Hamiltonian matrix, orthogonal complements
Notes for lecture 12 (May 19th, 2014)

This lecture contains link between Hamiltonian matrix, ARE and (so-called) stationary trajectories. We will also define the ‘orthogonal complement’ of a behavior.

Contents

1 Lossless systems, orthogonal complement 1
2 Euler Lagrange equation 2
3 Hamiltonian matrix 2
4 Minimal dissipation trajectories 3
5 Strict dissipativity 3
6 Autonomous systems 5
7 LMI, ARE and Hamiltonian matrix \(H \) 5

1 Lossless systems, orthogonal complement

In the case of dissipativity, the storage function is not unique, in general. (Note that non-uniqueness of the storage function is \textit{not} due to our choice of expressing the storage function in terms of different variables.) There is a special case\(^1\) of dissipativity when the storage function is unique: lossless.

Consider \(\Sigma = \Sigma^T \in \mathbb{R}^{w \times w} \). A system \(\mathcal{B} \in \mathcal{L}_{\text{cont}}^w \) is called \(\Sigma \)-lossless if

\[
\int_{-\infty}^{\infty} w^T \Sigma w \, dt = 0 \quad \text{for all} \quad w \in \mathcal{B} \cap \mathcal{D}.
\]

\textbf{Theorem 1.1} Let \(\mathcal{B} \in \mathcal{L}_{\text{cont}}^w \) and suppose \(\Sigma = \Sigma^T \in \mathbb{R}^{w \times w} \). Suppose \(w = M(\frac{d}{dt})\ell \) is an image representation for \(\mathcal{B} \). Then, the following are equivalent.

\begin{itemize}
 \item \(\mathcal{B} \) is \(\Sigma \)-lossless.
 \item \(M(-\xi)^T \Sigma M(\xi) \) satisfies \(M(-\xi)^T \Sigma M(\xi) = 0 \).
 \item There exists a storage function \(Q_\Psi(w) \) such that
 \[
 \frac{d}{dt} Q_\Psi(w) = w^T \Sigma w \quad \text{for all} \quad w \in \mathcal{B}.
 \] \((1) \)
\end{itemize}

\(^1\)Note that there are dissipative and non-lossless systems which can have a unique storage function: uniqueness of storage function only ensures non-strictness of the dissipativity, it does not ensure losslessness.
\[\int_{t_1}^{t_2} w^T \Sigma w \, dt \] is ‘path-independent’: i.e. the value of the integral depends only on values of \(w \) (and its derivatives) at \(t_1 \) and \(t_2 \), and does not depend on which trajectory in \(\mathcal{B} \) \(w \) assumes between \(t_1 \) and \(t_2 \).

Closely related to lossless is the notion of an orthogonal complement of a controllable behavior. Given a controllable behavior \(\mathcal{B} \in \mathcal{L}_{\text{cont}}^w \) and a symmetric, nonsingular matrix \(\Sigma \in \mathbb{R}^{w \times w} \), the \(\Sigma \)-orthogonal complement of \(\mathcal{B} \), (denoted by \(\mathcal{B}^\perp_\Sigma \)), is the set of all the trajectories \(v \in C^\infty(\mathbb{R}, \mathbb{R}^w) \) such that \(\int_{-\infty}^{\infty} v^T \Sigma w \, dt = 0 \) for all \(w \in \mathcal{B} \cap \mathcal{D} \).

When \(\Sigma = I \), the \(\Sigma \)-orthogonal complement \(\mathcal{B}^\perp_\Sigma \) is written as just \(\mathcal{B}^\perp \).

2 Euler Lagrange equation

We briefly link the differential equations \(\partial \Phi'(\frac{d}{dt}) \ell = 0 \) with the EL equation (for the simplified case). Consider minimizing or maximizing a performance functional \(\int V(\ell, \dot{\ell}) \, dt \), with \(y \) unconstrained, and \(C^\infty \). Then the optimum trajectories \(y^* \) satisfy

\[\frac{\partial V}{\partial \ell} - \frac{d}{dt} \frac{\partial V}{\partial \dot{\ell}} = 0. \]

Of course, we are dealing with a situation simplified in many ways.

