Matrix results: useful for EE640 course cyclic matrices, Lyapunov equation solvability, positive (semi-) definiteness

Deepankar Sehra and Madhu Belur

22 August 2024

Point out additions/mistakes by email to belur@iitb.ac.in

1 Definitions

'P : \iff Q' means that property-P is <u>defined</u> by statement Q (and is thus they both are equivalent by definition). Below are some definitions.

- A polynomial p(s) is called Hurwitz if all its roots are in the open left half complex plane.
- A square matrix $A \in \mathbb{R}^{n \times n}$ is called Hurwitz if all its eigenvalues are in the open left half complex plane.
- An eigenvalue λ is called distinct (or non-repeated) if its algebraic multiplicity $n_a(\lambda)$ equals 1. Such eigenvalues are also called 'simple'. If $n_a(\lambda) > 1$, then λ is called a repeated-eigenvalue.
- An eigenvalue λ of matrix A is called 'semi-simple' if λ is a repeated eigenvalue and $n_a(\lambda) = n_g(\lambda)$ (where $n_g(\lambda)$ denotes the geometric multiplicity of λ).
- An eigenvalue λ of matrix A is called 'defective' if $n_q(\lambda) < n_a(\lambda)$.
- A is almost Hurwitz : \iff all eigenvalues in closed LHP and those on $j\mathbb{R}$ (if any) satisfy $n_q(\lambda) = n_a(\lambda)$.
- A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is called positive definite (and denoted by Q > 0) if $v^T Q v > 0$ for every nonzero vector $v \in \mathbb{R}^n$.
- A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is called positive semi-definite (also called non-negative definite, and denoted by $Q \ge 0$) if $v^T Q v \ge 0$ for every vector $v \in \mathbb{R}^n$.
- A matrix pair (Q, A) is called observable if the system $\frac{d}{dt}x = Ax$ and y = Qx satisfies observability.

2 Facts about Lyapunov equation solvability

Fact 1: (about Hurwitz) For $A \in \mathbb{R}^{n \times n}$, following are equivalent (F.A.E):

- 1. A is Hurwitz
- 2. A^T is Hurwitz
- 3. $\lim \|e^{At}x_0\|_2 \to 0$ as $t \to \infty$ for every $x_0 \in \mathbb{R}^n$
- 4. For every Q > 0, there exists P > 0 such that $A^T P + PA = -Q$
- 5. For every $Q \ge 0$ with with (Q, A) observable, there exists P > 0 such that $A^T P + PA = -Q$

Fact 2: (about almost-Hurwitz) For $A \in \mathbb{R}^{n \times n}$, following are equivalent (F.A.E):

- 1. A is almost Hurwitz
- 2. A^T is almost Hurwitz
- 3. $||e^{At}x_0||_2$ is a bounded function of time over $[0,\infty)$ for every $x_0 \in \mathbb{R}^n$
- 4. There exist symmetric matrices $Q \ge 0$ and P > 0 such that $A^T P + P A = -Q$

('bounded' function f(t) for $t \in [0, \infty)$ in the above fact means there is an M > 0 such that |f(t)| < M for all $t \in [0, \infty)$. Of course, M depends on f.)

3 Positive and non-negative definite matrices

A $k \times k$ minor of a matrix P is the square $k \times k$ matrix obtained by choosing some k rows and some k columns (need not be consecutive, and row and column indices need not be the same). If row/column indices are same, then the minor is called 'principal minor'. If for each k, the <u>first</u> k positive integers are taken (i.e. 1, 2, 3, ..., k), then the principal minor is called 'leading principal minor'.

Fact 3: For a matrix $P \in \mathbb{R}^{n \times n}$ satisfying $P = P^T$, following are equivalent.

- 1. P is positive definite.
- 2. All eigenvalues are positive.
- 3. All principal minors (of all sizes) of P have a positive determinant.
- 4. All leading principal minors (of all sizes) of P have a positive determinant.
- 5. $P \ge 0$ and P is nonsingular.
- 6. $P \ge 0$ and no eigenvalue is zero.
- 7. There exists a full-column-rank matrix S such that $P = S^T S$.
- 8. There exists a nonsingular matrix S such that $P = S^T S$.

Fact 4: For a matrix $P \in \mathbb{R}^{n \times n}$ satisfying $P = P^T$, following are equivalent.

- 1. P is positive semi-definite (i.e. P is non-negative definite).
- 2. All eigenvalues are non-negative.
- 3. All principal minors (of all sizes) of P have a non-negative determinant.
- 4. There exists a matrix S such that $P = S^T S$.

P being non-negative **implies** (but not equivalent to) each of the statements:

- 1. $v^T P v = 0$ implies P v = 0.
- 2. $v^T P v = 0$ implies each of the S in the last statement (of the above fact) satisfies Sv = 0.

Thus kernel of P is same as kernel of each S of the last statement (of the above fact).

4 Cyclic matrices

For a given matrix $A \in \mathbb{R}^{n \times n}$, the characteristic polynomial $\chi_A(s)$ is defined as det(sI - A). The polynomial $\chi_A(s)$ has real coefficients, is of degree exactly n and is monic. The minimal polynomial $m_A(s)$ is defined as the monic polynomial of minimum degree that satisfies $m_A(A) = 0$. Since the characteristic polynomial $\chi_A(s)$ is already satisfied by the matrix A, i.e. $\chi_A(A) = 0$ (the Cayley Hamilton theorem), we note that, in general, degree of $m_A(s) \leq n$. **Fact 4: Cyclic matrix equivalent properties**. Let $A \in \mathbb{R}^{n \times n}$ be a matrix. (The first one is the definition). The following are equivalent.

- 1. A is cyclic (: \iff for <u>some vector</u> $v \in \mathbb{R}^n$, the vectors $v, Av, A^2v, \ldots, A^{n-1}v$ are independent).
- 2. $n_g(\lambda) = 1$ for each eigenvalue of A.
- 3. The minimal polynomial $m_A(s)$ of the matrix A is same as the characteristic polynomial $\chi_A(s)$.
- 4. rank of $(\lambda I A) \ge n 1$ for every complex number λ .
- 5. In some basis, i.e. there exists a nonsingular matrix S such that $S^{-1}AS$ is an unreduced upper Hessenberg matrix. ('upper Hessenberg matrix' is not within EE640 syllabus.)
- 6. A is similar to each of the four companion forms.

A special case of above fact is that a matrix A with <u>distinct</u> eigenvalues is cyclic, and also diagonalizable. In fact, any cyclic and diagonalizable matrix has to have distinct eigenvalues.

5 Miscellaneous

If subspace $S_1 \subseteq S_2$ and suppose both have same dimensions, then $S_1 = S_2$.