet-Cauchy theorem to get 

(145) 

We notice as before, that the nonzero majors of A_ i Y b correspond to 
2-trees (i,r) where r is the reference node. The nonzero majors of A_ j 

correspond to 2-trees (j,r). Since each factor of the product in Eq. 
(145) must be nonzero to be of interest, we note that the subnetworks 
contributing to Δ i j must be both 2-trees (i,r) and 2-trees (j,r). Since a 
2-tree has only two parts and r is in one of them, we conclude that i and 
j must be in the same part. Thus the 2-trees of the type (ij,r) and no 
others contribute to Δ i j . However, since A_ i and A_ j are different 
matrices, we have no assurance that the signs of the products will all be 
positive. This fact is nevertheless true, but we shall not prove it here. 
Hence, Maxwell's formula for an unsymmetrical cofactor of the node 
admittance matrix becomes 

(146) 

Let us now use this result to compute a transfer impedance function. 
Suppose we have the network of Fig. 21 in which we want the transfer 

Fig. 21. Transfer functions. 

impedance Z 2 1 = V2/I1 from the generator terminals 1,1' to the load 
terminals 2,2'. We shall interpret the generator as a current generator 
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for convenience. Then, from the node equations written with 1' as the 
datum node we will get 

(147) 

Using Maxwell's formulas for Δ and its unsymmetrical cofactors given 
in Eqs. (126), (141), and (146), we can write the topological formula for 
Z 2 1 as follows. 

(148) 

Each of the functions in the numerator and denominator are to be com
puted for the network N and the load YL. This formula is not a mini
mum effort formula. There will, in general, be some cancellation, if 1' 
and 2' are different nodes. However we can easily find the terms that 
cancel and thus convert the expression into a minimum effort formula. 
We observe that 2-trees of the type (122',1') occur in both W12,r and 
W12',1' and will therefore cancel. We observe also that the node 2' has 
to be included, either in one part or the other, in each of the 2-trees in 
W12(1,. Therefore, 

(149) 

Similarly node 2 has to be included, either with nodes (1,2') or with 
node 1' in each 2-tree in W12'1'. Therefore, 

(150) 

Now when we substitute the last two equations into Eq. (148), we get 

(151) 

We have now succeeded in obtaining a minimum effort formula since 
no 2-tree can be included in both terms W12,1'2' and W12',1'2. We 
notice also that YL cannot occur in the numerator of Eq. (151) and so 
the numerator can be computed for N alone. 

Let us now turn to the unsymmetrical cofactors of the loop impedance 
matrix. For this case we will be content just to state the result since 
even a "reasonableness" argument for this case is quite lengthy. In 
any case we should intuitively expect the answer to be the dual of the 
one obtained for the node admittance cofactors, and it is. 

In Fig. 21 we choose loops 1 and 2 as shown in the figure. Then, as
suming a voltage generator, the transfer admittance can be written 
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(152) 

We assume that the generator and the load do not lie on any other 
loops except 1 and 2, respectively. The topological formula for the 
transfer admittance, which was first given by Kirchhoff, is 

(153) 

where the complements in the numerator are computed for the network 
N alone (not including the generator or Z L ) , but the denominator 
includes Z L as well. 

It is possible to give a geometrical aid in visualizing the 2-trees that 
are involved in the various terms in Maxwell's and Kirchhoff's formulas 
for the unsymmetrical cofactors. This was first suggested by Percival 
and is shown in Fig. 22. 

Fig. 22. Percival's intuitive representation. 

Let us now illustrate some of the ideas we have discussed by means of 
an example which is simplified by the geometrical aid given in Fig. 22. 
Let us compute the transfer functions for the lattice network of Fig. 23. 
Looking at Fig. 22, we can immediately write 

(154) 

(155) 

Fig. 23. Example for transfer functions. 
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And from Maxwell's and Kirchhoff's formulas for loop and node de
terminants we can write 

(156) 

The transfer impedance and transfer admittance are now easily found. 
Furthermore, when the branch impedances are known, it is a simple 
matter to convert these expressions into rational functions of s. 

Let US terminate this section by pointing out that we have barely 
scratched the surface of this subject here. The same types of con
siderations can be used to extend these results in several ways. For
mulas for other network functions, such as z parameters or y param
eters, can be established. The restrictions on mutual inductance and 
reciprocity can be removed and the pertinent formulas obtained, and 
so on. For further study, consult the literature.* 

In addition to being convenient formulas for evaluating network 
functions, these topological formulas have important implications in 
network synthesis. Some of these are suggested as problems. Others we 
leave to books on network synthesis. 

PROBLEMS 
9.1 Show that an RC impedance function, in addition to mapping the right 

half s-plane into the right half Z-plane, also maps the upper half s-plane into 
the lower half Z-plane; and maps the lower half s-plane into the upper half Z-
plane. Use this fact to get an alternative proof that dZRc(s)/ds is negative 
real on the real axis. 

9.2 Using methods similar to those used in Problem 9.1 show that for an 
R L impedance function ZRL(S), dZRL(s)/ds is real positive on the real axis. 

9.3 Show that a reactance function ψ(s) is the quotient of an even function 
to an odd function or vice versa. Hence, show that if ψ1(s) and ψ2(s) are react
ance functions, ψ 1(√s ) /ψ 2 (√s) is a positive real function of s, provided the 
"positive" branch of √s is chosen. 

9.4 Extend Problem 9.3 to show that the quotient of two RC impedances 
or two R L impedances is a positive real function. 

*See: 
1. Coates, C . L . , "General Topological Formulas for Linear Networks," Trans. 

I.R.E., vol. C T - 5 , June, 1958. 
2. Mayeda, W., Topological Formulas for Active Networks, Rept . No . 8, U.S . A r m y 

Contract DA-11-022 -ORD-1983 , University of Illinois, Jan. 1958. 
3. Mason, S. J., "Topological Analysis of Linear Non-Reciprocal Networks," Proc. 

I.R.E., vol. 45, 1957, pp. 829-838. 
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9.5 Show that the symmetric matrix of rational functions 

is a positive real matrix if and only if the matrix of real parts 

is positive definite or semidefinite in σ ≥ 0. 
9.6 Let y11 = y22 and y21 = y12 be two real rational functions. Suppose the 

lattice shown in Fig. P9 .6 is to have these 
functions as its short-circuit parameters. 
Show that the branch impedances Za and 
Zb will be positive real if 

(a) y11 is positive real ; 
(6) the real part condition (Re y11)2 — (Re 

y21)2 ≥ 0 is satisfied for Re s ≥ 0. 

If in (6) it is only known that the real part 
condition is satisfied on the jω-axis, what 
additional conditions must be placed on the 
given functions y11 and y21 before the theorem 

will again be true? 

Fig. P9.6. 

9.7 Show that at a zero of z11 or z 2 2 on the jω-axis, z12 is imaginary. Hence 
show that any jω-axis poles of the open-circuit voltage gain 

are simple and with imaginary residues. Repeat for the short-circuit gain h21(s). 
9.8 Prove: If a polynomial p(s) is real on the real axis and has no zeros in 

σ > 0, then the coefficients of s* in p(s) are all nonnegative real numbers. 
9.9 Suppose that a network having a driving-point impedance Z1 = F(s) is 

given. It is desired to find a second network whose driving-point admittance Y2 

is equal to F(s). Such networks are called inverse. Discuss the conditions under 
which the inverse of a given network may be found by the method of duality 
discussed in Chapter 4. 

9.10 For each of the one-ports shown in Fig. P9.10 find the inverse network. 
Verify that the driving-point admittance of the inverse is the same as the imped
ance of the given network. 

Fig. P9.10. 
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9.11 Two positive real functions F1(s) and F2(s) are said to be complementary 
if their sum is equal to a positive constant K. Suppose that F1(s) and K are 
given. Determine the restrictions on F1(s) and K such that F1(s) will have a 
complementary function. If F1(s) and F2(s) are complementary and represent 
driving-point impedance functions, this means that the series connection of the 
two corresponding networks has a constant input impedance. In case F1(s) and 
F2(s) are admittance functions, then the parallel connection of the corresponding 
networks will have a constant input admittance. We refer to such pairs of 
networks as being complementary. 

9.12 Let Z1(s) be the driving-point impedance function of an RC network 
and assume that it is regular at the origin. Show that its complementary 
function Z2(s) will be an RL impedance function regular at infinity. 

9.13 Find complementary networks for each of the networks shown in Fig. 
P9.13. 

Fig. P9.13. 

9.14 Let ψ(s) be a reactance function. Then ψ(s) will have either a zero or 
a pole at infinity. Suppose it has a pole (if it has a zero there, consider l/ψ(s)). 
If we subtract the principal part of the Laurent expansion at infinity, we will get 

ψ1(s) = ψ(s) - k∞S 

ψ1(s) is also a reactance function, but with a zero at infinity. Take its reciprocal 
and repeat the above process. Show that this process, when continued, leads to 
a finite continued, fraction expansion of ψ(s) (about s = ∞). Determine a ladder 
network whose driving-point impedance is represented by this expansion. This 
result was originally given by Cauer. 

9.15 Repeat the preceding problem using s = 0 instead of s = ∞. 
9.16 Through the appropriate transformation show how the results of the 

preceding two problems can be extended to RC and RL impedance functions. 
9.17 Prove that: A is a positive definite symmetric matrix if and only if A - 1 

is positive definite symmetric. 
9.18 Prove that a matrix A is positive definite if and only if there exists a 

nonsingular matrix B such that 

A = BB' 
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9.19 Prove that if A is a positive definite symmetric matrix of order n and 
B is a matrix of order (r,n) and rank r, then the matrix BAB' is positive definite 
symmetric; A and B are both real. 

9.20 Check whether the following matrices are positive definite. 

9.21 It was shown in the text that with real quadratic forms, the matrix 
can be assumed symmetric; in fact 

X'AX = X ' A s X 

where A, is the symmetric part of A:A, = 1/2(A + A'). Extend this result to 
show that with complex X, the symmetric part of A decides the real part of the 
quadratic form and the skew symmetric part decides the imaginary part. The 
matrix A is assumed real. 

9.22 In the network shown in Fig. P9.22 all three inductances are mutually 
coupled. Suppose it is possible to have 
the following values. 

L1 = L2 = L3 = 1 

M12 = M23 = 0.9 

M13 = 0.2 

(Note that all mutual inductances are 
less than unity.) Verify that this in
ductance matrix is not positive definite 
or semidefinite. With all resistances 
equal to unity, compute the natural 

modes of the network and show that it is unstable. 

Fig. P9.22. 

9.23 Generalize the preceding problem to n inductances and prove the follow
ing statement. 

If a set of n inductances can be found such that the matrix of these induct
ances is neither positive definite nor semidefinite, then we can construct a passive 
network with these inductances and some resistances, which is unstable. 

9.24 Prove that the inverse of a positive real matrix is also positive real. 
9.25 Find the driving-point admittance of the network of Fig. P9.25 using 

Maxwell's formula. 
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Fig. P9.25. 

9.26 Find the transfer voltage ratio V2/V1 in the network of Fig. P9.25. 
9.27 Find the open-circuit impedance matrix Z o c of the networks in Fig. 

P9.27 using topological formulas. 

Fig. P9.27. 

9.28 Prove: The 2-trees that appear in the numerator of 

are precisely those that are common to the numerator of both 

9.29 Use the result of Problem 9.28 to prove the following result of Fialkow 
and Gerst: With reference to the node equations of a network without mutual 
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inductances, let 

where m is an integer, positive, negative, or zero. Then, 0 ≤ bk ≤ ak for all 
k = 0, 1, 2, . . . ,n. 

9.30 Extend Problem 9.29 to prove the further result of Fialkow and Gerst: 
If N is a two terminal pair network with a common (1',2') terminal which con
tains no transformers, the voltage ratio transfer function 

satisfies 0 ≤ G 2 1 (σ) ≤ 1 for 0 ≤ σ ≤ ∞, where the equality sign can only hold 
at the extremities of the range (σ = 0, ∞), unless it holds identically. 

9.31 Extend Problem 9.30 to prove: In a general passive two terminal pair 
network (not necessarily common terminal) the voltage ratio transfer function 
satisfies: 

9.32 Prove: The number of trees of a graph is 

n = det AA' 

where A is the incidence matrix. (H. M. Trent, Proc. Nat. Acad. Set., Oct. 1954.) 
9.33 Find the transfer impedance function z21(s) of the general ladder net

work of Fig. P10.9, using Maxwell's formulas. Hence, show that the zeros of 
transmission of the ladder are the complex frequencies for which the series 
arms are open circuits (zero admittances) and those for which the shunt arms 
are short circuits (zero impedances), except for those that cancel with zeros of Δ. 

9.34 Find the zeros of transmission of the network of Fig. P9.27c. Show 
that by suitable choice of parameter values, this network may be made to give 
any pair of complex conjugate zeros of transmission. 



10 • FEEDBACK 
AND RELATED TOPICS 

In our development of network theory up to this point, we have 
depended solely upon the loop and node systems of equations. As 
general analytical tools for theoretical developments, loop and node 
analyses reign supreme. No other tool available at present is as general 
and simultaneously amenable to theoretical treatment. However from 
the point of view of the practicing engineer (as opposed to the network 
theorist) the loop and node systems are just two special methods of 
analysis. There are several other tools available, some of which are 
superior as practical tools in special applications. One of these special 
areas of application of considerable importance is the field of so-called 
"active networks." By this phrase is conventionally meant networks 
containing such devices as vacuum tubes, transistors, and conceivably 
other similar nonreciprocal devices. We should classify the networks 
just mentioned as "active, nonreciprocal." However the name active 
networks has been used for so long that it has acquired special signifi
cance. Hence, we shall continue to call such networks active networks. 

Almost all of our earlier discussions, except for Chapter 9, apply to 
active as well as to reciprocal networks. But we have not, so far, singled 
out active networks for any special consideration. In this chapter, we 
shall make slight amends for this lack of special attention by discussing 
special methods of analysis that find particular application in active net
works. Of course these special methods—block diagrams and signal-flow 
graphs—apply to reciprocal networks as well. But they have their 
greatest usefulness when applied to active networks, in particular to feed
back systems. This chapter, then, will be devoted to the subject of feed
back theory, the associated problem of stability, and to some methods 
of analyzing networks, which are particularly suitable to active net
works. 

The subject matter which we will discuss in this chapter is of very 
wide scope. We can do little more than lay the groundwork for a more 

401 
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extensive treatment. The topics which we shall treat are capable of 
extension far beyond the discussion included in this chapter. The sub
ject is usually presented in books on feedback amplifiers or control sys
tems. Our purpose in presenting this subject at all is to show the under
lying unity of these various fields; to "open up a few doors" and to give 
a preview of some of the interesting fields to which network analysis 
leads. Hence, we will make no attempt at being exhaustive. Very 
often we will be satisfied with "reasonableness" arguments rather than 
formal proofs. 

10.1 Block Diagrams and Elementary Concepts of Feedback 
One of the objectives of network theory is to educate the engineer's 

thinking to move from the component to the system point of view. Al
though each element of a network will affect its behavior, the elements 
in a complicated network are grouped in such a way that each group of 
elements performs a specific function. These groups of elements then 
interact on each other only at their terminals. The over-all network, or 
system, is then thought to consist of the interconnection of these groups 
of elements. 

For example, we would be hopelessly lost if we tried to describe the 
behavior of even a simple radio receiver in terms of the component resist
ances, inductances, capacitances, and dependent sources. Some sem
blance of order will appear if we look upon groups of components which 
perform a particular function (such as oscillators, amplifiers, demodula
tors, filters, etc.) as units. 

We obtained some concepts in Chapters 6 through 9 which are useful 
in this direction. We now characterize networks in terms of describing 
functions. We can, for instance, speak of an impedance (4s2 + s + 1 ) / 
(s2 + s + 1) as a unit, without considering the seven or eight elements 
that make up the network. Similarly we can treat a complete trans
mission network merely as a set of four functions without worrying 
about the dozens of loops or node pairs that it may contain. * 

However even this description of two-ports is too detailed for some 
purposes. Specifically, in many active networks, we are interested only 
in the signal transmitted through the network and not in the details of 
the currents and voltages at each terminal pair. 

For instance, in a simple voltage amplifier we are not concerned about 
the input (or output) current; we want to know only the voltage ampli-

* One is reminded of one of the many cartoons about Thomas J. Watson's sign 
"Think ." This one shows a small man in a front office with a sign " T h i n k " hanging 
on the wall. Somewhere inside is the plush office of the boss with another sign hanging 
on his wall. This one says "Think Big ." 
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fication. In such a case we might as well represent the amplifier as in 
Fig. la rather than as in Fig. lb, which we have been doing until now. 

Fig. 1. Voltage amplifier description. 

Note that Fig. la is a single line diagram. We don't even bother showing 
pairs of terminals, we show merely ports, points of entry or exit. 

This type of representation is known as a block diagram. Each 
functional unit in a network is represented as a block, the over-all system 
consisting of the interconnection of the various blocks. The block dia
gram representation is quite flexible inasmuch as the blocks may be 
taken to be as large or as small (in complexity, not size) as is desired. 
As a matter of fact, each element can be taken as a block, but this will 
obviously seldom serve a useful purpose. 

Each block, then, takes an input function and operates on it in some 
fashion to yield an output function. The input and output quantities 
are indicated by means of arrows, as shown in Fig. la. The operation 
which the block performs is indicated in the block. 

When several functions are to be added algebraically, we use the 
symbol shown in Fig. 2a. This is referred to as a summing point. A 

Fig. 2. Summing point and pick-off point. 

" + " or a " - " sign is placed beside the arrowhead of the entering arrows 
to indicate the reference. The symbol in Fig. 2a, for instance, represents 
the equation V4 = V1 — V2 + V3. 

A point at which one line in a block diagram separates into several 
lines, as illustrated by the point x in Fig. 2b, is called a pick-off point. 
Each outgoing line from a pick-off point represents the same function 
as the incoming line. 
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Let us illustrate these ideas with an example. Consider the series-
parallel connection of two two-ports shown in Fig. 3. A complete descrip-

Fig. 3. Simple feedback network. 

tion of the terminal behavior can be given in terms of the g parameters 
if we know the g parameters of the individual two-ports. However, we 
may not be interested in such a complete description; we may want to 
know only the ratio of the output to input voltage transforms, as
suming we know the corresponding ratios of the individual two-ports. 
If we define these ratios as given in Fig. 3, we can write 

(1) 
Hence 

(2) 

One point must be strongly emphasized here. Recall from the discus
sion in Chapter 8 that, when two-ports are interconnected, we must 
require that the terminal conditions remain the same after the inter
connection as before. It is only under these conditions that the two-
port parameters of the interconnected networks can be obtained in 
terms of those of the individual ones. More descriptively, we say that 
there should be no "loading" of one two-port on the other. 

It is possible to redraw the network of Fig. 3 as a block diagram by 
noting that Vla = V1 — V1b. This equation can be represented by the 
summing point in Fig. 4a. The voltage ratios given in Fig. 3 can be 

Fig. 4. Block diagram representation of Fig. 3. 
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represented by the blocks shown in Fig. 4a. Finally, Fig. 4b results 
when these are combined. 

Let us consider the form of the block diagram in Fig. 4. There is a 
closed loop with arrows pointing in the same direction around the loop. 
This seems to indicate that the output quantity V2 is able to influence 
its own value by virtue of being returned to the input, albeit modified 
by the function H(s). As a matter of fact, this picture provides us with 
an intuitive, nonquantitative definition of feedback. We say that a 
network is a feedback network if some variable, either the output variable 
or an internal one, is used as an input to a part of the network, in such a 
way that it is able to affect its own value. This is not a very useful 
definition of feedback since it does not give a quantitative measure. In 
a later section we will spend some time with the mathematical formula
tion of feedback. 

Let us now define some commonly used terms in connection with Fig. 
4. A network such as this is called a closed-loop system; specifically a 
single-loop system. The voltage ratio given in Eq. (2) is called the 
closed-loop transfer function, while the function G(s)H(s) is called the 
open-loop transfer function (an alternative designation will be discussed 
in section 10.3). The function G(s) alone is often called the forward gain. 

One of the useful features of the block diagram analysis is that it 
permits approximations to be readily incorporated, thereby leading to 
great simplifications in the analysis. In fact, in order to achieve the "no 
loading" requirement, it is often indispensable to make approximations. 

Let us now consider an example which will illustrate these remarks 
and which will have the general form of Fig. 3. A feedback amplifier 
network is shown in Fig. 5a. This is redrawn in Fig. 5b to emphasize 
that it fits the pattern of Fig. 3. Suppose the frequency range of 

Fig. 5. Feedback amplifier. 
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interest is such that the break frequency ωk = l / R k C k is below this 
range, so that the parallel R k - C k branch can be regarded as a short 
circuit. Suppose also that the feedback resistance Rf is much larger 
than the load resistance R L so that "loading" due to the feedback path 
can be disregarded. With these assumptions the forward gain G(s) 
and the feedback ratio H(s) are easily computed from Fig. 5b to be 

(3) 

With these values of G and H, Fig. 3 represents the amplifier network of 
Fig. 5. 

Let us again emphasize the fact that this idea of representing a net
work as an interconnection of simple blocks is based on the assumption 
that the individual block functions remain unchanged when the inter
connections are made. This involves an inherent approximation in the 
block diagram representation. 

In using block diagrams as a tool of analysis, we can make use of a 
few basic rules for manipulations of the diagrams. These rules are so 
simple that they hardly need any justification. Most of them simply 
follow from the elementary properties of complex algebra (the associa
tive and commutative laws, etc.). The following are given in Fig. 6. 

Rule 1 . Associative law of addition and multiplication. 
Rule 2. Distributive law. 
Rule 3. Removing a block in the feedback loop. 
Rule 4. Closed loop to open loop. 
Rule 5. Open loop to closed loop. 

Some others are suggested as problems at the end of the chapter. 
With these basic rules, a given block diagram can be manipulated 

with considerable ease, and the desired output function calculated. 
Although we have dealt exclusively with transformed variables, this is 
not an essential feature of the method. The input and output quantities 
of a block may be functions of time and may be related through a dif
ferential equation. As a matter of fact, it is not even necessary that the 
blocks represent linear networks; it is possible to use the same procedure 
if nonlinear elements are also present. For these and other extensions 
and applications, consult the literature. * 

* T. M. Stout," A Block Diagram Approach to Network Analysis," Trans. A.I.E.E. 
(Applications and Industry), Vol. 3, 1952, p. 255; T. D. Graybeal, "Block Diagram 
Network Transformation," Elec. Eng., Vol. 70, 1951, p. 985. 
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Rule 1. Associative law of addition and multiplication. 

Rule 2. Distributive law. 

Rule 3. Removing a block in the feedback loop. 

Rule 4. Closed loop to open loop. 

Rule 5. Open loop to closed loop. 

Fig. 6. Block diagram—basic rules. 

10.2 Signal-Flow Graphs 
Closely related to the concept of a block diagram, and much more 

versatile, is the tool of analysis known as a signal flow graph, first in
troduced by S. J. Mason.* Signal-flow graphs retain the intuitive 
character of block diagrams and at the same time are equivalent to the 
system of network equations; hence, they are also precise, although many 
approximations can be readily incorporated. 

In this section we shall discuss some of the fundamental ideas in the 
theory of signal-flow graphs and give their application in network 
analysis. Such questions as adequacy, linear dependence, order of 
complexity, etc., will not be answered completely. Our viewpoint will 

* S. J. Mason, Feedback Theory—Some Properties of Signal-Flow Graphs, Proc. 
IRE, Vol. 41, Sept., 1953, pp. 1 1 4 4 - 1 1 5 6 ; also Proc. IRE, Vol. 44, July, 1956, pp. 
920-926, 
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be slightly different from that of Mason. We shall discuss signal-flow 
graphs from the point of view of the theory of nets. However, before we 
enter into the mathematical details, let us observe the intuitive character 
of a signal-flow graph by actually constructing one for a simple example. 

Consider the feedback amplifier of Fig. 5. We shall construct a 
geometrical representation, not unlike a block diagram, to represent the 
equations relating the variables. The circles representing summing 
points in the block diagram will be reduced to mere dots and the blocks 
will be replaced by line segments, the appropriate function being written 
alongside. Neither of these details is of fundamental importance. 

In Fig. 5a there is an input voltage V1 and an output voltage V2, 
both of which contribute to the grid voltage Vg. These contributions 
can be represented as in Fig. 7a. The intuitive character of this figure 

Fig. 7. Development of signal flow graph for Fig. 5. 

is so evident that there is hardly any need to say any more about it. 
(We are here merely thinking out loud; the formal development of the 
subject will follow shortly.) The dependent source voltage Vpg, being 
μ times Vg, can be represented by the additional line shown in Fig. 7b. 
Let us continue to assume that the parallel R k - C k branch can be neglected 
and that Rf >> R L , so that there is no loading on R L . Then, the plate 
current IL is given in terms of Vpg by 

(4) 
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This leads to Fig. 7c. Finally, the output voltage in terms of IL is 
simply V2 = R L I L ; the signal-flow graph then takes the form shown in 
Fig. 7d. This graph should be compared with the block diagram in 
Fig. 4 and the similarity noted. Again we find a closed feedback loop 
around which the arrows all point in the same direction. 

Suppose that after constructing this signal flow graph, we decide 
that the "no loading" approximation is not justified; that is, If cannot 
be neglected in comparison with IL. All is not lost. The relationship 
between If and V2 is easily found to be 

(5) 

Hence, to Fig. 7d we add a line from V2 to a new point labeled If, as 
shown in Fig. 8a. But the relationship between IL and Vpg is no longer 

Fig. 8. Completed signal flow graph. 

given by Eq. (4), because the current in R L is now IL — If. The new 
relationship is 

(6) 

This leads to the final result shown in Fig. 8b. Note that, even though 
this signal-flow graph represents the "single loop" amplifier of Fig. 5, 
it has two "feedback" loops. We will have more to say about this later. 

The preceding discussion gives us an intuitive idea of the signal-flow 
graph. Let us turn now to a more formal discussion and formulate our 
ideas with more precision. 

We saw, in section 3.3, that a network can be interpreted as a directed 
linear graph. If we specify the impedances or admittances of the 
branches of the network, thus completing the description, we say that 
the graph is weighted. A weighted directed graph is also called a net. 
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The concept of a net has applications in many different fields besides 
network theory. One of these applications is the signal-flow graph. 

A signal-flow graph is a representation of a system of equations as a net. 
That is, signal-flow graphs have really nothing to do with network 
theory as such. They are merely a scheme for representing, and solving, 
a system of simultaneous linear algebraic equations. Since the trans
formed network equations are linear algebraic equations, signal-flow 
graphs can also be applied to the representation and solution of network 
equations. When applied to networks, signal-flow graphs permit our 
intuitive knowledge to come into play. To emphasize the fact that 
signal-flow graph analysis is general, and to avoid any narrow implica
tions, we shall use a general notation to establish the theory. Later, we 
shall apply the theory to networks. 

Suppose we have a system of linear algebraic equations, which we 
can write as 

(7) 

In typical applications the matrix Y contains transforms of driving 
functions and the matrix X contains transforms of response functions. 
Generally speaking, in communication networks, there is only one driv
ing function or at most a very few driving functions. These can, of 
course, appear in several of the equations of Eq. (7). Assuming, for 
simplicity, that there is only one driving function, we can write 

(8) 

where y0 is the driving function. 
Our objective is to solve Eq. (7) for X so that we will have a set of 

equations which expresses each variable explicitly. Instead of solving 
for X in the usual way, the signal-flow graph formulation makes use of 
a modified system of equations. These are obtained by adding X to 
both sides of Eq. (7) after transposing Y . The result of this algebraic 
manipulation is 

(9) 

where Eq. (8) has also been used. This can be written alternatively as 

(10) 

Note that this is not an explicit solution for the unknowns, since the 
right-hand side contains X also. (It is easy to see that additional 
driving functions will produce little change in this equation. The 
scalar y0 will become the matrix Y 0 and K will have several columns 
instead of just one column.) We will see, shortly, that we can write 
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network equations directly in the form of Eq. (10) so that none of these 
manipulations are really important when flow graphs are applied to 
networks. 

Focus attention on Eq. (10) and suppose X is an nth order column 
matrix. Then the column matrix on the right side of the equation is of 
order n + 1, and the other matrix on the right is of order (n, n + 1). 
Let us augment this matrix and make it square by adding a row of zeros. 
This will define a matrix C as follows. 

(11) 

This is a square matrix with one more row and column than there are 
variables in X . (If there are k driving functions instead of one, C will 
have k more rows and columns than there are variables in X.) 

We now interpret C as the connection matrix of a net as follows. We 
construct a graph with one node for each row (and column) in C. We 
label each of these with the symbol for the corresponding variable, 
thus weighting the nodes. Whenever an entry c i j in the matrix C is 
nonzero, we draw a directed branch in the graph from node j to node i 
and label this branch with the entry cij, thus weighting the branches.* 
If Cij = 0, we do not draw any branch from j to i. This net, weighted 
according to the entries of C is called the signal-flow graph of the system 
of equations represented by Eq. (10). 

As an example, suppose the following system of equations is given 

(12) 

Then we can write 

(13) 

(14) 

* To avoid this "backwardness" in orientation, the transpose of the matrix, as 
defined here, is usually called the connection matrix. Then the entry corre
sponds to the branch from i to j . 
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The signal-flow graph of this system of equations will have 4 nodes 
labeled y0, x1, x2, and x3, and will take the form of Fig. 9. 

Fig. 9. Flow graph example. 

Let us make a few remarks about the signal-flow graph of Fig. 9 
before proceeding. First of all we note that there are no branches enter
ing node y0, which is natural since the first row of C [which is not shown 
in Eq. (14)] is zero. In giving a physical interpretation for the graph we 
say that y0 is a source node. By analogy we might say that a node from 
which no branch leaves is a sink node. In the conventional theory of 
signal-flow graphs the existence of such a node is assumed; such a node 
can always be introduced by adding a trivial equation to the system. 
(In the present case we could write x3 = x3.) However, this assumption 
is unnecessary and so we shall not make it. Another conceptually useful 
physical interpretation is the following. Let us consider each of the 
nodes of the signal-flow graph to be points at which signals are measura
ble. Thus the node y0 is the point at which signal y0 is present. This 
signal is transmitted along each of the branches leaving node yo. The 
quantity written alongside the branch is the transmission of the branch. 
Thus ( - 1 ) y 0 is transmitted from node y0 to node x1. The signal present 
at any node is the sum of all the signals coming into the node. Thus the 
signal at node x3 is 4x1 + ( - 1 ) x 2 . This signal itself is x3, so that 

(15) 

which is one of the equations in Eq. (14). Similarly at node x2 we have 
(1)yo, ( -2)x 1 , (l)x 3. In addition to these, there is a transmission from 
node x2 to itself as well. Since x2 is the sum of the incoming signals, we 
will get (16) 

A loop from a node to itself, such as the loops at x1 and x2 in Fig. 9, is 
called a self-loop. 
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It is from this interpretation that we get the name signal-flow graph. 
The graph represents the flow of signals from point to point. The 
points themselves are merely representations of variables. In a network, 
some of these variables will be currents and others voltages. The 
interpretation is a physical interpretation of a mathematical model. 

The signal-flow graph method of analysis is most useful when we 
wish to solve the system of equations for one variable only; which is a 
common situation in many practical problems. Therefore let us make 
the assumption that we want the solution to, say, x1. The flow graph 
method of solving for x1 corresponds, exactly, to algebraically eliminating 
all other variables by systematic substitution. In the physical inter
pretation we find the total transmission from y0 to x1 by removing all 
other nodes. We remove the nodes one by one. Every time a node is 
removed, we take care to see that the total transmissions from y0 to 
all other nodes are left invariant by suitably modifying the remaining 
transmissions. Let us keep both these ideas, the mathematical substitu
tion and the physical concept of node removal, in mind as we proceed. 

Let us first consider removing a node at which no self-loop is present. 
On the mathematical side this corresponds to eliminating a variable xj 

when the corresponding diagonal element c j j is zero. In such a case the 
equation for xj is 

(17) 

To eliminate xj in this case, all we need to do is to substitute Eq. 
(17) for xj into all other equations; and then disregard Eq. (17). For 
instance, if the original equation for xp is 

(18) 

we get, on substituting Eq. (17) for xj, 

(19) 

Let us interpret this last equation both in terms of the signal-flow graph 
and in terms of the connection matrix. 
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First of all c - j c j 0 is the transmission from the source node y0 to the 
node xp through the intermediate node xj. So if we add this transmission 
to the direct transmission cPo, we can eliminate node xj, keeping the 
total transmission from y0 to xp unaltered. Similarly cpjcjk is the trans
mission from node xk to node xp through xj. So if we add this to the 
direct transmission cpk, we can eliminate node xj; leaving the transmis
sion from xk to xp unaltered. If we modify every transmission this way, 
we can remove xj completely from the graph and all other transmissions 
remain invariant. 

Next let us look at the connection matrix. For convenience let us 
arrange the variables such that the variable to be eliminated, xj, is the 
last variable. Then the connection matrix is 

(20) 

The dashed line indicates that the last row and column are to be elimi
nated, and Cjj = 0 by the assumption of no self-loop at xj. Now we 
see that the modification of Eq. (19) corresponds to the following 
operation on the matrix. 

Multiply each entry in the last column by each entry in the last row 
(not respectively) and add each product to the corresponding entry in 
the connection matrix. For instance if we take the entry in the pth row 
of the last column, namely cρj, and multiply it by the entry in the kth 
column of the last row, namely cjk, we add the result cpjcjk to the (p,k) 
position of the matrix. Doing this for every element of the last row and 
column we get 

(21) 
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The rule is thus quite simple. In fact by operating on the matrix we 
can avoid many errors that are likely to creep in if we operate on the 
graph. 

