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1 Introduction to Feedback Control Theory
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Figure 1.12: Nyquist plot of the loop gain transfer function L
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This in turn may be represented as

�
A B

� �
x
y

�
= c (1.59)

and solved for x and y. If the polynomials D and N are coprime8 then the square matrix
�
A B

�

is nonsingular. �

1.3.5 Nyquist criterion
In classical control theory closed-loop stability is often studied with the help of the Nyquist
stability criterion, which is a well-known graphical test. Consider the simple MIMO feedback
loop of Fig. 1.11. The block marked “L” is the series connection of the compensator C and the
plant P. The transfer matrix L = PK is called the loop gain matrix — or loop gain, for short —
of the feedback loop.

For a SISO system, L is a scalar function. Define the Nyquist plot9 of the scalar loop gain L as
the curve traced in the complex plane by

L
�
j � ��� � ∈ R � (1.60)

Because for finite-dimensional systems L is a rational function with real coefficients, the Nyquist
plot is symmetric with respect to the real axis. Associated with increasing � we may define a
positive direction along the locus. If L is proper10 and has no poles on the imaginary axis then
the locus is a closed curve. By way of example, Fig. 1.12 shows the Nyquist plot of the loop gain
transfer function

L
�
s � = k

1 + s
� � (1.61)

with k and
�

positive constants. This is the loop gain of the cruise control system of Example 1.2.5
with k = g

�
� T .

We first state the best known version of the Nyquist criterion.

Summary 1.3.10 (Nyquist stability criterion for SISO open-loop stable systems). Assume
that in the feedback configuration of Fig. 1.11 the SISO system L is open-loop stable. Then
the closed-loop system is stable if and only if the Nyquist plot of L does not encircle the point
−1. �

8That is, they have no nontrivial common factors.
9The Nyquist plot is discussed at more length in § 2.4.3.

10A rational matrix function L is proper if lim|s|→∞ L � s � exists. For a rational function L this means that the degree of
its numerator is not greater than that of its denominator.
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1.3 Closed-loop stability

It follows immediately from the Nyquist criterion and Fig. 1.12 that if L
�
s � = k

� �
1 + s

�
� and

the block “L” is stable then the closed-loop system is stable for all positive k and
�
.

Exercise 1.3.11 (Nyquist plot). Verify the Nyquist plot of Fig. 1.12. �

Exercise 1.3.12 (Stability of compensated feedback system). Consider a SISO single-degree-
of-freedom system as in Fig. 1.8(a) or (b), and define the loop gain L = PC. Prove that if both
the compensator and the plant are stable and L satisfies the Nyquist criterion then the feedback
system is stable. �

The result of Summary 1.3.10 is a special case of the generalized Nyquist criterion. The
generalized Nyquist principle applies to a MIMO unit feedback system of the form of Fig. 1.11,
and may be phrased as follows:

Summary 1.3.13 (Generalized Nyquist criterion). Suppose that the loop gain transfer function
L of the MIMO feedback system of Fig. 1.11 is proper such that I + L

�
j∞ � is nonsingular

(this guarantees the feedback system to be well-defined) and has no poles on the imaginary axis.
Assume also that the Nyquist plot of det

� I + L � does not pass through the origin. Then

the number of unstable closed-loop poles
=

the number of times the Nyquist plot of det
�
I + L � encircles the origin clockwise11

+
the number of unstable open-loop poles.

It follows that the closed-loop system is stable if and only if the number of encirclements of
det

�
I + L � equals the negative of the number of unstable open-loop poles. �

Similarly, the “unstable open-loop poles” are the right-half plane eigenvalues of the system
matrix of the state space representation of the open-loop system. This includes any uncontrollable
or unobservable eigenvalues. The “unstable closed-loop poles” similarly are the right-half plane
eigenvalues of the system matrix of the closed-loop system.

In particular, it follows from the generalized Nyquist criterion that if the open-loop system is
stable then the closed-loop system is stable if and only if the number of encirclements is zero
(i.e., the Nyquist plot of det

�
I + L � does not encircle the origin).

For SISO systems the loop gain L is scalar, so that the number of times the Nyquist plot of
det

�
I + L � = 1 + L encircles the origin equals the number of times the Nyquist plot of L encircles

the point −1.
The condition that det

�
I + L � has no poles on the imaginary axis and does not pass through the

origin may be relaxed, at the expense of making the analysis more complicated (see for instance
Dorf (1992)).

The proof of the Nyquist criterion is given in § 1.10. More about Nyquist plots may be found
in § 2.4.3.

