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An Elementary Derivation of the Routh–Hurwitz Criterion

Ming-Tzu Ho, Aniruddha Datta, and S. P. Bhattacharyya

Abstract— In most undergraduate texts on control systems, the
Routh–Hurwitz criterion is usually introduced as a mechanical algorithm
for determining the Hurwitz stability of a real polynomial. Unlike
many other stability criteria such as the Nyquist criterion, root locus,
etc., no attempt whatsoever is made to even allude to a proof of the
Routh–Hurwitz criterion. Recent results using the Hermite–Biehler
theorem have, however, succeeded in providing a simple derivation of
Routh’s algorithm for determining the Hurwitz stability or otherwiseof a
given real polynomial. However, this derivation fails to capture the fact
that Routh’s algorithm can also be used to count the number of open right
half-plane roots of a given polynomial. This paper shows that by using
appropriately generalized versions of the Hermite–Biehler theorem, it is
possible to provide a simple derivation of the Routh–Hurwitz criterion
which also captures its unstable root counting capability.

Index Terms—Generalized Hermite–Biehler, Routh–Hurwitz, stability.

I. INTRODUCTION

The problem of determining conditions under which all of the roots
of a given real polynomial lie in the open left-half complex plane is
one of fundamental importance in the study of stability of a dynamic
system [1]. This problem has intrigued researchers for more than 100
years now, and one of the earliest solutions, and the most widely
known one, is the criterion of Routh–Hurwitz. Indeed, today most
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undergraduate students are exposed to the Routh–Hurwitz criterion
in their first introductory controls course. This exposure, however, is
at the purely algorithmic level in the sense that no attempt is made
whatsoever to explain why or how such an algorithm works. This
is in stark contrast to the treatment given to other stability criteria
such as Nyquist or root locus which are rationalized in considerable
detail. The principal reason for this is that the classical proof of the
Routh–Hurwitz criterion, e.g., [1], relies on the notion of Cauchy
indexes and Sturm’s theorem, both of which are beyond the scope
of undergraduate students. Unfortunately, this material is not covered
even in most graduate courses so that the Routh–Hurwitz criterion
has become one of the few results in control theory that most control
engineers are compelled to accept on faith.

Very recent results in the area of Parametric Robust Control have
started to change this scenario. First, the emergence of Kharitonov’s
celebrated theorem [2] has focused renewed attention on the Her-
mite–Biehler theorem, mainly because the original proof of the former
relied heavily on the latter. Second, the Hermite–Biehler theorem was
used in [3] to provide an elementary derivation of Routh’s algorithm
for determining the Hurwitz stability of a given real polynomial.
However, the derivation of the Routh–Hurwitz criterion given there
is incomplete in the sense that it fails to capture the fact that Routh’s
algorithm, can also be used to count the number of open right half-
plane zeros of a real polynomial. Moreover, the approach adopted
in that reference does not suggest any obvious fix for removing this
discrepancy.

A closer examination of the result in [3] shows that this state of
affairs is only to be expected. Indeed, the Hermite–Biehler theorem
is applicable to only Hurwitz polynomials and it is, therefore, not
surprising that the result in [3] does not permit us to keep a
count of the number of open right half-plane zeros. To obtain a
simple and complete derivation of the Routh–Hurwitz criterion, it
seems logical to first obtain appropriately generalized versions of
the Hermite–Biehler theorem applicable to not necessarily Hurwitz
polynomials and then exploit these results along the lines of [3]. The
main objective of this paper is to do precisely that. In other words,
this paper extends the result of [3] and derives the Routh–Hurwitz
criterion in its entirety.

The paper is organized as follows. In Section II, we state the
relationship between the net phase change of the frequency response
of a real polynomial as the frequency! varies from zero to1
and the numbers of its roots in the open left and open right half-
planes. In Section III, we use the relationship from Section II to
derive two results, each of which in effect is a generalization of
the Hermite–Biehler theorem to the case of not necessarily Hurwitz
real polynomials. In Section IV, we use the results of Section III
to provide a simple derivation of the Routh–Hurwitz criterion. In
particular, the ability of Routh’s algorithm to count the number of
open right half-plane zeros is proven. The singular cases are discussed
in Section V. Section VI contains some concluding remarks.