This matrix technique is known as the Aufenkamp-Hohn node-pulling 
algorithm and was introduced by them in connection with a different 
application of nets. By looking at the matrix procedure we can also 
observe the need for the assumption that there is no self-loop at xj. For 
if Cjj 0, and we proceed in the same way, we shall lose this information, 
since cjj does not enter the picture at all. 

Now let us consider the case where cjj ≠ 0. The equation for xj is now 

(22) 

If cjj = 1, we are obviously in difficulties. Such a condition may arise 
even when the original system of equations is well behaved. (See the 
example of Fig. 9 and the corresponding system of Eqs. (12), which 
are consistent and have a unique solution.) However, if the original 
system of equations is linearly independent, the system can be re
arranged such that the diagonal entries of A in Eq. (7) are nonzero, so 
that Cjj 5* 1 in the modified system of Eq. (10). We shall see that net
work equations can be written in such a way as to ensure this. Hence, 
we shall make this assumption. Then we can solve Eq. (22) for xj, 
getting 

(23) 

Let us interpret this solution. In terms of the flow graph, Eq. (23) cor
responds to dividing all the incoming transmissions at xj by (1 — cjj), 
where Cjj is the self-loop transmission at xj; and then removing the self-
loop at xj. Now the problem reduces to the previous case as there is 
no longer a self-loop at xj. 

In the connection matrix of Eq. (20) this opera
tion corresponds to dividing all entries of the last 
row by (1 — Cjj) and then replacing the diagonal 
entry by zero. Once this is done, the Aufenkamp-
Hohn node-pulling algorithm can be applied again to remove node xj. 

By repeated applications of these operations, the signal flow graph 
can be reduced to a single branch from y0 to x1 as shown in Fig. 10. 
From this figure we can write down the solution for x1 immediately as 

Fig. 10. Final 
graph. 

(24) 

where G is called the graph gain. 
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Let us illustrate this graph reduction procedure first with a system 
of equations before proceeding to network examples. Suppose we have 
the system of equations 

(25) 

Then we can modify the system as before, getting 

(26) 

The signal-flow graph for this equation is shown in Fig. 11. 

Fig. 11. Signal-flow graph of Eq. (26). 

Suppose that we desire to solve for x1. Then we go through the follow
ing sequence of operations starting with the connection matrix in Eq. 
(26). The corresponding reductions of the flow graph are illustrated in 
Fig. 12, the corresponding steps being labeled with the same letter. 

(a) Remove self-loop at x3 by dividing all incoming transmissions 
by (1 — c33) = 1 - 2 = - 1 . The resulting connection matrix is 

(27) 
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Fig. 12. Reduction of signal-flow graph. 

(b) Remove node x3 using the node-pulling algorithm. The resulting 
connection matrix is 

(28) 

Notice that in the process a self-loop is created at x2 with a transmission 
equal to 3, and notice how the other transmissions are altered. 

(c) Remove self-loop at x2 by dividing incoming transmissions by 
1 - 3 = - 2 . 

(29) 

(d) Remove node x2. 

(30) 
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(e) Remove self-loop at x1 by dividing incoming transmissions by 
1 - 5/2 = - 3/2 

(31) 

Thus, we find that x1 = y0. It is clear that the solution can be obtained 
by working on the matrix only, or the flow graph only. 

The preceding discussion constitutes the essentials of the signal-flow 
graph method of analysis. There are many other manipulations of 
flow graphs, which are of the nature of "tricks of the trade," which we 
shall not consider. * 

Let us turn now to the problem of applying the signal-flow graph 
technique to network analysis. What we would like to do is to write 
down the connection matrix directly, merely by inspection of the net
work diagram. Alternatively, we want to draw directly the signal-
flow diagram, which is simply a representation of the connection matrix. 
In either case, the first order of business is to choose a set of variables. 
Different choices of the variables will lead to different flow graphs 
representing the same network. The choice of variables is guided by 
many considerations but in any case must include the known quantities 
and the desired quantities. No matter what variables and equations 
relating them are chosen, two things must be ensured. 

(a) The system of equations obtained is adequate as a description of 
the network; and 

(b) the system of equations obtained is linearly independent, so that 
no difficulties are encountered such as a self-loop transmission becoming 
unity, somewhere in the graph reduction process. 

We know that the behavior of a network is expressed in terms of the 
branch voltages and currents by means of 2Nb algebraic equations 
(transformed). However, Nb of these are simply the branch voltage-
current relationships; knowing either the voltage or the current of a 
branch is enough. Thus, there are Nb equations that must be satisfied 
simultaneously. 

Some choices of the variables and equations will not be very useful 
if we are to make full use of the signal-flow graph technique. For 
example, we might simply choose loop currents or node voltages as 
variables, and represent the loop or node equations as a signal-flow 
graph. This procedure is certainly valid and needs no comment. 

* For details see the works of Mason, already cited, and J. G. Truxal, Control 
System Synthesis, McGraw-Hill Book Co., New York, 1955. 
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Alternatively, we might choose either all the branch currents or all 
the branch voltages as variables. The equations that we use are (a) 
KCL at Nv — 1 nodes and (b) KVL for Nb — Nv + 1 loops, for a total 
of Nb equations, all expressed in terms of either branch currents or 
branch voltages. These are the branch current and branch voltage 
systems of equations that were mentioned in Chapter 4, and here again 
we know that these systems of equations are both adequate and linearly 
independent. 

After a little experience with signal-flow graphs, it becomes quite 
simple to choose intuitively a suitable set of variables and equations. 
However, we will discuss one procedure which is quite a useful one. It 
is closely related to a system of equations described by Bashkow. * 

We first choose a tree of the network. The variables that are chosen 
are the link currents and tree branch voltages. Therefore, we choose the 
tree in such a fashion that all the voltage generators are branches for 
this tree and all the current generators are links for this tree. For 
concreteness, let us consider the example of Fig. 13. 

Fig. 13. Example for constructing a flow graph. 

Let us assume that we are interested in the voltage transfer function 
G2 1(s) = V4(s)/Vg(s). We should, therefore, choose Vg and V4 as two 
of our variables. Since αI1 is a current generator and depends on I1, 
we should choose I1 and αI1 also as variables. Therefore we may 
choose as the tree, the tree consisting of branches Vg, R4, and C 2 . The 
variables for the signal-flow graph are then: Vg, V2, V4, I1, I3, I5, and 

αI1. (There is no real need for αI1 as a variable, since we have I1; but 
nodes in a signal-flow graph are eliminated so easily that a redundant 
variable is not a serious matter.) 

* Bashkow, T . R., " T h e A-matrix, a N e w Network Description, , , Trans. I.R.E., 
Vol. C T - 4 , Sept. 1957, pp. 1 1 7 - 1 1 9 . 
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The equations that we use are KVL for fundamental loops and KCL 
for fundamental cut sets. Using KVL for the fundamental loops we 
can write the chord voltages in terms of the tree branch voltages as 
follows. 

(32) 

We won't use the equation for Vα(s), since it is unrelated to αI 1 . Simi
larly, using KCL for fundamental cut sets, we can write the tree branch 
currents as follows. 

(33) 

Again, the generator current will not be used. 
We now use the v-i relationships to eliminate the unwanted variables. 

From Eqs. (32) we get 

(34) 

Similarly, from Eqs. (33) we get 

(35) 

With a little experience, we could write down these final equations 
(34) and (35) by inspection; or equivalently, we could draw the signal-
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flow graph by inspection. The signal-flow graph for these equations is 
given in Fig. 14 and the associated connection matrix is given in Eq. (36). 

(36) 

Fig. 14. Signal-flow graph of network example in Fig. 13. 

Notice that the signal-flow graph is quite different from the circuit 
diagram. One can always go from the circuit diagram to a signal-flow 
graph; in fact, to many signal-flow graphs. But in general, the reverse 
is not always possible. For a given, arbitrary, signal-flow graph, there 
may or may not exist a network, and, if one exists, we have no general 
means of finding it (other than trial and error). We may also note that 
there are many loops in Fig. 14 in which all the branches are similarly 
oriented. For instance, we have the oriented loops: (I1,αI1,V2,I1), 
(I1,V2,-ri), ( V 2 , I 5 , V 2 ) , etc. Each of these is called a feedback loop. They 
do not correspond to an intuitive conception of a feedback loop; but 
that is only because our intuitive conception cannot be made precise, 
and still agree with an intuitive conception of feedback. 

The two variables αI1 and I5 can be eliminated immediately, giving 
us a simpler graph shown in Fig. 15, with the following connection 
matrix. 
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(37) 

Fig. 15. Reduced signal-flow graph. 

We may now eliminate the variables V2,I1,I3 to get the desired solu
tion. The details will be left to you. 

It is possible to look upon the signal-flow graph as presenting a 
physical picture of the flow of signals through the network. This may 
sometimes be of help in visualizing the operation of the network. How
ever, remember that more than one signal-flow graph can be obtained 
for the same network, each one of which will give a somewhat different 
picture of the "signal flow." This leads to the conjecture that intuitive 
ideas about the flow of signals through a network do not necessarily 
correspond to the truth. Different patterns of signal flow can be set 
up for the same network, each of which will lead to the same answer for 
the graph gain. 

There is no more and no less information in the signal-flow graph 
than there is in the equations represented by the graph. Interpretations 
can also be attached to the equations, as well as to the flow graph. It 
is true, however, that a majority of engineers are able to visualize the 
behavior of a network more easily by means of a geometrical diagram 
than through a set of equations, and for this reason the flow graph tech
nique will be appealing. 

The graph reduction process which we described can be systematized, 
and a single formula derived for the graph gain G, which is defined in 
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Eq. (24). This was originally done by Mason. We will state the result 
here without proof. The graph gain is given by 

(38) 

in which G k is the gain (transmission) of the kth forward path (or direct 
path) from the input to the output, and 

(39) 

where Pm1 is the loop gain (the product of all the transmissions around 
a loop) of the mth feedback loop; 

Pm2 is the product of the loop gains of the mth set of two non-
touching feedback loops; that is, feedback loops that have 
neither a node nor a branch in common; 

P m 3 is the product of the loop gains of the mth set of three non-
touching feedback loops, etc. 

The quantity Δ k in Eq. (38) is the value of Δ for that part of the graph 
not touching the kth forward path. 

Although we have not proved this formula, let us illustrate its use 
by computing the graph gain for the signal-flow graph of Fig. 14. 
Let us first compute the P m i ' s . The feedback loops in the graph are 
( I 1 , α I 1 , V 4 , I 3 , V 2 , I 1 ) , ( I 1 ,α I 1 ,V 2 , I 1 ) , (I 1 ,V 2 , I 1 ) , (V2,I5,V2), (V2,I3,V2), 
(I3,V4,I3). The loop gains can be calculated from Fig. 14 by inspection. 
Hence, for Pm1 we get 

(40) 

To compute Pm2 we must find all the sets of two nontouching feed
back loops. From Fig. 14 we find these to be 

(a) (I1,aI1,V2,I1) and ( I 3 ,V 4 , I 3 ) 
(b) (I1,V2,I1) and (I3,V4,I3) 
(c) (V2,I5,V2) and (I3,V4,I3) 
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From the loop gains already computed, we find 

(41) 

We observe that there are no sets of three, or more, loops that do not 
touch each other, so Δ is obtained by substituting the last two equations 
into Eq. (39). The result will be 

(42) 

Notice that a R 4 R 5 cancels in the numerator. This fact demonstrates 
that Mason's graph gain formula is not a minimum effort formula (i.e., 
one in which no unnecessary computations are made) as the topological 
formulas given in Chapter 9 are. 

The next step is to calculate the forward gains Gk. There are three 
forward paths to be considered. 

(a) (Vg,I1,αI1,V4) 
(b) (Vg,I1,V2,I3,V4) 
(c) (Vg,I1,aI1,V2,I3,V4) 

The corresponding forward gains are easily found from Fig. 14 to be 

(43) 

Finally, it remains to calculate the values of Δ k corresponding to 
these three paths. For the first forward path, the part of the graph that 
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does not touch the path consists of nodes (V2,I3,V5) and the two loops 
formed by these. Hence, we get 

(44) 

(Note that Pm1 here is not the same as that of Eq. (40); it is pertinent 
to the part of the graph under consideration here.) For the other 
forward paths, there are no nontouching feedback loops. Therefore 

(45) 

The numerator of Eq. (38) can now be formed, to give 

(46) 

(Once again there is a cancellation.) Finally, the desired graph gain is 
given by 

(47) 

You may verify this result by performing the reduction of the flow 
graph, starting with Fig. 15. 

10.3 Feedback and Stability—The Nyquist Criterion 
In the first section of this chapter we briefly discussed the intuitive 

concept of feedback. We are now ready to expand this idea and to 
give it some analytical meaning. Although the idea of feedback is not 
restricted to either reciprocal or active nonreciprocal networks, it has 
relevance mostly for active networks. Another important problem that 
presents itself in the consideration of active networks is that of stability. 
This topic is intimately related with feedback. Hence, in this section 
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we will study some aspects of feedback and stability. Again we shall 
not attempt to be exhaustive. Specifically, we shall treat only those 
aspects of the subject which tie in most closely with our earlier studies 
in this book. 

In a linear lumped system, as we saw in Chapter 2, stability is decided 
by the location in the complex plane of the natural modes of the system. 
If there are any natural modes in the right half plane, the system is 
unstable. The natural modes of the system are the zeros of the system 
determinant. The (conceptually) simplest way to find out whether the 
determinant has any zeros in the right half plane is to find the zeros. 
However, with polynomials of high order, this is no mean task, and so 
we resort to other methods. We shall discuss two methods of determining 
stability, due to Hurwitz and Nyquist. 

In this, and in the discussion of the rest of the section, we will assume 
that each R, L, and C is considered a branch of the network. With such 
an assumption, the system determinant (loop or node or other) is given 
by 

(48) 

where p is a non-negative integer. We would like to know whether or 
not the polynomial in this expression has any zeros in the right half 
plane. A polynomial with real coefficients with no zero in the right 
half plane was defined in Chapter 9 as a Hurwitz polynomial. There we 
discussed certain necessary conditions of a Hurwitz polynomial, such as 
the fact that all coefficients must be present and must be positive. 

We will now state a theorem that can be used as a test of the Hurwitz 
character of a polynomial. Let us first write a polynomial as the sum 
of its even and odd parts. That is. 

(49) 

where m contains all the even powers of s and n contains all the odd 
powers. If P(s) is a Hurwitz polynomial, then the ratio m/n, or its 
reciprocal, is a reactance function. Conversely, if the ratio of the even and 
odd parts of a polynomial P(s) is found to be a reactance function, then 
P(s) will differ from a Hurwitz polynomial by at most a multiplicative 
even polynomial. We shall not prove this theorem here.* 

In using this theorem to test a given polynomial P(s), the simplest 
procedure is to form the ratio of the even and odd parts and expand the 
result in a continued fraction. This will take the form 

* For a proof, see N. Balabanian, Network Synthesis, Prentice-Hall, 1958. 
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(50) 

m/n will be a reactance function if and only if the coefficients b1, b2, 
..., bk are all positive, except that b1 may be zero. (See Problem 9.14.) 
Note that if m(s) and n(s) have any common even factors, these will 
cancel in the ratio and will not affect the b coefficients. We refer to 
this procedure as the Hurwitz test for stability. 

Let us illustrate the Hurwitz test with an example. Let 

(51) 
Then 

(52) 

To expand the ratio m/n in a continued fraction, we divide the denomi
nator into the numerator, as by long division, stopping after the first 
quotient. Then we invert and divide again, stopping after the first term. 
Again we invert and continue in this fashion until the function is ex
hausted. The work can be arranged as follows. 
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Hence, the continued fraction is 

(53) 

The polynomial is thus Hurwitz and has no zeros in the right half plane. 
The Hurwitz test is a relatively simple test. However, in order to 

use the test, we require that the network determinant Δ(s) be calculated 
as a function of s. This is not always an easy job. It would be useful 
to have a method for stability testing which uses experimental data, or 
only approximate curves based on asymptotic or corner plots. Such a 
technique is the Nyquist criterion, which we shall now take up in some 
detail. 

Since our interest is in the determinant, we select some function that 
involves the determinant. For instance, we may select a transfer 
function 

(54) 

Since Δ(s) is in the denominator, we would like to find out whether G(s) 
has any poles in the right half plane. Nyquist's test uses the principle 
of the argument to decide this issue. Since the region of interest is the 
right half plane, we choose a contour that "encloses" the right half 
plane, as shown in Fig. 16. 

Fig. 16. Contour for Nyquist's test. 

Here we can make the distance δ between the jω-axis and the contour 
arbitrarily small, and the radius R arbitrarily large. In the limit the 
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contour becomes the jω-axis. In order to use the principle of the argu
ment, we must require that there be no poles on the contour C. Hence, 
if we wish to let δ become zero, we must require that G(s) have no poles 
on the jω-axis. Similarly, if we wish to let the radius R go to infinity, we 
must require that G(s) be regular at infinity. From here on we will 
assume that these conditions are satisfied. 

Let us consider the mapping of the contour by the function G; that 
is, the locus of the point G(s) as s traverses the contour of Fig. 16. This 
may be a figure such as the one shown in Fig. 17a. Since G is a network 

Fig. 17. Map of the contour of Fig. 16. 

function, it is real on the real axis and so the map is symmetric with 
respect to the real axis. Let N0 and Np be the number of zeros and 
number of poles of G(s), respectively, which lie inside the contour C. 
Now the argument principle states that 

(55) 

That is, the change in the argument of G(s) as s traverses the contour 
C in the positive direction is 2π times the number of zeros minus the 
number of poles of G(s) within C (counting multiplicity). 

Let us see what the nature of the locus of G(s) must be if this change 
of angle is to be nonzero. It is quite evident that the locus must go 
round the origin in the C-plane if there is to be any change in the argu
ment. This is the case in Fig. 17b. In Fig. 17a, there is no change in 
the argument as we traverse the locus once. In other words, the locus 
must enclose the origin in the G-plane if there is a net change in the angle 
of G(s) over the contour C. If C is traversed in the positive (counter
clockwise) direction, positive (counterclockwise) enclosures of the origin 
in the G-plane correspond to a positive value of N0 — Np in Eq. (55). 
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Thus, if the G(s) locus does not enclose the origin, we can conclude 
that G(s) has as many poles as zeros in the right half plane. But we really 
want to know whether it has any poles in the right half plane. Therefore, 
for this test to be useful, we must know, by some other means, that G(s) 
has no zeros in the right half plane; i.e., that G(s) is a minimum-phase 
function. This is by no means an easy task. However, there is no 
need to abandon our procedure because we have met some difficulty. 
What we can do is to find another function involving the network 
determinant and some other factor, this factor being such that its zero 
locations are known to us. 

Such a function is the return difference. Let us digress for a moment 
to introduce this concept. Consider the signal-flow graph of the system 
under consideration. We first set all the sources in the graph (cor
responding to independent generators in the network) to zero. As we 
have observed earlier, this corresponds to short circuiting the voltage 
generators and open circuiting the current generators. We focus atten
tion on one of the transmissions of the graph. As far as the definition 
of return difference is concerned, this may be any transmission. But 
for the application of interest, we will focus attention on the trans
mission of a dependent source, such as μ or gm or a. Implied in this 
statement is the assumption that we draw the graph such that the 
desired transmission appears only once, and alone, in the signal-flow 
graph. It is always possible to modify the network equations (by 
suitable linear combinations and introduction of auxiliary variables) such 
that this assumption is satisfied, except when this transmission is a 
mutual inductance. Now we cut this branch in two, inserting a source 
node on the "forward" side and a sink node on the "return" side, as 
shown in Fig. 18b. We have labeled the branch transmission with the 

Fig. 18. Definition of return difference. 

neutral symbol k. The unit transmission in Fig. 18b is introduced merely 
to permit the sink to appear as a separate node. 

We now let y0 be a unit signal, and compute the returned signal x0. 
Interpreting k as a unilateral transmission, this signal at x0 will tell us 
how much of the input signal y0 is "fed back" to the input. For this 
reason we define (— xo/yo)(= — xo) as the return ratio, symbolized con-
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ventionally as T. The negative sign is introduced to conform with 
standard reference conventions in feedback amplifier theory. 

The return difference F is defined as the difference between the input 
and returned signals, when the input is unity. Thus 

(56) 

The return difference thus defined is called the return difference for zero 
reference because we have cut the transmission path k completely. There 
are other conditions that are also useful in feedback theory but the 
zero reference quantity suffices for our present purposes. A mathe
matical description and measure of feedback is thus provided by the 
return difference. If there is no feedback, then the return ratio will be 
zero and the return difference will equal unity. 

To get back to the question of stability, we have to establish first 
that the quantity F has something to do with the system determinant. 
In fact, we can show that if k appears as a coefficient in the loop (or node) 
equations, then 

(57) 

where Δ is the loop (or node) determinant and Δ° is the value of the 
determinant when k = 0. Before establishing the reasonableness of this 
expression, let us observe that k must appear in its natural form and not 
as 1/k in the equations. We choose the loop or node basis depending on 
this fact. (If k appears in natural form in both—as μ would, for ex
ample—we may choose either basis.) 

To establish the validity of Eq. (57), consider the system of equations 
represented by the signal-flow graph, before any branch is cut. Writing 
these in conventional form, we have 

(58) 

Remember that the element k is to appear in only one of the equations. 
Referring to Fig. 18a, the equation for node xb will be 

(59) 

where k does not appear in any of the transmissions abi. When written 
in the form of Eq. (58), this equation will be 

(60) 

Therefore we can express the determinant of the matrix A as 
(61) 
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where 
(62) 

and 
(63) 

The second line of Eq. (63) follows from the fact that k does not appear 
in Δ b a . (Equation (61) can be obtained by expanding Δ along the bth 
row and then collecting all the terms except the one containing k.) 

Now consider the case where the branch k is cut. We can represent 
this situation in the equations as follows. We first replace the right side 
of Eq. (58) by zero. Then we add k to the right side in the bth row, cor
responding to the insertion of the unit signal in the forward path of 
Fig. 18b. (In this figure the unit signal multiplied by k appears in the 
equation for xb.) Finally we delete kxa from the left side of the bth 
equation. Now the returned signal is xa. Solving for xa in this modified 
system, we get 

(64) 

where Δ0 is the new system determinant which obviously is the same as 
in Eq. (62). The return difference is then 

(65) 

Or, using Eq. (61), 

(66) 

This derivation was with respect to the system of equations rep
resented by the signal-flow graph—not the loop or node systems. To 
show that Eq. (66) is invariant to a change of basis of analysis we make 
the following observations. The natural modes of the system are al
ways given by the zeros of the system determinant and are independent 
of the basis of analysis. Therefore the determinants of every system 
of network equations have the same zeros (with possibly different be
haviors at s = 0). With our assumption that each R, L, C is a branch, 
the determinants have no finite poles except possibly at s = 0. Thus 
the different determinants obtained can only differ by multiplicative 
factors of the type Ksn where K is a constant. Such factors cancel 
between numerator and denominator of the right side of Eq. (66), 
leaving it invariant to a change of basis (as long as we write equations 
such that Δ(s) = 0 is the characteristic equation). 
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Let us return from this digression to a consideration of the Nyquist 
locus. The mapping function is the return difference function for the 
transmission k, which we will denote by Fk(s). Thus, 

(67) 

Now if this map is going to tell us anything about the zeros of Δ(s) in 
the right half plane, we must know that Fk(s) has no poles in the right 
half plane; or if it has any poles there, we must know how many. There 
is one case in which we can definitely say that Fk has no poles in the 
right half plane. This is the case in which setting k = 0 makes the 
network passive, i.e., if k represents the only active element (that is, 
dependent source) in the network, then we can say for sure that Δ°(s) 
has no zeros in the right half plane. In this case the stability of the 
system is deducible from the character of the F-locus. For emphasis, let 
us summarize this result. 

Let k represent the transmission of the only active element in a network 
and let Fk(s), defined by Eq. (67), be the return difference for k. Assuming 
Fk(s) is regular everywhere on the jω-axis including s = 0 and ∞, the net
work will be stable if and only if the locus of Fk(jω) for — ∞ < ω < ∞ does 
not enclose the origin in the Fk-plane. 

In case Fk(s) is regular on the jω-axis except at s = 0, we can do some 
"patchwork" on the locus. We can find the loci for —∞ <ω < — e and 
e < ω < ∞, where e > 0, and complete the locus by estimating the 
behavior of F(s) near s = 0 from the first term of the Laurent expan
sion. 

The assumption that k is the only active element can be relaxed to 
include all single-loop systems by observing that if the transmissions of 
any one of the active elements is reduced to zero, the loop transmission 
becomes zero. As a matter of fact, this behavior can be made the 
definition of a single-loop system. Hence, stability for any single-loop 
system is determined in the same way as for a system with a single active 
element. 

Instead of using the return difference F(s) in Nyquist's stability 
criterion, the return ratio T(s) is almost always used. These two 
quantities differ only by unity. The origin in the F-plane corresponds 
to the point — 1 in the T-plane. Thus, the stability criterion in terms 
of T(s) will be the same, except that instead of encirclements of the 
origin, we must talk about encirclements of the point — 1 . 

Nyquist's criterion can be extended to multiple-loop feedback systems 
also. This involves plotting several Nyquist diagrams, with different 
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numbers of active elements "alive" in each case. We will not discuss 
this extension here. * 

Let us turn again to the special case of a single-loop feedback system. 
The block diagram and signal-flow diagram are shown in Fig. 19. 

Fig. 19. Single loop system. 

Suppose we find the return ratio for the branch G(s). To do this we 
break the branch at the left hand end and insert a unit signal. Clearly, 
the returned signal will be —G(s)H(s). The return difference will then 
be 1 - (-GH) = 1 + G(s)H(s). A glance back at section 10.1 will 
show that GH is precisely what we there called the open-loop transfer 
function. Thus, the concepts of return ratio T and open-loop func
tion for a single-loop system are identical. One point should be empha
sized, however. Our ability to draw the block diagram in this simple 
form involves approximations. On the other hand, for calculating the 
return difference (of the μ of a tube, say), approximations may be made 
to simplify computation, but they need not be. 

Thus, one way in which the Nyquist criterion can be used, is to place 
a given network in the form of Fig. 19, from which G(s) and H(s) can 
be calculated relatively simply. A plot of G(jω)H(jω) = T(jω) then 
gives the desired information. 

Let us now illustrate the Nyquist stability criterion by means of an 
example. We shall go through this example in some detail and show how 
approximations can be incorporated in the procedure. 

Consider the three stage RC coupled amplifier with frequency sensitive 
feedback shown in Fig. 20. In this example we shall try to show the 
advantage of the Nyquist criterion by not computing Δ(s). Instead 
we shall estimate the return ratio T(s) by making use of a number of 
approximations. This network is a simplified model of a vacuum tube 
network in which many of the interelectrode capacitances have been 
neglected to simplify the example. 

Since this is a single-loop system, we need compute only one return 

* See the Bode and Truxall references already cited. 
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Fig. 20. Example for Nyquist locus. 

ratio, say for μ 1. Our interest lies entirely on the jω-axis; hence, we can 
deal with steady-state phasors instead of Laplace transforms. Re
membering the signal-flow graph definition of the return ratio, we must 
cut the branch of the graph having transmission μ1 and apply a unit 
signal at the right hand node of the pair of nodes thus formed. The 
signal applied at the other node to which branch μ1 is connected is then 
simply μ1. We should now interpret this step in terms of the actual 
network rather than the signal-flow graph. If we were to assume a unit 
voltage Vg1, then the voltage of the first dependent source would be 
simply μ 1. Thus, the condition shown in Fig. 21 is the appropriate one 

Fig. 21 . Return ratio computation. 

for computing the return ratio. Here, the external sources are removed 
and the first dependent source is assumed to be an independent source 
having a phasor voltage μ1. 

Notice that the reference for T is chosen to conform with the definition 
that it is the negative of the returned signal at the node xa in Fig. 18b. 
It is easy to see how this interpretation can be used for experimental 
measurement of T(jω) on the network of which this example is a model. 

In order to construct the Nyquist diagram, let us split the frequency 
range 0 ≤ ω < ∞ into a number of bands and use suitable approxima
tions in each band. At very low frequencies, the returned signal will 
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be very small due to the coupling capacitances C 1 , C 2 , and C f . The 
influence of C g k can be neglected in this range. There are three RC 
coupling networks in the loop transmission. Let us use the notation 

(68) 

with suitable subscripts for each of the coupling networks. Then, the 
voltage ratio of each stage will be 

(69) 

with appropriate subscripts. Hence, in this range the return ratio will 
be given by 

(70) 

(The negative signs disappear because of the reference for T.) The 
asymptotic phase of each of the factors in Eq. (70) as ω —> 0 will be 

π/2 radians. Thus, the total asymp
totic phase of T(jω) will be 3π/2 
radians, the magnitude approaching 
zero. Hence, the low-frequency por
tion of the locus of T(jω) looks like 
the curve in Fig. 22. 

Fig. 22. Low-frequency behavior of 
T(jω). 

Let us assume that the break 
frequency of R1Cgk is considerably 
higher than the break frequencies of 
the three RC coupling networks. 

Thus, there will be a midband frequency range in which the behavior 
of the network in Fig. 21 can be approximated by that shown in Fig. 23. 

For this network T is computed quite easily. Alternatively, the 
desired expression can be obtained from Eq. (70) by neglecting the 
constant terms in the denominators compared with the frequency-
dependent terms. In either case the result will be 
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Fig. 23. Midband approximation. 

(71) 

This is obviously a real positive number. Thus the midband T-locus is 
on the positive real axis. The point Tm is marked on Fig. 22. 

At high frequencies Fig. 23 can still be used, except that the effect of 
Cgk must now be included. Since C g k is in parallel with R e 3 , the third 
factor in Eq. (71) should be modified and replaced by the following. 

(72) 

Hence, the angle of T will asymptotically approach — π/2. The high 
end of the T(jω) locus therefore takes the form shown in Fig. 24. 

Fig. 24. High-frequency behavior of 
T(jω). 

We can now estimate the T(jω) 
locus for 0 ≤ ω < ∞ to have roughly 
the shape shown in Fig. 25. To im
prove the approximation, we should 
estimate a few points on the curve, 
using what we know about RC 
networks. Suppose for simplicity, 
that the three significant break 
frequencies of the interstage cir
cuits are either identical, or widely 
separated. In the first case, we know that at the common break 
frequency, each circuit contributes an angle of 45° and a 3 db attenua
tion. This point, marked ω3 in Fig. 24, must be 9 db below Tm in gain. 
Similarly, we can find the frequency at which each circuit contributes a 
60° angle. This is the frequency at which each of the denominator 
factors in Eq. (70) contributes 30°, which is easily found to be approxi
mately ω2 = 0.58ω3. At this frequency the logarithmic magnitude of 
each factor will be down about 4 db. Therefore the logarithmic magni
tude of T(jω2) will be down 12 db from that of Tm. The frequency ω2 



438 Feedback and Related Topics [Ch. 10 

Fig. 25. Approximate Γ-locus for example. 

is marked in Fig. 25 at the point where the locus crosses the negative 
real axis. The other points ω1, ω4, ωs, ω6 are similarly computed. For 
example ω6 is the break frequency of C g k - R e 3 . 

Once the locus for the positive range of ω is known, the diagram can 
be completed by symmetry about the real axis. The complete locus for 
the example is shown in Fig. 26. 

Fig. 26. Complete T-locus. 

It is evident that the stability of the system is determined by the 
value of |T(jω2)|. If this magnitude is greater than 1, the system is 
unstable. In such a case the system can be made stable by modifying 
some of the element values. Even if the point ( — 1,0) is not enclosed 
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by the T locus, the proximity of the curve to this point gives a measure 
of the "relative stability"; that is, it gives an indication of the closeness 
of a pole to the jω-axis. 

This idea can be expressed in a somewhat more quantitative way by 
defining stability margins, the gain margin, and the phase margin. As 
a matter of fact, consideration of the Nyquist locus leads to many other 
concepts which are useful in system design. However, we shall arbi
trarily terminate the discussion at this point, leaving such extensions 
to advanced books on feedback theory. We hope enough has been 
said to interest you in further study of stability. 

10.4 Root Locus 
Let us here continue to restrict ourselves to single-loop feedback 

systems. We have seen that the Nyquist locus gives us a fairly rapid 
method of determining system stability, and even relative stability. 
We stated that an unstable network could be made stable by modifying 
some of the network parameters. It is obvious that the poles of the 
system function will change as a network parameter is modified. Since 
the poles are the natural frequencies, which determine the transient 
response of the network, it would be very useful to know their variation 
when a network element is varied. The root locus method is a technique 
which provides this information. Since the concept of a root locus is 
related with many of the concepts which we have considered earlier, 
we will devote some time to a discussion of the method in this section. 

The block diagram and signal-flow graph of a single-loop feedback 
system are shown in Fig. 19. The voltage transfer function (closed loop) 
can be written 

(73) 

We have already seen that the open-loop transfer function GH is the 
same as the return ratio T(s). By expressing G(s) and H(s) as rational 
functions in s, it is easy to see that all the poles of the transfer function 
are the points at which 

(74) 

The locus of the solutions of Eq. (74) as some network parameter is 
varied, is called the root locus. Although this general definition applies 
to the variation of any network parameter, the name root locus is usually 
applied to the case where the parameter involved is the gain constant K. 
This is the constant multiplying factor when T(s) is written as a rational 
function as follows. 
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(75) 

The reason for this specialization is not far to seek, since the gain con
stant is a very important factor in determining the amount of feedback, 
and the advantages resulting from it. 

The root locus, as K varies from 0 to ∞, has a very simple geometric 
interpretation. By examining Eq. (74) we see that whenever the angle 
of T(s) is equal to π, there will be some value of K for which the equation 
will be satisfied. Thus, the root locus consists of merely those lines in 
the s-plane along which the normalized return ratio Tn(s) = T(s)/K 
takes on negative real values. Or, to put it in the language of conformal 
mapping, the root locus is a map in the s-plane of the negative real axis 
of the Tn-plane, under the function which is the inverse of Tn(s). The 
points corresponding to K = 0 are inverse images of Tn = ∞ and the 
points corresponding to K = ∞ are inverse images of Tn = 0. 