1.3.6 Existence of a stable stabilizing compensator
A compensator that stabilizes the closed-loop system but by itself is unstable is difficult to handle
in start-up, open-loop, input saturating or testing situations. There are unstable plants for which
a stable stabilizing controller does not exist. The following result was formulated and proved by
Youla, Bongiorno, and Lu (1974); see also Anderson and Jury (1976) and Blondel (1994).
11This means the number of clockwise encirclements minus the number of anticlockwise encirclements. I.e., this number

may be negative.
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1 Introduction to Feedback Control Theory
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Figure 1.13: Feedback system configuration

Summary 1.3.14 (Existence of stable stabilizing controller). Consider the unit feedback sys-
tem of Fig. 1.11(a) with plant P and compensator C.

The plant possesses the parity interlacing property if it has an even number of poles (counted
according to multiplicity) between each pair of zeros on the positive real axis (including zeros at
infinity.)

There exists a stable compensator C that makes the closed-loop stable if and only if the plant
P has the parity interlacing property. �

If the denominator of the plant transfer function P has degree n and its numerator degree m
then the plant has n poles and m (finite) zeros. If m � n then the plant is said to have n − m zeros
at infinity.

Exercise 1.3.15 (Parity interlacing property). Check that the plant

P
�
s � = s�

s − 1 � 2 (1.62)

possesses the parity interlacing property while

P � s � =
�
s − 1 � � s − 3 �

s
�
s − 2 � (1.63)

does not. Find a stabilizing compensator for each of these two plants (which for the first plant is
itself stable.) �

1.4 Stability robustness

1.4.1 Introduction
In this section we consider SISO feedback systems with the configuration of Fig. 1.13. We discuss
their stability robustness, that is, the property that the closed-loop system remains stable under
changes of the plant and the compensator. This discussion focusses on the loop gain L = PC,
with P the plant transfer function, and C the compensator transfer function. For simplicity we
assume that the system is open-loop stable, that is, both P and C represent the transfer function
of a stable system.

We also assume the existence of a nominal feedback loop with loop gain L0, which is the loop
gain that is supposed to be valid under nominal circumstances.

1.4.2 Stability margins
The closed-loop system of Fig. 1.13 remains stable under perturbations of the loop gain L as long
as the Nyquist plot of the perturbed loop gain does not encircle the point −1. Intuitively, this
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1.4 Stability robustness

may be accomplished by “keeping the Nyquist plot of the nominal feedback system away from
the point −1.”

The classic gain margin and phase margin are well-known indicators for how closely the
Nyquist plot approaches the point −1.

Gain margin The gain margin is the smallest positive number km by which the Nyquist plot must
be multiplied so that it passes through the point −1. We have

km = 1
|L �

j � r � | � (1.64)

where � r is the angular frequency for which the Nyquist plot intersects the negative real
axis furthest from the origin (see Fig. 1.14).

Phase margin The phase margin is the extra phase �
m that must be added to make the Nyquist

plot pass through the point −1. The phase margin �
m is the angle between the negative

real axis and L
�
j � m � , where � m is the angular frequency where the Nyquist plot intersects

the unit circle closest to the point −1 (see again Fig. 1.14).

−1 1

L

�

Im

Re

reciprocal of the
gain margin

modulus margin

phase margin

Figure 1.14: Robustness margins

In classical feedback system design, robustness is often specified by establishing minimum values
for the gain and phase margin. Practical requirements are km

� 2 for the gain margin and 30◦
��

m � 60◦ for the phase margin.
The gain and phase margin do not necessarily adequately characterize the robustness. Fig-

ure 1.15 shows an example of a Nyquist plot with excellent gain and phase margins but where a
relatively small joint perturbation of gain and phase suffices to destabilize the system. For this
reason Landau, Rolland, Cyrot, and Voda (1993) introduced two more margins.

Modulus margin 12 The modulus margin sm is the radius of the smallest circle with center −1
that is tangent to the Nyquist plot. Figure 1.14 illustrates this. The modulus margin very
directly expresses how far the Nyquist plot stays away from −1.

Delay margin 13 The delay margin � m is the smallest extra delay that may be introduced in the
loop that destabilizes the system. The delay margin is linked to the phase margin �

m by
the relation

� m = min�
∗

�
∗

� ∗
� (1.65)

12French: marge de module.
13French: marge de retard.
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1 Introduction to Feedback Control Theory
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Figure 1.15: This Nyquist plot has good gain and phase margins but a small
simultaneous perturbation of gain and phase destabilizes the system

Here � ∗ ranges over all nonnegative frequencies at which the Nyquist plot intersects the
unit circle, and �

∗ denotes the corresponding phase �
∗ = arg L

�
j � ∗ � . In particular � m ≤

�
m�
m
.