3 Hamiltonian matrix

A matrix \(H \in \mathbb{R}^{n \times n} \) is called a Hamiltonian matrix if \(H \) is similar to \(-H^T \). Hamiltonian matrices arise in different contexts; in our context, they are closely related to kernel of \(\partial \Phi'(\frac{d}{dt}) \). For example, roots of \(\partial \Phi'(\xi) \) and eigenvalues of \(H \) are the same (counted with multiplicity).

Recall that for lossless systems, \(\partial \Phi'(\xi) \) was identically zero. (Vaguely) motivated by this, think of kernel of \(\partial \Phi'(\frac{d}{dt}) \) as ‘lossless trajectories’.

For finite dimensional vector spaces, if \(\mathcal{V} \subseteq \mathbb{R}^n \) is \(\Sigma \)-non-negative, then \(\mathcal{V} \cap \mathcal{V}^\perp_\Sigma \) is a subspace of \(\mathbb{R}^n \) which is \(\Sigma \)-neutral. (A subspace \(\mathcal{V} \) is called \(\Sigma \)-neutral if \(v^T \Sigma v = 0 \) for all \(v \in \mathcal{V} \); neutral is same as lossless. See [GLR05] for an elaborate treatment on indefinite linear algebra.)

We will see that \(\mathcal{B} \cap \mathcal{B}^\perp_\Sigma \), when autonomous, has a state representation that is a Hamiltonian matrix (as the state transition matrix). The link between ARE and ‘the corresponding’ Hamiltonian matrix is due to the following fact (that is best verified oneself).

Fact 3.1 ([TSH02, Section 13.4]) Let \(F, S, T \in \mathbb{R}^{n \times n} \) with \(S \) and \(T \) are symmetric. Due to

\[
\begin{bmatrix}
X & -I
\end{bmatrix}
\begin{bmatrix}
F & T \\
-S & -F^T
\end{bmatrix}
\begin{bmatrix}
I \\
X
\end{bmatrix}
= F^T X + XF + XTX + S \quad \text{and} \quad
\begin{bmatrix}
X & -I
\end{bmatrix}
\begin{bmatrix}
I \\
X
\end{bmatrix}
= 0,
\]

we note that solutions to the ARE \(F^T X + XF + XTX + S = 0 \) are linked to \(n \)-dimensional

\[We used that \(X \) is symmetric. Also, an \(n \)-dimensional invariant subspace (say image of \(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \)) of \(H \) requires to have its top \(n \times n \) block \(X_1 \) invertible, for this subspace to yield an ARE solution. In most ARE studies, this invertibility is a key step.
invariant subspaces of the $2n \times 2n$ matrix (say H) in the above equation. H is defined as the Hamiltonian matrix corresponding to this ARE.

Further, verify that

$$H \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} (F + TX).$$

Thus, if H has no eigenvalues on the imaginary axis, choosing ‘the’ n-dimensional invariant subspace corresponding to all OLHP eigenvalues gives an X (assuming invertibility of X_1 as mentioned in Footnote 2) that is stabilizing: this is due to $F + TX$ being Hurwitz.

4 Minimal dissipation trajectories

One of the passivity preserving model order reduction methods proposed in [Ant05, Sor05] turns out to ‘retain’ (a lower dimensional subspace of) the set of trajectories of minimal dissipation ([MTR09]).

Consider a nonsingular $\Sigma = \Sigma^T \in \mathbb{R}^{w \times w}$ and suppose $B \in \mathcal{L}_{\text{cont}}^w$ is Σ-dissipative. As proposed in [MTR09], for a $w \in B$, consider the change $J_w(\delta)$ in dissipation\(^3\) (about w) if w is changed to $w + \delta$, for $\delta \in B \cap \mathcal{D}$:

$$J_w(\delta) := \int_{-\infty}^{\infty} (Q_\Delta(w + \delta) - Q_\Delta(w)) \, dt.$$

A trajectory $w \in B$ is said to be a trajectory of minimal dissipation if $J_w(\delta) \geq 0$ for all $\delta \in B \cap \mathcal{D}$. Any small change in w causes increase of net dissipated energy: in that sense, these are local minima (see [MTR09, page 177].)

The link between the set of trajectories (in a Σ-dissipative behavior B) of minimal dissipation (denoted by B^*) and B^\perp_Σ is [MTR09, Theorem 3.4], which states $B^* = B \cap B^\perp_\Sigma$. Notice that $B \cap B^\perp_\Sigma$ is just the set of those trajectories $w = M(\frac{d}{dt})\ell$, where ℓ, is no longer free/generic, but in fact, satisfies $\partial \Phi'(\frac{d}{dt})\ell = 0$.