Evidently the function inverse to Tn(s) will be multi-valued if Tn(s) 
has more than one pole and one zero. In general, then, there will be 
more than one curve in the root locus. We refer to each of these as a 
branch of the locus. 

The utility of the root locus is enhanced if it is possible to sketch the 
locus rapidly. This can be done once the poles and zeros of the return 
ratio are known. Let us now discuss some of the general features of the 
root locus. In terms of the normalized return ratio, the locus is the set 
of points satisfying (76) 

If we interpret the locus to start when K = 0 and to end when K is 
infinite, then we see that the branches of the locus start from the poles 
of Tn(s) and end at the zeros. It is clear that there will be as many 
branches as Tn(s) has poles or zeros. (Counting zeros at infinity and 
multiplicities, a rational function always has as many zeros as it has 
poles.) 

Branches of the locus that fall on the negative real axis are easily 
found. Quadratic factors in Tn(s) of the form s2 + as + b due to con-
jugate poles or zeros will be real and positive when s is negative real, 
and hence will not contribute to the angle of Tn(s). All factors due to 
real poles or zeros will have the form s + a. Each such factor will 
contribute zero angle if s lies to the right of -a on the real axis and an 
angle ± π if s lies to the left of -a. Thus, all parts of the negative real 
axis which lie to the left of an odd number of critical points (zeros and 
poles) will be parts of the locus. 
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It is a simple matter to calculate the angle with respect to the real 
axis at which a root locus leaves a pole or approaches a zero. Consider, 
for example, a pole of order n of Tn(s). The dominant term in the 
Laurent expansion will determine the behavior of the root locus near the 
pole. Let spj be an nth order pole of Tn(s). Then, the dominant term 
in the Laurent expansion will be 

If we write 
(77) 

Then the angle of the dominant term will be 

(78) 

If s is to lie on the locus, this angle should be equal to π. Hence, 

(79) 

This is the desired result. The angle β is easily calculated from Tn(s). 
It is 

(80) 

This step is easily performed graphically if the poles and zeros of 
Tn(s) are located on the complex plane. The angles of the lines from 
each of the critical points to the pole spj are measured. Their algebraic 
sum (positive for zeros, negative for poles), suitably modified for mul
tiple poles or zeros, is the desired angle. 

Similarly we can compute the angle at which the locus approaches a 
zero. In this case the dominant term is the first nonzero term in the 
Taylor series expansion. For a zero of order n at soj, we find that the 
angle of approach θ is 

(81) 

where 

(82) 

We can also see from the dominant terms, that there are as many 
branches leaving a pole (or arriving at a zero) as the order of the pole 
(or zero). These branches intersect at the pole (or zero) with equal 
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angles between them. We have given one of these angles; the others 
are obtained by adding 2πk/n, k = 1, 2, ..., n — 1 to this angle. 

What has been stated about the number of loci applies also if Tn has 
an nth order multiple zero at infinity. Let us write 

(83) 

Then, the asymptotic behavior of Tn(s) as s —> ∞ will be given by 

(84) 

In this case the angle a is zero. Hence, the angles at which the asymp
totes approach infinity are given by 

(85) 

This, of course, does not tell us the positions of the asymptotes; 
it gives only the angles. At first sight it might appear that the asymp
totes all radiate from the origin. However, this is not the case. As 
a first step in finding the positions of the asymptotes, let us take the 
reciprocal of Tn(s) in Eq. (83) and divide the denominator into the 
numerator, stopping when the remainder is a proper fraction. The 
result will be 

(86) 
where A1 = b1 — a1. 

The remainder term in this expression goes to zero as s —> ∞, so it 
will have no effect on the asymptotic behavior of 1/T n(s). Thus, for 
large values of | s | the locus will be given approximately by 

(87) 

Let us suppose that the asymptotes radiate from some point on the 
real axis; designate this point s0. For any value of K, a point on an 
asymptote can be described by 

(88) 

A point s = so + ( - K ) 1 / n which lies on the asymptote must satisfy 
the equation of the locus in the limit as K (and s) approach infinity. 
Hence, let us substitute Eq. (88) into Eq. (87) for the locus (eventually 
expecting to take the limit as K —> ∞). After substituting the value of 



Sec. 10.4] Root Locus 443 

s into Eq. (87), let us expand each term by the binomial theorem, and 
then collect terms involving the same power of K. The result will be 

(89) 

Now let us take the limit as K —> ∞. Each term in the square brackets 
except the first will go to zero because of the factors K-1/n. In order 
for Eq. (89) to hold in the limit, then, we must require that 

(90) 

But, returning to Eq. (83) shows that b1 is the negative sum of the poles 
of Tn(s) and a1 is the negative sum of its finite zeros. Hence, the asymp
totic center of the root locus can be expressed in terms of Tn(s) as 

(91) 

where n is the order of the zero of Tn(s) at infinity. 
Before considering other general properties of the locus, let us illus

trate the preceding discussion with a simple example. Consider the 
normalized return ratio 

(92) 

All of the poles are negative real and there is a triple zero at infinity. 
The branches of the locus that lie on the negative real axis are im
mediately determined to lie between —1/2 and —2, and between —3 and 
—∞. There are three infinite asymptotes; hence the angle between 
them is 120°. One of the asymptotes is the negative real axis. From 
Eq. (91) we find that the asymptotes intersect at 

(93) 

This amount of information is shown in Fig. 27a. The branches of the 
locus which go to infinity asymptotically can now be crudely sketched 
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in. Knowledge of two specific points will greatly facilitate this sketch. 
One of these is the point at which the locus crosses the jω-axis and enters 
the right half plane. This is an important point; the value of K cor
responding to this point is the largest possible value for a stable network. 
Larger values of K lead to instability, since poles of the transfer function 
will then lie in the right half plane. 

Fig. 27. Root locus for 

In the present case, this point is relatively easy to find. The return 
difference corresponding to Tn(s) given in Eq. (92) is 

(94) 

The problem is to find the value of K for which the numerator on the 
right side will just cease being a Hurwitz polynomial. This is the value 
of K which will cause F(s) to have a pair of zeros on the jω-axis. If a 
polynomial has a pair of zeros on the jω-axis, say at s = ±jωo, it must 
have a factor s2 + ω0

2. This factor must be a factor both of the even 
part and the odd part. Let us, then, write the even and odd parts of 
the numerator of F(s) separately. 

(95) 

Since the quadratic factors are to be the same, this immediately gives 
us the values of K and ω0. They are 
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(96) 

Alternatively, the Hurwitz test can be applied to determine the largest 
value of K for which the numerator polynomial of F(s) will be Hurwitz. 

The other important point on the root locus is the point in Fig. 27b 
at which branches of the locus appear to cross. Recall that the root 
locus is the map of the negative real axis of the Tn-plane into the s-plane 
under the transformation which is the inverse of Tn(s); let us label this 
s = f(Tn). Hence, to locate the crossover points, we need to locate those 
branch points of f(Tn) which lie on the negative real axis in the Tn-
plane. 

This task is simplified by the use of a theorem from function theory, 
which states that if a function Tn(s) has an nth order saddle point * 
at s = sb, then the inverse function f(Tn) will have an nth order branch 
point at the corresponding point Tn(sb). Thus, to find the saddle points 
of Tn(s), we must differentiate it and find the zeros of the derivative. 
In order to determine which of these correspond to negative real branch 
points, we must evaluate Tn(s) at these points. 

To illustrate this procedure, let us return to Eq. (92). We first dif
ferentiate Tn(s) to get 

(97) 

The finite zeros of this expression are found to he approximately at 
s = —2.56 and s = —1.107. The first of these is not on the root locus 
and hence does not correspond to a negative real branch point. The 
point s = —1.107 is on the root locus and corresponds to a value of 
approximately Tn( —1.107) = —0.975, which is indeed negative real. 
Hence, s = —1.107 is the crossover point. Since K = — 1 /T n on the 
root locus, we have incidentally found the value of K corresponding to a 
particular point on the locus. 

It should be noted that the branches of the root locus do not actually 
cross at the saddle point; they change their direction abruptly. Thus, 
the locus of Fig. 27b near the saddle point actually behaves in the manner 
illustrated in Fig. 28. (Or alternatively, the branch of the locus coming 
from the right may turn upward while the branch coming from the left 
may turn downward.) 

There are other properties of the root locus which can be used to 
facilitate sketching of the locus, but we shall be content to stop here. 

* An nth order saddle point of a function Tn(s) is a value of s at which the first n 
derivatives of the function vanish, and the (n + l)th derivative is nonzero. 
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Fig. 28. The root locus in the vicinity of a saddle point. 

After a rough sketch of the locus is obtained, the accuracy of any desired 
portion of it can be increased by more careful plotting. 

Let us now briefly consider some of the things that can be accomplished 
by working with the root locus. Turn again to the example illustrated 
in Fig. 27. The Hurwitz test tells us the maximum value of K that can 
be used for stability. However, the closer the poles of the closed-loop 
transfer function to the jω-axis, the more violent will be the transient 
response of the system. The pole which lies on the branch of the locus 
to the left of s = —3 contributes little to the transient response com
pared to the other two poles. 

Qualitatively, then, it appears that to get a less violent transient 
response we should attempt to move the branches of the locus which 
correspond to complex poles toward the left. One way to do this is to 
move the poles of Tn(s) farther from the origin. This can be done if 
Tn(s), is multiplied by a function which has zeros at one or more poles 
of Tn(s) and poles at the desired points. As an example, suppose we 
multiply Tn(s) by 

(98) 

In terms of the system this amounts to cascading with G(s) a network 
having Gi(s) as its transfer function. (This is known as a lead network 
in control system language.) The new return ratio will be 

(99) 

The zero of G1(s) cancels the pole of Tn(s) closest to the origin. The root 
locus will now take the form sketched in Fig. 29. Now the branches of 
the locus have been moved farther away from the origin. A much 
larger value of K is allowable (K = 210) before the system becomes 
unstable. From another point of view, a given value of K will lead to a 
transfer function with much greater relative stability and less violent 
transient response. 
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Fig. 29. Improved root locus. 

In closing this chapter, let us repeat that only the fundamental con
cepts of the several subjects we have treated have been introduced. 
Much of the detail and many interesting ramifications of stability and 
feedback theory which deserve consideration have been omitted. We 
hope that this chapter has whetted your appetite and aroused your 
interest sufficiently that you will seek further study of feedback theory 
and control systems in more advanced texts. 

PROBLEMS 
10.1 Prove the following block diagram identities. 

Fig. P10 .1 . 
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10.2 Draw a block diagram for the networks of Fig. P10.2 with one block for 
each element. Reduce the block diagram using known identities to find the 
desired transfer functions. 

Fig. P10.2. 
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10.3 For the amplifier network shown in Fig. P10.3a draw a block diagram 
in the form shown in Fig. P10.36. 

Fig. P10.3. 

10.4 Draw a functional block diagram for the network of Fig. P10.4 which 
gives an intuitive picture of the essential operation. 

Fig. P10.4. 

10.5 Solve the following system of equations for x1 using signal-flow graphs. 
Also find x1 by Cramer's rule (both as a check and to illustrate the amount of 
work involved). 

10.6 Complete the network example started in Fig. 13 and find V4/Vg, (i) 
by reducing the flow graph alone, (ii) by operating on the connection matrix 
alone and (iii) by using node equations. Compare with the solution given in 
Eq. (47). 

10.7 Set up a signal-flow graph for the network of Fig. P10.7, to find the 
transfer function Y21(s) = I2/V1. Find this function by reducing the example. 
Also, apply Mason's formula (38) to the original graph, and compare the answers 
obtained. 
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Fig. P10.7. 

10.8 Solve Problem 10.2 by signal-flow graphs. 
10.9 Find the voltage ratio V2/V1 for the general ladder network of Fig. 

P10.9 by first setting up the signal-flow graph. From the signal-flow graph show 
that the transmission zeros occur at series branch poles or shunt branch zeros. 

Fig. P10.9. 

10.10 Find the gain V2/V1 for the "pseudo-tuned" amplifier of Fig. P10.10, 
using signal-flow graphs. Find the poles and zeros of V2/V1 and plot them in 
the complex plane. Sketch the frequency response (magnitude only) curve. 
(Normalize the frequency and impedance to make the numbers more manage
able.) 

Fig. P10.10. 

μ = 10, Rp = 10,000 ohms, R1 = 250,000 ohms, R2 = 2 megohms, C1 = 0.0015 
μf, C 2 = 0.01 μf. 

10.11 State the rules in signal-flow graph terminology which are analogous 
to the rules given for block diagrams in the text and in Problem 10.1. 

10.12 Check whether the following polynomials represent stable systems 
by the Hurwitz test. 
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10.13 In the network of Fig. 20 in the text let the values of the components 
be such that the break-frequencies of the three interstage networks are 

ωa = 100, ω6 = 1000, ωc = 100,000 

Sketch the Nyquist locus carefully for this case. Find the maximum value that 
Tm can be, if the network is to be stable. 

10.14 Sketch the Nyquist locus for the network of Fig. P10.14. Find values 
of RfLf for which the network is stable. What is the maximum value of a 
under this condition, if the network is to remain stable for small variations of 
parameter values (Re, Ge, Rf, Lf in particular) from the design value? 

Fig. P10.14. 

10.15 Sketch the Nyquist locus for the network of Fig. P10.15 and give the 
condition for stability. 

Fig. P10 .15 . 

10.16 Draw a block diagram and signal-flow graph for the network given in 
Fig. P5.14. By reducing these diagrams, calculate the transfer voltage ratio. 
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10.17 Sketch the root locus for each of the following return ratio functions. 

10.18 It is desired to prove the Hurwitz theorem stated on page 426. In 
the first place, to prove that if P(s) = m(s) + n(s) is Hurwitz, then m/n is a 
reactance function, note that the factors of a Hurwitz polynomial are of the 
form (s2 + as + b) or (s + c), where a, b, and c are real and positive. Write 

Then, the ratio of the even and odd parts is 

Show that m/n will be a reactance function provided m1/n1 is also. Repeat 
this procedure, with P1 = m1 + n1 until all the factors of P(s), both quadratic 
and linear, are exhausted. 

In the second place, if F(s) = m(s) + n(s) and m/n is a reactance function 
then P(s) is a Hurwitz polynomial (except for a possible even factor). The 
zeros of P(s) occur when 

Prove that, since m/n is a reactance function, m/n = —1 cannot occur in the 
right half s-plane. 

10.19 It is very often desired to plot loci for constant angle of the return 
ratio, for angles other than π radians. Such loci are called the phase-angle loci. 
If the return ratio has a zero at infinity of order n, show that the asymptote 
approached by the locus for constant angle θ is a straight line making an angle 
—θ/n with the real axis. Show also that the asymptotes for all angles intersect 
on the real axis at the point given by Eq. (91) in the text. 



11 • IMAGE PARAMETERS 
AND FILTER THEORY 

When discussing methods of describing the external behavior of two-
ports in Chapter 8, we postponed the discussion of image parameters. 
One reason for doing this was our desire to follow the presentation of the 
formalism of image parameters with a treatment of the subject in which 
image parameters have had their greatest use, filter theory. In this 
respect we will again depart slightly from the main stream of thought in 
this book in that filter theory cannot be completely divorced from filter 
design. However, we will attempt to emphasize the basic analysis in
volved and will keep design or synthesis considerations to a minimum. 

There are several possible sources of confusion in discussions of image 
parameter theory. For one thing, there is a whole new vocabulary as
sociated with image parameter theory that has to be learned. Also 
there is so much algebraic manipulation involved that the overall phi
losophy of the discussion may become blurred. These difficulties become 
compounded when we try to compress the theory into the space of one 
chapter. In this chapter we shall try to minimize the confusion by con
fining our attention to the basic essentials of the theory and keeping the 
special vocabulary to a minimum. There is not much that can be done 
with the algebraic manipulation. (Wherever these are straightforward 
we shall leave them out.) Along these lines, let us first give a bird's eye 
view of the discussion, in the hope of establishing the philosophy of the 
whole chapter. 

We first define the image parameters and relate them to the more 
familiar two-port parameters introduced in Chapter 8, namely ABCD, 
z, and y parameters. 

In section 11.2 we restrict ourselves to the most important class of 
networks in filter theory, namely lossless two-ports. In this case we 
find that the image parameters exhibit very special properties, being 
purely real or imaginary on the jω-axis. We find further, that two of 
the parameters suffice to describe the two-port, the third being derivable 

453 
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from these. This important result, due to Bode, is proved here. From 
this result we conclude that one image impedance and the transmission 
zeros virtually decide the network. 

We then define the concept of a filter and discuss the locations of the 
poles and zeros of the image parameters of a lossless low-pass filter. We 
find that the poles and zeros of z11 and y11 are related in a very special 
fashion. 

Next we turn to the question of filter realization. That is, given one 
image impedance and the zeros of transmission, we seek a network that 
is a tandem combination of simple two-ports, with the given image im
pedance and zeros of transmission. The familiar constant-K and m-
derived Tee and Pi sections are introduced as elementary two-ports 
realizing zeros of transmission on the jω-axis. The lattice is then in
troduced as a section for realizing zeros of transmission off the jω-axis. 
We also relate the lattice to the Tee and Pi sections, as well as to a general 
symmetric two-port. The realization of the given image impedance is 
also taken up, by bringing in the terminating sections. 

In section 11.5 of the chapter we consider, very briefly, the other im
portant problem of filter design, namely, the problem of approximating 
a given ideal characteristic by a realizable one. We state Cauer's solu
tion for the Tchebyscheff approximation without proof, introducing the 
Jacobian elliptic functions for this purpose. 

In the last section, the frequency transformations that convert a low-
pass filter into a high-pass or band-pass filter are described. 

11.1 Image Parameters 
The image parameter system for the description of the behavior of 

two-ports grew out of the study of propagation of waves in uniform 
media. Probably the most familiar example of this to us is transmission 
line theory. The propagation of the wave is affected by the properties 
of the line. These properties are described in terms of two quantities; 
the characteristic impedance and the propagation constant. 

The earliest analysis of communications systems was in terms of wave 
propagation. Even when lumped networks were involved, thoughts on 
the subject followed along the lines of propagation and reflection of 
waves. However, unlike the uniform transmission line, many lumped 
networks are not symmetrical and, hence, require more than two parame
ters to describe their behavior. Again historically, the image parameter 
system has been used only in the case of reciprocal networks. Even 
though it is possible to extend the system to include nonreciprocal net
works, we will not attempt to achieve this generality. In this chapter, 
then, we are restricted to linear, lumped, reciprocal, and time-invariant 
networks. 
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In all the other systems of describing two-port behavior discussed in 
Chapter 8 (except for the scattering parameters which are also based on a 
wave propagation analysis), the parameters of the system are defined 
as properties of the two-port itself and the definitions do not involve the 
terminations. This is not the case for the image parameters. Consider 
the two-port with its terminations shown in Fig. 1. The terminals are 

Fig. 1. Terminated two-port. 

numbered in the usual way. We define two image impedances as follows. 
The image impedance at end two, labeled Z 0 2 , is that impedance 
which, when connected at terminals (2,2') of the two-port, causes the 
input impedance at the terminals (1,1') to be equal to an impedance 
Z01. This impedance, called the image impedance at end 1, is that im
pedance which, when connected at terminals (1,1'), causes the driving-
point impedance at the terminals (2,2') to be equal to Z 0 2 . The image 
impedances thus have a sort of mutual relationship. From these defini
tions it is clear that, for a symmetrical network, the two image im
pedances are equal. In such a case we will label their common value Z0. 
Thus, Z0 coincides with the concept of characteristic impedance. 

It is a simple matter to determine expressions for the image impedances 
in terms of other two-port parameters. Perhaps the simplest procedure 
is to start with the chain parameter equations which, for the usual 
references shown in Fig. 1, are 

(1) 

If we consider the terminating impedance Z 2 in Fig. 1 to be the image 
impedance Z 0 2 , then V2 = — Z 0 2 I 2 . We now take the ratio of the two 
equations and note that, by definition, V1/I1 = Zoi for this termination. 
Hence, it follows that 

(2) 

In a similar way, suppose the impedance Z1 in Fig. 1 is equal to Z 0 1 . 
Then V1 = — Z 0 1 I 1 (assuming the source is removed). We now con
sider the inverse of equations (1) and compute the ratio V2/I2. [This 
can be done directly with Eq. (1) if desired.] By definition this ratio is 
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Z 0 2 . The result of this step will be 

(3) 

It now remains to solve the last two equations simultaneously. This 
step, as well as many of the other expressions we will establish in this 
section, will involve some algebraic manipulations whose details we will 
leave for you to work out. In the present case the result will be 

(4) 

These equations express the image impedances in terms of the chain 
parameters. For our later use let us express the image impedances in 
terms of the open-circuit and short-circuit parameters. (See Chapter 8 
for these relationships.) We easily find these expressions to be 

(5) 

Note that in the case of symmetrical networks z11 = z22 and y11 = y22 

so that the two image impedances become identical. 
In these expressions for the image impedances we find something very 

disconcerting, since they are irrational functions. We know that the 
driving-point impedances of lumped networks must be rational functions. 
Hence, we conclude that image impedances are not driving-point functions 
of lumped networks. That is, there is no lumped network which we can 
use as the terminating impedance Z2 in Fig. 1 such that the driving-point 
impedance at the input end is equal to the image impedance Z 0 1 . This 
fact, however, does not detract from the usefulness of the image parame
ters for the description of two-port behavior. 

Even though the image impedances are irrational, we still require that 
they be positive real if the two-port is assumed passive. This is easily 
done by choosing the proper Riemann surface for the square root. We 
choose the branch of each square root in Eq. (5) to be the "positive" 
one; that is, the branch of the function on which the square root of a, real 



Sec. 11.1] Image Parameters 457 

positive number is real positive.* [We met a similar situation in Eq. 
(123) of Chapter 7.] 

The image impedances alone do not constitute a complete set of 
parameters for describing two-port behavior. Each of the image im
pedances refers to a single pair of terminals. We need another parameter 
which will involve transmission through the network. Suppose the net
work is terminated at end two in its image impedance. Let us calculate 
the voltage and current transfer ratios starting with the chain parameter 
equations. The result will be 

(6) 

We see that these two functions differ from each other but they have cer
tain common features. Note that in the case of symmetrical networks, 
A = D and the two functions become identical. Suppose we multiply 
these two functions together. We then get 

(7) 

Note that this equation defines β only to within a kπ ambiguity.† This 
result is the same whether the network is symmetrical or not. 

On the right-hand side we have expressed the function in an ex
ponential form. The quantity θ = α + jβ is called the image transfer or 
propagation function. Its real part α is called the image attenuation or 
loss function. Note the inconsistencies with the former notation in the 
book. Previously we used the symbol α for the gain function, whereas 
here it is the negative of gain. The only reason for this is to comply with 
the usage in image parameter theory. For passive networks it is perhaps 
more natural to think of loss rather than gain as being a positive quan
tity. 

* Actually each pole and each zero of z11 and y11 (or z 2 2 and y 2 2 for Z02) is a branch 
point of Z01, except for coincident poles and zeros. Therefore there will be many 
sheets in the Riemann surface. For each square root that appears, we take the posi
tive sheet. In the low-pass filter case to be considered later there will be only two 
sheets. 

† This ambiguity, which physically corresponds to an ambiguity in the output 
(or input) terminals, runs through image parameter theory. It is perhaps due to 
a lack of emphasis on the phase function in classical filter theory. 
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Return now to the voltage and current ratios in Eqs. (6) These can 
be written in terms of the propagation function. From Eqs. (4) and (5) 
we see that 

(8) 

Hence, the voltage and current transfer ratios can be written 

(9) 

The propagation function is related to the chain parameters according 
to Eq. (7). For future reference we will express it in terms of the z and y 
parameters. Let us first use Eq. (7) in the definition of hyperbolic func
tions. We get 

(10) 

If we now substitute into the last equation the relationships between the 
chain parameters and the z and y parameters, we will get the following 
expression. 

(11) 

This equation and Eqs. (5), together, relate the image parameters to a 
mixed set of z and y parameters. They will prove very useful in the 
discussion of filters. 

Note that the voltage and current ratios are related to the image 
parameters in the simple manner expressed by Eqs. (9) only when the 
two-port is properly terminated (i.e., terminated in its image impedance). 
According to the wave propagation picture, when the terminations Z1 

and Z2 in Fig. 1 are different from the respective image impedances, re-
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flections will occur. The image reflection coefficients at the ends of the 
two-port are defined as 

( 1 2 ) 

These quantities give a measure of how widely the terminations differ 
from the image impedances. We called these the image reflection coef
ficients because the actual reflection coefficients will depend on the values 
of the terminating impedances relative to the actual driving-point im
pedances obtained with the actual terminations. We will leave to you 
as a problem the job of calculating these reflection coefficients in terms 
of the image reflection coefficients. 

If the terminations Z1 and Z2 are different from the image impedances, 
the question arises as to how widely the voltage ratio will differ from its 
value given in terms of the image parameters in Eq. (9). To answer 
this question, turn to Eq. (1) and note that I2 = — V2/Z2. Hence, this 
equation can be written 

( 1 3 ) 

It remains to express the chain parameters in terms of the image parame
ters and to substitute into this equation. This is easily done by combin
ing Eqs. (4) and (10). The result is 

( 1 4 ) 

The final step is to substitute A and B from here into the previous equa
tion. The result is 

( 1 5 ) 

The last form is obtained after considerable algebraic manipulation by 
using the definition of the reflection coefficient in Eq. (12). 
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On comparing this expression with Eq. (9) we see that the voltage 
ratio has been modified by two additional factors each of which reduces 
to unity when the terminating impedance matches the corresponding 
image impedance. The contribution of these two factors to the voltage 
ratio will depend on the amount of mismatch. 

This expression does not indicate the effect on the transmission due 
to mismatch at the input terminals. This should be clear from Fig. 1; 
the impedance Z1 has no effect on the voltage ratio V2/V1. However, it 
does affect the ratio of output voltage to source voltage, V2/Vo- This 
ratio can be computed by noting that 

(16) 

We now substitute for V1 and I1 from Eqs. (1) and again use I2 = 
—V2/Z2. Finally, we replace the chain parameters by the image 
parameters from Eqs. (14). After considerable manipulation, the result 
can be expressed as 

(17) 

(The factor 1/2 would be there even under matched conditions since then 
V1 would be Vo/2.) In the present case the voltage ratio has been modi
fied by the factors in the brackets. The two factors in the numerator 
are called the sending end and receiving end reflection factors. Each of 
them reduces to unity whenever the pertinent impedance is equal to its 
corresponding image impedance. The factor in the denominator is re
ferred to as the interaction factor, since it involves both sending end and 
receiving end quantities. This factor reduces to unity whenever either 
of the terminal impedances matches its image impedance. 

Note that the interaction factor and the reflection factors are some
what compensatory. But the magnitude of the interaction factor is 
usually closer to unity than that of the reflection factors. 

Very often it is desired to express this voltage ratio relative to the 
value it would have if the two-port were completely removed and Z1 con
nected directly to Z2. This step simply introduces a factor (Z1 + Z2)/Z2 

on the right-hand side of Eq. (17). The resulting voltage ratio is called 
the insertion ratio. There is nothing fundamentally significant in this 
step. We will be content to stop with Eq. (17). 

11.2 Image Parameters of Lossless Networks 
Let us now restrict ourselves to networks in which resistance is absent. 

The special properties attained by the image parameters in this case are 
interesting and important in filter theory. 



Sec. 11.2] Image Parameters of Lossless Networks 461 

In the first place, for lossless networks, the image impedances and tanh θ 
are either real or imaginary for all values of s = jω. This is easily seen by 
looking at Eqs. (5) and (11). For lossless networks z11, z22, y11, and y22 

are all reactance functions; that is, they are imaginary for imaginary 
values of s. A product or ratio of such functions will therefore be real, 
either positive or negative, and the square root of a real number is either 
real or imaginary. 

But that is not all. When one image impedance is real, the other one is 
also, and tanh θ is then imaginary. Similarly, when one image impedance is 
imaginary, the other one is also, and tanh θ is then real. (We are still talk
ing about the jω-axis.) This is also established by considering the same 
equations. Suppose Z 0 1 ( jω) is real. Looking at Eq. (5, a) this means 
that z11 (jω) and yπ (jω) are of the same sign. (By this we mean that both 
of these are positive imaginary or both are negative imaginary.) This, 
in turn, shows that tanh θ is imaginary, from the first part of Eq. (11). 
The second part of this equation then requires that z22(jω) and y22(jω) 
also be of the same sign, which, in turn, causes Z02(jω) to be real, from 
Eq. (5, b). The same reasoning proves the second part of the statement. 

As a second result we will show that one image impedance and the 
propagation function are enough to determine the behavior of a lossless 
two-port, except for the possibility of an ideal transformer in cascade at 
the opposite end. * This result was first proved by Bode. For reciprocal 
two-ports three parameters are generally required to describe the ex
ternal behavior. This theorem states that in case the two-port is loss
less, two parameters suffice. 

Let us assume that Z 0 1 and tanh θ are known. From Eqs. (5) and 
(11) we can write 

(18) 

Thus, knowledge of Z 0 1 and tanh θ implies knowledge of z11 and y11. 
We can here remark parenthetically that the statement of the theorem 
can be changed to read: the open-circuit driving-point impedance and 
short-circuit driving-point admittance at one end of a lossless two-port 
completely determine the external behavior of the two-port, except for the 
possibility of an ideal transformer at the opposite end. When stated in 
this way, the theorem takes on an added dimension. It states that the 

* In this argument we allow the ideal transformer to have a positive or negative 
turns ratio, thus absorbing the ambiguity in phase. 
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transmission properties of a lossless two-port are known as soon as short-
circuit and open-circuit driving-point functions at one end of the two-
port are known. 

Let us now return to the task of proving the theorem. To do this 
it will be enough to show that a knowledge of one image impedance and 
tanh θ determines the other image impedance as well, to within a multi
plicative constant. Alternatively, we should show that any set of two-
port parameters is completely determined from a knowledge of Z 0 1 and 
tanh θ. We shall use the z parameters as a criterion. Note that z11 is 
already determined according to Eq. (18). It remains to determine z12 

and z22. 
As a first step, using Eq. (11) again, we can express 1 — tanh 2 θ in 

terms of z11 and y11. Then we can replace y11 by its equivalent in terms 
of the z parameters. The result can be written 

(19) 

The right-hand side of the last expression is presumed given. Also 
known are z11 and yπ from Eqs. (18). 

Let us now recall some facts about the z parameters of lossless two-
ports. The poles and zeros of zn and z22 are on the jω-axis, as well as 
the poles of z12. The zeros of z12 need not lie on the jω-axis. The poles 
of z12 are shared by zn and z22, but each of these latter may have private 
poles, or both of them may share a pole not shared by z12. (These may 
be called semi-private poles.) 

With these facts tucked away, note that the zeros of z12 will, by-and-
large, be the zeros on the right side of Eq. (19, b), except for special 
conditions that must be investigated. The zeros of 1 — tanh 2 θ may be 
of either odd or even multiplicity. Let us assume that they are either 
simple or double; if the multiplicity is higher, the changes in the argu
ments to follow will be evident. 

Consider first the double zeros of 1 — tanh 2 θ. A double zero can 
occur in one of two ways: either it is a zero of z12 or it is a semi-private 
pole of z11 and z22. Remember that zn is known from Eq. (18). Hence, 
it is immediately determined whether any of the double zeros of 1 — 
tanh 2 θ are poles of z11. Those which are not, are simple zeros of z12. 

Next we come to the simple zeros of 1 — tanh 2 θ. This case is some
what more complicated. Considering the left side of Eq. (19) we see 
that a simple zero can occur if z12 has a common zero with z11 or with 
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z22 (not with both). It can also occur if zn or z22 have private poles. 
We must establish for each simple zero of 1 — tanh 2 θ which one of these 
alternatives apply. To do this, consider Eq. (19, a). Suppose s = jω 0 

is a simple zero of 1 — tanh 2 θ and it is a common zero of z12 and z22. At 
this point we must then require that z11(jωo) = 1/y1 1(jωo). Since we 
know both z11 and y11 from Eqs. (18), it is a simple matter to calculate 
their values at the simple zeros of 1 — tanh 2 θ and to determine whether 
or not this condition is satisfied. 

Next suppose s = jω, is a simple zero of 1 — tanh 2 θ and it is a com
mon zero of z12 and z11, but not of z22. Then, in order for the right side 
of Eq. (19, a) to be zero at s = jω, we must require that y11 have a pole 
there. Again, since we know yn, it is a simple matter to determine if 
any of its poles coincide with simple zeros of 1 — tanh 2 0. 

Finally, if a simple zero of 1 — tanh 2 0 is not a pole of y11 and if at this 
point z11 is not equal to 1/y 1 1, then this point must be a private pole 
of either z11 or z22. Again, since we know the poles of zn, we can de
termine which it is. We have now completely determined all the poles 
of the z parameters, and the zeros of z12. We have also determined the 
zeros that z22 has in common with z12. The remaining zeros of z22 con
sist of all those poles of 1 — tanh 2 0 which are not zeros of zπ. 

A quick glance at Eq. (19) again will show that the right-hand side 
will remain unaffected if z12 is multiplied by a constant n and z22 is 
multiplied by the square of that constant. This corresponds to an ideal 
1 :n transformer at the output terminals as shown in Fig. 2. 

Fig. 2. Modification of z parameters by ideal transformer. 

We have seen that the zeros of the function 1 — tanh 2 θ are either 
zeros of z12 or private poles of z11 or z22 (or both). In any of these cases 
there will be no output voltage across the load impedance Z2 in Fig. 1 
at these points for any finite value of source voltage. We refer to these 
points as the transmission zeros of the network. 