II. SIGNATURE AND NET ACCUMULATED PHASE

In this section, we state a fundamental relationship between the net
accumulated phase of the frequency response of a real polynomial
and the difference between the numbers of roots of the polynomial
in the open left and open right half-planes. To this end, letC denote
the complex plane,C� the open left half-plane, andC+ the open
right half-plane. From the very beginning, we focus on polynomials
without zeros on the imaginary axis. We consider a real polynomial
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�(s) of degreen

�(s) = �0 + �1s+ �2s
2
+ � � �+ �ns

n
; �i 2 R;

i = 0; 1; � � � ; n; �n 6= 0

such that�(j!) 6= 0; 8! 2 (�1;1):

Definition 2.1: Let l and r denote the numbers of roots of�(s)
in C� andC+, respectively. Then the signature of�(s), denoted by
�(�), is defined as

�(�)
�
= l� r:

Since

n = l+ r

it follows that�(�) andn uniquely determinel andr; and hence the
root distribution of�(s): Now for every frequency! 2 R; �(j!) is
a point in the complex plane. Letp(!) and q(!) be two functions
defined pointwise byp(!) = Re[�(j!)]; q(!) = Im[�(j!)]:

With this definition, we have

�(j!) = p(!) + jq(!) 8!:

Furthermore�(!)
�
= 6 �(j!) = arctan[q(!)=p(!)]: Let �10 �

denote the net change in argument�(!) as ! increases from zero
to 1: Then we can state the following lemma [4, p. 174].

Lemma 2.1: Let �(s) be a real polynomial with no imaginary axis
roots. Then

�
1

0 � =
�

2
�(�):

III. GENERALIZATIONS OF THE HERMITE–BIEHLER THEOREM

In this section, we derive two generalizations of the Her-
mite–Biehler theorem by first developing a procedure for systemati-
cally determining the net accumulated phase change of the “frequency
response” of a polynomial. We first recall that at any given frequency
!; the phase angle of�(j!) is given by

�(!) = tan
�1 q(!)

p(!)
:

Hence the rate of change of phase with respect to frequency at any
given frequency! is given by

d�(!)

d!
=

1

1 +
q
2(!)

p2(!)

_q(!)p(!)� _p(!)q(!)

p2(!)

=
_q(!)p(!)� _p(!)q(!)

p2(!) + q2(!)
: (1)

If p(!) and q(!) are known for all!; we can integrate (1) to
obtain the net phase accumulation. However, to calculate the net
accumulation of phase over all frequencies it isnot necessaryto know
the precise rate of change of phase at each and every frequency. This
is because we know that every time the polar plot�(j!) makes a
transition from the real axis to the imaginary axis or vice versa, there
can be at most a net phase change of�(�=2) radians. The precise
sign of the phase change can be determined by examining (1) at the
real or imaginary axis crossing of the�(j!) plot. Since at a real
or imaginary axis crossing one of the two terms in the numerator
of (1) vanishes and the denominator is always positive, the actual
determination of sign of the phase change becomes even simpler.

Now, given any polynomial�(s) of degree greater than or equal to
one, either the real part or the imaginary part or both of�(j!) become
infinitely large as! ! �1: However, if we wish to count the total
phase accumulation in integral multiples of real to imaginary axis

crossings or imaginary to real axis crossings, it is imperative that the
frequency response plot used approach either the real or imaginary
axis as! ! �1: To accomplish this, one can normalize the plot
of �(j!) by scaling it with1=f(!), wheref(!) = (1 + !

2)n=2:

Sincef(!) does not have any real roots, this scaling will ensure that
the normalized frequency response plot�f (j!) = pf(!) + jqf(!)

actually intersects either the real axis or the imaginary axis at�1;

while at the same time keeping unchanged the finite frequencies at
which the �(j!) plot intersects the real and imaginary axes. The
subsequent development in this paper makes use of the normalized
frequency response plot for determining the net accumulated phase
change as we move from! = 0 to ! = +1:

Using such a normalized frequency response plot, in [5] we
obtained an analytical expression for�(�): This expression was
given in terms of the frequencies at which�f (j!) crosses the real
and imaginary axes. However, for the purpose of this paper, it
is more convenient to derive expressions for�(�) which involve
either the real or the imaginary axis crossings of�f (j!); but not
both. Accordingly, in this section, we proceed to carry out such a
derivation. In what follows, we will give a detailed derivation only for
the expression involving real axis crossings; the expression involving
the imaginary axis crossings will be merely stated without proof since
its derivation follows along very similar lines.