A practical specification for the modulus margin is sm
� 0 � 5. The delay margin should be at least

of the order of 1
2B , where B is the bandwidth (in terms of angular frequency) of the closed-loop

system.
Adequate margins of these types are not only needed for robustness, but also to achieve a

satisfactory time response of the closed-loop system. If the margins are small, the Nyquist plot
approaches the point −1 closely. This means that the stability boundary is approached closely,
manifesting itself by closed-loop poles that are very near to the imaginary axis. These closed-
loop poles may cause an oscillatory response (called “ringing” if the resonance frequency is high
and the damping small.)

Exercise 1.4.1 (Relation between robustness margins). Prove that the gain margin km and the
phase margin �

m are related to the modulus margin sm by the inequalities

km ≥ 1
1 − sm

� �
m ≥ 2 arcsin

sm

2
� (1.66)

This means that if sm ≥ 1
2 then km ≥ 2 and �

m ≥ 2 arcsin 1
4 ≈ 28 � 96◦ (Landau, Rolland, Cyrot,

and Voda 1993). The converse is not true in general. �

1.4.3 Robustness for loop gain perturbations
The robustness specifications discussed so far are all rather qualitative. They break down when
the system is not open-loop stable, and, even more spectacularly, for MIMO systems. We intro-
duce a more refined measure of stability robustness by considering the effect of plant perturba-
tions on the Nyquist plot more in detail. For the time being the assumptions that the feedback
system is SISO and open-loop stable are upheld. Both are relaxed later.

Naturally, we suppose the nominal feedback system to be well-designed so that it is closed-
loop stable. We investigate whether the feedback system remains stable when the loop gain is
perturbed from the nominal loop gain L0 to the actual loop gain L.

By the Nyquist criterion, the Nyquist plot of the nominal loop gain L0 does not encircle the
point −1, as shown in Fig. 1.16. The actual closed-loop system is stable if also the Nyquist plot
of the actual loop gain L does not encircle −1.

It is easy to see by inspection of Fig. 1.16 that the Nyquist plot of L definitely does not encircle
the point −1 if for all � ∈ R the distance |L �

j � � − L0
�
j � � | between any point L

�
j � � and the

22



1.4 Stability robustness
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Figure 1.16: Nominal and perturbed Nyquist plots

corresponding point L0
�
j � � is less than the distance |L0

�
j � � + 1| of the point L0

�
j � � and the

point −1, that is, if

|L �
j � � − L0

�
j � � | � |L0

�
j � � + 1| for all � ∈ R � (1.67)

This is equivalent to

|L �
j � � − L0

�
j � � |

|L0
�
j � � | · |L0

�
j � � |

|L0
�
j � � + 1| � 1 for all � ∈ R � (1.68)

Define the complementary sensitivity function T0 of the nominal closed-loop system as

T0 = L0

1 + L0
� (1.69)

T0 bears its name because its complement

1 − T0 = 1
1 + L0

= S0 (1.70)

is the sensitivity function. The sensitivity function plays an important role in assessing the effect
of disturbances on the feedback system, and is discussed in Section 1.5.

Given T0, it follows from (1.68) that if

|L �
j � � − L0

�
j � � |

|L0
�
j � � | · |T0

�
j � � | � 1 for all � ∈ R (1.71)

then the perturbed closed-loop system is stable.
The factor |L �

j � � − L0
�
j � � | � |L0

�
j � � | in this expression is the relative size of the perturbation

of the loop gain L from its nominal value L0. The relation (1.71) shows that the closed-loop
system is guaranteed to be stable as long as the relative perturbations satisfy

|L �
j � � − L0

�
j � � |

|L0
�
j � � | �

1
|T0

�
j � � | for all � ∈ R � (1.72)

The larger the magnitude of the complementary sensitivity function is, the smaller is the allowable
perturbation.