Another consideration is evident from the preceding discussion. Since 
simple zeros of 1. — tanh 2 θ are zeros or poles of a reactance function, 
they must lie on the jω-axis. On the other hand, double zeros of 1 — 
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tanh 2 θ may lie on the jω-axis, but they may also lie anywhere else in 
the complex plane since there is no restriction on the permissible locations 
of zeros of z12 of a lossless network. However, the zeros must occur in 
quadrantal symmetry. That is complex zeros must come in quadruplets 
symmetrically located with respect to both axes and real zeros must come 
in pairs, a negative real zero being paired off with its positive real image. 
We also note that all zeros of 1 — tanh 2 θ which are not on the jω-axis 
must be of even multiplicity, since these are necessarily zeros of z12. 

11.3 Image Parameter Filter Theory 
The greatest application that the image parameters have found has 

been in filter theory. The viewpoint in the early considerations was 
again one of wave propagation, and filters were called wave filters. 
Qualitatively a filter can be defined as a frequency selective network. 
However, this is an inadequate definition since any network containing 
at least one reactive element, being frequency selective in some way or 
other, will qualify as a filter by this definition. What we should do is to 
define a filter as a two-port whose network function magnitude behaves 
in a specified way along the jω-axis. We know that the magnitude should 
be large and constant over one or more bands of frequency and small 
(preferably zero) over the rest of the jω-axis. 

Which network function should we use in prescribing filter behavior? 
The theory that is obtained when the definition of a filter is based on 
the image parameters is aptly called image parameter filter theory. This 
is the theory we will develop in this chapter. 

Let us, therefore, make the following definition. A filter is a two-port 
whose image attenuation function is zero over one or more intervals on the 
jω-axis, called the pass bands, and nonzero at all other intervals on the axis, 
called the stop bands. Over the range in which α = 0, the function tanh θ 
is imaginary. A glance at Eq. (11) will show that if z11 and y11 are 
arbitrary positive real functions, it is not possible for tanh θ to behave 
in this way over a finite band of frequencies. Such a behavior is possible 
only for lossless networks; hence, we will restrict ourselves to such net
works. 

We will also restrict ourselves on the number of j-axis intervals over 
which α = 0. Although the theory can be generalized to include 
multiple-pass-band filters, we will here treat only those that have a single 
pass band on the positive jω-axis. These will include low-pass filters, 
which have ω = 0 in the pass band; high-pass filters, which have ω = ∞ 
in the pass band; and band-pass filters, for which both the origin and 
infinity are in the stop band. 

In the last section we found that, in the case of lossless networks, 
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tanh θ, and the image impedances are either real or imaginary. By the 
definition of a filter we now see that these functions behave in the follow
ing way. 

TABLE 1 

(We have included the behavior of z11 and y11 for future reference.) 
The behavior of the image impedances and of tanh θ abruptly changes 
from real to imaginary (or vice-versa) at the boundaries between the pass 
band and stop band. These points are called the cut-off frequencies. 

In the stop band, tanh θ is to be real. This is possible only if θ = 
α + jkπ, for integral values of k. That is, the image phase must be in

tegral multiples of π in the stop band. Hence, in the stop band 

(20) 

Since we would like the image attenuation to be positive in the stop band, 
the last equation implies that not only is tanh θ real, it is also positive 
there. 

For an ideal filter, in addition to zero image attenuation in the pass 
band, we would like infinite attenuation in the stop band. When α is 
infinite, tanh α is unity. This means that for an ideal filter tanh α = 
tanh θ is identically equal to unity in the stop band 

In the most usual case in which a filter is used, the impedances Z1 and 
Z 2 in Fig. 1 are simply resistances R1 and R 2 , as in Fig. 3. Thus, it is 
required that the image impedances be equal to R1 and R 2 , respectively. 

Image 
parameter 

filter 

Fig. 3. Filter and its termination. 

Since the image impedances are not even real in the stop band, it is im
possible to meet this requirement in that frequency range. But if the 
filter is ideal, there is no need to worry about mismatches in the stop 
band, since the image attenuation is infinite there anyway. Ideally, 
then, it is enough to require that the image impedances be real and con
stant over the pass band. Let us normalize all impedances by consider-
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ing R1 to be unity. Then for an ideal filter the image impedance Z 0 1 

is to be identically unity in the pass band. 
Let us now consider the detailed functional forms which the image 

impedances and tanh θ will take. Since the network is lossless both 
z11 and y11 will be reactance functions. Hence, according to Eq. (77) 
of Chapter 9, we can write 

(21) 

(22) 

Note that the zeros and poles of z11 have been given the subscript a 
whereas those of y11 have been given the subscript b. In both cases odd 
subscripts imply zeros and even ones poles. Here, both z11 and y11 have 
a pole at the origin, although either one may have a zero there. As we 
shall see, the present case corresponds to a low-pass filter. Let us now 
substitute these expressions into Eqs. (5) and (11). Since the second 
image impedance is determined once we know one of them and tanh θ, 
let us consider only Z01 in the following discussion. Thus, 

(23) 

(24) 

Suppose we consider imaginary values of s and let s = j ω increase from 
zero to infinity. Consider any one of the factors 1 + s2/ωi

2 (with sub
script a or b). When s = j ω i this factor will go through zero. Hence, 
tanh 2 θ will change sign as many times as there are factors in the 
numerator and denominator. But according to Table 1, a pass band will 
exist whenever tanh 2 θ is negative and a stop band will exist when it is 
positive. Hence, there will be many pass bands and stop bands. If we 
wish to restrict ourselves to single-pass-band filters, we must require 
that the poles and zeros of z11 and y11 be appropriately located. 

Suppose that y11 has a pole at a zero of z11 or a zero at a pole of z11. 
This factor will then cancel in their product, and will not appear at all 
in tanh 2 0. However, it will appear as a double zero or a double pole of 
Z01

2. In neither case will there be a change of sign as ω varies through 
that particular point. Similarly, if y11 has a common pole or a common 
zero with z11, then tanh 2 θ will have a double pole or a double zero there, 
and the factor will not appear in Z 0 1

2 . Again there will be no sign 
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change. However, we require that there be a change of sign of both 
Z01

2 and tanh 2 θ at the cut-off frequencies. Hence, we require these 
"coincidences" of zeros and/or poles of z11 and y11, except at one pole 
or zero for low-pass and high-pass filters, and two poles or zeros for band
pass filters. 

For the sake of simplicity let us restrict ourselves to a consideration of 
low-pass filters only. As we shall see later, this is no real restriction 
since, by means of a suitable transformation, we can reduce the treatment 
of band-pass and high-pass filters to the low-pass case. For a low-pass 
filter the origin must be in the pass band and, hence, tanh 2 θ must be 
negative in the vicinity of ω = 0. In Eq. (24) each of the factors (1 + 
s2/ωi

2) will be positive when s = jω increases from zero. The factor s2 = 
—ω2 must therefore be present in order to make tanh 2 θ negative near 
ω = 0. Remember that s = 0 is a pole of both Z11 and y11. Hence, be
cause of the alternation property of poles and zeros of reactance func
tions, the next critical point of both z11 and of y11 must be a zero (s = 
j ω a l and s = j ω b 1 , respectively, in the notation used here). If the pass 
band is to extend beyond these frequencies, these frequencies must 
coincide. 

By the same reasoning, all the poles of z11 which are to lie in the pass 
band must coincide with poles of y11 and all zeros of z11 which are to lie 
in the pass band must coincide with zeros of y11. Finally, one of these 
critical points will not find itself a mate and so will become a cut-off 
frequency. Notice that all of these factors which appear as double zeros 
or double poles of tanh 2 θ do not appear at all in Z 0 1

2 due to cancellation. 
The cut-off factor, however, will appear in both Z 0 1

2 and tanh 2 θ as a 
simple factor. It may be either a pole or a zero in each of these func
tions. 

The cut-off factor will cause tanh 2 θ and Z 0 1

2 to change sign. Beyond 
the cut-off frequency tanh 2 θ must remain positive. This again requires 
coincidence of some of the factors of z11 and y11. However, since the 
cut-off factor has broken the rhythm, the coincidence of poles and zeros 
will be out of step. In the stop band, then, the poles of z11 must coincide 
with the zeros of y11, and vice versa. These factors will then appear as 
double poles or zeros of Z 0 1

2 and will not appear at all in tanh 2 0. 
As an example consider the pole-zero patterns shown in Fig. 4. Poles 

are shown by crosses and zeros by circles as usual. The poles and zeros 
of z11 are matched with the poles and zeros of y11, respectively, up until 
ω4. A t s = j ω 4 , z11 has a pole which is not mated. It thus becomes a 
cut-off frequency. Below this frequency Z 0 1 has no poles or zeros, 
whereas tanh 0 does. Above this frequency the poles and zeros of z11 are 
again paired with those of y11, but this time poles with zeros, and zeros 
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Fig. 4. Pole-zero patterns. 

with poles. Now it is tanh θ from which these poles and zeros are miss
ing. The cut-off factor, in the form + s2/ω42, appears in both Z01 

and tanh θ; in the denominator of the first and the numerator of the 
second. In the diagram, the cut-off frequency is indicated by a square 
around the cross or circle. The functional forms of Z 0 1 and tanh θ will be 

(25) 

(26) 

One point is brought out from these expressions and from the figures. 
Except for the irrational cut-off factor, the poles and zeros of z11 and y11 

which appear in Z 0 1 are all different from those that appear in tanh 0. 
We refer to those that appear in Z 0 1 as impedance controlling factors or 
frequencies and those that appear in tanh 0 as propagation function con
trolling factors or frequencies. 

We may note a peculiarity in these control factors. We are really 
interested in the behavior of Z 0 1 in the pass band; namely, we want it to 
be real and nearly constant there. However, we find that the control 
frequencies of Z 0 1 are not in this region, but in the stop band, where Z 0 1 

is purely reactive. Similarly, we are interested in the behavior of tanh 0 
in the stop band. But its control frequencies are in the pass band, where 
tanh 0 is pure imaginary. 

To get an even clearer picture of the variation of Z01 and tanh 0 let us 
plot these expressions for s = jω. Each of these quantities changes from 
real to imaginary, or vice versa, at the cut-off frequencies. Thus, when 
they are imaginary, we will plot the function divided by j . Figure 5 
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Fig. 5. Plots of Z01 and tanh θ against frequency. 

shows the result. In the pass band Z 0 1 is real. Its variation in this band 
will depend on the relative spacing of the impedance controlling fre
quencies, which lie in the stop band. If we want to control the variation 
of Z01 in the pass band, which we do, then we must choose the controlling 
frequencies appropriately. We shall discuss this point in somewhat 
greater detail in a later section. Similar statements apply to the varia
tion of tanh θ in the stop band. 

Let us now consider the image impedance at the second end of the 
two-port. As we showed in the previous section, Z02 is completely de
termined except for a constant multiplier, from a knowledge of Z 0 1 and 
tanh θ. Let us now see how to do this. From Eqs. (8) and (19) the fol
lowing expression can be simply derived 

(27) 

When s = jω the right-hand side of this equation is real and positive 
for all ω. Hence, the left-hand side must be also. Each of the factors 
Z 0 2 /Z 0 1 and 1 — tanh 2 θ is an even rational function and hence real 
when s = jω. We must, therefore, require that when one is positive or 
negative, the other one be also; if one factor should change sign, the 
other should do so as well. 
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In the pass band both Z 0 1 and Z02 and, hence, also their ratio, are 
positive. The factor 1 — tanh 2 θ will also be positive, since tanh θ is 
imaginary in the pass band. Now consider the cut-off frequency. As ω 
goes through the cut-off frequency, tanh θ becomes real and the sign of 
1 — tanh 2 θ will depend on the value of tanh 2 θ relative to unity. This, 
in turn, will depend on the location of the cut-off factor in tanh θ. If 
the cut-off factor appears in the numerator of tanh 0, as in the example 
given in Eq. (26) and portrayed by Fig. 4, then just beyond the cut-off 
1 — tanh 2 0 will still be positive. (See Fig. 5.) 

The cut-off factor, which appears in both image impedances, will 
appear in their ratio only if it is in the numerator of one of them and in 
the denominator of the other. If it is in the numerator of both or the de
nominator of both, it will cancel in their ratio. In this case the sign of 
Z 0 2 / Z 0 1 will not change as ω goes through the cut-off frequency. Hence, 
in case the cut-off factor appears in the numerator of tanh 0, it must ap
pear either in the numerator of both impedances or in the denominator 
of both. Since we know where it appears in Z 0 1 , we now also know where 
it appears in Z 0 2 . 

Now suppose the cut-off factor appears in the denominator of tanh θ. 
Then, instead of going through zero at the cut-off frequency, the value 
of tanh 0 will go "through" infinity. The value of 1 — tanh 2 0 will then 
be negative in the immediate vicinity of the cut-off frequency. Hence, 
we must require that the value of Z 0 2 / Z 0 1 also change sign and become 
negative at the cut-off frequency. This will happen if the cut-off factor 
appears in the ratio, which, in turn, will happen if the factor is in the 
numerator of one image impedance and in the denominator of the other. 
Since we know where it is in Z 0 1 , this determines where it should be in 
Z 0 2 . The above discussion is summarized in Table 2. 

TABLE 2 

POSSIBLE LOCATIONS OF CUT-OFF FACTOR √1 + s2/ωc

2 IN TANH θ , Z o 1 , AND Z 0 2 

tanh θ Z01 Z02 

Numerator 
Numerator 
Denominator 

Numerator 
Denominator 

Denominator 
Numerator 
Denominator 

Denominator 
Numerator 

Beyond the cut-off frequency, in the stop band, the factor 1 — tanh 2 θ 
will change sign at any odd order zero of the equation 1 — tanh 2 θ = 0. 
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We have already named these points the transmission zeros. Hence, 
we must require that any odd-order transmission zeros on the jω-axis 
appear as simple factors in the numerator or denominator of the ratio 
Z 0 2 / Z 0 1 . Hence, such a factor must appear in Z02 if it is not in Z01. 
If it is in Z 0 1 , it cannot appear in Z 0 2 . 

Nowhere else in the entire stop band will 1 — tanh 2 θ change sign. 
Hence, neither should the ratio Z 0 2 / Z 0 1 . This means that any zero or 
pole of Z 0 1 not accounted for in the preceding paragraph (and these are 
all in the stop band) must be zeros or poles of Z 0 2 also. In this way they 
will either be double zeros or poles of the ratio, or they will cancel. In 
either case the sign of Z 0 2 / Z 0 1 will not change. There is still some hazi
ness as to which are poles of Z 0 2 and which are zeros. This question is 
settled by the requirement of the alternation of poles and zeros. In 
particular, if all the zeros of Z 0 1 are simple transmission zeros, then Z 0 2 

will be a very simple function. * 
As an example let us determine Z 0 2 for the case given by Eqs. (25) 

and (26). In the first place, the cut-off factor appears in the numerator 
of tanh θ and in the denominator of Z 0 1 . Hence, by Table 2 it must ap
pear in the denominator of Z 0 2 also. From Fig. 5 we see that there is 
only one point at which tanh θ (and therefore tanh 2 0) equals one. This 
frequency is a zero of Z 0 1 so it cannot be a zero or pole of Z 0 2 . The only 
other finite critical point of Z 0 1 is at s = jω 6 and this must also be a 
critical point of Z 0 2 . Also Z 0 1 has a zero at infinity and so Z 0 2 must 
have a pole at infinity. From all these considerations Z 0 2 must have the 
following form 

(28) 

The constant K3 is not determined by this process. 
In the above discussion a point needs clarification. We defined the 

transmission zeros to be the values of s at which tanh 2 θ=1. But, if 
tanh 2 θ = 1, it must follow that tanh 0 is either plus one or minus one. 
How can we rule out the last possibility? Note that, because of the 
irrational factor, tanh 0 is a double valued function of s. If we stay on a 
single sheet of the Riemann surface we can make the function single-
valued. The branch points are the cut-off frequencies, and we choose 
the branch cut to be the pass band, the part of the jω-axis joining the 
cut-off frequencies. The branch of tanh 0 that we choose must be the 
one which leads to positive values of the image attenuation function α 
in the stop band and, hence, to positive values of tanh 0. 

* We shall use the fact that Z o 2 contains just the cut-off factor in such a case, to 
simplify filter designs. 
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Remember that tanh 2 θ is a rational function with double poles and 
zeros except for one simple one representing the cut-off frequency. It is 
real and negative throughout the pass band and all of its poles and zeros 
lie there. A plot of this function against ω for the example given in Eq. 
(26) is shown in Fig. 6. Both negative and positive values of ω are in-

Fig. 6. Plot of tanh2 θ(jω). 

eluded. Throughout the pass band the value of tanh 2 θ is negative and 
varies between — ∞ and zero. It takes on all negative values eight times 
in this range, exactly as many times as tanh 2 θ has zeros or poles (each 
double one being counted twice, of course). This result is general and 
applies no matter how many poles and zeros tanh 0 may have. 

It is a well-known fact that a rational function can take on a given 
value only as many times as it has poles or zeros. This means that 
tanh 2 0 cannot take on any negative value anywhere else in the entire 
complex plane except on the pass band, which we have taken as the 
branch cut for tanh 0. This means that tanh 0 cannot have a purely 
imaginary value anywhere else except on the branch cut; thus the real 
part of tanh 0 cannot be zero except on the branch cut. However, tanh 0 
is a continuous function on each sheet of the Riemann surface. If the 
real part of tanh 0 cannot be zero anywhere but on the branch cut, it 
follows from the continuity that the real part cannot change sign on a 
given sheet. Now the value of tanh 0 is real and positive in the stop 
band on the sheet which we have chosen. Hence, the real part of tanh 0 
must be positive everywhere on this sheet. In particular, all the points 
at which tanh θ = + 1 will lie on this sheet. 

The preceding discussion shows that by a suitable choice of the branch 
of tanh 0, the points at which tanh 2 θ=1 are also the points at which 
tanh θ=1. 

A possible method of filter design is now available to us. We choose 
realizable expressions for Z 0 1 and tanh θ based on some desired per
formance criteria (of which we will say more later). This permits us to 
calculate Z02 within a constant multiplier. Alternatively, we can cal-
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culate the z parameters or y parameters. We then have a complete set 
of parameters (aside from multiplying constants) which specify the 
behavior of the desired two-port. Our job is to find this two-port. When 
formulated in this manner, the image parameter method of filter synthe
sis is not different from network synthesis in general. We cannot here 
go into this aspect any further. 

Let us now turn to an alternative approach. We have seen how a 
knowledge of one image impedance and of the function tanh θ serves 
to determine the second image impedance. In this procedure the simple 
roots of tanh 2 θ = 1 play a prominent part. Let us now inquire into the 
significance of the roots of tanh 2 θ = 1, both simple and double. 

In the first place we shall prove the following theorem. The function 
tanh θ is uniquely determined from a knowledge of the cut-off frequencies 
and the roots of tanh2 θ = 1 (including multiplicity of multiple roots). 
That is to say, only one possible tanh θ function having the appropriate 
functional form can be found which will have the given cut-offs and trans
mission zeros. We will prove this theorem by contradiction. 

Suppose tanh 2 θ = 1 has n roots and let there be two tanh θ functions 
that satisfy the given conditions. Let us write 

(29) 

Both of these must be rational functions each of which has only one pair 
of j-axis poles or zeros which are simple (corresponding to the cut-off 
frequency), the remaining poles and zeros being double. The order 
of each function must be n, since tanh 2 θ = 1 has n roots. (By the order 
of a rational function is meant the highest degree of the numerator or the 
denominator, whichever is higher.) Now consider the functions 

(30) 

These will be rational functions, since all the poles and zeros of F1 and F2 

are double, except for the cut-off factor. The cut-off factor can be either 
in the numerator or the denominator of F1 and F2. In any case, this 
factor must cancel from either G1 or G2, whereas it appears to the second 
power in the other one. Thus, both G1 and G2 will be rational functions. 
The order of one of them will be n, and that of the other, in which the 
cut-off factor cancels, will be n — 1. However, each of them must be 
equal to unity at the given n roots of tanh 2 θ, because both F1 and F2 

are unity there. (This implies a proper choice of Riemann surface.) 
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But a rational function cannot take on a given value (unity in this case) 
more often than its order, unless it is identically equal to that value. 
Hence, either G1 = 1 or G2 = 1. This means that either F1 = F2 or 
F1 = 1/F2-

To summarize, we assumed two possible tanh θ functions having the 
same cut-off frequency and transmission zeros and we found that these 
two are either the same or they are reciprocals. To show that they can
not be reciprocals, look at Eq. (19). From a knowledge of the z parame
ters of lossless two-ports, note that the left-hand side must be real and 
positive for real positive values of s, hence, the same must be true for 
1 — tanh 2 θ. This means tanh 2 θ must be less than unity for these values 
of s. Since F1 and F2 are two possible tanh 2 θ functions, they must both 
be less than unity for real positive values of s. But this is impossible if 
F2 = 1 /F 1 . This completes the proof. 

The theorem which we have just discussed is very useful. It implies 
that no matter how we are able to do so, if we can in some manner obtain 
a tanh θ function which has specified cut-off frequencies and transmission 
zeros, this is the only possible such function. Let us now consider a 
method whereby tanh θ can be generated. 

Consider the two networks in cascade shown in Fig. 7. The image 
impedances at the junction are assumed to be equal. The propagation 

Fig. 7. Cascade connection of filter components. 

functions of the networks are θ1 and θ2, respectively. Since there is no 
internal reflection, the over-all transfer function 0 is the sum of θ1 and θ2. 
Hence, we can write 

(31) 

The right side expresses the hyperbolic tangent of a sum of two quan
tities in terms of the hyperbolic tangents of the individual quantities. 

From this equation we see that in order for tanh 0 to be equal to unity, 
we must have either tanh θ1 = 1 or tanh θ2 = 1. That is, the transmis
sion zeros of two cascaded networks will be the totality of the transmis
sion zeros of the individual networks, assuming the image impedances 
at the junction are equal. The same result can obviously be extended 
to more than two cascaded networks. 

Let us now change our point of view and consider the over-all network 
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in Fig. 7 to be a symmetrical network, structurally as well as electrically. 
The propagation functions of the two halves will then be equal; θ1 = 
θ2 = θ/2. In this case Eq. (31) becomes 

(32) 

Now let us form 1 — tanh 0 using this expression. We get 

(33) 

From this equation we see that if 1 — tanh θ/2 has a simple zero, then 
1 — tanh 0 will have a double zero. The multiplicity of the zeros of 
1 — tanh 0 for a symmetrical network are all even. If a symmetrical 
network is bisected, the double transmission zeros become simple trans
mission zeros of each half. The function tanh 0/2 is called the index 
function. 

The preceding discussion suggests an alternative approach to the filter 
synthesis problem. Suppose one image impedance Z 0 1 and the transmis
sion zeros are specified. The filter is realized as a cascade connection of 
sections as shown in Fig. 8 with image impedance match at each inter-

Fig. 8. Composite filter. 

connection. Each of the sections realizes one pair of conjugate transmis
sion zeros, either simple or double. The first one has Z 0 1 as one of its 
image impedances, the second image impedance, Z 0 a , being dictated by 
Z 0 1 and the transmission zeros realized by this section. The second 
section has Z0a as one of its image impedances, its second image im
pedance, Z o b , being dictated by Z 0 a and the transmission zeros, and so 
on. The final image impedance Z 0 2 must of course be whatever is dic
tated by the given Z 0 1 and the given transmission zeros. 

In this approach we have assumed that it is possible to find filter sec
tions which will realize a simple or double transmission zero while having 
an arbitrary image impedance at one end. For the contemplated pro
cedure to be successful, we must find such sections. 

11.4 Component Filter Sections 
We shall now be concerned with finding certain simple two-ports 

which will realize a pair of conjugate imaginary transmission zeros, 
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a pair of positive and negative real ones or a quadruplet of complex ones. 
The latter two varieties must be double, of course, while the imaginary 
ones may be simple or double. The simple transmission zeros must also 
be critical points of one or the other image impedance. 

Long before the general theory we have been discussing in this chapter 
was developed, Zobel developed a filter theory based on the symmetrical 
Tee and Pi shown in Fig. 9. If the series and shunt branches are inverse 

Fig. 9. Constant-K Tee and Pi sections. 

with respect to a constant, that is, Z 1 Z 2 = R 2 , the resulting networks are 
called constant-K. (Note that the labeling on the branches is for con
venience only.) The corresponding image parameters are also given in 
the figure. 

The concept of a dual network introduced in Chapter 4 can be used to 
find these inverse networks. If we know the network realizing the func
tion Z1 of Fig. 9a or Y1 of Fig. 9b, and this network is planar in the one 
terminal-pair sense (that is, the network remains planar on adding a 
generator between the input terminals), then we can construct its dual 
and modify the R's, L's, and reciprocal C's by the factor R 2 to get the 
desired inverse network. However even if the network realizing Z1 or 
Y1 is nonplanar, it will have an inverse network. The class of inverse 
networks is larger than the class of dual networks. In the present case, 
Z1 or Y1 will be Foster realizations of reactance functions and will there-
fore certainly be planar. The inverse can therefore be found by duality. 

For the special case of a low-pass filter, these networks take the form 
shown in Fig. 10. Note that the characteristic impedances of the low-
pass constant-K Tee and Pi are themselves inverse with respect to R 2 . 
We refer to these as a Tee-type and a Pi-type constant-K image impedance. 
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Fig. 10. Low-pass constant-K sections. 

respectively. * The tanh θ functions of the two are identical for the same 
cut-off frequency. The only transmission zero is at infinity. 

Consider the Tee section of Fig. 10. If the capacitance is replaced 
by a series tuned circuit, this will produce a transmission zero at the 
resonant frequency of the branch. However, if such a section is to be 
cascaded with a constant-K section, we must choose the elements in 
such a way that the image impedance remains the same as the constant-lf 
image impedance. The procedure followed by Zobel in arriving at the 
element values starting from the symmetrical Tee in Fig. 9 is as follows. 
Let primes designate the new branch impedances and let Z1 = mZ1, 
where m is a constant. Now equate the image impedance of the primed 
Tee with that of the original Tee. This leads to the following new shunt-
branch impedance 

(34) 

The new Tee for the low-pass case is shown in Fig. 11. Zobel called 
this process m-derivation and the new network an m-derived network. 
Clearly, in order to be realizable, m must be a positive number less than 
one. The original Tee is called the prototype and corresponds to m = 1. 
By direct computation we find that tanh θ=1 has a double root on the 
jω-axis at the point s∞ given by 

* In the literature these are also called midseries type and midshunt type. These 
names arose from a consideration of a transmission system as a uniform ladder struc
ture. The Tee and Pi sections could be formed by breaking into the structure in the 
middle of a series branch or in the middle of a shunt branch. 
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(35) 

Fig. 11. m-derived low-pass Tee section. 

If we bisect the m-derived section, the half section, shown in Fig. 12, 
will have a simple transmission zero at the same frequency. Now, how
ever, the far end image impedance will be different. Direct computation 
gives the value of Z02 shown in the figure. Note that this agrees with the 
result we would get if we were to calculate Z02 from Z01 and the trans
mission zero. We see that Z02 is not simply a constant-^ image im
pedance; it has a control factor. 

Fig. 12. m-derived low-pass half Tee section. 

The m-derivation procedure can be carried out starting from a Pi 
prototype as well. Starting from the Pi network in Fig. 9, let primes 
designate the new branch admittances and let Y2' = mY2. We now 
compute the image impedance in terms of the branch impedances and 
then equate the image impedance of the primed Pi with that of the origi
nal one. This leads to the following new series admittance. 

(36) 
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The m-derived low-pass Pi section with Fig. 10b as a prototype is 
shown in Fig. 13. The image impedance is a constant-K Pi type, of 
course. By direct computation we find that tanh θ is the same for the 
m-derived Pi as for the m-derived Tee. Hence, Eq. (35) which relates 
the value of m to the transmission zero will apply in this case as well. 

Fig. 13. m-derived low-pass Pi section. 

Let us now bisect the m-derived Pi section. The half section, shown in 
Fig. 14, will have simple transmission zeros where the whole section has 
double zeros. The half section is unsymmetrical and so the far end image 
impedance will be different. Direct computation gives the value of Z02 

and tanh θ given in the figure. 
The elementary filter sections we have considered so far still leave a 

number of gaps in our proposed synthesis technique. In the first place, 

Fig. 14. m-derived low-pass half Pi section. 

we have been able to account for single and double transmission zeros 
on the jω-axis only. Secondly, the image impedances of these sections 
have the cut-off factor only and no control factors. It is possible to 
show that a lossless ladder network cannot have transmission zeros 
anywhere but on the jω-axis. Hence, we need not even consider a ladder 
network to realize complex or real transmission zeros. 

Let us now consider a symmetrical lattice network as shown in Fig. 15. 
By direct computation of z11 and y11 we find the image parameters to be 
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(37) 

(38) 
Fig. 15. Lattic network. 

The second expression follows by comparing the preceding equation 
with Eq. (32). These expressions are very interesting. Let us compare 
them with Eqs. (5) and (11) which give the image parameters for an 
arbitrary symmetric network (we should set z11 = z22 and y11 = y22 in 
these expressions). We see that, if we set 

(39) 

then the image parameters of the lattice will be the same as those of an 
arbitrary symmetrical network. All the previous results pertaining to 
the image parameters will apply to the lattice, except that we must use 
tanh 0/2 instead of tanh 0. There is one exception to this statement and 
this pertains to the multiplicity of the complex zeros of 1 — tanh 2 θ. 
The fact that these must be of even order was established from Eq. (19). 
We cannot simply substitute tanh θ/2 for tanh θ in this expression. The 
restrictions on the multiplicity of transmission zeros still applies to 
1 — tanh θ and not to 1 — tanh θ/2. Hence, the zeros of 1 — tanh θ/2 
need not be of even order. In any case, no matter what the multiplicity 
of the zeros of 1 — tanh θ/2, the zeros of 1 — tanh θ will have twice 
their multiplicity, as shown by Eq. (33). 

Let us now invert Eqs. (38) and solve for the lattice branch impedances 
in terms of the image parameters. The result is 

(40) 

From these expressions it is easy to see that if Z0 and tanh θ/2 are given 
and have the forms satisfying the conditions of realizability, then Zx 

and Zy will be reactance functions. 
Recall that we are still seeking filter sections which will provide trans

mission zeros off the jω-axis and which will have arbitrary image im
pedances. Let us first consider the question of transmission zeros. 
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Suppose a lattice with branch impedances Zx and Zv has its series 
branch impedance multiplied by a constant m and its cross-arm im
pedance divided by the same constant, as shown in Fig. 16. According 
to Eqs. (38) the image impedance of the 
new lattice is the same as that of the 
original lattice, but the index function is 
multiplied by m. This lattice can be called 
an m-derived lattice. The simplest index 
function for a low-pass filter will have the 
cut-off factor only and no control factors. 
Let us write 

Fig. 16. m-derived lattice. 

and assume that an m-derived lattice is to have this function. The 
function 1 — tanh 2 θ/2 will be of second order in s2. If we designate the 
zeros of this function by s∞, then we find that 

(42) 

Note that, if s∞ = ±jω∞, then the value of m is real and less than one. 
This is, then, the same as an m-derived Tee section. However, suppose 
s∞ is real; that is, there are a pair of real transmission zeros, one positive 
and one negative, which is permissible. Then m will again be real but 
this time greater than one. This case does not have its counterpart in 
the m-derived Tee section. 

As a final possibility, suppose s∞ is complex. This is not really possible 
since complex transmission zeros must come in quadruplets. But let us 
overlook this defect in the argument and proceed, in the hope that the 
difficulty can be overcome. If s∞ is complex, then m will also be complex. 
This will require that the branches in the lattice of Fig. 16 have complex 
element values—an unbearable thought. This lattice gives only a pair 
of complex zeros. Suppose we think of another lattice which gives the 
complementary pair of transmission zeros. The cascade connection of 
these will then supply the whole quadruplet. 

On this line of thought, consider the cascade connection of two lattices 
having a common image impedance at the junction, and having propaga
tion functions θ1 and θ2 shown in Fig. 17. The over-all propagation func
tion will be θ = θ1 + θ2. Let us now consider a single lattice which is to 
be the equivalent of this cascade connection. We shall compute the 
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Fig. 17. Cascade connection of lattices. 

branch impedances; if they are realizable, the equivalence will exist. 
Denoting the branch impedances of the single lattice by Zx and Zy, we 
can write 

(43) 

In arriving at the final result we used Eq. (40). In a similar way the 
cross arm impedance of the over-all lattice can be calculated. The circuit 
representation is shown in Fig. 17b. These branches will certainly be 
realizable if the original branches are. 

Let us now assume that two m-derived lattices having the same proto
type are cascaded in this fashion as shown in Fig. 18. The two values of 
m are denoted by m1 and m2. Using the result we just established, the 
single-lattice equivalent will take the form shown in the second part of 
the figure. Now suppose that m1 and m2 are complex conjugates with a 
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Fig. 18. Cascaded m-derived lattices. 

positive real part. The branches of this lattice will then be realizable 
assuming the branches of the prototype lattice are. 

If we inquire into the transmission zeros corresponding to a pair of 
conjugate values of m, we find from Eqs. (42) that they form a quadru
plet having the desired symmetry. Thus, our difficulties are overcome. 
We have found that a symmetrical lattice will realize either a pair of 
real transmission zeros or a pair of conjugate imaginary zeros, or a 
quadruplet of complex transmission zeros. 

The question of arbitrary image impedance with any number of con
trol factors remains. From Eqs. (38) or (40) we see that tanh 0/2 will 
be unaffected if identical factors (1 + s2/ωi

2) are introduced as poles 
or zeros of both Zx and Zy. But such a factor will become a pole or zero 
of Z 0 . In this way, a lattice having the simple index function given in 
Eq. (41) can be made to have an image impedance with any number of 
poles and zeros. 