The following development will make extensive use of the standard
signum functionsgn: R ! f�1; 0; 1g defined by

sgn[x] =

�1; if x< 0

0; if x = 0

1; if x> 0:

Now consider a polynomial�(s) of degreen

�(s) = �0 + �1s+ �2s
2
+ � � �+ �ns

n
; �i 2 R;

i = 0; 1; � � � ; n; �n 6= 0

such that�(j!) 6= 0; 8! 2 (�1;1):

Let p(!); q(!); pf(!); qf(!) be as already defined, and let

0 = !0<!1<!2< � � � <!m�1

be the real, nonnegative distinct finite zeros ofqf(!) with odd
multiplicities.1 Also define!m = +1:

Then we can make the following simple observations.

1) If !i; !i+1 are both zeros ofqf(!), then

�
!

! � =
�

2
[sgn[pf(!i)]� sgn[pf(!i+1)]] � sgn[qf(!

+

i )]:

(2)

2) If !i is a zero ofqf(!) while !i+1 is not a zero ofqf(!);
a situation possible only when!i+1 = 1 is a zero ofpf(!)
(n odd), then

�
!

! � =
�

2
sgn[pf(!i)] � sgn[qf(!

+

i )]: (3)

3)

sgn[qf(!
+

i+1)] =�sgn[qf(!
+

i )];

i = 0; 1; 2; � � � ;m� 2: (4)

1The functionqf (!) does not change sign while passing through a real
zero of even multiplicity; hence such zeros can be skipped while counting the
net phase accumulation.
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Equation (2) above is obvious, while (4) simply states thatqf(!)

changes sign when it passes through a zero of odd multiplicity.
Equation (3), on the other hand, can be directly traced to (1).

Using (4) repeatedly, we obtain

sgn[qf (!
+

i )] = (�1)
m�1�i

� sgn[qf(!
+
m�1)];

i = 0; 1; � � � ;m� 1: (5)

Substituting (5) into (2), we see that if!i; !i+1 are both zeros of
qf(!), then

�
!
! � =

�

2
[sgn[pf(!i)]� sgn[pf(!i+1)]]

� (�1)
m�1�i

� sgn[qf(!
+
m�1)]: (6)

The above observations enable us to state and prove the following
theorem concerning�(�):

Theorem 3.1: Let �(s) be a given real polynomial of degreen with
no roots on thej! axis, i.e., the normalized plot�f (j!) does not pass
through the origin. Let0 = !0<!1<!2< � � � <!m�1 be the real
nonnegative distinct finite zeros ofqf(!) with odd multiplicities.
Also define!m = 1: Then

�(�) =

fsgn[pf(!0)]� 2 sgn[pf(!1)] + 2 sgn[pf(!2)]

+ � � �+ (�1)m�12 sgn[pf(!m�1)]

+ (�1)m sgn[pf(!m)]g � (�1)
m�1 sgn[q(1)];

if n is even
fsgn[pf(!0)]� 2 sgn[pf(!1)] + 2 sgn[pf(!2)]

+ � � �+ (�1)m�12 sgn[pf(!m�1)]g

� (�1)m�1 sgn[q(1)];

if n is odd.

(7)

Proof: First, let us suppose thatn is even. Then!m = 1

is a zero of qf(!): The desired expression, i.e., the first one
in (7), now follows by repeatedly using (6) to determine�10 �;

applying Lemma 2.1, and then using the fact thatsgn[qf(!
+
m�1)] =

sgn[q(1)]:

Now let us consider the case thatn is odd. Then,!m =1 is not
a zero ofqf(!): Hence

�
1

0 � =

m�2

i=0

�
!
! � +�

1

m�1�

=

m�2

i=0

�

2
[sgn[pf(!i)]� sgn[pf(!i+1)]]

� (�1)
m�1�i

sgn[qf(!
+
m�1)]

+
�

2
sgn[pf(!m�1)] � sgn[qf(!

+
m�1)]

[using (6) and (3)]: (8)

Applying Lemma 2.1, and then using the fact thatsgn[qf(!
+
m�1)] =

sgn[q(1)]; the desired expression follows.
We now state the result analogous to Theorem 3.1 where the

signature�(�) of a real polynomial�(s) is to be determined using
the values of the frequencies, where�f (j!) crosses the imaginary
axis. The proof is omitted since it follows along essentially the same
lines as that of Theorem 3.1.