This result is discussed more extensively in Section 5.6, where also its MIMO version is de-
scribed. It originates from Doyle (1979). The stability robustness condition has been obtained
under the assumption that the open-loop system is stable. In fact, it also holds for open-loop
unstable systems, provided the number of right-half plane poles remains invariant under pertur-
bation.
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1.10 Appendix: Proofs

1.10.1 Closed-loop characteristic polynomial
We first prove (1.44) in Subsection 1.3.3.

Proof 1.10.1 (Closed-loop characteristic polynomial). Let

ẋ = Ax + Bu � y = Cx + Du � (1.156)

be a state realization of the block L in the closed-loop system of Fig. 1.11. It follows that L � s � = C � sI −
A � −1 + D. From u = −y we obtain with the output equation that u = −Cx − Du, so that u = − � I +
D � −1Cx. Since by assumption I + D = I + L

�
j∞ � is nonsingular the closed-loop system is well-defined.

Substitution of u into the state differential equation shows that the closed-loop system is described by the
state differential equation

ẋ = [A − B
�
I + D � −1C]x � (1.157)

The characteristic polynomial � cl of the closed-loop system hence is given by

� cl
� s � = det[sI − A + B � I + D � −1C]

= det
�
sI − A � · det[I + �

sI − A � −1 B
�
I + D � −1C] � (1.158)

Using the well-known determinant equality det
�
I + MN � = det

�
I + N M � it follows that

� cl
� s � = det

� sI − A � · det[I + � I + D � −1C � sI − A � −1 B]

= det � sI − A � · det[ � I + D � −1] · det[I + D + C � sI − A � −1 B]

= det � sI − A � · det[ � I + D � −1] · det[I + L � s � ] � (1.159)

Denoting the open-loop characteristic polynomial as det
�
sI − A � = � �

s � we thus have
� cl

� s �
� �

s � = det[I + L � s � ]
det[I + L

�
j∞ � ] � (1.160)

1.10.2 The Nyquist criterion
The proof of the generalized Nyquist criterion of Summary 1.3.13 in Subsection 1.3.5 relies on the principle
of the argument of complex function theory24.

Summary 1.10.2. Principle of the argument Let R be a rational function, and C a closed contour in the
complex plane as in Fig. 1.38. As the complex number s traverses the contour C in clockwise direction, its
image R � s � under R traverses a closed contour that is denoted as R � C � , also shown in Fig. 1.38. Then as s
traverses the contour C exactly once in clockwise direction,

(the number of times R � s � encircles the origin in clockwise direction as s traverses C )
=

(the number of zeros of R inside C ) − (the number of poles of R inside C ).

We prove the generalized Nyquist criterion of Summary 1.3.13.

Proof of the generalized Nyquist criterion. We apply the principle of the argument to (1.160), where we
choose the contour C to be the so-called Nyquist contour or D-contour indicated in Fig. 1.39. The radius �
of the semicircle is chosen so large that the contour encloses all the right-half plane roots of both � cl and � ol.
Then by the principle of the argument the number of times that the image of det

�
I + L � encircles the origin

equals the number of right-half plane roots of � cl (i.e., the number of unstable closed-loop poles) minus the
number of right-half plane roots of � ol (i.e., the number of unstable open-loop poles). The Nyquist criterion
follows by letting the radius � of the semicircle approach ∞. Note that as � approaches ∞ the image of the
semicircle under det

�
I + L � shrinks to the single point det

�
I + L

�
j∞ ��� .

24See Henrici (1974). The generalized form in which we state the principle may be found in Postlethwaite and MacFar-
lane (1979).
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Figure 1.38: Principle of the argument. Left: a closed contour C in the com-
plex plane. Right: the image R � C � of C under a rational function R.
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Figure 1.39: Nyquist contour

1.10.3 Bode’s sensitivity integral

The proof of Bode’s sensitivity integral is postponed until the next subsection. Accepting it as true we use
it to derive the inequality (1.117) of Subsection 1.6.3.

Proof 1.10.3 (Lower bound for peak value of sensitivity). If the open-loop system is stable then we have
according to Bode’s sensitivity integral

� ∞

0
log |S �

j � � | d � = 0 � (1.161)

From the assumption that |S � j � � | ≤ ��� 1 for 0 ≤ � ≤ �

L it follows that if 0 � �

L �
�

H � ∞ then

0 =
� ∞

0
log |S �

j � � | d �

=
� �

L

0
log |S �

j � � | d � +
� �

H

�
L

log |S �
j � � | d � +

� ∞

�
H

log |S �
j � � | d �

≤ �

L log � + � �

H − �

L � sup
�

L≤ � ≤ � H

log |S �
j � � | +

� ∞

�
H

log |S �
j � � | d � � (1.162)

As a result,

� �

H − �

L � sup
�

L≤ � ≤ � H

log |S �
j � � | ≥ �

L log
1
�

−
� ∞

�
H

log |S �
j � � | d � � (1.163)
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