Let us now summarize the preceding discussion. The starting point 
is one image impedance Z 0 1 and the transmission zeros. If all these 
zeros are of even multiplicity, then Z01 will be the same as Z 0 2 and the 
network will be symmetrical. Each pair of real or imaginary transmis
sion zeros can be realized by an m-derived lattice like that of Fig. 16 
with a real value of m; m > 1 for the real zeros and m < 1 for the j-axis 
zeros. The image impedance of each of these lattices will be the same as 
the given image impedance. Each quadruplet of zeros is realized by a 
lattice having the form of Fig. 18b. 

The only remaining case to investigate is the possibility of simple 
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transmission zeros on the jω-axis. Such zeros must be poles or zeros 
of either Z 0 1 or Z 0 2 . Those that appear in Z 0 1 must be realized by the 
first section in the composite filter, whereas those that don't (and hence 
belong to Z 0 2 ) must be realized by the last section. These sections are 
called the terminating sections. 

Suppose we realize a lattice with the given Z 0 1 function as its image 
impedance and with an index function which equals unity at the given 
simple transmission zeros which also appear in Z 0 1 . For the lattice as a 
whole these are double zeros of 1 — tanh θ. If we can bisect this lattice, 
half of it will still have the same transmission zeros and it will have Z 0 1 

as its image impedance at one end. At the other end the image im
pedance will be dictated by Z 0 1 and the transmission zeros realized by 
the section. In this way the unsymmetrical terminating section at one 
end is obtained. The section at the other end can be handled in the same 
way. 

We have now demonstrated that the cascade realization of the com
posite filter can always be obtained, provided that the lattice which is to 
supply the terminating sections can be bisected. At this point it will be 
worth while to turn back to problem 8.14 in which a theorem called 
Bartlett's bisection theorem was discussed. Note that the theorem in
volves networks that are structurally as well as electrically symmetrical, 
and which are planar at the line of symmetry. The lattice does not 
satisfy this last condition. * However, if we can find another symmetrical 
network which is equivalent to the lattice in the two-port sense, and 
which can be bisected, our troubles will be over. Let us now briefly 
consider the possibility of two-port equivalents of a lattice. 

In the first place, suppose that the branches of a lattice have a common 
series impedance as shown in Fig. 19a. Let us contemplate finding the 

Fig. 19. Decomposition of lattice. 

* Bartlett's theorem can be applied to a lattice also if we are willing to add an 
ideal transformer. 
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Tee equivalent of the lattice. We find the series branch impedance of the 
Tee to be Za + Zx1 and the shunt branch impedance to be (Zy1 — Zx1)/2. 
Because of the subtraction involved in the shunt branch impedance, this 
may not be realizable. However, suppose we leave Za in the series 
branches the way it stands and contemplate converting the remaining 
Tee, consisting of Zx1 in the series branches and (Zy1 — Zx1)/2 in the 
shunt branch back into a lattice. The result will take the form shown in 
Fig. 19b. This takes us part of the way to the solution of our problem. 

As a second step, suppose that the branches of the lattice have a com
mon shunt admittance, as shown in Fig. 20a. By taking the Pi equiva
lent and converting a portion of this back into a lattice, we obtain the 
network in Fig. 20b. 

Fig. 20. Lattice decomposition. 

It may be possible in some cases that these two steps can be applied 
alternately, first one then the other, until the lattice is completely de
composed. The resulting structure will be a symmetrical ladder, which 
can certainly be bisected. Now we know that the transmission zeros of a 
lossless ladder network necessarily lie on the jω-axis. Hence, this de
composition will be possible only if the transmission zeros of the original 
lattice all lie on the jω-axis. But this is exactly the case for the lattice 
which is to provide the terminating sections. Hence, we should expect 
our contemplated procedure to apply. * 

Let us now consider some simple low-pass lattices that can provide 
transmission zeros anywhere in the complex plane. Figure 21 shows a 
low-pass m-derived lattice. By direct computation, we find the image 
impedance and the index function to be 

* It is possible to obtain more general two-port equivalents of a lattice which come 
into play when the transmission zeros are not all on the jω-axis. For a more com
plete discussion, see N. Balabanian, Network Synthesis, Prentice Hall, 1958, Engle-
wood Cliffs, N. J., pp. 172 and 255. 
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(44) 

where R = √L/C and ωc

2 = 1/LC. By using Eq. (32) we can compute 
tanh θ for this lattice. We get 

(45) 

Fig. 21. Low-pass m-derived lattice and its decomposition. 

If we now compare these expressions with those given in Fig. 11 for the 
image parameters of an m-derived Tee section, we see that they are 
identical, except for a factor 2 in the definitions of R 2 and ωc

2. They 
would be exactly the same if we would use 2C instead of C in the cross 
arm of the lattice. However, in the case of the lattice m is not restricted 
to be less than 1. 

The same result can be demonstrated by noting that the two branch 
impedances of the lattice have a common pole at infinity. If we use the 
equivalence shown in Fig. 19, we will get the result shown in Fig. 21, 
parts (b) and (c). Of course, in order for the shunt branch inductance 
to be positive, we must require m < 1. 

The equivalence between the m-derived lattice and the m-derived 
Tee section for m < 1 is now clearly portrayed. However, the lattice 
is a more general network in that m is not restricted to be less than one. 
It should nevertheless be real in Fig. 21. 

Now let us consider the cascade connection of two m-derived low-pass 
lattices with complex conjugate values of m; m1; and m2. The lattices 
are again the same as that of Fig. 21a. Let us write 



Sec. 11.4] Component Filter Sections 487 

(46) 

Then the single lattice equivalent illustrated by Fig. 18 will take the 
form shown in Fig. 22. This lattice will realize a quadruplet of trans-

Fig. 22. Low-pass m-derived lattice realizing a quadruplet of transmission zeros. 

mission zeros given by Eq. (42) in terms of the two conjugate values of 
m. By direct calculation we will find the index function of this lattice to 
be 

(47) 

The image impedance, of course, is the same as that given in Eq. (44). 
Finally, let us carry through a numerical example of a filter design 

starting from a knowledge of (1) the cut-off frequency ωc, (2) the image 
impedance Z 0 1 at one end, (3) the desired transmission zeros and (4) the 
design resistance R. Actually, R and ωc will enter into consideration 
only when element values are to be determined. Most of the procedure 
is carried through with impedances normalized with respect to R and 
with frequency normalized with respect to ωc by using the transforma
tion p = s/ωc. 

The following information is given. It is desired to have double trans
mission zeros at p = ±j2 and simple transmission zeros at p = ±j5/4. 
Z01 (normalized) is to be 
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(48) 

Thus, Z0l has only one impedance controlling frequency which is the 
same as the simple transmission zero. The values of m corresponding 
to the given transmission zeros are obtained from Eq. (35) by writing 
the normalized value of as x∞ = ω∞/ωc. Thus 

(49) 

Since there are two pairs of transmission zeros, we can contemplate 
the composite filter to consist of the cascade connection of two sections. 
One of these must realize the simple pair of transmission zeros and must 
have the given Z 0 1 as its image impedance at one end. The other section 
must realize the double pair of transmission zeros; its image impedance 
will be the same as that at the second end of the first section. 

Let us first consider the unsymmetrical section which will realize the 
simple zeros at p = ±j5/4. The tanh θ function must have only the cut
off factor since otherwise tanh θ = 1 will have more than 2 roots. Thus, 

(50) 

We see that this expression equals unity when p = ± j5/4. Hence, from 
the uniqueness theorem it is the only possible function. The image im
pedance at the second end can now be easily found. According to Table 
2, the cut-off factor must appear in the denominator of Z 0 2 . Further
more, the impedance controlling factor appearing in Z 0 1 must not appear 
in Z 0 2 , since it represents a simple transmission zero. Hence, Z 0 2 will be 
simply 

(51) 

which is a Pi type constant-K image impedance. 
The general procedure for realizing the unsymmetrical section is to 

consider the tanh 0 function given in Eq. (50) to be the tanh 0/2 function 
of a symmetrical lattice having an image impedance given by Z 0 1 . The 
lattice branch impedances are given by Eqs. (40). After finding the 
lattice, we replace it by an equivalent symmetrical ladder. We then 
bisect the ladder, giving us the desired unsymmetrical section. How
ever, for the case under consideration, we have already considered an 
unsymmetrical section which will fill the bill. This is the m-derived half 
Pi section shown in Fig. 14. The image impedances and tanh 0 given in 
the figure (suitably normalized) are identical with the ones under con-
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sideration here, except that Z 0 1 and Z02 are interchanged. Hence, the 
filter now takes the form shown in Fig. 23. Remember that the symbols 
L and C appearing in Fig. 14 refer to the branches of the prototype Pi 
section in Fig. 10. The values appearing in Fig. 23 are obtained by using 
the values of L and C from the prototype in terms of the design resistance 
R and the cut-off frequency ωc. 

Fig. 23. Partial realization of filter. 

Now let us turn to the section which will realize the double transmis
sion zeros at p = ±j2 . This will be a symmetrical two-port with an 
image impedance equal to Z 0 2 as given in Eq. (51). Let us find tanh 0. 
One way to proceed is to note that, since the section is symmetrical, half 
of it must have simple transmission zeros at p = ± j2. Hence, tanh 0/2 
must have the form of Eq. (50) but with a multiplier m = 0.866 instead 
of 0.6. We then use Eq. (32) to find tanh 0. The result of this operation 
will be 

(52) 

As a check, we find that this reduces to unity when p = -fcj2. By the 
uniqueness theorem it is the only possible tanh 0 function. 

An alternate way of obtaining the same result is to note that 1 — 
tanh 2 0 must have the factor (p2 + 4) 2 . In order for 1 — tanh 2 0 to 
have the correct order, tanh 0 must have one controlling factor besides 
the cut-off factor. Hence, it must have the form 

(53) 

We now form 1 — tanh 2 θ and set the numerator equal to (p2 + 4) 2 . 
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We will get 

(54) 

Solving this for a and K makes Eq. (53) identical with Eq. (52). 
Again, we can always fall back on a lattice realization of this sym

metrical section. However, again because of the simplicity of the case, 
we have already examined a section which meets the requirements. 
This is the m-derived Pi section shown in Fig. 13. If we substitute 
m = in the tanh θ function given in the figure, we get Eq. (52). 
Substituting m = √3/2 and values of L and C in terms of R and ωc our 
filter finally takes the form shown in Fig. 24. The two parallel capaci-

Fig. 24. Complete design of low-pass filter. 

tances can, of course, be combined into a single one. Note that the de
sign resistance and the cut-off frequency are arbitrary; our synthesis is 
valid no matter what they are. 

The procedure we have just described is not the only way to obtain 
a filter synthesis. Knowing the transmission zeros, we can form the 
tanh θ function for the entire filter. The easiest way to do this is to 
think in terms of cascaded sections. The tanh θ of each section is easily 
found from the transmission zeros which it is to realize. For the two 
sections we obtained above these are given by Eqs. (50) and (52). They 
can then be combined by the use of Eq. (31). In the present case the 
result will be 

(55) 

The image impedance at the other end of the filter can now be deter
mined. From the pertinent considerations, we find that it will be given 
by Eq. (51), as it should. We now have a complete set of image parame
ters. From these we can calculate the open-circuit or the short-circuit 
parameters, if we so desire. Of course, for all of this work to be worth 
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anything, we must have one or more synthesis procedures available that 
can be used when z or y parameters are prescribed. Furthermore, the 
resulting networks should have advantages over the one which we have 
already obtained; advantages which outweigh any increase in the com
putational work. We will leave the further exploitation of this topic 
to the books on network synthesis. 

As a conclusion for this section let us outline the basic philosophy of 
the realization technique. The purpose is to begin with a realizable Z 0 1 

and zeros of transmission, and to end with a network. We realize the net
work as a cascade connection of simple two-ports, as in Fig. 8. At each 
interconnection the image impedances are made equal. This step has 
two consequences. First of all, the zeros of transmission of the over-all 
network consist of all the zeros of transmission of the individual two-
ports. Secondly, the image impedance of the over-all network at end 1 
is the same as the input image impedance of the terminating section at 
end 1. Similarly, the image impedance at end 2 depends only on the 
terminating section at end 2. (It is of course, decided by the given Z 0 1 

and zeros of transmission.) We make use of this fact in the following 
way to make all the intermediate sections simple. For the terminating 
section we begin with a symmetrical balanced lattice that has the given 
image impedance, but a very simple index function. We achieve this 
effect by making Zx and Zv have many common poles and zeros. [See 
Eq. (37).] The only requirements on the index function of this lattice 
are that it must contain the cut-off factor and become equal to unity at 
the odd-order zeros of transmission on the jω-axis which are also critical 
frequencies of Z 0 1 . Since Zx and Zy have many common poles and 
zeros, and the zeros of transmission are on the jω-axis, a symmetrical 
ladder equivalent can be found for this lattice. Now we bisect this 
equivalent and obtain one terminating half section. This "bisect
ing" has two consequences. First of all, the transmission zeros come to 
the correct order. Secondly the image impedance at the second end is 
no longer the complicated function Z 0 1 but a simple constant-K func
tion, either Tee or Pi. This allows all the intermediate sections to have 
the same simple image impedance, and hence to be simple two-ports. 

Each intermediate network is chosen to be symmetrical. Its image 
impedances are simply the constant-K type image impedances found 
from the terminating half section. Each of these networks realizes one 
set of transmission zeros—either a pair of conjugate zeros on the jω-axis, 
or a pair of real zeros, or a quadruplet of complex zeros—each zero being 
double. For zeros of transmission on the jω-axis we can use the m-
derived Tee or Pi network (whether it is Tee or Pi is decided by the 
constant-K impedance obtained from the terminating section). For the 
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other zeros we have considered only lattices. It is possible to obtain 
unbalanced (common-terminal) sections for the complex zeros as well 
(but not for the real pair), but classical filter theory does not make use 
of these sections for a special reason. As we shall see in the next section, 
the ideal filter characteristics can be approximated satisfactorily using 
only transmission zeros on the jω-axis. Thus no other sections (besides 
the m-derived Tee and Pi) are required for the interior part of the filter 
(i.e., excluding the terminating half sections). The design of the m-
derived sections has been reduced to formulas, and so is immediately 
accomplished. 

11.5 Determination of the Image Parameters 
Up to this point we have carried on the discussion under the assump

tion that the image parameters, at least Z 0 1 and tanh θ, are given. How
ever, the starting point in any filter problem is not from known image 
parameters. What is specified is a desirable behavior of the image im
pedance and the attenuation function in the pass band and stop band, 
respectively. We must then find suitable functions for the image im
pedances and tanh θ in such a way that the ideal filter behavior is 
approximated in some manner. Remember that by ideal filter behavior 
we mean that the normalized image impedances should be identically 
equal to unity in the pass band, and tanh θ should be identically equal 
to unity in the stop band. This behavior is, of course, impossible. The 
requirements of each particular application will dictate how wide a dis
crepancy between the actual behavior and the ideal behavior can be 
tolerated. 

For the sake of convenience, let us normalize the frequency variable 
with respect to the cut-off frequency ωc; that is, p = y + jx = s/ωc. 
The normalized frequency corresponding to the cut-off will then be 
xc = 1. Now consider the diagram of Fig. 25. The abscissa is x and the 

Fig. 25. Filter design specification. 
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ordinate is Z 0 1 or tanh 0. The nominal pass band extends from x = 0 to 
x = 1. The design specifications can be stated in terms of the tolerances 
on the variations of Z 0 1 and tanh 0 in the pertinent frequency ranges, and 
in terms of the quantities k and ki which specify the extent of these 
ranges within which the variations of the pertinent function is kept 
within its tolerance. It now remains to choose the number and locations 
of the poles and zeros of Z 0 1 and tanh 0 in order to satisfy the design re
quirements. This portion of an over-all design or synthesis is referred 
to as the approximation problem. Note that the determination of Z 0 1 

is independent of the determination of tanh 0. However, in their respec
tive frequency bands (pass band for Z 0 1 and stop band for tanh 0) these 
two functions are to exhibit similar behavior. In fact, it will be enough 
to consider the x-axis interval from zero to one, if we plot tanh 0 against 
the variable 1/x. 

Any convenient procedure can be used to solve the approximation 
problem. In Chapter 7 two desirable forms of a transfer function mag
nitude were mentioned, the monotonic maximally flat response and the 
oscillatory equal-ripple response. 

Let us here consider an equal-ripple approximation of Z 0 1 and tanh 0 
as illustrated in Fig. 26. The function tanh 0 is plotted against 1/x as a 

Fig. 26. Equal-ripple approximation. 

variable and the point k1 in Fig. 25 becomes 1/k. All the peak deviations 
above unity are equal as are those below unity, their geometric mean 
being one. The tolerance is then M — 1, where M is defined in the figure. 

Instead of specifying the tolerable maximum deviation of Z 0 1 in the 
pass band from its ideal value, it is possible to state this specification in 
an equivalent form in terms of the reflection coefficient. Thus, with 
Z1 — R1 = 1, the reflection coefficient given in Eq. (12) becomes 

(56) 



494 Image Parameters and Filter Theory [Ch. 11 

Clearly, a tolerance on Z 0 1 can be simply translated into a tolerance 
on ρ1, and vice-versa. Ideally, the reflection coefficient should be zero 
in the pass band. In a particular problem we can specify the peak devia
tion from zero which can be tolerated. This, then, specifies the maximum 
deviation of Z 0 1 f r o m unity. 

If Z01 is approximated in the pass band in the manner indicated in 
Fig. 26, we shall find that the value of the reflection coefficient cor
responding to the positive peaks of Z 0 1 will be equal, but of opposite 
sign, to its value corresponding to the negative peaks. In this way the 
reflection coefficient will be approximated in an equal ripple manner also. 

Let p m be the maximum tolerable pass band reflection coefficient. 
This can be related to the peak value of Z 0 1 by noting that ρ1 = ρm when 
Z 0 1 = 1/M. Thus, solving Eq. (56) for M with these values substituted, 
we get 

(57) 

Let us now consider the attenuation in the stop band. Ideally, we 
want infinite attenuation throughout this band. However, in a given 
problem we will be content if the attenuation never falls below a speci
fied value, say α0. In order to tie this in with our previous discussion, 
we should relate the minimum stop band attenuation with the tolerance 
on tanh θ. Remember that in the stop band, tanh θ = tanh a, since β 
is an integral multiple of π radians. If we now express tanh α in terms 
of exponentials and solve for a, we obtain 

(58) 

Substituting either of the peak deviations M or 1 /M for tanh θ in this 
expression will lead to the same value of a, the stop-band minimum. 
In this way we can relate the minimum stop-band attenuation with the 
peak deviations of tanh θ. Thus 

(59) 

(The absolute value signs are not needed, since M is greater than one.) 
The question that now remains is how to determine the number and 

locations of the poles and zeros of Z 0 1 and of tanh θ in order that an 
equal-ripple approximation is obtained for each function, when the 
maximum pass band reflection coefficient ρm and minimum stop band 
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loss α0 are specified. This problem was first solved by Cauer in 1931. 
We cannot go into the details here since it would take us far afield. We 
will be satisfied to summarize the results here, only for continuity of the 
discussion. 

The answer to our question is sought by first making a transformation 
of variable as follows 

(60) 
where 

(61) 

The function u is called an elliptic integral of the first kind. It is a func
tion of the upper limit φ and of the parameter k. 

The value of u when φ is equal to π/2 is designated K and is called 
the complete elliptic integral. Thus 

(62) 

The value of the complete elliptic integral is thus dependent only on the 
parameter k. These values are tabulated and are readily available. 

The function sn u is the Jacobian elliptic sine function. It is related 
to an ordinary sine by 

(63) 

It is, thus, a periodic function; one period corresponds to a variation of 
φ over 2π radians, which corresponds to 4K. The complete elliptic 
integral is thus a quarter period of the elliptic sine function. The 
parameter k is called the modulus of the elliptic sine function. The 
elliptic sine function sn u is also tabulated. 

Let us now return to our problem. The general forms for Z 0 1 and 
tanh θ for a low-pass filter with frequency normalized to the cut-off value 
are 

(64) 

(65) 

where p = s/ωc and xi = ωi/ωc. We have used numeral subscripts for 
the critical points of Z 0 1 and literal subscripts for those of tanh θ. The 
number of critical frequencies n need not be the same in both cases. 

For the equal ripple approximation Cauer found expressions for the 
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critical frequencies of Z 0 1 and tanh θ. He also found expressions for 
the points at which the peak deviations occur and the points at which 
Z 0 1 and tanh θ equal unity. In the case of tanh θ, these latter are the 
points of infinite attenuation. 

Critical frequencies of tanh θ 

(66) 

Frequencies of peak deviation 

(67) 

Frequencies at which tanh θ = 1 ; infinite attenuation 

(68) 

The infinity in the last subscript refers to infinite attenuation. In the 
case of Z 0 1 , the corresponding points are obtained by taking the re
ciprocals of these three expressions. 

Let us make a remark on these solutions which illustrates a different 
point of view that may be helpful. For the function tanh θ, we want 
that tanh 0 should not differ from 1 by too much in the frequency range 
1/k < x < ∞. We would like to locate its critical frequencies in the 
range 0 ≤ x < 1 suitably, to achieve this result. The location of critical 
frequencies on the x-axis, to achieve the desired behavior of tanh 0, turns 
out to be nonuniform. However if we transform the x-axis, using the 
elliptic sine function as in Eq. (60), with the number k as modulus, the 
spacing of the critical frequencies becomes uniform on the u-axis, over 
the interval K(k)/n ≤u≤ K(k); where K(k) is the complete elliptic 
integral. Thus the critical frequencies are easily located on the u-axis. 

Perhaps the transformation (60) itself can use a word of explanation. 
Suppose we have a given value of x in the interval (0,1.) and we wish 
to find the corresponding u. We first find φ such that x = sin φ 
(0 ≤ φ ≤ π/2). Then we substitute this φ in the integral (61.), using the 
given value of k — the same k as in Fig. 26. The value of the integral 
is the desired u. On the other hand if we start with a u in the interval 
0 ≤ u ≤ K(k), we proceed as follows to find x. We first find a φ such 
that the given u is equal to the value of the integral in (61.) for this φ and 
the given k. Then x = sin φ. 
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Note from Fig. 26 that the points at which tanh θ=1 are simple 
points; that is, these points will be simple transmission zeros. It would 
be desirable to have double zeros as well, in order to account for a sym
metrical filter or for symmetrical sections of a composite filter. This 
desire can be fulfilled by treating the function tanh θ/2 instead of tanh 0. 
Remember that, for a symmetrical network, tanh θ/2 will have the same 
form as tanh θ for an arbitrary network. If tanh θ/2 = 1 has simple 
roots, tanh θ will have double roots. Even when unsymmetrical sections 
of a composite filter are under consideration, we can deal with tanh 0/2. 
If we eventually design a symmetrical section with this information, we 
then bisect it and retain only half. From now on, therefore, we will deal 
with the function tanh θ/2 instead of tanh 0. Any previous discussion 
concerning tanh 0 will be assumed to pertain to tanh 0/2. 

Another interesting fact about Cauer's procedure is that all the trans
mission zeros occur on the jω-axis. Hence, the design can always be ob
tained as a ladder network. 

Another question still remains to be answered: from a given ρ m or 
α0, how do we determine the number n of impedance controlling factors 

or of propagation function controlling factors? This question can be 
answered with the help of Eq. (67) which gives the frequencies at which 
the peak deviations occur. There are two parameters in this expression, 
the modulus k and the order n. For a given value of n we can use this 
expression to calculate the peak deviations as a function of k. If we 
do this for a number of values of n we will be able to plot a family of 
curves of peak deviations (which can be expressed as ρm or α0) versus the 
modulus k with n as a parameter. In Fig. 27 charts of p m and α0 are 
presented as a function of k with n as a parameter. Since values near 
k = 1 are the desired ones, the scale near this point is expanded by de
fining k = sin γ and plotting α0 and ρ m against γ. 

Let us now contemplate the procedure for synthesizing a low-pass 
filter which is to operate between equal resistive terminations. We will 
consider a symmetrical filter. What is given is the maximum tolerable 
reflection coefficient ρm in a band of frequencies from 0 to ω 1 , and the 
minimum permissible attenuation α0 in another band from ω 2 to ∞, with 
ω 2 > ω x . In order for these points to correspond to k and 1 /k, respec
tively, on the normalized scale, we choose ωc = √ω1ω2. Then, k = 
ω 1/ωc = √ω1/ω2. With k now known we can find the number of con
trol factors in Z0 from Fig. 27 for the given value of ρm, and then find the 
critical frequencies from Eq. (65). 

We intend that the filter will be a cascade connection of sections. 
In our previously described procedure for a symmetrical filter, each of 
the cascaded sections will have the same image impedance as the given 
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Fig. 27. Maximum reflection coefficient and minimum attenuation plotted agains 
k with the number of sections as parameter. 

one. Since this has several poles and zeros besides the cut-off factor, 
each section will be relatively extensive. Suppose that instead of this, we 
find the symmetrical section which has the given image impedance and 
has double transmission zeros at each of the poles and zeros of this im
pedance. When bisected, each half of this symmetrical network, will 
have simple transmission zeros at the same points. Hence, the image 
impedance at the other end will be simply a constant-K type, either Tee 
or Pi. The desired filter is to have one of these half sections at each end, 
thus providing the correct image impedances. Any number of additional 
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Fig. 27. (continued) 

symmetrical sections can now be cascaded between the two ends, each 
of which has a constant-K image impedance and provides a double trans
mission zero. These will have relatively few elements and will take the 
form of m-derived sections. 

We are now ready to consider the stop band behavior in which a mini
mum attenuation α0 is specified. The terminating sections, of course, 
will provide some attenuation. The value of the minimum attenuation 
provided by these sections can be found from Fig. 27b for the values of 
k and n used in determining Z0. If this is equal to or greater than the 
specified α0, the job is complete; the terminating sections which provide 
the required behavior of the image impedance serve to provide for the 
required attenuation as well. Usually, this will not be true. Then we 
subtract from α0 the minimum attenuation provided by the terminating 
sections. The remainder is the minimum that must be provided by the 
"attenuating" sections in the interior of the filter. We enter Fig. 27b 
with this value of α and find n corresponding to the given k. Then we 
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use Eq. (68) to find the frequencies of infinite attenuation. These are 
related to the m parameters through Eq. (35), remembering that x∞ = 
ω∞/ωc. For each value of x∞ an m-derived section is readily designed. 
With this procedure it appears that the terminating sections are the only 
ones that require individual attention. The interior attenuating sections 
simply require substituting numbers into formulas. 

The Cauer synthesis method which we have briefly described is a 
powerful synthesis technique. However, it solves only one type of prob
lem. Very often it is not required to maintain a high value of attenua
tion throughout the stop band; the attenuation is required to be high just 
beyond the cut-off but towards very high frequencies lower attenuation 
can be tolerated. If our synthesis procedure maintains high attenuation 
where it isn't required, we are paying for something we don't even want 
to buy. 

In addition, the Cauer procedure takes no cognizance of the image 
phase in the pass band. If there are requirements on the behavior 
of the phase, then some other procedure must be devised to locate the 
critical points of Z0 and tanh θ appropriately. 

We should also mention that when the filter requirements are rela
tively simple, the general procedure need not be employed. We have 
seen in Figs. 12 and 14 that half an m-derived section has an image im
pedance at one end which has one impedance controlling factor. This 
corresponds to n = 2 in Fig. 27a. If we can stand the combination of 
tolerance and coverage which this will provide for Z 0 , then we can use 
two m-derived half sections as terminations. Any number of interior 
attenuating sections can still be used to satisfy stop band requirements. 

11.6 Frequency Transformations 
In the preceding sections of this chapter we dealt exclusively with 

low-pass filters. As a matter of fact, the approximation and most of 
the realization are handled with a normalized frequency variable p = 
y + jx = s/ωc such that when s = ±jωc, p = jx = ±j1. If we wish to 
deal with other types of filters, such as high-pass and band-pass, it is not 
necessary to repeat all of the analysis with filter sections and functional 
forms appropriate to the new frequency ranges. If we can find a trans
formation which will map the desired portions of the jω-axis onto the 
interval of the jx-axis (normalized low pass) from —1 to 1, then we can 
solve the filter problem as a low-pass problem, and subsequently trans
form back to the desired range. 

As an example, consider the transformation 

(69) 
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This relationship transforms the positive jω-axis from ωc to infinity into 
the negative x axis from —1 to 0, and the negative jω-axis from — ωc 

to — ∞ into the range 0 < x < 1. It is a low-pass to high-pass trans
formation. 

Suppose now that a high-pass filter is required, satisfying certain pass
band and stop-band requirements. With the use of Eq. (69) these re
quirements are translated into requirements for a normalized low-pass 
filter. This filter is then synthesized and element values are found on a 
normalized low-pass basis. What we must do now is to modify the 
branch impedances in such a way that the value of each branch imped
ance at a value of p is the same as the value of the modified branch 
impedance at the corresponding value of s. In this way, any network 
function, image impedance, attenuation function, or any other one, will 
have the same value on the jω-axis as it has on the jx-axis. 

Let us designate element values in the normalized low-pass case with a 
subscript 0 and those in the high-pass case with a subscript h. Then, in 
view of the transformation in Eq. (69), we will require 

(70) 

This means that in the normalized low-pass filter, we replace each in
ductance with a capacitance and each capacitance with an inductance, 
the corresponding values being 

(71) 

The high-pass filter synthesis is then complete. 
Another common filter is the band-pass filter. Here the pass band 

is the frequency interval between two cut-off frequencies ωc1 and ωc2 

(and also the image of this interval on the negative jω-axis). Consider 
the transformation 

(72) 

where ωo is the geometric mean between the two cut-offs and w is the 
bandwidth. That is 

(73) 
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Figure 28 shows the corresponding portions of the two imaginary axes. 
This transformation is called a low-pass to band-pass transformation. 

Fig. 28. Low-pass to band-pass transformation. 

To synthesize a band-pass filter, we again start from a normalized 
low-pass filter. Each branch of this filter must be so modified that its 
impedance remains the same, for any value of s, as the original one for 
the corresponding value of p. Let us use the subscript b to designate 
band-pass quantities. Then 

(74) 

Hence, each inductance in the normalized low-pass filter should be re
placed by a series-resonant circuit whose element values are 

( 7 5 ) 

Similarly, each capacitance should be replaced by a parallel-resonant 
circuit whose element values are 

(76) 
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As examples of this transformation, Fig. 29 shows m-derived high-pass 
and band-pass Tee sections obtained by making the changes in the ele
ments called for by Eqs. (71), (75), and (76). 

Fig. 29. High-pass and band-pass m-derived Tee sections. 

This same concept can be applied to find other types of filters as well, 
including multiple-pass-band filters of which the band-elimination type 
is a special case. All that is required is to find transformations that will 
map the desired intervals on the jω-axis onto the range — 1 ≤ x ≤ 1 in 
the p-plane. 

One fact that we should note in the low-pass to band-pass transforma
tion (72) is that any two points on the ω-axis that have ω0 for a geometric 
mean correspond to conjugate values of p . That is, if 

so that (77) 

then 

(78) 

Thus if both ω1 and ω2 are in the pass band the values of the image im
pedance at these two points will be the same. If they are in the stop 
band, the values of the attenuation at these two points will be the same. 
Thus if we use a log ω scale, the filter characteristics will be symmetrical 
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about the point log ω0. Only band-pass filters possessing this type of 
symmetry can be realized by first starting with a low-pass filter. 

PROBLEMS 
11.1 Obtain the relationship between the actual reflection coefficient and the 

image reflection coefficient. 
11.2 Carry out the details of the derivation of Eqs. (15) and (17) in the text. 
11.3 The insertion ratio was defined at the end of section 11.1. The log

arithmic magnitude of the reciprocal of this quantity, measured in db, is called 
the insertion loss. Find the relation between insertion loss and image loss. 

11.4 Compute the image parameters of the following networks. (Make use 
of their relationship to the other sets of parameters and short cuts, instead of 
using the definitions.) (a) Equalizer network of Fig. 8.41, (6) Bridged Tee 
network of Fig. 8.43, (c) Twin Tee network of Fig. 8.46, and (d) Lattice network 
of Fig. P8.5. 

11.5 Compute Z0 1(jω), the image attenuation a(ω), and tanh θ(jω) for the 
low-pass filter used with a conventional detector, as shown in Fig. P11.5. Find 
the poles and zeros of Z01 and tanh θ(s), and find the cut-off frequency, if there is 
one. Sketch the variations of these functions in the frequency ranges of interest. 

Fig. P I 1.5. 

11.6 Repeat Problem 11.5 for the power supply filter of Fig. 8.35. 
11.7 Using Zoi and tanh θ derived in Problem 11.6, compute Zo2. Verify 

by direct computation of Z 0 2 from the network. 
11.8 Design a low-pass (ladder) filter to operate between 600 ohm termina

tions, for the following specifications. The input impedance should not vary 
from the 600 ohm level by more than 10 percent, over the frequency range 0 
to 10,000 cycles per second. Beyond 12 kc/s, the attenuation should be at least 
30 db. Compute the insertion loss of the final filter obtained, and sketch its 
variation up to 20 kc/s. 

11.9 The following combinations of Zo1(s) and the zeros of transmission are 
given. Find Zo2(s) and tanh 0(s). (Assume s is a normalized variable.) 

11.10 Find the networks realizing the image parameters given in Problem 
11.9. 



APPENDIX 

THEORY OF FUNCTIONS 
OF A COMPLEX VARIABLE 
AND LAPLACE TRANSFORMS 

Even to attempt an appendix on two such extensive topics as the 
theory of functions and Laplace transforms may appear presumptuous. 
It is impossible to treat these topics with any semblance of precision and 
completeness in an appendix that is any shorter than the rest of the text. 
And when we try to keep the appendix shorter than the average chapter, 
the task is indeed hopeless. (The only meaningful "appendix" for this 
text is a pair of books, one on each of the subjects of the present title, 
tucked inside the back cover.) 