Theorem 3.2: Let �(s) be a given real polynomial of degreen
with no roots on thej! axis, i.e., the normalized plot�f (j!) does
not pass through the origin. Let0<!1<!2< � � � <!m�1 be the
real nonnegative distinct finite zeros ofpf(!) with odd multiplicities.

Also define!m = 1: Then

�(�) =

�f2 sgn[qf(!1)]� 2 sgn[qf(!2)]

+ � � �+ (�1)m�22 sgn[qf(!m�1)]g

� (�1)m sgn[p(1)];

if n is even
�f2 sgn[qf(!1)]� 2 sgn[qf(!2)]

+ � � �+ (�1)m�22 sgn[qf(!m�1)]

+(�1)m�1 sgn[qf(!m)]g � (�1)
m sgn[p(1)];

if n is odd.
(9)

IV. DERIVATION OF THE ROUTH–HURWITZ CRITERION

In this section, we use Theorems 3.1 and 3.2 to obtain a simple
proof of the Routh–Hurwitz criterion. First we consider a real
polynomial �(s) of degreen

�(s) = �0 + �1s+ �2s
2
+ � � �+ �ns

n
; �n 6= 0

and denote

�(s) = �
even

(s) + �
odd

(s)

where�even(s); �odd(s) are the polynomials made up of the terms in
�(s) containing the even and odd powers ofs respectively. To avoid
singularities of the “first type” and the “second type” [1] in Routh’s
algorithm, we make the following assumptions.

1) �n�1 6= 0:

2) �
even(s) and �odd(s) are coprime.

To derive Routh’s algorithm, we start with the polynomial�(s)

and construct a polynomial�1(s) of ordern � 1 as follows.
If n is even, then

�1(s) = �
even

(s)�
�n

�n�1
� s � �

odd
(s) + �

odd
(s): (10)

If on the other hand,n is odd, then

�1(s) = �
odd

(s)�
�n

�n�1
� s � �

even
(s) + �

even
(s): (11)

The following theorem relates the signature of�(s) to that of the
reduced-order polynomial�1(s):

Theorem 4.1: Let �(s); �1(s) be as already defined. Then

�(�)� �(�1) =
1; if �n�n�1> 0

�1; if �n�n�1< 0:

Proof: Suppose

�(j!) = p(!) + jq(!): (12)

First let us consider the case whenn is even. Then from (10)

�1(j!) = p(!) +
�n

�n�1
!q(!) + jq(!): (13)

From (12) and (13) it follows that the finite zeros ofqf(!) are the
same for both�(j!) and �1(j!): Moreover, at these frequencies
both�(j!) and�1(j!) have the same real part so thatsgn[pf(!)] is
also identical for both these polynomials at these frequencies. Thus,
subtracting the second expression on the right-hand side of (7) from
the first one, we obtain

�(�)� �(�1) = �sgn[pf(1)] � sgn[q(1)]:

Now for large positive!

p(!) ' (�1)
n=2

�n!
n

while q(!) ' (�1)
n�2=2

�n�1!
n�1
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so that

sgn[pf (1)] � sgn[q(1)] = �sgn[�n�n�1]:

Thus

�(�)� �(�1) =
1; if �n�n�1> 0

�1; if �n�n�1< 0:
(14)

We now consider the case thatn is odd. Then from (11)

�1(j!) = p(!) + j q(!)�
�n

�n�1

!p(!) : (15)

From (12) and (15) it follows that the finite zeros ofpf(!) are the
same for both�(j!) and�1(j!): Moreover, at these frequencies both
�(j!) and�1(j!) have the same imaginary part so thatsgn[qf(!)] is
also identical for both these polynomials at these frequencies. Thus,
from (9) we obtain

�(�)� �(�1) =�(�1)
m�1

(�1)
m

sgn[qf(1)] � sgn[p(1)]

= sgn[p(1)] � sgn[qf(1)]:

Now for large positive!

p(!) ' (�1)
(n�1)=2

�n�1!
n�1

q(!) ' (�1)
(n�1)=2

�n!
n

so that

sgn[p(1)] � sgn[qf(1)] = sgn[�n�n�1]:

