Realization from Markov prameters

Deepak Anand, Shana Moothedath and Suhail Muhammad

Multivariable Control Systems IIT Bombay

Oct. 2016

Deepak Anand, Shana Moothedath and Suha Realization from Markov prameters

Realization of system from Markov parameters

Suppose the Markov parameters are known for a strictly proper SISO transfer function $G(s) = \frac{b(s)}{a(s)}$, for real and coprime polynomials *a* and *b*, with a(s) monic and of degree *n*.

Construct the Hankel matrix formed from the Markov parameters (h_i)

$$H = \begin{bmatrix} h_1 & h_2 & \cdots & h_n & \cdots \\ h_2 & h_3 & \cdots & h_{n+1} & \cdots \\ \vdots & \vdots & \ddots & \ddots & h_{2n-2} & \cdots \\ h_n & \ddots & \ddots & h_{2n-1} & \cdots \\ h_{n+1} & \ddots & \ddots & h_{2n} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \cdots \end{bmatrix}$$

Deepak Anand, Shana Moothedath and Suha

Realization from Markov prameters

Oct. 2016

Realization of system from Markov parameters

Find the smallest¹ n such that rank(H(1:n, 1:n)) = n, and rank (H(1:m, 1:m)) = n; for all² $m \ge n$. This gives the order of the system (when SISO): n.

- Solve³. for a_i's in the row vector of size n + 1 such that
 [a₀ a₁ ··· a_{n-1} 1] × H(1 : (n + 1), 1 : n) = 0.
 Note: this row-vector is not the zero vector: this is the meaning of
 not full row rank.
- Claim: since n is the <u>smallest</u> such number, we note that H(1: n, 1: n) is nonsingular, and hence a_n has to be nonzero⁴: thus normalize the entire row to have a_n = 1.

¹Here H(1:n,1:n) means matrix formed by taking 1^{st} to n^{th} rows and 1^{st} to n^{th} columns of H.

²There is some implicit "model order approximation" involved here: if one is interested in a system transfer function of <u>at most</u> order 100, then find smallest *n* with *m* searched till 100. There could be a rank increase for n = 10,000 maybe, but we might not be interested in that large order a model anyway.

³Antsaklis and Michel, Linear Systems, Birkhauser, 1997 Sec [5.4D] ⁴If a is zero, then same row vector would prove that H(1 + n + 1 + n) is singular ²OC Deepak Anand, Shana Moothedath and Suba Realization from Markov prameters Oct. 2016 3/7

- From above step we get coefficients of denominator of the transfer function, which is given as sⁿ + a_{n-1}sⁿ⁻¹ + ··· + a₁s + a₀.
- Claim: the system constructed in observable-canonical form⁵ as below:

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-2} & -a_{n-1} \end{bmatrix} \quad b = \begin{bmatrix} h1 \\ h2 \\ \vdots \\ h_n \end{bmatrix} \quad (1)$$
$$C = [1 \ 0 \ \cdots \ 0] \qquad (2)$$

⁵Kailath, Linear Systems, Englewood Cliffs, NJ: Prentice-Hall, 1980 Sec [3.2.1] Deepak Anand, Shana Moothedath and Suba Realization from Markov prameters Oct. 2016 4/7

Verification and (some) justification

- Verify (by *CB*, *CAB*, etc) that indeed the Markov parameters are as sought.
- The row-vector (in blue, on the previous slide) being perpendicular to each of the first few columns of the Hankel matrix (i.e. H(1: n + 1, 1: n)) is merely rewriting equation that equates coefficients of like-powers in ^{b(s)}/_{a(s)} = ^h/_s + ^h/_{s²} + ^h/_{s³} + ^h/_{s⁴} + ^h/_{s⁵} + ···

$$b(s) = b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + b_1s + b_0 =$$
(3)

$$a(s)(\frac{h_1}{s} + \frac{h_2}{s^2} + \frac{h_3}{s^3} + \frac{h_4}{s^4} + \frac{h_5}{s^5} + \cdots)$$
(4)

for coefficient of $\frac{1}{s}, \frac{1}{s^2}, \frac{1}{s^3}, \frac{1}{s^4}, \frac{1}{s^5}$, etc.

Example

Given $h_1 = 1, h_2 = -3, h_3 = -9, h_4 = -15, h_5 = -9, h_6 = 57$ and so on. It is found that n = 3.

$$H(1:4,1:3) = egin{bmatrix} 1 & -3 & -9 \ -3 & -9 & -15 \ -9 & -15 & -9 \ -15 & -9 & 57 \end{bmatrix}$$

and $[-6 \ 11 \ -6 \ 1]H(1:4,1:3) = 0$. So a realization is given by

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ -3 \\ -9 \end{bmatrix}$$

Also $c = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, giving transfer function $T(s) = \frac{(s^2 - 9s + 20)}{(s^3 - 6s^2 + 11s - 6)}$

Some questions and references

- Why is coprimeness of b(s) and a(s) coming from? (Check using an example of a(s) of degree 2 and has a common factor (of say degree 1) with b(s) (which itself has to be of degree 1: since we are dealing with strictly proper transfer function only.
- If a(s) coefficients (after making a monic) get decided by h_i , then where is the freedom of h_i for b(s) to be arbitrary (with *n* degrees of freedom in the coefficients of the n-1 degree polynomial b(s)?)

References

- Kailath, Linear Systems, Englewood Cliffs, NJ: Prentice-Hall, 1980
- Antsaklis and Michel, Linear Systems, Birkhauser, 1997
- Slides for Multivariable Control system by Ali Karimpour, Ferdowsi University of Mashhad. Click here (link)