Why, then, should we write this condensed treatment of function 
theory and Laplace transforms and call it an appendix? Our purpose 
here is twofold. First we would like to provide a handy reference for 
those who are familiar with the subject through an earlier encounter, 
but would like to refresh their memories on specific points as they go 
through the main text. Secondly we would like to provide a "skeleton" 
on which an instructor can base an introduction to the rest of the text. 
The material in the appendix is assumed as a prerequisite in the main 
body of the text; but the coverage provided in the appendix is inadequate 
for self-study. 

We shall give the material in the appendix almost entirely in summary 
form. We shall not attempt to provide any motivation, and only very 
rarely shall we prove any results. However we shall state the important 
results precisely, for reference purposes. 

A.1 Analytic Functions 
We assume familiarity with the algebra of complex numbers (addi

tion, subtraction, multiplication, and division), and the representation 
of complex numbers as points on a plane. We also assume familiarity 
with the elements of the theory of functions of a real variable. 

505 
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Let s = σ + jω denote a complex variable. We say that another com
plex variable W = U + jX is a function of the complex variable s, if 
to each value of s (in some set), there corresponds a value of W or a set 
of values of W. We write W = F(s), where F is the rule that associates 
the values of W with values of s. If to each value of s (in the set) there 
is only one value of W, we say that W is a single-valued function of s; 
otherwise it is multi-valued. 

Continuity for a function of a complex variable is formally defined in 
the same way as for functions of a real variable. Namely, F(s) is con
tinuous at s0 if it is defined in a neighborhood of s0 and 

(1) 

We may interpret this statement in the complex plane as follows. Let 
ε > 0 be a given number. We consider a circular neighborhood of F(so) 
as in Fig. 1, where all the points within the circle of radius ε around 

Fig. 1. Neighborhoods in the s-plane and W-plane. 

F(so) belong to this neighborhood. Now Eq. (1) is equivalent to the 
following claim. We can find a small enough neighborhood of s0, of 
radius δ > 0, such that the values of F(s) at all points in this neighbor
hood fall within the circle of radius ε about F(so). 

Differentiability in the complex plane is also defined by the same 
formal relation as on the real fine, but is conceptually of much greater 
significance. 

F(s) is differentiable at s0, with the derivative F'(s0), provided 

(2) 
exists and is finite. 

Implicit in this definition is the assumption that s may approach s0 in 
any direction, or may spiral into it, or follow any other path. The limit 
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in Eq. (2) must exist (and be unique) independently of how s approaches 
s0. It is this fact that makes differentiability in the complex plane a 
very strong requirement. In consequence, differentiable functions of a 
complex variable are extremely "well-behaved," as contrasted with real 
functions, which can be "pathological." 

It can be shown (this is only one of many "it can be shown's" that we 
shall meet in this appendix) that the usual rules for derivatives of sums, 
products, quotients, etc., carry over from the real case, with no changes. 
So does the chain rule for the function of a function; and all the familiar 
functions have the same derivatives as on the real line, except that the 
variable is now complex. We summarize these results below. 

Let F1(s) and F2(s) be two differentiable functions. Then 

(3) 

(4) 

(5) 

(6) 

(7) 

If a function F of a complex variable is differentiable at the point s0 

and at all points in a neighborhood of s0, we say that F(s) is regular at s0. 
Notice that the statement "F(s) is regular at s0" is a very much 

stronger statement than "F(s) is differentiable at s0." A function F(s) 
that has at least one regular point (i.e., a point at which the function is 
regular) in the complex plane, is called an analytic function. A point so 
at which the analytic function F(s) is not regular is a singular point of the 
function. F(s) is said to have a singularity at s0. In particular, a point 
at which the derivative does not exist is a singular point. 

Although the requirement of regularity is a very strong condition and 
therefore the class of analytic functions is a "very small" subset of the 
set of all functions, almost all functions that we meet in physical applica
tions are analytic functions. An example of a nonanalytic function is 
|s|2. This function has a derivative at s = 0 and nowhere else. Hence 
it has no regular points. The function s* ( = σ — jω) is another simple 
example of a nonanalytic function. The function F(s) = 1/(s — 1) is a 



508 Complex Variables and Laplace Transforms [App. 

simple example of an analytic function. Its region of regularity consists 
of the whole plane exclusive of the point s = 1. The point s = 1 is a 
singular point of this function. 

The singularities of an analytic function are extremely important, as 
we shall see. For the present we can only distinguish between two kinds 
of singularities. The point s0 is an isolated singularity of F(s), if so is a 
singular point, but there is a neighborhood of s0 in which all other points 
(except so) are regular points. If no such neighborhood exists, s0 is a 
nonisolated essential singularity. Thus in every neighborhood of a non-
isolated singularity there is at least one other singular point of the func
tion. Hence a nonisolated singularity is a limit point (or point of ac
cumulation) of singularities; and conversely. 

Rational functions (quotients of polynomials) are examples of func
tions that have only isolated singularities. To give an example of a 
function that has nonisolated singularities, we have to use trigonometric 
functions that we have not defined yet. Nevertheless, an example of 
a nonisolated singularity is the point s = 0 for the function 

(8) 

The denominator becomes zero whenever 

(9) 

and so these points are singular points of F(s). The origin is a limit 
point of these singularities. 

The famous French mathematician Augustine Cauchy (who originated 
about half of complex function theory) gave the following necessary and 
sufficient condition for the differentiability of a function of a complex 
variable. The function 

F(s) = U(σ,ω) + jX(σ,ω) 

is differentiable at s0 if and only if the partial derivatives U/ σ, U/ ω, 
X/ σ, and X/ ω exist and are continuous at (σ 0 ,ω o) and satisfy the equa

tions 

(10) 

at this point. 
The necessity is proved by letting s approach s0 in Eq. (2) by first 

letting σ approach σ 0 and then letting ω approach ω0 for one computation, 
and reversing the order for another computation. Equating the two 
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derivatives so obtained leads to Eq. (10). The sufficiency is proved by 
using the concept of the total differential of a function of two variables 
and the definition of the derivative. 

The equations in (10) are known as the Cauchy-Riemann equations 
honoring the German mathematician Bernhard Riemann (who made 
these equations fundamental to the theory of analytic functions) in 
addition to Cauchy. We can use the Cauchy-Riemann equations as a 
test for the regularity of a function as follows. 

If the four partial derivatives are continuous in a region of the complex 
plane and if they satisfy the Cauchy-Riemann equations at every point 
of this region, then F(s) is regular in the region. 

Notice that this condition involves the neighborhood about s0 just 
as the definition of the regularity of a function does. The proof of the 
result again depends on the concept of a differential for a function of 
two variables. 

By differentiating one of the two equations in (10) with respect to σ 
and the other with respect to ω, and combining, we may observe the im
portant fact that the real and imaginary parts of an analytic function 
satisfy Laplace's equation in two dimensions, within the region of regu
larity. That is. 

(11) 

Thus the real and imaginary parts of an analytic function are harmonic 
functions. The converse of this statement is also true. Every harmonic 
function (in two dimensions) is the real part of an analytic function, 
and the imaginary part of another analytic function. This fact makes 
analytic functions of considerable interest in two dimensional potential 
theory. 

A.2 Mapping 
We are all used to representing functions of a real variable as graphs. 

However with functions of a complex variable, a "graph" would re
quire four dimensions, two for the variable and two for the func
tion. Hence it is impossible to draw a graph for an analytic function. 
However we can still use the concept of geometrical representations with 
analytic functions to give us a better understanding of these functions. 
We use two planes, an s-plane for the variable and a W-plane for the 
function as we did in Fig. 1. This way we get four co-ordinate axes. 

To draw a complete picture, telling what the value of the function is 
at each point in the s-plane, is futile, since this merely results in a smear. 
Therefore, we choose certain representative lines in the s-plane; and show 
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in the W-plane the functional values of F(s) at points on these lines. 
Single-valued functions F(s) will give us smooth lines in the W-plane, as 
a result. As an example, we have a representative sketch of the function 
F(s) = s2 in Fig. 2. Here we have taken some lines along which either σ 

Fig. 2. Representation of the mapping F(s) = s2. 

or ω is constant as representative lines. The corresponding lines in the 
s2-plane are all parabolas. The two sets of parabolas, corresponding to 
σ = const, and ω = const., are orthogonal families. If we had chosen 
other representative lines in the s-plane, we would have obtained other 
types of curves in the s2-plane. 

We refer to this graphical concept as a mapping. The s-ρlane is said to 
be mapped into the F-plane; the F-plane is a map of the s-plane. The 
lines in the F-plane are images of the lines in the s-plane, under the func
tion F(s). We also refer to F(s) as a transformation. The function F(s) 
transforms points in the s-plane into points in the F-plane. The concept 
of a mapping by an analytic function is a very useful one. 

The fact that the parabolas of Fig. 2 constitute an orthogonal family 
is no accident. The reason is that the original lines in the s-plane inter
sect at right angles, and an analytic function preserves angles, except 
when the derivative does not exist or is zero. Let us make a definition 
before establishing this fact. A conformal transformation F is one in 
which the angle of intersection of two image curves in the F-plane is the 
same (both in magnitude and in sense) as the angle of intersection of 
the two corresponding curves in the s-plane. 

The mapping by an analytic function is conformal at all points at which 
the function is regular and the derivative is nonzero. 
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To prove this result we take two smooth curves C1 and C 2 in the s-
plane, which intersect at so. Let s be an arbitrary point on C1. Let us 
introduce polar co-ordinates about s0, by defining 

(12) 

Then as s approaches so, the angle θ1 approaches the angle α1, which is 
the angle of the tangent to C1 at so. By the definition of the derivative 

(13) 

Since this derivative exists, we may take the limit along C1. Since the 
derivative is nonzero, we may write 

(14) 
Then from Eq. (13) 

and (15) 

Eq. (15b) can be rewritten 

(16) 

The point F(s) is on the curve C1 which is the image of C 1 under the 
mapping F(s). Thus the left side of Eq. (16) is the angle of the tangent 
to C1 at F(so). Thus from Eq. (16), the curve C1 has a definite tangent 
at F(s0), making an angle β + α1 with the positive real axis. An identical 
argument gives the angle of the tangent to C 2 ' at F(so) to be β + α2. 
Thus the angle between the two tangents, taken from C1' to C 2 ' is 
(α2 — α1) which is the same (in magnitude and sign) as the angle be
tween the curves C1 and C 2 at s0 measured from C1 to C 2 . 

Incidentally, we see from Eq. (15a) that the local magnification, that 
is the increase in linear distance near s0, is independent of direction and 
is given by the magnitude of the derivative. Thus, locally, the mapping 
by an analytic function (when F'(s0) ≠ 0) produces a linear magnifica
tion |F'(s0)| and a rotation argF'(s 0); thus preserving shapes of small 
figures. 

An auxiliary consequence is that the images of smooth curves are also 
smooth curves; that is, they cannot have corners. 

We have not yet defined some point-set-topological concepts about 
regions and curves that are really needed to clarify our earlier discussions. 
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Let us proceed to rectify this omission, although we cannot be completely 
precise without introducing very complex ideas, which we do not propose 
to do. Therefore we shall take a few concepts such as path, continuous 
curve, etc., to be intuitively obvious. 

A simple arc is a continuous path in the complex plane which has no 
crossover or multiple points. A simple closed curve is a path in the com
plex plane which if cut at any one point becomes a simple arc. If the 
end points of a simple arc are joined, we form a simple closed curve. 

An open region is a set of points in the complex plane each of which 
has a neighborhood all of whose points belong to the set. The region 
"inside" a simple closed curve, not counting the curve itself, is an ex
ample. If we add the points on the boundary of an open set to the open 
set itself, the combined region is called a closed region. An open or closed 
region is said to be connected if any two points in the region can be con
nected by a line all points on which are in the region. 

In the preceding paragraph the word "inside" was put in quotation 
marks. Although we have a strong intuitive feeling that the inside of a 
closed curve is well defined, nevertheless this requires a proof. The 
Jordan curve theorem gives the desired result. It states that every simple 
closed curve divides the complex plane into two regions, an "inside" and an 
"outside" the curve itself being the boundary of these two regions. If we 
start at some point on the curve and traverse it in a counterclockwise 
sense, the region to the left of the curve will be called the inside, that to 
the right, the outside. 

If we do not permit a closed curve to pass through infinity, then the 
"inside" region, as just defined, will be bounded; that is, all points in the 
region will satisfy the condition | s | ≤ M, where M is a fixed positive 
number. On the other hand, if the closed curve goes through infinity, 
then neither the inside nor the outside is bounded. 

The question arises as to what is meant by a closed curve passing 
through infinity. The path consisting of the imaginary axis, for example, 
is such a curve. But this may appear to be a simple arc rather than a 
closed curve. The Riemann sphere will serve to clarify this point. 

Consider a sphere placed on the complex plane with its "south pole" 
at the origin, as illustrated in Fig. 3. Now consider joining by a straight 
line every point in the plane to the "north pole" of the sphere. These 
lines will all intersect the sphere, thus setting up a one-to-one correspond
ence between the points in the plane and those on the sphere. Every 
point in the finite plane will have its counterpart on the sphere. As we 
go farther and farther away from the origin of the plane in any direction, 
the point of intersection of the lines with the sphere will approach closer 
and closer to the north pole. Thus, the north pole corresponds to in-
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Fig. 3. The Riemann sphere. 

finity. On the sphere infinity appears to be a unique point. Both the 
real and the imaginary axes become great circles on the sphere, and a 
great circle appears like a simple closed curve. 

The concept of the Riemann sphere serves another purpose; it permits 
us to look upon "infinity" as a single point, whenever this is convenient. 
We refer to infinity as the point at infinity. 

Very often we wish to talk about the behavior of a function at the 
point infinity. A convention in mathematics is that no statement con
taining the word "infinity" is to be considered meaningful, unless the 
whole statement can be defined without using this word. This conven
tion is introduced to avoid many inconsistencies that would otherwise 
arise. The behavior of a function at the point infinity is defined as fol
lows. 

That behavior is assigned to the function F(s) at s = ∞, as is exhibited 
by the function 

G(s) = F(1/s) 

at s = 0. For example the function F(s) = 1/s is regular at s = ∞, 
since G(s) = F(1/s) = s is regular at s = 0. Similarly the function 
F(s) = as2 + bs is not regular at infinity since G(s) = a/s2 + b/s has a 
singularity at s = 0. 

By a similar artifice we can also talk about the value of a function at a 
point in the complex plane being ∞, if we are careful. By this statement 
we mean that the reciprocal of the function is zero at this point. 

A.3 Integration 
The definite integral of a function of a complex variable is defined in a 

manner similar to the definition of real integration. In the case of real 
variables the definite integral can be interpreted as an area. For com-
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plex variables such a geometrical interpretation is not possible. In Fig. 4 
two points P1 and P2 are connected by a simple arc C. The path is 
divided into intervals by the points sk; the chords * joining these points 
are labeled Δ k s. Suppose we multiply each of the chords by the value 
of a function F(s) evaluated at some point sk* of the interval, and then 
add all these products. Now we let the number of intervals increase 

Fig. 4. The definite integral. 

with a simultaneous decrease in the lengths of the chords. We define 
the definite integral of F(s) as the limit of this sum as the number of in
tervals goes to infinity while the length of each chord goes to zero. More 
precisely 

(17) 

provided the limit on the right exists. 
Note that in addition to the lower and upper limits P1 and P2, we have 

indicated that in going from P1 to P 2 we shall follow the path C. It is 
conceivable that a different answer will be obtained if a different path is 
followed. It would not be necessary to write the limits on the integra
tion symbol if we were to always show the path of integration on a 
suitable diagram together with the direction along the path. Because 
the path, or contour, is inseparable from the definition of an integral, we 
refer to it as a contour integral. 

To determine the conditions under which the definite integral in Eq. 
(17) exists, it is possible to express this integral as a combination of real 
integrals. With F(s) = U + jX, and after some manipulation, Eq. (17) 
becomes 

* Here the chords are taken to be expressed as complex numbers. Thus Δ ks = 
Sk — Sk-1. 
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(18) 

Each of the integrals on the right is a real line integral; if these integrals 
exist, then the contour integral will exist. From our knowledge of real 
integrals we know that continuity of the integrand is a sufficient condi
tion for the existence of a real line integral. It follows that the contour 
integral of a function F(s) along a curve C exists if F(s) is continuous on the 
curve. 

The question still remains as to the conditions under which the in
tegral between two points is independent of the path joining those points. 
Consider Fig. 5 which shows two points P1 and P 2 joined by two simple 

Fig. 5. Conditions for the value of an integral to be independent of the path of 
integration. 

paths C1 and C 2 . Note that the directions of these paths are both from 
P1 to F2. The combined path formed by C1 and the negative of C 2 

forms a simple closed curve, which we will label C = C1 — C 2 . If the 
integral of a function F(s) along path C1 is to equal the integral along 
path C 2 , then the integral along the combined path C must be equal to 
zero, and conversely. The inquiry into conditions under which an in
tegral is independent of path is now reduced to an inquiry into conditions 
under which a contour integral along a simple closed curve is equal to 
zero. The question is answered by the following theorem which is known 
as Cauchy's integral theorem. 

Let F(s) be a function which is regular everywhere on a simple closed 
curve C and inside the curve. Then, 

(19) 

This is a very powerful and important theorem but we shall omit its 
proof. 
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A word is in order about the connectivity of a region in the complex 
plane. Suppose we connect any two arbitrary points P1 and P 2 which lie 
in a region by two arbitrary simple arcs C1 and C 2 also lying in the region. 
The region is said to be simply-connected if it is possible to slide one of 
these arcs along (distortion of the arc is permitted in this process) until 
it coincides with the other, without ever passing out of the region. 
Cauchy's theorem is proved ab initio for just such a region. The hatched 
region between the two closed curves in Fig. 6 is called doubly connected. 

Fig. 6. A doubly-connected region. 

Such a region can be reduced to a simply connected region by the artifice 
of "digging a canal" between the two closed curves. The region now is 
bounded by the composite curve whose outline is shown by the arrows in 
Fig. 6b. 

Suppose that a function F(s) is regular in the hatched region shown 
in Fig. 6a including the boundaries. Cauchy's theorem can be applied 
here to the composite curve consisting of the inner and outer curves and 
the "canal." The canal is traversed twice, but in opposite directions, 
so that its contribution to the complete contour integral is zero. If 
we denote the outside and inside curves by C1 and C 2 , respectively, both 
in the counterclockwise direction, then Cauchy's theorem will lead to 
the result that 

(20) 

As a matter of fact, if we choose any other closed path between the inner 
and outer ones in Fig. 6, the same reasoning will tell us that the integral 
around this path in the counterclockwise direction will be equal to each 
of the integrals in Eq. (20). 

This reasoning leads us to conclude that the value of a contour integral 
around a simple closed curve will not change if the contour is distorted, 
so long as it always stays inside a region of regularity. 
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Turn again to Fig. 5. The points P1 and P2 are in a simply connected 
region R throughout which a function F(s) is single-valued and regular. 
Let P1 be a fixed point which we will label s0, and P2 a variable point 
which we will label s. We have stated that the integral from s0 to s is 
independent of the path of integration so long as the paths remain in the 
region of regularity. Hence, we can define the function G(s) as 

(21) 

where z is a dummy variable of integration. This function is a single-
valued function of the upper limit s for all paths in the region of regular
ity. It is easy to show that G(s) is regular in R and that its derivative is 
F(s). We call it the anti-derivative of F(s). (For each s0 we get a dif
ferent anti-derivative.) 

Actually it is not necessary to assume that F(s) is regular in the region. 
Instead it is sufficient to assume that F(s) is continuous in R and that its 
closed contour integral for all possible simple closed curves in R is zero. 
However, Morera's theorem, which we will discuss later, states that a 
function satisfying these conditions is regular. 

In evaluating a definite integral in real variables we often look for an 
anti-derivative of the integrand. The same procedure is valid for com
plex variables. That is, if an anti-derivative of F(s) is G(s), then 

(22) 

Let us now consider a simple closed curve C within and on the bound
ary of which a single-valued function F(s) is regular. It is possible to 
express the value of the function at any point s0 inside the curve in terms 
of its values along the contour C. This expression is 

(23) 

It is referred to as Cauchy's integral formula (as distinct from Cauchy's 
theorem). This result can be proved by noting that in the integral in
volved the contour C can be replaced by a circular contour C' around 
the point s0 without changing its value, according to the discussion cen
tering around Eq. (20). The purely algebraic step of adding and sub
tracting F(so) in the integrand then permits writing 

(24) 
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The last integral on the right can be shown to be zero. It remains to 
evaluate the first integral on the right. 

Let us write s — s0 = rejθ; then ds = jrejθ dθ, since the contour C' 
is a circular one and only θ varies. Then 

(25) 

The desired expression now follows immediately upon substituting this 
result into Eq. (24). 

Cauchy's integral formula sheds much light on the properties of 
analytic functions. We see that the value of an analytic function which 
is regular in a region is determined at any point in the region by its 
values on the boundary. Note that the point s0 is any point whatsoever 
inside the region of regularity. We should really label it with the general 
variable s, which would then require that in Eq. (23) we relabel the 
variable s—which merely represents points on the boundary and is thus 
a dummy variable—with some other symbol. For clarity, we will re
write Eq. (23) as 

(26) 

Here s represents any point inside a contour C in which F(s) is regular, 
and z refers to points on the contour. 

Another very important fact about analytic functions can be deter
mined from Cauchy's integral formula. Let us try to find the nth order 
derivative of an analytic function F(s). For the first and second deriva
tives we can use the definition of a derivative directly on Eq. (26), with
out getting bogged down in a great mass of algebra. The result will be 

(27) 

The form of these expressions, which seems to indicate that we simply 
differentiate with respect to s under the integral sign, suggests the fol
lowing expression for the nth derivative. 

(28) 

This result can be corroborated by the use of mathematical induction. 
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An extremely important implication of the points we have just been 
discussing is the following. If a single-valued function F(s) is regular at a 
point, it follows that the function will have derivatives of all orders at that 
point. This same statement cannot be made for a function of a real 
variable. 

Having seen that the derivative of an analytic function is itself ana
lytic and has the same region of regularity, we can now make a statement 
which appears to be the converse of Cauchy's theorem. Let F(s) be a 
function which is continuous in a region R and whose closed contour in
tegral around all possible paths in the region is zero. These conditions 
ensure that F(s) has an anti-derivative G(s) which is regular in the region 
R. But the derivative of G(s) is F(s); consequently F(s) is also regular 
in R. This result is known as MoreraJs theorem. 

Cauchy's formula leads to some other very interesting results. How
ever, we shall demonstrate these same results from the viewpoint of 
mapping. Let W = F(s) be an analytic function which is regular within 
and on a curve C in the s-plane; let this region, including the curve C, be 
R. The map of the curve C may take one of the forms shown in Fig. 7. 

Fig. 7. Demonstration of the principles of maximum and minimum. 

Note that the maps of the region R cannot extend to infinity, since in
finity in the W-plane corresponds to a singular point in the s-plane, and 
there are no singular points in R. Both maps of the curve C have been 
shown as simple closed curves for simplicity; they need not, and usually 
will not, be. In the map shown in part (b) the origin of the W-plane is 
inside the region. This corresponds to the possibility that F(s) has a 
zero in the region R. The origin is not included inside the map of region 
R shown in part (c). 

In either of these cases, it is clear from the figures that the point in R1 

or R 2 which lies farthest from the origin of the W-plane lies on the bound
ary of the region, which is the map of curve C. Similarly, if F(s) does 
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not have a zero in region R, then the point in R 2 which lies closest to the 
origin of the W-plane lies on the boundary, as illustrated in part (c) of 
the figure. It is also clear from the figure that the minimum values in 
region R 2 of the real part of W, and the imaginary part, lie on the bound
ary. The last statement is also true when F(s) has a zero in the region, 
as part (b) of the figure illustrates. But in this case the smallest value 
of the magnitude, which is zero, lies inside the region and not on the 
boundary. We shall summarize these results as follows. 

Let a closed curve C and its interior constitute a region R in the s-
plane and let W = F(s) = U + jX be regular in R. The largest value 
reached by the magnitude |F(s) | , the real part U and the imaginary 
part X in region R occurs for some point or points on the boundary. 
Likewise, the minimum values reached by the real part and the imagi
nary part in R occur on the boundary. The last is also true for the mag
nitude if F(s) has no zero in region R. The statements concerning the 
magnitude are referred to as the maximum modulus theorem and the mini
mum modulus theorem. Similar designations can be applied to the other 
cases by replacing "modulus" by "real part" and "imaginary part." 

A.4 Infinite Series 
Let f1(s), f2(s), ... be an infinite sequence of functions and consider 

the sum of the first n of these. 

(29) 

This is called a partial sum of the corresponding infinite series. Now 
consider the sequence of partial sums S1, S2, ..., Sn. We say that this 
sequence converges in a region of the complex plane if there is a function 
F(s) from whose value at a given point the value of the partial sum Sn 

differs as little as we please, provided that we take n large enough. The 
function F(s) is called the limit function of the sequence. More precisely, 
we say that the sequence converges in a region R if, given any positive 
number ε, there exists an integer Nj and a function F(s) such that at any 
point sj in the region 

(30) 

for all values of n greater than Nj. The value of the integer Nj will de
pend on the number ε and on the point sj. 

We say that the sequence is uniformly convergent in a closed region 
if the same integer N can be used in the role of Nj for all points in the 
region instead of having this integer depend on the point in question. 
(N still depends on ε.) 

The infinite series is said to converge (or converge uniformly) to the 
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function F(s) if the sequence of partial sums converges (or converges 
uniformly). An infinite series is said to converge absolutely if the series 
formed by taking the absolute value of each term itself converges. 
Absolute convergence is a stronger kind of convergence. It can be shown 
that if a series converges absolutely in a region R, it also converges in the 
region. 

We will now state a number of theorems about sequences of functions 
without giving proofs. * 

Theorem 1. If a sequence of continuous functions Sn(s) is uniformly 
convergent in a region R, then the limit function of the sequence is continu
ous in the same region R. 

Theorem 2. If a sequence of continuous functions Sn(s) converges uni
formly to a limit function F(s) in a region R, then the integral of F(s) along 
any simple arc C in the region R can be obtained by first finding the integral 
along C of a member Sn(s) of the sequence and then taking the limit as 
n —> ∞. That is 

(31) 

Theorem 3. If a sequence of analytic functions Sn(s) are regular in 
a region R and if they converge uniformly in R to a limit function F(s), 
then F(s) is regular in the region R. 

Theorem 4. If the members of a sequence of analytic functions Sn(s) 
are regular in a region R and if the sequence converges uniformly in R to 
a limit function F(s), then the sequence of derivatives Sn'(s) converges uni
formly to the derivative of F(s) for all interior points in R. Repeated ap
plications of the theorem shows that the sequence of kth order deriva
tives Sn

(k)(s) converges uniformly to F(k)(s). 
These theorems can be used to establish many important properties 

of infinite series, by letting the sequence of functions Sn(s) represent 
the partial sums of a series. Let us consider an important special case of 
infinite series. 

We will define a power series as follows. 

(32) 

* All of these theorems have to do with conditions under which two limit opera
tions can be interchanged. They are of the general character 

This interchange is permissible if both limits (separately) exist and one of them (say 
x —> a) exists uniformly with respect to the other variable. 
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The partial sums of a power series are polynomials in (s — s0); hence, 
they are regular in the entire finite complex plane (this implies that they 
are continuous as well). If we can now determine the region of uniform 
convergence, we can use Theorems 1 through 4 to deduce properties of 
the limit function. 

Suppose that a power series converges for some point s = s1. It is 
easy to show that the series will converge absolutely (and hence, it will 
also converge) at any point inside the circle with center at s0 and radius 
|s1 — s0|. The largest circle with center at so within which the series 
converges is called the circle of convergence, the radius of the circle being 
the radius of convergence. It follows that a power series diverges (does 
not converge) at any point outside its circle of convergence. For if it 
does converge at such a point s2, it must converge everywhere inside 
the circle of radius |s2 — s0|, which means the original circle was not 
its circle of convergence. 

Let R 0 be the radius of convergence of a power series and suppose 
that R1 is strictly less than R 0 . Then, it can be shown that the given 
series is uniformly convergent in the closed region bounded by the circle 
of radius R1 < R 0 with center at s0. 

Suppose now that a power series converges to a function F(s) in a 
circle of radius R 0 . This means that the sequence of partial sums Sn(s) 
will have F(s) as a limit function. Since Sn(s) is a continuous function, 
it follows from Theorem 1 that F(s) is also continuous everywhere inside 
the circle. Furthermore, since the partial sums are regular in the region 
of uniform convergence, it follows from Theorem 3 that F(s) is regular 
in the region. Thus, a power series represents an analytic function which 
is regular inside its circle of convergence. 

TWO other important conclusions about power series follow from 
Theorems 2 and 4. According to Theorem 2, since the partial sums of 
a power series satisfy the conditions of the theorem, a power series which 
converges to F(s) can be integrated term-by-term and the resulting series will 
converge to the integral of F(s) for every path inside the circle of convergence. 
Similarly, according to Theorem 4, a power series may be differentiated 
term-by-term and the resulting series will converge to the derivative of F(s) 
everywhere inside the circle of convergence. The circles of convergence 
of both the integrated series and the differentiated series are the same as 
that of the original series. 

We saw that a power series converges to an analytic function which is 
regular within the circle of convergence. The converse of this statement, 
which is more interesting, is also true. Every analytic function can be 
represented as a power series about any regular point s0. The desired 
result is Taylor's theorem, which states: Let F(s) be regular everywhere in a 
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circle of radius R 0 about a regular point s0. Then F(s) can be represented as 

(33) 

where the coefficients are given by 

(34) 

The circle of convergence of the power series is the largest circle about s0 

in which F(s) is defined or is definable as a regular function. 
This series is referred to as a Taylor series. The theorem is proved by 

starting with Cauchy's integral formula given in Eq. (23) and expanding 
(z — s)-1 as a finite number of terms in inverse powers of (z — s0) (after 
adding and subtracting s0 to the denominator of the integrand), together 
with a remainder term. Use of the integral formulas for the derivatives 
of an analytic function given in Eq. (28) leads to a polynomial in (s — s0) 
plus a remainder term. The proof is completed by noting that the re
mainder term vanishes as the order of the polynomial in (s — s0) ap
proaches infinity. 

An important consequence of Taylor's theorem is that the circle of 
convergence of any power series passes through a singular point of the 
analytic function represented by it. For, by Taylor's theorem the radius 
of convergence is the distance from the point s0 to the nearest singular 
point. 

To find the power series representation of a function, it is not necessary 
to use the formulas given in Taylor's theorem. But independent of the 
method used to find the power series representation, we will end up with 
Taylor's series, with the coefficients satisfying Taylor's formula. This 
fact is established through the following Identity Theorem for Power 
Series. If the two power series 

have positive radii of convergence and if their sums coincide for an infinite 
number of distinct points having the limit point s0, then an = bn for all n. 
That is, they are identical. 

In particular the conditions of the theorem are satisfied if the two series 
agree in a neighborhood of s0 or along a line segment (no matter how 
small) containing s0. This result is proved by induction on n. Thus, 
the representation of an analytic function by a power series about a given 
regular point s0 is unique. 
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We have seen that a power series representation can be found for an 
analytic function in the neighborhood of a regular point with a region of 
convergence which extends to the nearest singular point of the function. 
The question arises whether it is possible to find other infinite series 
representations for an analytic function which converge in other regions. 

Consider the annular region be
tween the two concentric circles 
C1 and C 2 with center at s0 shown 
in Fig. 8. A function F(s) is reg
ular on C 1 , C 2 , and the region 
between them. The point s0 may 
be a regular point or a singular 
point of F(s). Also there may be 
other singular points of F(s) inside 
the inner circle. The annular re
gion can be made simply con
nected by the device of "digging 
a canal" as discussed in a previous 

section. If we now apply Cauchy's integral formula, we get 

Fig. 8. Region of convergence of a Laurent 
series. 

(35) 

where s is a point in the interior of the annular region and z represents 
points on the contours of the two circles. For the quantity (z — s)-1 

we can write 

(36) 

(37) 

These can be checked by noting that the expression 

(38) 

is an identity for all values of w except w = 1. Equation (36) is obtained 
by adding and subtracting s0 in the denominator on the left and then 
writing it in the form of Eq. (38) with 

(39) 
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Similarly for Eq. (37) except that w is now 

(40) 

Now let us use Eq. (36) in the first integral in Eq. (35), and Eq. (37) 
in the second integral. Each integral will give a finite number of terms 
plus a remainder term. It can be shown, as in the proof of Taylor's 
theorem, that the remainder terms vanish as n —> ∞. The final result is 

(41) 

or 
(42) 

where ak in the last expression is given by 

(43) 

The contour C is any closed contour in the annular region between C1 and 

The series we have just obtained is called a Laurent series. It is 
characterized by having negative powers as well as positive powers. Its 
region of convergence is an annular region as contrasted with the region 
of convergence of a Taylor series which is a circle. * For a given function 
F(s) and a point of expansion s0 there can be more than one Laurent 
series with different regions of convergence. The point of expansion can 
be a regular point or a singular point. As in the case of a Taylor series 
it is not necessary to use the formula in order to determine the coefficients 
in any particular case. But the identity theorem for Laurent series, 
which follows the statement of the residue theorem in the next section, 
tells us that no matter how the Laurent series of a function may be ob
tained, it must be unique, for a given region of convergence. 