Thus

�(�)� �(�1) =
1; if �n�n�1 > 0

�1; if �n�n�1 < 0
(16)

and this completes the proof.
Using Theorem 4.1, we obtain the following corollary.
Corollary 4.1: Let �(s) be a given real polynomial and let�1(s)

be defined by (10) or (11) as appropriate. Letl; l1 denote the number
of open left half-plane roots of�(s); �1(s) while r; r1 denote the
number of open right half-plane roots of�(s); �1(s): Then

l1 = l� 1; r1 = r if �n�n�1> 0

l1 = l; r1 = r � 1 if �n�n�1< 0
: (17)

Proof: Now �(�) = l � r and �(�1) = l1 � r1: Thus
Theorem 4.1 implies that

l� r � l1 + r1 =
1; if �n�n�1 > 0

�1; if �n�n�1 < 0:
(18)

But

(l+ r)� (l1 + r1) = 1: (19)

Adding (18) and (19) we obtain

l� l1 =
1; if �n�n�1> 0

0; if �n�n�1< 0:
(20)

Again, subtracting (18) from (19), we obtain

r � r1 =
0; if �n�n�1> 0

1; if �n�n�1< 0:
(21)

The desired result now follows from (20) and (21).
Now, given a real polynomial�(s); Routh’s algorithm is equivalent

to reducing the degree of�(s) by one at a time using (10) and
(11) alternately. This is clearly articulated in [3], [6], and [7], while
the Sturm sequence calculation in [1] is equivalent to the alternate
application of (10) and (11). Thus Corollary 4.1 leads us to the
immediate conclusion that�(s) will be Hurwitz iff the leading
coefficients of all the polynomials that result from alternately applying
(10) and (11) to�(s) are of the same sign. Furthermore, it is also clear
that the number of open right half-plane roots of�(s) is equal to the
number of sign changes in the leading coefficients of the successive
polynomials. This is exactly the Routh–Hurwitz criterion.

V. SINGULAR CASES

The derivation of the Routh–Hurwitz criterion in the last section
dealt with only the so-called “regular” case, i.e., the case in which
the degree of�(s) can be successively reduced one at a time by
the alternate application of (10) and (11) until we finally have a
zeroth-order polynomial. This process would, however, terminate
prematurely if, while trying to apply (10) or (11), we encounter
�n�1 = 0: Then we have what are called “singular” cases, and this
section is devoted to their treatment.

Starting with a given real polynomial�0(s) of degreen

�0(s) = �
0
0 + �

0
1s+ �

0
2s

2
+ � � �+ �

0
ns

n
;

suppose using (10) and (11) alternately we obtain a sequence of
polynomials f�0(s); �1(s); �2(s); � � � ; �m(s)g; where the leading
coefficient of each�i(s); i = 0; 1; 2; � � � ; m is nonzero. Let

�m(s) =�
m
0 + �

m
1 s+ �

m
2 s

2
+ � � �+ �

m
n�m�1s

n�m�1
+ �

m
n�ms

n�m

where�mn�m 6= 0: Now, if �mn�m�1 = 0; then it is clear that Routh’s
algorithm stops because to proceed with Routh’s algorithm using (10)
or (11), we would need to divide by�mn�m�1 which is now equal
to zero. To handle such singularities we consider the three distinct
possibilities that can occur.

Case (I): �mn�m�1 = 0 but there exists at least onek; k =

3; 5; 7; 9; � � � such that�mn�m�k 6= 0, i.e., the first element in any
one row of the Routh table vanishes, but there is at least one nonzero
element in that row.

If we know beforehand that�0(s) has no imaginary axis roots, then
we can proceed as follows. Replace�mn�m�1 = 0 with a “small”
nonzero number� of arbitrary sign and then continue to proceed
with Routh’s algorithm. If a similar singularity is encountered later,
introduce another parameter to replace the offending zero element,
and so on.

By replacing�mn�m�1 = 0 with �; we in fact modify the original
polynomial �0(s): From (10) and (11), for�mn�m�1 = �; we can
work backward to obtain a modified polynomial�0(s; �); where the
coefficients of�0(s; �) are rational functions of�: Since �0(s) has
no roots on the imaginary axis, it follows by continuity that for�

small enough,�(�0(s)) = �(�0(s; �)): This is the reason why this
modification can be used to handle a singularity of this type and still
provide a count of the number of open right half-plane roots.

Case (II): �mn�m�k = 0 for k = 1; 3; 5; 7; � � �, i.e., all the
elements in one row of the Routh table vanish.

