
Author: FOSSEE project, IIT Bombay

Basic editing and editors

vim
Vim is a very powerful editor. It has a lot of commands, and all of them cannot be explained here. We
shall try and look at a few, so that you can find your way around in vim.

To open a file in vim, we pass the filename as a parameter to the vim command. If a file with that
filename does not exist, a new file is created.

$ vim first.txt

To start inserting text into the new file that we have opened, we need to press the i key. This will take us
into the insert mode from the command mode. Hitting the esc key, will bring us back to the command
mode. There is also another mode of vim, called the visual mode which will be discussed later in the
course.

In general, it is good to spend as little time as possible in the insert mode and extensively use the
command mode to achieve various tasks.

To save the file, use :w in the command mode. From here on, it is understood that we are in the
command mode, whenever we are issuing any command to vim.

To save a file and continue editing, use :w FILENAME The file name is optional. If you do not specify a
filename, it is saved in the same file that you opened. If a file name different from the one you opened is
specified, the text is saved with the new name, but you continue editing the file that you opened. The next
time you save it without specifying a name, it gets saved with the name of the file that you initially opened.

To save file with a new name and continue editing the new file, use :saveas FILENAME

To save and quit, use :wq

To quit, use :q

To quit without saving, use :q!

Moving around
While you are typing in a file, it is in-convenient to keep moving your fingers from the standard position for
typing to the arrow keys. Vim, therefore, provides alternate keys for moving in the document. Note again
that, you should be in the command mode, when issuing any commands to vim.

The basic cursor movement can be achieved using the keys, h (left), l (right), k (up) and j (down).

 ^
 k
< h l >
 j
 v

Note: Most commands can be prefixed with a number, to repeat the command. For instance, 10j will
move the cursor down 10 lines.

Moving within a line

Cursor Movement Command

Beginning of line 0

First non-space character of line ^

End of line $

Last non-space character of line g_

Moving by words and sentences

Cursor Movement Command

Forward, word beginning w

Backward, word beginning b

Forward, word end e

Backward, word end ge

Forward, sentence beginning)

Backward, sentence beginning (

Forward, paragraph beginning }

Backward, paragraph beginning {

More movement commands

Cursor Movement Command

Forward by a screenful of text C-f

Backward by a screenful of text C-b

Beginning of the screen H

Middle of the screen M

End of the screen L

End of file G

Line number num [num]G

Beginning of file gg

Next occurrence of the text under the cursor *

Previous occurrence of the text under the cursor #

Note: C-x is Ctrl + x

The visual mode
The visual mode is a special mode that is not present in the original vi editor. It allows us to highlight text
and perform actions on it. All the movement commands that have been discussed till now work in the
visual mode also. The editing commands that will be discussed in the future work on the visual blocks
selected, too.

Editing commands
The editing commands usually take the movements as arguments. A movement is equivalent to a
selection in the visual mode. The cursor is assumed to have moved over the text in between the initial and
the final points of the movement. The motion or the visual block that's been highlighted can be passed as
arguments to the editing commands.

Editing effect Command

Cutting text d

Copying/Yanking text y

Pasting copied/cut text p

The cut and copy commands take the motions or visual blocks as arguments and act on them. For
instance, if you wish to delete the text from the current text position to the beginning of the next word, type
dw. If you wish to copy the text from the current position to the end of this sentence, type y).

Apart from the above commands, that take any motion or visual block as an argument, there are
additional special commands.

Editing effect Command

Cut the character under the cursor x

Replace the character under the cursor with a ra

Cut an entire line dd

Copy/yank an entire line yy

Note: You can prefix numbers to any of the commands, to repeat them.

Undo and Redo
You can undo almost anything using u.

To undo the undo command type C-r

Searching and Replacing

Finding Command

Next occurrence of text, forward \text

Next occurrence of text, backward ?text

Search again in the same direction n

Search again in the opposite direction N

Next occurrence of x in the line fx

Previous occurrence of x in the line Fx

Finding and Replacing Command

Replace the first instance of old with new in the current line. :s/old/new

Replace all instances of old with new in the current line. :s/old/new/g

Replace all instances of old with new in the current line, but ask for
confirmation each time.

:s/old/new/gc

Replace the first instance of old with new in the entire file. :%s/old/new

Replace all instances of old with new in the entire file. :%s/old/new/g

Replace all instances of old with new in the entire file but ask for
confirmation each time.

:%s/old/new/gc

	Basic editing and editors
	vim
	Moving around
	Moving within a line
	Moving by words and sentences
	More movement commands

	The visual mode
	Editing commands
	Undo and Redo
	Searching and Replacing