Let us now consider the particular case of a Laurent expansion of a 
function F(s) about a point so which is a singular point. The inner circle 
in Fig. 8 is to enclose no other singularities (this implies the singularity 
is isolated). Hence, we should expect the Laurent series to tell us some
thing about the nature of the singularity at s0. Remember that the 

* This property of Laurent series can be interpreted as saying that the series of 
positive powers in (s — s0) converges everywhere inside C 2 of Fig. 8, and the series 
of negative powers converges everywhere outside of Ci, the two converging simul
taneously in the annular region between C1 and C 2. 
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Laurent series consists of two parts, the positive powers and the negative 
powers. Let us define the regular part Fr(s) of the Laurent expansion 
as the series of positive powers and the constant, and the principal part 
Fp(s) as the series of negative powers. If there were no principal part, 
the Laurent series would reduce to a Taylor series and s0 would be a 
regular point. Thus, the principal part of the Laurent series contains 
the clue regarding the nature of the singularity at s0. 

To describe the singularity at so, we make the following definitions. 
We say F(s) has a pole of order n at s0 if the highest negative power in the 
principal part is n. (A pole of order 1 is also called a simple pole.) On 
the other hand, if the principal part has an infinite number of terms, 
the singularity at s0 is called an isolated essential singularity. (The 
word "isolated" is often omitted.) 

One of the results that we noted previously is that a power series de
fines an analytic function which is regular inside its circle of convergence. 
We shall now use this fact to define some specific functions. Up until now 
we have explicitly mentioned rational functions. But in the case of real 
variables we know the importance of such functions as exponentials, 
trigonometric and hyperbolic functions, and others. However, we have 
no basis for taking over the definitions of such functions from real varia
bles. The tangent of a complex variable, for instance, can not be de
fined as the ratio of two sides of a triangle. 

We use the above-quoted property of power series to define an ex
ponential function as follows. 

(44) 

The last form is obtained by inserting s = σ + jω in the series, expanding 
the powers of s, collecting terms and finally identifying the real power 
series representing eσ, cos ω, and sin ω. We are not completely free in 
choosing a defining series for e8 because it must reduce to the correct 
series when s is real. 

To determine the radius of convergence of the defining series we can 
resort to various tests for the convergence of series (which we have not 
discussed). Alternatively, since the series represents an analytic func
tion, we can use the Cauchy-Riemann equations. In the latter case we 
find that there are no singular points in the entire finite plane, since the 
Cauchy-Riemann equations are satisfied everywhere. Hence, the series 
converges everywhere. (The same result is of course obtained by testing 
the series for convergence.) 
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We can now follow the same procedure and define other transcen
dental functions in terms of series. However, it is simpler to define the 
trigonometric and hyperbolic functions in terms of the exponential. By 
definition, then. 

(45) 

(46) 

Note that, based on the behavior of the exponential, we see that the sines 
and cosines, both trigonometric and hyperbolic, are regular for all finite 
values of s. The singular points of tan s occur when cos s = 0, namely 
for an infinite number of real values of s at the points s = (2k — 1)π/2, 
for all integral values of k. Similarly the singular points of tanh s occur 
when cosh s = 0, namely at an infinite number of imaginary values of s 
at the points s = j(2k — 1)π/2, for all integral values of k. 

The trigonometric and hyperbolic functions of a complex variable 
satisfy practically all of the identities satisfied by the corresponding real 
functions. 

A.5 Multi-Valued Functions 
In real function theory we define a number of "inverse" functions. 

These functions can be extended into the complex plane as analytic 
functions. As we know, most of these functions (the nth root, inverse 
sine, etc.) are multi-valued on the real line. We may therefore expect 
similar behavior in the complex plane. Let us begin by extending the 
concept of the logarithm. We define 

if and only if (47) 

(In this appendix we shall conform to the mathematical convention of 
writing log for the logarithm to the base e.) Since we know the meaning 
of Eq. (47b), we also know the meaning of Eq. (47a). Let us first ob
serve that if G(s) satisfies Eq. (47b), so does G(s) + j2kπ. For, 

(48) 
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(We are using several results about the exponential function which we 
have not established in the complex plane, but which can be proved very 
easily.) Thus Eq. (47a) does not define a unique functional value for 
G(s). However, we can show that any two values satisfying Eq. (47b) 
can at most differ by j2kπ. (Do this.) Thus although the function log 
F(s) is multi-valued, its values are related by the simple additive con
stants j2kπ. We shall find a formula for one of these multiple values by 
writing 

(49) 

where Arg F(s) is the principal value of the argument defined by 

(50) 

Using the real logarithm for |F(s) | we can write 

(51) 

Therefore from the definition of the logarithm, one of the values of this 
function is 

(52) 

This particular value, which is unique by virtue of Eq. (50) is known as 
the principal value of the logarithm function. We signify this conven
tionally by writing a capital " L " in Log F(s); similarly Arg F(s) always 
means the principal value given in Eq. (50). Thus we can write, for all 
values of the log function, 

(53) 

where k is an integer—positive, negative, or zero. 
Thus, there are an infinite number of values for the logarithm function, 

one for each value of k. Because of this difficulty, we might try to sim
plify life by using only the principal value, Log F(s). Let us first con
sider the behavior of the function Log s in the complex plane before con
sidering Log F(s). Log s is a well-defined function. 

(54) 
where 

(55) 

We notice that the angle θ is undefined at s = 0. Therefore this equa
tion does not define Log s at s = 0. But no matter how we define Log 0, 
Log s will not be continuous at s = 0, since the imaginary part of Log s 
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takes on all values from — π to π in any neighborhood of s = 0. There
fore s = 0 is a singular point of Log s. When we restrict ourselves to 
the principal value, Log s is also discontinuous at any point on the nega
tive real axis; for, the imaginary part of Log s here is π, but there are 
points arbitrarily close to it at which the imaginary part is very nearly 
—π. Thus Log s is not regular at any point on the negative real axis, 
including s = 0, ∞. (The behavior at ∞ is identical to the behavior at 
0, since Log 1/s = —Log s, as you can verify.) 

However, if we consider the complex plane to be "cut" along the nega
tive real axis, as illustrated in Fig. 9, preventing us from going from one 

Fig. 9. The cut s-plane. 

side of it to the other, Log s is regular in the rest of the complex plane. 
In fact, we have 

(56) 

at all other points of this "cut" plane. Thus, Log s is an anti-derivative 
of 1/s. In fact we can show that 

(57) 

provided the path of integration does not go through the "cut" negative 
real axis. 

Similar remarks apply to the other values of the logarithm function. 
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The restriction to principal values is unnecessary. The only thing we 
need to do is to restrict the imaginary part of log s to some 2π range. 
For Eq. (57) to apply, we have to add a suitable multiple of j2π to the 
right side. It is not even necessary that the cut be along the negative 
real axis. We may cut the plane along any radius vector by defining 

(58) 

Even this is unnecessary. Any simple path from s = 0 to s = ∞ will do. 
Thus by suitable restrictions, we can make the function log s single-

valued and regular in any neighborhood. The only exceptional points 
are s = 0, ∞. No matter what artifice we employ, we cannot make log s 
regular and single-valued in a deleted neighborhood of s = 0, ∞. (Since 
these points are singular points, we have to delete them from the neigh
borhood, if we hope to make the function regular.) Thus, these two 
singular points are different in character, from the ones we have met so 
far. Therefore we give them a different name. They are called branch 
points. Precisely, a branch point is defined as follows. 

The point s0 is a branch point of the function F(s) if s0 is an isolated 
singular point and there is no deleted neighborhood of s0 in which F(s) 
is defined or is definable as a single-valued regular function. 

We now see that the plane has to be cut along a simple path from one 
branch point of log s to the other branch point. Each value of log s 
SO obtained is called a branch of the function. Thus Log s is a branch of 
log s. 

Riemann introduced an artifice that allows us to consider the complete 
log function and treat it as a single-valued function. This important 
concept is known as the Riemann surface. It is quite difficult to define 
this term precisely, and we shall not attempt it. Instead let us describe 
a few Riemann surfaces. For the function log s, the Riemann surface 
has the following structure. We consider the s-plane to consist of an 
infinite number of identical planes. One of these is the plane in which 
arg s is restricted to its principal value. There are an infinite number of 
sheets above this and another infinity below. All of these planes are cut 
along the negative real axis. All of these have the same origin and ∞, 
so that the sheets are all joined together at these points. Each sheet is 
also joined to the ones immediately above and below, along the negative 
real axis. The upper edge of the negative real axis of each sheet is joined 
to the lower edge of the negative real axis of the sheet immediately above 
it. The whole Riemann surface looks somewhat like an endless spiral 
ramp. 

Let us consider log s on such a surface. On each sheet 

(59) 
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where k is a fixed integer. The integer k increases by 1 as we go to the 
sheet immediately above; and decreases by 1 as we go to the sheet im
mediately below. On this Riemann surface therefore, log s is a single-
valued regular function with two singular points, s = 0, ∞. 

We can now return to the function log F(s). We are considering 
log F(s) as a function of s. In the F-plane, the branch cut goes from 
F(s) = 0 to F(s) = ∞. Let US consider only the simplest case where 
F(s) is rational. The other cases are somewhat more complicated. The 
branch points in the s-plane are the zeros and poles of F(s). Each 
branch cut goes from a zero to a pole. The number of branch cuts at a 
zero or a pole is equal to the multiplicity. The branch cuts are chosen 
not to intersect except at branch points. 

As another example of the concept of the Riemann surface, let us 
consider the inverse of the function 

(60) 

The inverse of this function is called the square root, written 

(61) 

(Formally we define powers of s other than integral powers as 

(62) 

where α may be any complex number.) As in the real case, the square 
root is a double-valued function. The two values G1 and G2 are related by 

(63) 

We may make this function single-valued by restricting the angle of s 
as before. That is, 

(64) 

and defining the "positive square root" as 

(65) 
where √|s| is a real positive number. 

Again we find that G1(s) is not continuous on the negative real axis, 
including s = 0, ∞. The points s = 0, ∞ are seen to be branch points of 
this function G(s). The Riemann surface concept may be introduced as 
follows. We need two sheets of the Riemann surface, both cut along the 
negative real axis. To make G(s) continuous and regular on this surface, 
we "cross-connect" the two sheets along the negative real axis. The 
upper edge of the negative real axis of each sheet is connected to the lower 
edge of the negative real axis of the other sheet. (Obviously, it is useless 



532 Complex Variables and Laplace Transforms [App. 

to attempt to draw a picture of this in three dimensions.) On this 
Riemann surface, G(s) is regular and single-valued except at s = 0, ∞. 

We see that the branch points of the function log s are somewhat dif
ferent from the branch points of s1/2. In one case we have an infinite 
number of branches and in the other case, we have only a finite number. 
Therefore we sometimes distinguish between these, by calling the former 
a logarithmic singularity (or a logarithmic branch point) and the other 
an algebraic singularity (or an algebraic branch point). 

We can extend this discussion to other algebraic irrational functions, 

(66) 

for example, in an obvious way. 
We have seen that the singularities of an analytic function are ex

tremely important. In fact, we can classify analytic functions according 
to the type and locations of its singular points. This we shall do in the 
following brief discussion. 

The simplest case is that of an analytic function possessing no singu
larities at all, either in the finite plane or at ∞. In this case, a theorem 
known as Liouville's theorem tells us that the function is simply a con
stant. The next case one might consider is that of a function which has 
no finite singularities. That is, the only possible singularity is at s = ∞. 
The exponential function is an example of this class. A function that 
has no singularities in the finite s-plane is known as an entire (or in
tegral) function. If the singularity at ∞ is a pole, we see from the 
Laurent expansion about ∞, that this function is a polynomial (also 
called entire rational or integral rational). If the singularity at ∞ is an 
essential singularity the function is an entire transcendental function. 
The functions es, sin s, cos s, etc., belong to this category. 

The quotient of two entire functions is a meromorphic function. The 
only singularities of a meromorphic function in the finite plane are the 
points at which the entire function in the denominator goes to zero. 
Thus a meromorphic function can have only poles in the finite part of 
the s-plane. Again the behavior at infinity divides this class into two 
subclasses. If the point ∞ is either a regular point or a pole, then it can 
be shown that the function has only a finite number of poles (using a 
theorem known as the Bolzano-Weierstrass theorem). Then by using 
the partial fraction expansion, to be given in section 7, we can show that 
this function is a rational function—that is, a quotient of two poly
nomials. Conversely, every rational function is a meromorphic function 
with at most a pole at s = ∞. An example of a nonrational meromorphic 
function is tan s or cosec s. 
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All of these functions are single-valued functions. The multi-valued 
functions can be classified according to the number of branch points and 
the number of branches at each branch point. A function with a finite 
number of branch points and a finite number of branches is an algebraic 
irrational function. We saw examples of these. The logarithm function 
can be used to construct examples for infinite number of branches. The 
function log s has a finite number of branch points but an infinite number 
of branches. The function log sin s has an infinite number of branch 
points and an infinite number of branches, whereas the function √sin s 
has an infinite number of branch points with a finite number of branches 
at each branch point. These three classes have no special names asso
ciated with them. 

A.6 The Residue Theorem 
Cauchy's theorem tells us about the value of a closed contour integral 

of a function when the function is regular inside the contour. We now 
have the information required to determine the value of a closed contour 
integral when the contour includes one or more singular points of the 
function. For this purpose turn to the formula for the coefficients of a 
Laurent series given in Eq. (43) and consider the coefficient of the first 
inverse power term, k = — 1. This is 

(67) 

This is an extremely important result. It states that if a function is 
integrated around a closed contour inside which the function has one 
singular point, the value of the integral will be 2πj times the coefficient 
of the first negative power term in the Laurent series. None of the other 
terms in the series contribute anything; they all "wash out." We call 
this coefficient the residue. Note that the function is regular on the 
contour. 

If the contour in question encloses more than one singular point (but a 
finite number), we can enclose each singular point in a smaller contour 
of its own within the boundaries of the main contour. By "digging 
canals" in the usual way, we find the value of the integral around the 
original contour to be equal to the sum of the integrals around the smaller 
contours, all taken counterclockwise. Now we consider a Laurent series 
about each of the singular points such that no other singular points are 
enclosed. According to the preceding paragraph, the value of the in
tegral about each small contour is equal to 2πj times the corresponding 
residue. Hence, the integral around the original contour is equal to 2πj 
times the sum of the residues at all of the singular points inside the con-
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tour. That is, 

(68) 

This statement is referred to as the residue theorem. To find the value 
of a closed contour integral, then, all we need to do is to calculate the 
residues at all of the singular points in a manner independent of the 
formula for the coefficients of the Laurent series. 

Consider a function F(s) which has a pole of order n at s0. If the 
Laurent series about s0 is multiplied by (s — s0)n, the result will be 

(69) 

The function on the left is regular at s0 and the series on the right is the 
Taylor series representing it in the neighborhood of s0. Hence, using 
the formula for the Taylor coefficients we get 

(70) 

For a simple pole this reduces to the following simple form 

(71) 

In the case of poles, at least, we now have an independent way of finding 
residues. 

There are alternate ways of expressing the residue at a simple pole, 
which are useful in computations. If the given function is expressed as 

(72) 

where s0 is a simple pole of F(s), in the nontrivial case H(s) has a simple 
zero at s0 and G(s) is regular and nonzero at s0. In this case we may write 

(73) 

since G(s) is regular at s0. Thus, the limit in the numerator is simply 
G(s0). For the limit in the denominator, we subtract H(so) from H(s), 
which is permissible since H(s0) = 0, getting 

(74) 
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since the limit of the difference quotient is by definition the derivative. 
If on the other hand, we write 

( 7 5 ) 

(this is a different function G from the one in Eq. (72)), and follow 
through the same argument, we conclude that 

(76) 

Thus the residue at a simple pole is the reciprocal of the derivative of the 
reciprocal function. 

One of the important applications of the residue theorem is the identity 
theorem for Laurent series. 

If the two Laurent series 

have a common region of convergence R1 < |s — s0| < R 2 , and represent 
the same function in this region, then 

an = bn all n, —∞ < n < ∞ 

Since the two series represent the same function. 

Since the positive and negative series are power series, they converge uni
formly for |s — so| ≤ R 2 — ε, (ε > 0), and |s — sol ≥ R1 + ε, respec
tively. Therefore in the annular region R1 + ε ≤ |s — s0| ≤ R 2 — ε, 
the Laurent series are uniformly convergent. We now multiply both 
sides of Eq. (77) by (s — so)k-1, where k is an integer—positive, nega
tive, or zero—and integrate along a circular path C lying in the region of 
uniform convergence and enclosing s0. By the residue theorem we get 

a_k = b_k all k, —∞ < k < ∞ 

which proves the result. 
The residue theorem (which, incidentally, includes Cauchy's theorem) 

provides a means for evaluating many real definite integrals which can
not be evaluated by other means. We choose a function of s which re
duces to the given real integrand when s is real, and we choose a closed 
contour which includes as part of it the desired interval in the definite 
integral. Now if we can find the residues at the singularities of the 
integrand which might lie inside the chosen contour, and if we can in-
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dependency calculate the contribution to the closed contour integral 
of the parts of the path other than the desired interval, the value of the 
desired integral can be found. 

In evaluating such integrals two circumstances often arise. In the 
first place it may happen that the integrand has a simple pole on the path 
of integration. In order to apply the residue theorem the function must 
be regular on the closed contour. This situation is remedied by dis
torting or indenting the contour by a small semicircular arc as shown in 
Fig. 10. The new contour is of course different from the old one. How-

Fig. 10. Distortion of contour of integration around pole. 

ever, we eventually let the radius of the semicircle approach zero. It 
remains to calculate the contribution of the semicircle to the closed con
tour integral. 

Consider the semicircular path shown in Fig. 10b around a simple 
pole at so. The Laurent expansion of F(s) about so has the form 

(78) 

Note that the direction of the path is counterclockwise around the pole 
when we are to indent the contour in such a way that the pole is inside. 
We can also indent the contour to exclude the pole. Then the value 
obtained will be the negative of that obtained here. The series in this 
equation can be integrated term-by-term; let (s — s0) = rejθ and let C 
represent the semicircle. On the semicircle θ varies from 0 to π. The 
integral of F(s) on the semicircle becomes 

(79) 

The first term is seen to be independent of the radius r of the semicircle. 
As we let r approach zero, each term in the summation will vanish. 
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Hence, 

(80) 

That is, the integral around half a circle about a simple pole will have 
one half the value of an integral around a complete circle. In fact, by 
the same reasoning, if the contour is a fraction k of a circular arc, the 
contribution will be k(2πja_1). 

The second circumstance that often arises is the need to evaluate an 
integral with infinite limits, such as 

(81) 

Such an integral is called an improper integral The notation means 

(82) 

The value obtained by going to negative and positive infinity in a sym
metrical fashion is called the principal value of the integral. 

This type of integral can be evaluated by choosing a contour consist
ing of the imaginary axis from —R0 

to R o and a large semicircle in the 
right-half or left-half plane, such 
as the one shown in Fig. 11. The 
integrand must be a function F(s) 
which reduces to the given integrand 
on the imaginary axis. Use of the 
residue theorem will now permit the 
evaluation of the desired integral 
provided that the integral along the 
semicircular arc tends to a limit as 
R 0 —> ∞, and this limit can be found. 
It would be best if there were no 
contribution from this arc. Let F(s) 
be the integrand of the contour integral. It can be shown that if sF(s) 
on the arc approaches zero uniformly * as the radius of the circle ap-

Fig. 11. Contour for evaluating in
finite integrals. 

* That is, the limit is approached at the same rate for all angles of s within this 
range. The range is |Arg s| < π/2 for a semicircle in the right-half plane and 
|Arg s| > τr/2 for a semicircle in the left-half plane. In the ε-δ language, the mag
nitude of the difference between sF(s) and the limit (in this case 0), can be made 
less than e,so long as |s | > N(ε), where N(s) is independent of Arg s in the appro
priate range. 
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proaches infinity, then there will be no contribution from the infinite arc. 
For example, if F(s) is a ratio of two polynomials, the degree of the de
nominator must exceed that of the numerator by 2 or more. 

Let t be a real variable and suppose the integrand has the form 

(83) 

Then it can be shown that for t > 0 the infinite arc in the left-half plane 
will not contribute to the integral, nor will the arc to the right for t < 0, 
provided that G(s) vanishes uniformly as the radius of the semicircle ap
proaches infinity. This result is called Jordan's lemma. The presence of 
the exponential loosens the restriction on the remaining part of the inte
grand. Thus, if G(s) is a ratio of two polynomials, it is enough that the 
degree of the denominator exceed that of the numerator by one (or more). 

As an example of the evaluation of integrals consider 

(84) 

Substituting the definition of a sine function in terms of exponentials, 
this becomes 

(85) 

In the second integral if we replace ω by —ω, the integrand will become 
identical with that of the first integral, whereas the limits will become 

—∞ to zero. The two integrals can then 
be combined to yield 

(86) 

Now consider the integral 

(87) 

where the contour C is the closed contour 
shown in Fig. 12. The integrand has a 
simple pole on the original contour so that 
we indent the contour around the pole as 
shown. The complete contour consists of 

two portions of the jω-axis and two semicircles, the radius of one of which 
will approach zero while the other will approach infinity. Since the 
integrand is regular everywhere inside the contour, the closed contour 

Fig. 12. Path of integration for 
the evaluation of an integral. 
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integral will vanish. We can write 

(88) 

The integrand satisfies Jordan's lemma so that the last integral in this 
equation will vanish. The value of the integral on C 0 is —jπ times the 
residue of the integrand at s = 0, according to Eq. (80). (To account for 
the sign keep in mind the direction of the path.) To calculate the residue 
we use Eq. (71) and find it to be unity. Hence, 

(89) 

We can now write Eq. (88) as 

(90) 

But by the improper integral in Eq. (86) we mean precisely the left side 
of the last equation. Hence, finally 

(91) 

As another application of the Residue theorem we shall now prove a 
very useful theorem called the "argument principle." Let F(s) be an 
analytic function which is regular in a region R except possibly for poles. 
We would like to evaluate the integral 

(92) 

around a closed contour C in region R in the counterclockwise direction, 
where the prime denotes differentiation. There should be no poles or 
zeros of F(s) on the contour C. 

Suppose F(s) has a zero of order n at a point s1 in R. Then we can 
write 

(93) 

We see that this function has a simple pole at the zero of F(s) with a 
residue n. The function F1(s) can now be treated in the same way and 
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the process repeated until all the zeros of the original function F(s) have 
been put into evidence. Each zero will lead to a term like the first one 
on the right side of Eq. (93). 

Now suppose that F(s) has a pole of order m at a point s2 in R. Then 
we can write 

(94) 

The desired function is seen to have a simple pole at the pole of F(s) 
with a residue which is the negative of its order. Again the same proc
ess can be repeated and each pole of F(s) will lead to a term like the first 
one on the right side of the last equation. The only singularities of 
F'(s)/F(s) in the region R will lie at the zeros and the poles of F(s). 
Hence, by the residue theorem, the value of the desired contour integral 
will be 

(95) 

where the nj are the orders of the zeros of F(s) in R and the mj are the 
orders of the poles. 

Note however that 

(96) 

Hence, we can evaluate the contour integral by means of the anti-
derivative of F'(s)/F(s), which is log F(s). In going around the contour C 
we mean to start at a point and return to the same point. Note that the 
multi-valued function log F(s) will have the same real part after re
turning to the starting point. Hence, the value of the integral will be 
j times the increase in angle of F(s) as s traverses the contour C in the 
counterclockwise direction. This should equal the right side of Eq. (95). 
If we now divide by 2π, the result should be the number of times the locus 
of the contour C in the F-plane goes around its origin counterclockwise 
(increase in angle divided by 2π is the number of counterclockwise en
circlements of the origin). 

Let us now state the principle of the argument. If a function F(s) has 
no singular points within a contour C except for poles and it has neither 
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zeros nor poles on C, then the number of times the locus of the curve C in 
the F-plane encircles its origin in the counterclockwise direction is equal to 
the number of zeros minus the number of poles of F(s) inside C. Each zero 
and pole is to be counted according to its multiplicity. 

Before concluding this section, let us consider another contour inte
gration problem, whose solution we use in Chapter 7, although it is not 
connected to the residue theorem. This is the problem of integrating 
a function partway around a logarithmic singularity. 

Let us therefore consider the integral 

where the path P is an arc of a circle around a zero or a pole of F(s), as 
shown in Fig. 10b. Let F(s) have a zero (or a pole) of order k at so-
Then we may write 

(97) 

If s0 is a pole, we let k be a negative integer in these expressions, thus 
including a zero of order k and a pole of order —k simultaneously in the 
discussion. As we let the radius of the circle approach zero, log F1 (s) will 
not contribute anything to the integral, since it is regular at s0. Thus it 
is sufficient to consider 

if we wish to take the limit, as we do. 
On the arc of radius r, we may estimate: 

(98) 

where θ is the angle subtended by the arc at the center. Now it is a well-
known result that 

(99) 

Hence, 

(100) 

which is the result we wish to establish. In words, we have shown that a 
logarithmic singularity lying on a path of integration does not contribute 
anything to the integral. 
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A.7 Partial-Fraction Expansions 
The Laurent expansion of a function about a singular point describes 

a function in an annular region about that singular point. The fact 
that the function may have other singular points is completely sub
merged and there is no evidence as to any other singular points. It 
would be useful to have a representation of the function which would put 
into evidence all of its singular points. 

Suppose a function F(s) has isolated singularities at a finite number n 
of points in the finite plane. It may also have a singularity at infinity. 
Let us consider expanding F(s) in a Laurent expansion about one of the 
singular points, say s1. The result will be 

(101) 

where the subscripts refer to the principal part and the regular part. 
Now consider Fr1(s), which is simply the original function F(s) from 

which has been subtracted the principal part of the Laurent series about 
one of its singularities. This function is regular at s1 but has all the other 
singularities of F(s). Let us expand it in a Laurent series about one of 
the other singularities, s2. 

(102) 

The function Fp1(s) is regular at the singularity s2; hence, it will not 
contribute anything to the principal part Fp2(s). This means that the 
principal part Fp2(s) will be the same whether we expand Fr1(s) or the 
original function F(s). 

We now repeat this process with Fr2(s), and keep repeating with 
each singularity. At each step we subtract the principal part of the 
Laurent expansion until all the singular points are exhausted. The 
regular part of the last Laurent expansion will have no other singulari
ties in the finite plane. Hence, it must be an entire function. In this 
fashion we have succeeded in obtaining a representation of F(s) which 
has the form 

(103) 

Each of the terms in the summation is the principal part of the Laurent 
series of F(s) expanded about one of its singularities. The last term 
is an entire function. If F(s) is regular at infinity, this term will be a 
constant. If F(s) has a pole of order n at infinity, this term will be a 
polynomial of degree n. Finally, if F(s) has an essential singularity at 



Sec. A.8] Analytic Continuation 543 

infinity, this term will be an infinite power series. The representation of 
an analytic function given in Eq. (103) is called a partial-fraction ex
pansion. 

Suppose a function has an infinite number of poles and no essential 
singularities in the finite plane (this makes it a meromorphic function). 
In such cases also a partial-fraction expansion can be found. However, 
the summation of principal parts in Eq. (104) will be an infinite series 
and may not converge in general. Nevertheless, it is always possible to 
so modify the terms that the series converges. But now the form of the 
expansion is changed. Of course, in some cases such a modification is 
not necessary, but the statement of the conditions when this is true is 
not a simple one, and we will not pursue the subject any further. (This 
expansion is known as the Mittag-Leffler expansion.) 

A.8 Analytic Continuation 
Near the beginning of this appendix we defined an analytic function 

as one that is differentiable everywhere in a neighborhood, however 
small, of a point. Later, from the Taylor expansion of an analytic func
tion about a point s0 at which the function is regular, we saw that knowl
edge of all the derivatives of an analytic function at a point permits us 
to represent the function everywhere in a circle about the point, a circle 
which extends up to the closest singularity of the function. We stated 
that once a power series representation of a function about a point is 
obtained, no matter by what procedure, this series is unique. We can 
state this result in a different way as follows. If two functions are regular 
in a region R and if they coincide in some neighborhood, no matter how small, 
of a point s0 in R, then the two functions are equal everywhere in R. This 
theorem is called the identity theorem for analytic functions. (In fact 
the two functions need coincide only on a segment of path no matter how 
small; or even only on an infinite number of distinct points having a 
limit point at s0.) 

Now let US consider two functions F1(s) and F2(s) which are respec
tively regular in overlapping regions R1 and R 2 , the common region being 
R 0 , as shown in Fig. 13. (The regions need not be circular as shown 
here.) The two functions F1 (s) and F2(s) determine each other uniquely. 
This follows from the identity theorem since only one function can be 
regular in R1 (or R 2 ) and have the same values in R 0 . 

Suppose we were starting with the function F1(s) in R1 and could 
find a function F2(s) in R 2 having the property just described. We 
would say that F1(s) had been analytically continued beyond its original 
region into region R 2 . But we might just as well consider F2(s) to be 
the original one and F1(s) its analytic continuation into region R1. For 



544 Complex Variables and Laplace Transforms [App. 

Fig. 13. Common region of definition of two functions. 

this reason we say that each of them is but a partial representation or an 
element of a single function F(s) which is regular in both R1 and R 2 . 

Consider now the problem of starting with one element F1(s) of a func
tion, which is in the form of a power series, and determining its analytic 
continuation outside its original circle of convergence. Figure 13 can 
again be used. Suppose we choose a point s0 in region Rx. From the 
given element F1(s) we can evaluate all the derivatives at s0 and form a 
new power series about s0. This series will certainly converge in R1, the 
original region of convergence of F1(s), and may also converge in a circle 
which extends beyond the original circle, as the illustration in Fig. 13 
shows. The series then defines another element F2(s) of the function 
of which F1(s) is also an element. We can now choose another point 
within the new region R 2 , but not common with R1, and again calculate 
a new series which may converge in a circle extending beyond the 
boundaries of R 2 . 

This procedure can now be repeated. The only circumstance that 
will prevent any one circle from extending beyond the preceding one 
is the existence of a singular point on the circumference of the first circle 
which lies on the radius of the first circle drawn through the center 
chosen for the second one. But this can be rectified by choosing a dif
ferent point for the center of the second circle, unless every point on the 
first circle happens to be a singular point. This is a possible occurrence 
but it is not common. If such is the case, the original function is said to 
have a natural boundary beyond which it cannot be analytically con
tinued. 

Barring a natural boundary, then, an element can be analytically 
continued into the whole plane by this process of overlapping circles. 
The only points that will be excluded from the interiors of any of the 
circles will be the singular points. The sequence of functions defined in 
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the circles will all be elements of a single function. It is now clear why 
an analytic function was defined as it was. 

The process we have described has very little practical value since we 
would not ever contemplate the actual construction of all the elements 
of a function in this manner. However, it has very great significance in 
providing insight into the fundamental behavior of functions. 

In the process of constructing (in imagination, at least) the overlap
ping circles, suppose one of them overlaps one of the earlier ones (thus 
forming a closed chain). The question will arise whether the functional 
values given by the latest function will be the same as those given by the 
previous one in the common region of the two circles. If these values 
are not the same, then the function defined by this set of elements will 
be multi-valued. 

Let us now consider another aspect of analytic continuation. Suppose 
a function is defined along a simple arc which lies in a region R. It may 
be possible to find a function which is regular in R and coincides with this 
one on the simple arc. This function is also called the analytic continua
tion of the original one. The simple arc may be, for example, part or all 
of the jω-axis. If we define, as an example, a function to have the value 
1 + jω for the interval 1 < ω < 2, its analytic continuation is 1 + s. 
There is no other function which is regular in the region containing the 
given interval on the jω-axis and which coincides with the given function 
in that interval. 

A.9 Laplace Transforms: Definition and Convergence Properties 
The concept of transforming a function can be approached from the 

idea of making a change of variable in order to simplify the solution of a 
problem. Thus, if we have a problem involving the variable x, we sub
stitute some other expression for x in terms of a new variable, for ex
ample, x = sin θ, with the anticipation that the problem has a simpler 
formulation and solution in terms of the new variable θ. After obtain
ing the solution in terms of the new variable, we use the opposite of 
the previous change and thus have the solution of the original problem. 

A more complicated "change of variable," or transformation, is often 
necessary. If we have a function f(t) of the variable t, we define an in
tegral transform of f(t) as 

(104) 

The function K(t,s), which is a function of two variables, is called the 
kernel of the transformation. Note that the integral transform no longer 
depends on t; it is a function of the variable s on which the kernel de-
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pends. The type of transform that is obtained and the types of problem 
in which it is useful depend on two things: the kernel and the limits of 
integration. For the particular choice of the kernel K(s,f) = e~st and 
the limits 0 and infinity, the transform is called a Laplace transform and 
is denoted by £ {f(t)}. Thus, 

(105) 

The Laplace transform of f(t) is thus a function of the complex variable s. 
We denote the Laplace transform of f(t) by F(s). 

Because it is defined as an integral, the Laplace transform is a linear 
functional That is, if and f2(t) have Laplace transforms F1(s) and 
F2(s), and k1, k2 are constants, 

(106) 

Since the defining equation contains an integral with infinite limits, 
one of the first questions to be answered concerns the existence of La
place transforms. A simple example of a function that does not have a 
Laplace transform is eet. Let us therefore state a few theorems (a few 
of which we shall also prove) concerning the convergence of the Laplace 
integral. Since s appears as a significant parameter in Eq. (105) we may 
expect the convergence to depend upon the particular value of s. In 
general the integral converges for some values of s and diverges for others. 

In all of the theorems to follow, we shall consider only integrable 
functions f(t) without specifically saying so each time. As a first theo
rem, consider the following. 

If the function f(t) is bounded for all t ≥ 0, then the Laplace integral 
converges absolutely for Re(s) > 0. 

To prove the theorem, note that the condition on f(t) means |f(t)| < M 
for all t ≥ 0, where M is a positive number. Then, for σ > 0 we will get 

(107) 

In the limit, as T approaches infinity, the right-hand side approaches 
M/σ. Hence, 

(108) 

The familiar sine and cosine functions, and other periodic functions 
such as the square wave, satisfy the conditions of the theorem. Before 
commenting on this theorem, let us consider one more theorem. 