5 Strict dissipativity

Quite unfortunately, the lossless case is not handled by the ARE/ARI. The ARE and the ARI are best suited for ‘strict dissipativity’, which is a kind of opposite to losslessness. Consider $\Sigma = \Sigma^T \in \mathbb{R}^{w \times w}$. A system $B \in \mathcal{L}_{\text{cont}}^w$ is called strictly Σ-dissipative if there exists an $\epsilon > 0$ such that

$$\int_{-\infty}^{\infty} w^T \Sigma w \, dt \geq \epsilon \int_{-\infty}^{\infty} w^T w \, dt$$

for all $w \in B \cap \mathcal{D}$.

\(^3\)A dissipation function $Q_\Delta(w)$ (a function of time, that depends on the trajectory w) is defined as the amount of supplied power that didn’t go into storing energy, i.e. $Q_\Delta(w) := w^T \Sigma w - \frac{d}{dt} Q_\Psi(w)$. Since storage functions are not unique, we speak of a dissipation function Q_Δ corresponding to a storage function Q_Ψ. Inspite of this dependence on Q_Ψ, along compactly supported trajectories, the ‘net power’ dissipated depends only on w: for more details, see [WT98].
General concerns: lossless part in \mathcal{B}: moreover, lossless part is non-autonomous. In the LMI (corresponding to dissipativity), one needs to take the Schur complement with respect to the ‘lower right’ block: which ought to be sign-definite: only then the LMI yields the ARI/ARE. This in turn allows defining the Hamiltonian matrix.

Strict dissipativity lays to rest any concerns about singularity of the above lower-right block. (Of course, strict dissipativity at just ‘the ∞ frequency’ is good enough: [KBAR14].)

Theorem 5.1 Assume $\mathcal{B} \in \mathcal{L}_{\text{cont}}^w$ and $\Sigma \in \mathbb{R}^{w\times w}$ is symmetric and nonsingular. Suppose \mathcal{B} is strictly Σ-dissipative. Then,

1. $\mathcal{B} \cap \mathcal{B}^{\perp \Sigma}$ is autonomous. $n(\mathcal{B} \cap \mathcal{B}^{\perp \Sigma}) = 2n(\mathcal{B})$.

2. The ARE exists.

3. The Hamiltonian matrix exists.

Dissipation at the ∞ frequency is denoted by the matrix P in the matrices in the last section. In order to obtain the Hamiltonian matrix as indicated there, some more development relating \mathcal{B} and $\mathcal{B}^{\perp \Sigma}$ is required. Key property is that $\mathcal{B} \cap \mathcal{B}^{\perp \Sigma}$ has a state transition matrix exactly the Hamiltonian matrix H: this will be elaborated in this pdf-file by 20th May, 2pm.

The two statements within 1 above can be viewed as regular interconnection and regular feedback interconnection (see [Wil97, JPKB13]) between the ‘plant’ \mathcal{B} and the ‘controller’ $\mathcal{B}^{\perp \Sigma}$ (defined next). Study of these interconnections seems inessential to pursue model-order reduction, and hence we do not pursue further here.

(In Lecture 11, we began with an exercise, which we continue with now.)

Exercise 5.2 Consider the system $\frac{d}{dt}x = 3x + 2u$ and the performance cost $\int_0^\infty (4x^2 + u^2) \, dt$. Let the initial condition be $x(0) = 4$.

- Find all stationary trajectories \mathcal{B}^* in \mathcal{B} using the Euler-Lagrange equation.

- Find \mathcal{B}^* as the set of trajectories of ‘minimal dissipation’ (as $\mathcal{B} \cap \mathcal{B}^{\perp \Sigma}$).

- Check if a first order representation of \mathcal{B}^* results in a Hamiltonian matrix H.

- Compare H with the one linked to the corresponding ARE, and use H to obtain the stabilizing ARE solution (K_{min}, in our case).

Exercise 5.3 Consider the following circuit.