For this case, since�mn�m�k = 0 for k = 1; 3; 5; 7; � � � ; it follows
that �0(s) must have one or more pairs of complex conjugate roots
symmetrically distributed about the origin of the complex plane. This
includes the case of purely imaginary roots as well as the case of
purely real roots having opposite signs.

To take care of this kind of singularity, one can simply replace
�0(s) with �0(s��); where� is a sufficiently “small” positive number
and then proceed with Routh’s algorithm. The net result is that the
number ofclosedright half-plane roots of�0(s) equals the number of
sign changes in the leading coefficients of the successive polynomials.

Case (III): Cases (I) and (II) occur at different stages in the same
problem when proceeding with Routh’s algorithm.

Once again, we can replace�0(s) with �0(s � �); where � is a
sufficiently “small” positive number and then proceed with Routh’s
algorithm. Alternatively, we can factor out the imaginary axis roots
as in [1] and then apply Routh’s algorithm to the new polynomial.

Remark 5.1: The derivation of the Routh–Hurwitz criterion in [1]
is carried out using the Cauchy Index which disregards the imaginary
axis roots. Consequently, in [1], even in singular cases it is possible
to obtain a count of the number of open right half-plane roots
by appropriately modifying Routh’s algorithm. The modifications
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proposed here, however, allow us to count the number of closed
right half-plane roots when the original polynomial has roots on the
imaginary axis.

VI. CONCLUDING REMARKS

In this paper, we have provided an elementary derivation of the
well-known Routh–Hurwitz criterion. A key point in this derivation
was the development of appropriately generalized versions of the
Hermite–Biehler theorem. The latter enable us to not only derive
the Routh test for Hurwitz stability as in [3] but also recover
the unstable zero counting capability of Routh’s algorithm. The
immediate consequence of the result presented here is to make the
proof of the Routh–Hurwitz criterion accessible to most people with
elementary knowledge of complex numbers. On the other hand, the
generalizations of the Hermite–Biehler theorem presented here are
likely to have very far reaching implications on the long standing
open problem of stabilization using a fixed order compensator. Such
problems are currently under investigation and will be addressed in
a future paper.
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On the Complexity of Purely Complex Computation
and Related Problems in Multidimensional Systems

Onur Toker and HitayÖzbay

Abstract—In this paper, the following robust control problems are
shown to beNP-hard: given a purely complex uncertainty structure
�, determine if: 1) ��(M) < 1, for a given rational matrix M ;
2) kM(�)k� < 1, for a given rational transfer matrix M(s); and 3)
infQ2H kF(T;Q)k� < 1, for a given linear fractional transformation
F(T;Q) with rational coefficients. In other words, purely complex �
computation, analysis, and synthesis problems areNP-hard. It is also
shown that checking 4) stability and 5) computing theH1 norm of a
multidimensional system, areNP-hard problems. Therefore, it is rather
unlikely to find nonconservative polynomial time algorithms for solving
problems 1)–5) in complete generality.

Index Terms—Complex structured singular value, computational com-
plexity, � analysis/synthesis, multidimensional systems,NP-hardness.

NOTATION

Z Set of integers.
Q Set of rational numbers.
IR Set of real numbers.
C Set of complex numbers.
ID fz 2 C : jzj < 1g.
�ID fz 2 C : jzj � 1g.
T fz 2 C : jzj = 1g.

H1 Space of bounded analytic functions.
j Square root of�1.

Sn Set of alln-dimensional column vectors with entries
in S:

Sm�n Set of allm-by-n matrices with entries inS:
F [x1; . . . ; xn] Set of all polynomials inx1; � � � ; xn with coeffi-

cients inF:
In n-by-n identity matrix.

0m�n m-by-n zero matrix.
u� v Coordinatewise product of the vectorsu and v;

(u � v)k = ukvk:

B(IRn) Unit ball of IRn.
�(M) Spectral radius ofM:

��(A) Maximum singular value ofA:
kvk Euclidean norm of the vectorv:

B(�) f� 2 � : ��(�) � 1g.
��(M) (minf��(�) : � 2 �; det(I �M�) = 0g)�1.

kM(�)k1 H1 norm ofM(s); supRe(s)�0 ��(M(s)).
kM(�)k� � norm ofM(s); supRe(s)�0 �(M(s)).

I. INTRODUCTION

In control theory, several problems are considered to be difficult,
in the sense that they cannot be solved in complete generality
by using known polynomial time algorithms. By analyzing their
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