If the Laplace integral converges for some so = σo + jω o , then it con
verges for all s with σ > σ o. 
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Let 
(109) 

where ko is a constant, since so is a fixed complex number. Let us define 
the auxiliary function 

(110) 

Then g(τ) has a limit as τ goes to ∞, namely k0. Hence, g(τ) is bounded 
for all T . Next, we shall write the Laplace integral as below and in
tegrate by parts to get: 

(111) 
Or 

(112) 

Now g(0) = 0, g(∞) = k0, and if σ > σ 0 , e-

(s-s°)Tg(T) approaches 0 
as T approaches ∞. Also, by the preceding theorem, the last integral in 
Eq. (112) converges absolutely for σ > σ 0 , as T approaches ∞. Thus the 
result is proved. In fact, 

(113) 

This result can be strengthened to show that the Laplace integral con
verges absolutely for σ > σ 0 , if it converges for σ 0 . However, we shall 
not need this result in the general case. For functions of exponential 
order (to be defined shortly) we can prove this result with greater ease. 

Thus the region of convergence of the Laplace integral is a half-plane. 
For by this theorem, whenever the integral converges for some point in 
the s-plane, it converges at all points to the right. Thus we can define 
an abscissa of convergence σc such that the Laplace integral converges 
for all s with σ > σc and diverges for all s with σ < σc. The stronger re
sult, which we have not proved, says that the region of convergence is 
also the region of absolute convergence. The behavior of the Laplace 
integral is, thus, somewhat analogous to the behavior of power series. 
The function f(t) plays the role of the coefficients of the power series 
and the function e - s t plays the part of (s — s0)n. Just as a power series 
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may have any behavior on the circle of convergence, the Laplace integral 
may also have any behavior on the abscissa of convergence. The only 
difference concerns the existence of a singular point on the circle of con
vergence, which we shall examine a little later. 

With infinite series, we have many tests for convergence. All of these 
have analogs in Laplace transforms. We shall be content to state just 
two of these. The analog of the ratio test is the following. 

If |f(t)| ≤ Mect for some constant M and some number c, for all t (or 
only for t greater than some T0), then the Laplace integral converges abso
lutely for σ > c. 

We see this result immediately since 

(114) 

We thus have a sufficient criterion for the existence 
integral. Functions satisfying the inequality 

(115) 

are called functions of exponential order. The order of the function is 
the smallest number σ 0 such that the inequality (115) is satisfied by any 

(116) 

and by no c = σ 0 — ε. In this ease we have established that the Laplace 
integral converges absolutely for σ > σ 0 and diverges for σ < σ 0 . 

Many functions that are not of exponential order have Laplace trans
forms. However, we can state the following necessary and sufficient 
condition which shows that the integral of a transformable function is of 
exponential order. 

The function f(t) is transformable, with the abscissa of convergence 
σ o > 0 if and only if the function 

(117) 

satisfies 
(118) 

for any c = σ o + ε. 
The proof of this result depends on the Stieltjes integral and so we 

cannot give it here. We can use this theorem to get an analog for the 
Cauchy root test for power series. 

Let g(t) be the function defined in Eq. (117). If 

(119) 
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then the abscissa of convergence of the Laplace integral of f(t) is c. The 
integral converges for σ > c and diverges for σ < c. If c = 0, the test is 
inconclusive. 

In the case of power series, the regions of convergence, absolute con
vergence, and uniform convergence coincide. We have stated that in the 
case of the Laplace integral the regions of convergence and absolute con
vergence coincide, both of them being half-planes. Therefore we may 
ask whether the region of uniform convergence also coincides with the 
region of convergence. The answer to this question is in the negative in 
the general case. The region of uniform convergence is described in the 
following theorem, which we shall not prove. 

If the Laplace integral converges for s = σo, then it converges uniformly 
in the sector 

(120) 

This region is shown in Fig. 14. We may take σo to be the abscissa of 
convergence σc, if the integral converges at this point. Otherwise σ 0 is a 
point arbitrarily close to σ c and to the right. 

Fig. 14. Regions of convergence and uniform convergence of Laplace integral. 

In the case of functions of exponential order however, the region of 
uniform convergence coincides with the region of convergence. That is, 
we may take ε = 0 in the theorem above. 

For functions of exponential order, the region of uniform convergence is 
the half-plane σ > σc + δ, (δ > 0) 

where σc is the abscissa of convergence. 
The proof of this result is quite similar to the proof given earlier for 

absolute convergence and so is omitted. 
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Thus the convergence behavior of the Laplace integral for functions 
of exponential order is identical with the behavior of power series. 

A.10 Analytic Properties of the Laplace Transform 
Using the power series analogy again, a power series defines an analytic 

function within the circle of convergence. We may therefore wonder 
whether the analogy extends this far. The answer to this question is in 
the affirmative, as stated by the following theorem. 

If the integral 

(121) 

converges for σ > σ c , then the function F(s) defined by the integral is regular 
in the half-plane σ > σc. In fact, the derivative of F(s) is given by 

and in general (122) 

Given any point s with σ > σ c , we can surround this point with a 
circle that is entirely within the region of uniform convergence, since ε 
in (120) is arbitrary. Now, because of the uniform convergence, the 
limit operations of integration and differentiation can be interchanged. 
Hence, 

(123) 

This leads to Eq. (122a). The convergence of Eq. (122a) is easily es
tablished for functions of exponential order. For the general case, we 
integrate by parts. 

Thus the Laplace integral defines a regular function within the half 
plane of convergence. However, although the function F(s) is defined 
by the integral only in the half plane of convergence, we can use the 
technique of analytic continuation to extend the function across the 
abscissa of convergence whenever it may be continuable. [In practice 
this is merely a formality, the "analytic continuation" being merely an 
extension of the formula for F(s).] It is this more general analytic func
tion that is referred to as the Laplace transform. If F(s) is the Laplace 
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transform of f(t) we refer to f(t) as the determining function and F(s) as 
the generating function. 

In this more general concept of a Laplace transform, the generating 
function will, in general, have singularities. They will have to lie in the 
half-plane σ ≤ σc or at ∞. Here we may revert to the power series 
analogy again. The function defined by a power series always has a 
singular point on the circle of convergence. We may ask whether F(s) 
has a finite singular point on the abscissa of convergence σc. Here the 
analogy breaks down. In general there may be no singular point on 
σ = σc. The following example is given by Doetsch. 

(124) 

For this function the abscissa of convergence is zero. However, its trans
form satisfies the difference equation 

(125) 

so that F(s) is an entire function. 
However in certain special cases, the transform has a singular point on 

s = σ c + jω. For instance if f(t) is ultimately nonnegative, then it can 
be shown that the real point on the abscissa of convergence is a singular 
point. This result is too specialized to be of interest to us and so we omit 
its proof. The important result as far as we are concerned is that the 
Laplace transform is an analytic function which is regular in the half 
plane of convergence of the defining integral. The general Laplace 
transform is the function obtained by analytically continuing the original 
function. 

One of the important analytic properties of the Laplace transform is 
its behavior at ∞. Concerning this we have the following theorem. 

If the determining function f(t) is a real or complex valued function of t 
and the Laplace integral converges at s0, then as s approaches ∞ from within 
the sector |arg (s - s0)| < (π/2) - δ with δ > 0 

the generating function F(s) approaches 0. 
The proof of this result proceeds as follows. We begin with a given 

ε > 0. Since f(t) is an integrable function and therefore bounded for all 
t, we can find a T1 so small that for σ > 0, 

(126) 

Since the Laplace integral is uniformly convergent in this sector, we can 
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find T2 so large that T2 > T1 and 

(127) 

for all s in this sector. These two conditions fix T1 and T2 and, therefore, 
the value of the integral 

(128) 

Finally, we find σ1 so large that 

so that 

(129) 

Since s approaches ∞ in the sector |arg (s — so)| ≤ π/2 — δ, its real 
part has to exceed σ1 eventually. If we put together the three conditions 
(126), (127), and (129) and restrict s by 

we get 

(130) 
so that 

(131) 

Thus the behavior at ∞ is quite restricted. The point s = ∞ cannot be 
a pole for example. If F(s) is regular at ∞, then it must have a zero there; 
F(∞) cannot be a nonzero constant. Thus, for example, if F(s) is a ra
tional function, the degree of the denominator polynomial must be strictly 
greater than the degree of the numerator polynomial. However F(s) may 
have an essential singularity or a branch point at ∞. (These conditions 
apply only to real or complex valued determining functions, and not to 
distributions like the impulses of various orders.) 

While we are talking about the general behavior, we may ask one more 
general question about the Laplace transform, namely its uniqueness. 
This question is of particular importance as we would like, eventually, 
to find the determining function from its Laplace transform. In order to 
state the answer to this question without getting involved in concepts of 
null functions, "zero measure" and "almost everywhere," we shall agree 
to normalize the function f(t) by defining 
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(132) 

where the + and — indicate as usual the right- and left-hand limits. 
Implicit here is the assumption that these limits exist, which we shall 
assume. 

There cannot exist two different normalized determining functions f1 (t) 
and f2(t) having the same Laplace transform F(s). 

The proof of this result is too complicated to be given here. If we 
do not normalize the functions, we can only conclude that the two func
tions f1(t) and f2(t) differ at most by a null function. 

A. 11 Operations on the Determining and Generating Functions 
In the application to network theory, we are interested in the results 

of performing various algebraic and analytic operations in both the t-
and s-domains. In this section we will summarize these results. 

The simplest of these operations is the algebraic operation of linear 
combination, which we have dealt with already. The generating func
tion corresponding to a linear combination of determining functions is 
the same linear combination of the corresponding generating functions. 
That is 

(133) 

This linearity is quite useful in both direct and inverse Laplace trans
formations. 

The other algebraic operation, multiplication in either domain, leads 
to quite complicated results. The results obtained are quite similar to 
those in infinite series. For example, if we have two power series with a 
common region of convergence, 

(134) 

then the product of the two is again a power series. 

where (135) 
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The product series converges in the common region of convergence of 
the two individual series. The sums in Eq. (135b) are known as con
volution sums. We get a similar result in Laplace transforms. 

and (136) 

have finite abscissae of convergence σ1 and σ 2, then the product F1(s)F2(s) 
is also a Laplace transform 

where (137) 

with an abscissa of convergence equal to the larger of σ1, σ 2. 
If F1(s) and F2(s) are Laplace transforms of f1(t) andf2(t), with abscissae 

of convergence σ1 and σ2, the Laplace transform of the product f1(t)f2(t) 
is given by 

(138) 

where the path of integration is in the sector defined by | arg s| ≤ (π/2) — ε 
and the abscissa of convergence is σ 1 + σ 2. 

The first of these two results is of considerable interest in network 
theory and is proved in Chapter 6. The second result is not of particular 
interest to us; we shall omit its proof. The integrals in Eqs. (137b) and 
(138) are known as convolution integrals, the first being a real convolution 
and the second a complex convolution. 

Next we shall consider the analytic operations of differentiation and 
integration in both domains. These correspond, as we shall see, to multi
plication or division by s or t. Differentiation in the s-domain has al
ready been considered; let us repeat the result here: 

If 
then (139) 

the abscissae of convergence being the same. 
As might be expected, the inverse operations, division by t and in

tegration in s, correspond. The negative sign is missing however. 
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then (140) 

where the abscissae of convergence are the same and the path of integration 
is restricted to the sector of uniform convergence. 

This result is proved by integrating by parts in the s-domain, noting 
that F(s) approaches 0 as s approaches ∞. More important operations 
than the preceding ones, as far as the application to network theory is 
concerned, are differentiation and integration in the t-domain. These 
are found to be sort of dual to the ones above. 

Let f(t) be differentiable (and therefore continuous) for t > 0, and let 
the derivative f'(t) be transformable. Then f(t) is also transformable and 
with the same abscissa of convergence. Further 

where 

and 
(141) 

Since f'(t) is transformable, it follows that f(t) is of exponential order 
and therefore transformable. The rest follows on integrating 

by parts and taking the limit as T goes to ∞. 
Let f(t) be an integrable and transformable function. Let 

(142) 

Then g(t) is also transformable and with the same abscissa of convergence. 
Further 

(143) 

where G(s) and F(s) are Laplace transforms of g(t) and f(t) respectively. 
The first part follows as before. Equation (143) follows from Eq. 

(141a) on observing that g(0+) = 0 by Eq. (142). 
These results can easily be extended to higher order derivatives and 

integrals of f(t) by repeated applications of these theorems. 
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Two other limit operations are of considerable interest in estimating 
the behavior of the transient response of linear systems. In the first 
one, we seek to relate the value of f(t) at t = 0 to a specific value of F(s). 
The definition of the Laplace transform gives us only a relationship be
tween the values of f(t) on the whole of the real positive t-axis and the 
behavior of F(s) in a complex half-plane. The desired relationship is the 
following. 

If £{f(t)} = F(s) with a finite abscissa of convergence, and if f'(t) is 
transformable, then 

(144) 

where the limit on the right is to be taken in the sector 

|arg s| ≤ (π/2) - ε 

This is called the initial value theorem. 
T O prove this result we start with the derivative formula 

(145) 

and take the limit as s goes to ∞ in the sector specified. Since £{f'(t)} 
is a Laplace transform, it goes to zero as s goes to ∞ in this sector. The 
result is Eq. (144). 

We might analogously expect to get the final value f(∞) by taking 
the limit of Eq. (145) as s approaches 0. We run into difficulties here. 
For, 

(146) 

where the limits are to be taken with |arg s| ≤ (π/2) — ε. 
It is first of all not clear that the last limit exists. If it does, we don't 

see what it might be. If we can interchange the limit and the integral, 
however, we will get 

(147) 

If we assume uniform convergence of the Laplace integral for f'(t) in 
a region including s = 0, then this interchange can be made. In such a 
case, however, the abscissae of convergence of both f'(t) and f(t) must be 
negative. This is possible only if f(t) approaches 0 as s approaches ∞. 
That is, 

(148) 

But in this instance the whole theorem will be devoid of content. Hence, 
in order to establish the theorem, the interchange of the limit and the 
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integral must be justified by finer criteria than uniform convergence; 
which takes the proof of the theorem "outside the scope of this text." 
The desired theorem can be stated as follows. 

If f(t) and f(t) are Laplace transformable, and if sF(s) is regular on the 
jω-axis and in the right half plane, then 

(149) 

where the limit on the right is to be taken along the positive real axis. This 
result is known as the final value theorem. 

The last two operations that we shall consider are multiplication of 
f(t) or F(s) by an exponential function. Let us first consider multiplica
tion of F(s) by e-as where a is a real number. We have 

(150) 

If we make the substitution x = t + a, and then change the dummy 
variable of integration back to t, we will get 

(151) 

If we assume that f(t) vanishes for t < 0, then f(t — a) will vanish for 
t < a and the lower limit of the integral can be replaced by zero. To 
indicate that f(t — a) is zero for t < a we can write it in the form 
f(t — a)u(t — a). The function u(x) is the unit step, defined as zero 
for negative x and unity for positive x. This leads to the following 
result. 

If £[f(t)] = F(s) and a is real, then 

(152) 

with the same abscissa of convergence. 
This result is called the real shifting or translation theorem since f(t — a) 

is obtained by shifting f(t) to the right by a units. 
The operation of multiplying f(t) by eat leads to a similar result. This 

is called the complex shifting theorem. 
If £[f(t)] = F(s) with abscissa of convergence σc, then 

(153) 

with the abscissa of convergence σc + Re (a). 
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This theorem follows directly from the definition of the Laplace trans
form. 

A. 12 The Complex Inversion Integral 

We now consider the problem of finding the determining function f(t) 
from a knowledge of the generating function F(s). Since the uniqueness 
theorem tells us that two essentially different functions f(t) cannot lead 
to the same function F(s), we can expect to find an inverse transforma
tion that will give us f(t). We might (intuitively) expect that the inverse 
transformation will also be an integral, this time a complex integral in 
the s-domain. It must involve some kernel function of s and t, since we 
must end up with a function of t. Such is indeed the case, as stated by 
the following theorem. Let £{f(t)} = F(s), with an abscissa of con
vergence σc. Then, 

(154) 

where c ≥ 0, c > σ c. This is known as the inversion integral. 
The proof of this important theorem involves a knowledge of the 

Fourier integral theorem and several results from the theory of Lebesgue 
integration. Usually, we understand the normalization implied and 
write 

(155) 

or simply 

(156) 

the assumption f(t) = 0 for t < 0 being understood. 
When the function F(s) alone is given, we do not generally know σ c. 

However we do know that F(s) is regular for σ > σc. Hence, in such a 
case, we take the path of integration to be a vertical line to the right of 
all the singular points of F(s). Such a path is known as a Bromwich path 
after the famous mathematician T. J. I 'A. Bromwich who made many 
significant contributions to the theory of Laplace transformation. The 
abbreviation Br is used on the integral sign, instead of the limits, to 
signify this contour. 

We saw in section A.6 that the residue theorem can often be used to 
evaluate integrals of this type. In order to use the residue theorem, we 
have to close the contour. Let us consider the two closed paths shown 
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in Fig. 15. If the integrand F(s)est satisfies Jordan's lemma on either 
of the semicircular arcs, we can evaluate the integral by the residue 
theorem. If Jordan's lemma is satisfied on the arc to the right, i.e., if 

lim sF(s) est = 0, |arg s| < π/2 

(which will be true, for instance, if t < 0), the integral on C1 of Fig. 15 is 
zero. Since, in addition, the closed contour integral is zero because no 
singularities are enclosed, the inversion integral yields zero. 

Fig. 15. Evaluation of inversion integral. 

If Jordan's lemma is satisfied on the semicircular arc to the left, which 
is much more often the case, the integral on the closed contour C 2 is 2πj 
times the sum of the residues of F(s)est at the enclosed singular points. 
Including also the l/2πj in Eq. (155), we get the following result. 

If F(s) —> 0 as s —> ∞, uniformly in the sector |arg s| ≥ π/2, then 

f(t) = Σ residues of F(s)est at finite singularities of F(s) 

This is an extremely useful result. For simple functions, rational 
functions for example, we can evaluate f(t) very easily by this theorem. 
For a rational function to be a Laplace transform, the degree of the de
nominator polynomial must exceed the degree of the numerator poly
nomial by the condition of Eq. (131). Thus, this inversion by residues 
is always applicable to rational functions. 

In our brief discussion of the Laplace transform, we have had to omit 
many of the proofs and several results that are of considerable impor
tance. However, we have at least stated all the results that have been 
used in the main text. Those who would like a more thorough treatment 
are referred to the standard texts listed in the bibliography. We will 
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conclude our discussion with a very short table of transform pairs, which 
will be adequate for the present application. 

TABLE OF TRANSFORM PAIRS 
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INDEX 

Active element, 19 
Active network, 401 
Admittance, driving point, 130 

indicial, 201 
transfer, 134 

All-pass function, 243 
All-pass network, 337 
Alternation property, 368 
Amplifier network, 50 

feedback, 433 
single loop, 433 

Amplitude, 162 
Analysis, loop, 28 

mesh, 28 
node, 33 

Analytic function, 507 
Anti-derivative, 517 
Approximation, Butterworth, 250 

equal ripple, 250, 493 
maximally flat, 250 
straight line, 237 
Tchebyscheff, 250 

Arc, 67 
simple, 512 

Argument, 528 
principal value of, 528 
principle of the, 246, 429, 539 

Asymptotic plots, 237 
Attenuation integral theorem, 272 
Augmented matrix, 66 

network, 306 

Band-pass filter, 464 
Bartlett's bisection theorem, 341 
Block diagram, 403 

definitions, 403 
transformations, 407 

Bode diagrams, 234, 237 

Bode formulas, 262 
Bode plots, 237 
Branch, 67 

current system, 86 
of a function, 530 
point, 530 
voltage system, 98 

Bridge, Wheatstone, 26 
Bridged-Tee network, 149, 330 
Bromwich path, 558 
Brune's test, 322, 323 
Butterworth response, 250 

Capacitance, 11 
interelectrode, 21 

Capacitor, 15 
Carson integral, 204 
Cascade connection, 296, 320 
Cauchy integral formula, 517 
Cauchy integral theorem, 515 
Cauchy-Riemann equations, 509 
Characteristic equation, 45 
Charge, 5 

conservation of, 5, 105 
loop, 105 
unit, 277 

Chord, 10 
set impedance product, 386 

Circuit, 67 
matrix, 72, 382 

Coefficient of coupling, 17 
Cofactor, 59 
Complementary network, 397 
Complex frequency, 164 
Complex loci, 244 
Complex plane, 506 
Complex variable, 506 
Computation of initial conditions, 101 ff. 
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Computation of network functions, 
129 ff. 

from given angle, 253 
from magnitude, 248 
from real part, 257 

Conformable product, 58 
Conformal mapping, 510 
Consistent system of equations, 66 
Constant-if section, 476 
Continued fraction, 137 
Contour integral, 514 
Control factor, impedance, 468 

propagation function, 468 
Converter, negative resistance, 21 
Convolution theorem, 197, 554 
Corner frequency, 236 
Corner plot, first order, 238 

second order, 238 
Coupling, coefficient of, 17 

perfect, 17 
Critical frequency, 375 
Current, 1 

branch, 26 
loop, 26 
unit, 280 

Current generator, 20 
ratio transfer function, 134 
source, 20 

Curve, simple closed, 512 
Cut-off frequency, 465 
Cut set, 69 

Datum node, 31 
Decade, 235 
Decibel, 235 
Delay, constant, 267 
Delay function, 279 
Dependence, linear, 6, 63 
Determining function, 551 
Distribution, 117 
Doublet, 118 
Driving point functions, 129, 227, 344 

admittance, 130 
impedance, 129 

Dual networks, 125 
two-port, 339 

DuHamel integral, 201 ff. 

Edge, 67 
Element, 67 

Elliptic integral, 495 
Energy, conservation of, 22 

stored in a capacitance, 24 
stored in an inductance, 24 

Energy functions, 353 
relation to impedance, 356 

Equations, branch current, 86 
branch voltage, 98 
KCL, 5 
KVL, 8 
loop, 25, 78 

with current sources, 28 
with dependent sources, 30 

node, 31, 92, 98 
with transformers, 33 

Equivalent network, 157, 312 
Norton's, 157 
Pi, Tee, 314 ff. 
Thévenin's, 157 
transformer, 317 
two-port, 312 

Error, granularity, 285 
quantization, 285 
truncation, 285 

#-shift, 96 
Exponential function, 526 

representation of sinusoid by, 162 
Exponential order, 548 

type, 548 

Faltung, 197 
Feedback, 405 

definition of, 431 
Filter, 464 

band-pass, 464 
constant-2£", 476 
high-pass, 464 
ideal, 465 
lattice, 480 
low-pass, 464 
m-derived lattice, 481 

Pi, 479 
Tee, 478 

Final value theorem, 557 
Flux linkages, continuity of, 105, 108 
Foster forms, 370 
Foster's reactance theorem, 370 
Fourier series, 169 
Frequement, 164 
Frequency, angular, 162 
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Frequency, break or corner, 236 
complex, 164 
cut-off, 465 
natural, 41 
negative, 164 
normalized, 40 
real, 164 

Frequency response, 231 
functions, 230 

Frequency transformations, 500 
Function, analytic, 507 

continuous, 506 
definition of, 506 
delay, 279 
differentiable, 506 
driving, 36 
driving-point, 129, 227 
energy, 353 
entire, 532 
excitation, 36 
harmonic, 276, 509 
image attenuation, 457 
image loss, 457 
image transfer, 457 
impulse, 112 ff. 
index, 475 
multi-valued, 506, 527 
positive real, 357 
propagation, 457 
reactance, 366 
real, 229 
regular, 507 
response, 36 
single-valued, 506 
transfer, 133, 227 
unit step, 113 
weighting, 198 

Gain, 234 
current, 134 
forward, 405 
graph, 415 
logarithmic, 234 
loop, 423 
voltage, 134 

Generating function, 551 
Generator, 19 

current, 20 
dependent, 20 

Generator, independent, 20 
voltage, 20 

Graph, 67 
directed, 67 
dual, 125 
linear, 67 
signal flow, 407 ff. 
weighted, 409 

Harmonic functions, 276, 509 
High-pass filter, 464 
Hurwitz criterion, 426 

polynomial, 363, 426 
strictly, 363 

Hybrid parameters, 298 

Ideal filter characteristic, 492 
transformer, 17 

Identity theorem for analytic functions, 
543 

Image attenuation, 457 
impedance, 455 
loss, 457 
parameters, 303, 454 
propagation function, 457 
reflection coefficient, 459 

Impedance, a-c steady state, 167 
characteristic, 455 
driving-point, 129 
image, 455 
normalized, 40, 465 
transfer, 134 

Impulse function, 112 ff. 
response, 197 

Impulse, second order, 118 
strength of, 118 
train, 208 
unit, 118 

Incidence matrix, 68, 382 
properties of, 382 

Index function, 475 
Indicial admittance, 201 

response, 201 
Inductance, 11 

mutual, 15 
Inductor, 15 
Infinity, behavior at, 513 

point at, 513 
Initial conditions, 13, 101 

evaluation of, 101 ff. 
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Initial value theorem, 556 
Insertion loss, 460 

ratio, 460 
Instability, 41, 230 
Integral, contour, 514 

complex inversion, 558 
Interaction factor, 460 
Inverse network, 396 

Jordan's Lemma, 538 

Kernel, 545 
Kirchhoffs Current Law, 5, 68, 78 

dependence characteristics, 7, 69 
Kirchhoff's formulas, 386 
Kirchhoffs Voltage Law, 8, 7 1 , 80 

Ladder network, 136, 325 
Laplace integral, 546 

abscissa of convergence, 547 
absolute convergence, 548 
convergence of, 546 
uniform convergence, 549 

Laplace transform, 546, 550 
solution by, 35 ff. 

Lattice network, 333 
m-derived, 481 
parameters of, 335 

Linear dependence, 6, 63 
Links, 10 
Loci, complex, 244 

root, 439 
Logarithm, 527 
Logarithmic derivative, 540 

frequency scale, 235 
gain, 234 

Loop analysis, 28 
currents, 26 
gain, 423 

Loop, feedback, 409 
fundamental system of, 10 
method of choosing, 10, 87 
self, 412 

Loss, image, 457 
Low-pass filter, 464 

Magnification, 5 1 1 
Mapping, 510 

conformal, 510 
Matrix, addition, 56 

augmented, 66 

Matrix, circuit, 72, 382 
columns of, 55 
connection, 411 
cut set, 76 
definition of, 55 
determinant of, 59 
equality, 56 
identity, 58 
incidence, 68, 382 
inverse, 59 
loop impedance, 86 
multiplication, 57 

b y scalar, 56 
node admittance, 98 
nonsingular, 59 
order of, 55 
partitioning, 63 
positive definite, 348 
positive real, 378 
rank of, 66 
rows of, 55 
singular, 59 
symmetric, 60 
transpose, 60 
typical element of, 56 
unit, 58 
vertex, 68 
zero, 57 

Maximum modulus theorem, 520 
power transfer, 188 

Maxwell's formulas, 386 
M-derivation, 477 
M-derived Pi, 479 
M-derived Tee, 478 
Mesh impedance matrix, 86 
Midseries filter, 477 
Midshunt filter, 477 
Minimum-phase condition, 240 

reactance, 258 
susceptance, 258 

Minor, 59 
principal, 351 

Modes, natural, 41 
normal, 41 

Mutual inductance, 15 

Negat ive frequency, 164 
impedance converter, 21 

Neper, 234 
Net , 409 
Network, active, 401 
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Network, augmented, 306 

complementary, 397 
dual, 125 
equivalent, see Equivalent network 
functions, 227 
inverse, 396 
ladder, 136, 325 

parallel, 323 
lattice, 333 
planar, 10, 127 
reciprocal, 161 
Tee, 138 

bridged, 149, 326 
twin, 332 

Node admittance matrix, 98 
analysis, 33 
pulling algorithm, 415 

Node, datum, 31 
reference, 31 
sink, 412 
source, 412 

Normalization, amplitude, 40 
frequency, 40 
impedance, 40, 465 

Norton's theorem, 159, 160 
Nyquist criterion, 425 ff. 

Octave, 235 
One-port, 129, 228 
One terminal-pair, 129, 228 
Open circuit impedance parameters, 295 
Overshoot, 51 

Parallel connection of two-ports, 321 
Parameters, ABCDt 296 

chain, 296 
298 

h-, 298 
hybrid, 298 
image, 303, 454 
scattering, 303 
y-, 295 
z-, 295 

Partial-fraction expansion, 542 
Partitioning, conformal, 64 

matrix, 63 
theorem, 340 

Pass-band, 250 
Passive network elements, 19 
Passive network functions, 343 

Path of integration, 514 
simple closed, 512 

Phase, 162 
characteristic, 267 
linear, 267 

Phase area theorem, 271 
Phasor, 163 
Pick-off point, 403 
Planar network, 10, 127 
Point, pick-off, 403 

summing, 403 
Polarity mark, magnetic, 16 
Pole, 229 

factor, 229 
location of, 230 
private, 462 
semiprivate, 462 

Pole-zero constellation, 230 
Pole-zero pattern, 230 
Positive definite energy functions, 353 

matrix, 348 
quadratic forms, 347 

Positive real function, 357 
matrix, 378 

Postmultiplication, 58 
Potential analog, 276 ff. 
Power, 22 

transfer of maximum, 188 
Premultiplication, 58 
Principal value of integral, 537 
Prototype, 477 

Quandrantal symmetry, 249 
Quadratic form, 346 

index of, 349 
positive definite, 347 
semidefinite, 347 

Quantization, 283 
error, 285 

Rank of a matrix, 66 
Rational function, 228, 532 

representation by poles and zeros, 229 
Reactance, 366 

function, 366 
integral theorem, 271 
network, 365 
plots, 368 
theorem, Foster's, 370 

Real part condition, 381 
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Reciprocity theorem, 160, 161, 192 
Reference, 2 

current, 2 
loop, 8 
voltage, 3 

Reflection coefficient, 304, 459 
factor, receiving end, 460 

sending end, 460 
property, 229 

Region, 512 
connected, 512 

simply, 516 
Regular, 507 
Regularity, region of, 508 
Relation between components, 261 ff. 
Representation of network, 212 

functions, 227 
by poles and zeros, 228 

of solutions, 211 
Residue, 533 

computation of, at a pole, 534 
at a simple pole, 534 

condition, 379 
theorem, 534 

Resistance, 11 
integral theorem, 272 
negative, 21 

Resistor, 12 
Response, forced, 41 

frequency, 231 
impulse, 197 
indicial, 201 
natural, 41 
steady state, 42, 162 ff. 
step, 201 

Return difference, 431 
ratio, 430 

Riemann sphere, 512 
surface, 530 

Rise time, 51 
Root locus, 439 
Roots of characteristic equation, 45 

Scalar, 56 
multiplication of matrix by, 56 

Scattering matrix, 307 
parameters, 303 

Self inductance, 15 
loop, 412 

Series, infinite, 520 ff. 

Laurent, 525 
principal and regular parts, 526 

power, 521 
Taylor, 523 

Short-circuit admittance parameters, 295 
Signal flow graphs, 407 ff. 
Single loop amplifier, 434 
Singularity, algebraic, 532 

essential, 526 
isolated, 508 
nonisolated, 508 

logarithmic, 532 
pole, 526 

simple, 526 
Singular matrix, 59 

point, 507 
Sinor, 163 
Source, current, 20 

dependent, 20 
independent, 20 
voltage, 20 

Stability, 41, 425 
Steady-state, a-c, 162 

definition, 42 
relation to transient, 215 
response to general periodic function, 

168 ff. 
Step function, 113 

response, 201 
Stop band, 250 
Straight fine approximations, 237 
Submatrix, 62 
Summing point, 403 
Superposition principle, 153, 204 ff. 

integral, 204 
Symmetry, electrical, 334 

quandrantal, 249 
reflection, 229 
structural, 341 

Tandem connection of two-ports, 296,320 
Tangent function, 254 
Tchebyscheff approximation, 250 

response, 250 
Thévenin's theorem, 154, 160 
Time domain analysis, 208 

synthesis, 211 
Time series, 208 
Topological formulas, 381 
Topology, network, 67 
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Transfer function, 133, 227 
closed-loop, 405 
image, 457 
minimum-phase, 240 
open-loop, 405 

Transformation, Blakesley, 96 
Cauer, 371 
conformal, 510 
frequency, 500 
Laplace, 545 ff. 
mesh, 26, 80 
node, 32, 93 

Transformer, 15 
equivalents, 317 
ideal, 17 
perfect, 17 
unity coupling, 17 

Transient response, 42 
Transistor, 22 
Translation theorem, 557 
Transmission, 412 

loop, 423 
zero, 325, 463 

Tree, 9 
admittance product, 386 
branches, 10 

Turns ratio, 18 
Two-port, 228, 291 

antimetric, 310 
symmetric, 299 

Two terminal-pair network, 228, 291 

Uniqueness of Laplace transform, 552 
of Laurent series, 535 

Uniqueness of Laplace transform, of 
Taylor series, 523 

Unit charge, 277 
current, 280 
matrix, 58 
step function, 113 

Unstable, 41 

Vacuum tube, 22 
Vertex, 68 

edge incidence matrix, 68 
matrix, 68 

Voltage, 1 
branch, 8 
drop, 9 
equations, branch, 98 
generator, 19 
node, 31 
ratio transfer function, 134 
rise, 9 
source, 20 

Wave filter, 464 
Weighting function, 198 
Wheatstone bridge, 26 

bridged-Tee as, 328 
lattice as, 334 

Zero, 229 
factor, 229 
of transfer function, 325 
transmission, 325, 463 

0-cell, 67 
1-cell, 67 
2-tree, 389 
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