Let the capacitance C be 1 F and the resistances R_2 and R_C be equal to 3 Ω and 1 Ω respectively. Find the minimum energy required at the port to charge the capacitor to 4 V (from initially discharged state). Also find the maximum energy one can extract out from the port if the capacitor is initially charged to 4 V. Why is it reasonable that the actual energy stored is ‘exactly in between’ the maximum and the minimum storage functions?
6 Autonomous systems

This section contains briefly about autonomous systems to the extent we need for model order reduction. A behavior $\mathcal{B} \in \mathcal{L}^w$ is called autonomous if

whenever $w_1, w_2 \in \mathcal{B}$ satisfy $w_1(t) = w_2(t) \Rightarrow w_1 = w_2$.

Theorem 6.1 Let $\mathcal{B} \in \mathcal{L}^w$ have minimal kernel representation $R\left(\frac{d}{dt}\right)w = 0$. Then, the following are equivalent.

1. \mathcal{B} is autonomous.
2. $R(\xi)$ is square and nonsingular.
3. \mathcal{B} is finite dimensional as a vector space over \mathbb{R}.
4. \mathcal{B} is a finite linear combination of only\(^4\) exponentials, i.e., assuming for simplicity\(^5\) det (R) has only real distinct roots $\lambda_1, \ldots, \lambda_N$, with $N = \text{deg det } R$:

$$w \in \mathcal{B} \iff w = \sum_{i=1}^{N} a_i v_i e^{\lambda_i t} \text{ for } a_i \in \mathbb{R} \text{ and } v_i \in \mathbb{R}^w \setminus 0.$$

Excepting the (trivial) case when $\mathcal{B} = \{0\}$, which is both controllable and autonomous, in general, autonomous means uncontrollable. In fact, autonomous means, not just uncontrollable, but in fact, controllable-part equal to zero. For this course, we stick to just controllable behaviors \mathcal{B} for the purpose of model-order reduction, but $\mathcal{B} \cap \mathcal{B}^\perp \Sigma$ will be autonomous (under strict dissipativity assumptions, etc.: as mentioned in Theorem 5.1).

7 LMI, ARE and Hamiltonian matrix H

For three key supply rates $x^T Q x + u^T R u$ (the LQ problem), $u^T y$ (passivity) and $\gamma^2 u^T u - y^T y$ (\mathcal{L}_∞ norm at most γ), we list the LMI, ARE and Hamiltonian matrix. In each case, assume $\frac{d}{dt} x = Ax + Bu$ and $y = Cx + Du$ is a minimal state space realization (i.e. controllable and observable realization). The LMI can be obtained by $x^T K x$ as a storage function. The ARE is obtained by taking Schur complement w.r.t. the lower right block (say, P, the one corresponding to $u^T P u$) and the Hamiltonian matrix is constructed from the ARE as elaborated in [TSH02, Section 13.4].

\(^4\)In ‘exponential functions’, we allow sinusoids and cosinusoids (due to complex exponents) and also polynomial combination of exponentials (when repeated roots).

\(^5\)Real roots ensures no sinusoids/cosinusoids, and distinct ensures no polynomials required: see [PW98] for the general autonomous case.
Supply rate LMI \(P \) (the dissipation at \(\infty \) frequency) \(H \)
\[
\begin{bmatrix}
Q & 0 \\
0 & R \\
\end{bmatrix}
\begin{bmatrix}
A^T K + K A^T - Q K B \\
B^T K - R \\
\end{bmatrix}
\begin{bmatrix}
R \\
B^T R^{-1} B - A^T \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
0 & I \\
I & 0 \\
\end{bmatrix}
\begin{bmatrix}
A^T K + K A^T & KB - C^T \\
B^T K - C & -(D + D^T) \\
\end{bmatrix}
(D + D^T)
\begin{bmatrix}
A - BP^{-1} C & BP^{-1} B^T \\
-C^T P^{-1} C & -(A - BP^{-1} C)^T \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
\gamma^2 I & 0 \\
0 & -I \\
\end{bmatrix}
\begin{bmatrix}
A^T K + K A^T + C^T C & KB + C^T D \\
D^T C + B^T K & D^T D - \gamma^2 I \\
\end{bmatrix}
(\gamma^2 I - D^T D)
\begin{bmatrix}
A + BP^{-1} D^T C & BP^{-1} B^T \\
-C^T P^{-1} C & -(A + BP^{-1} D^T C)^T \\
\end{bmatrix}
\]

References

