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Abstract— In this paper we discuss an important problem
of Structured Low Rank Approximation (SLRA) of linearly
structured matrices. This is a very important problem having
many applications like computation of approximate GCD,
model order reduction to name a few. In this paper we
formulate SLRA problem as an unconstrained optimization
problem on a smooth matrix manifold. We use Armijo line
search algorithm on the matrix manifold to compute the nearest
SLRA of the given matrix.

Index Terms— Singular Value Decomposition (SVD), Struc-
tured Low Rank Approximation (SLRA), Optimization on
Matrix Manifolds

I. INTRODUCTION

The problem of Structured Low Rank Approximation
(SLRA) of a given structured matrix has found a lot of
applications in the literature: approximate GCD of univariate
polynomials, model order reduction to mention a few among
many. The SLRA problem deals with finding the nearest rank
deficient matrix with the same structure. Clearly the usual
approach of singular value decomposition fails as the struc-
ture of the matrix is not preserved. Several formulations are
discussed in the literature to solve this problem, for instance
optimization formulation and lift and project algorithm as in
[1], structured total least squares formulation as in [2], [3],
[4]. Several algorithms can be found in [5], [6], [7], [8] based
on techniques of structured total least squares to compute
the nearest SLRA of the Sylvester matrix to compute an
approximate GCD of given univariate polynomials. Further
similar results about Hankel matrices can be found in [9].
An exhaustive literature survey of this field can be found in
[10].

In this paper we use a formulation of the SLRA problem as
in [2], [3]. However we use a different approach to solve the
optimization problem. The paper is organized as follows. In
Section II we formulate the problem formally. In Section III
we discuss a procedure to compute the nearest SLRA based
on Lagrange Multiplier approach. Further some numerical
examples are discussed in Section IV. Finally we conclude
in Section V.

II. PROBLEM FORMULATION

A subset Ω⊂Rp×q is called a linear structure of matrices
if Ω is a linear subspace of Rp×q. Let B = {B1,B2, . . . ,BN}
be a basis of Ω. In general, N < pq. However N = pq implies
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that Ω = Rp×q, that is there is no structure involved. Now
we define SLRA problem as it is defined in [1].

Problem Statement 2.1: Given Ω ⊂ Rp×q, a linear struc-
ture, and X ∈ Ω such that rank(X) = k for k ≤ min{p,q},
find a matrix Y such that

min
Y∈Ω,rank(Y )=k−1

‖X−Y‖F .

In this paper, we consider the Frobenius norm as the matrix
norm. However in the problem definition above, one can
use any matrix norm. We now give another optimization
formulation of the SLRA problem as discussed in [2], [3].
Let X ∈ Ω be given as X = ∑

N
i=1 xiBi. WLOG we assume

p ≥ q. Let rank(X) = n. Then to find Y ∈ Ω such that
Y = ∑

N
i=1 yiBi such that

min
yi,v

N

∑
i=1

c(Bi)(xi− yi)2 (1)

subject to(
N

∑
i=1

yiBi

)
v = 0 , vT v = 1.

where c : B−→R+ is a function. This function c relates the
cost function in terms of vectors x = [x1,x2, . . . ,xN ]T and y =
[y1,y2, . . . ,yN ]T to the Frobenius norm of the difference of the
matrices X and Y . We illustrate this in the following example.
Let Ω ⊂ R3×3 be the set of all symmetric matrices. Then
dim(Ω) = 6. A basis B = {B1,B2, . . . ,B6} that we choose is
as follows.

B1 =

1 0 0
0 0 0
0 0 0

 , B2 =

0 1 0
1 0 0
0 0 0

 , B3 =

0 0 1
0 0 0
1 0 0

 ,

B4 =

0 0 0
0 1 0
0 0 0

 , B5 =

0 0 0
0 0 1
0 1 0

 , B6 =

0 0 0
0 0 0
0 0 1


Here the function c is defined as follows:

c(B1) = 1, c(B2) = 2, c(B3) = 2,

c(B4) = 1, c(B5) = 2, c(B6) = 1.

Then it is clear that ∑
N
i=1 c(Bi)(xi− yi)2 = ‖X−Y‖2

F .
We now explain lift and project algorithm as explained

in [1]. The output of this algorithm is used as an initial
stage for Armijo line search algorithm to be used in the next
section. The lift and project algorithm does not yield the
nearest SLRA, however we use the output of this algorithm
as an initial guess for the method that we propose. Before
writing the algorithm formally, we describe the idea behind
the algorithm briefly. Let X ∈ Rp×q be a structured matrix
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of rank r. Then the nearest rank r− 1 approximation of X
is computed using the SVD of X . However this destroys the
structure of the matrix. So this low rank approximation is
projected back onto the space of structured matrices. This
procedure is iterated until one gets the structured low rank
approximation. This procedure can shown to be a descent
method and hence the convergence of this procedure is
guaranteed. Now we write the algorithm formally. Let P be
the projection operator defined on the subspace of matrices
with given structure, that is P : Rp×q→Ω.

Algorithm 2.2: Lift and Project Algorithm for SLRA

Input: X ∈Ω, a rank r matrix
Output: X̃ ∈Ω, a rank r−1 matrix

Initialize X̃ = X
while rank (X̃) == r

Compute the SVD of X as X = ∑
r
i=1 σiuivT

i
Compute the low rank approximation as
X̂ = ∑

r−1
i=1 σiuivT

i
X̃ = PX̂

end while

III. ALGORITHM TO COMPUTE THE NEAREST SLRA

We now propose a method to solve this optimization
problem. Though the formulation is same as in the paper
of [2], the approach to the solve the problem are different.
In this reference the optimization formulation is shown to be
equivalent to the generalized nonlinear eigenvalue problem.
We break the optimization problem (1) into two nested
optimization problems as follows:

min
v∈Rq

 minyi ∑
N
i=1 c(Bi)(xi− yi)2

subject to(
∑

N
i=1 yiBi

)
v = 0


subject to

vT v = 1.

The optimization problem inside the braces is called the inner
optimization problem. This inner optimization is shown to
have a closed form solution. This solution can be completely
expressed in terms of the optimization variable v of the
outer optimization. In order to solve the inner optimization
problem we use Lagrange multiplier approach. Thus the
inner optimization problem, I, becomes:

I : min
yi,`

N

∑
i=1

c(Bi)(xi− yi)2 + `T

(
N

∑
i=1

yiBi

)
v

where ` is a vector of Lagrange multipliers. Now differenti-
ating with respect to yi and ` we get,

wrt yi : yi = xi−
1

2c(Bi)
`T Biv for i = 1,2, . . . ,N (2)

wrt ` :

(
N

∑
i=1

yiBi

)
v = 0. (3)

Substituting for yi from equation (2) in equation (3), we get,(
N

∑
i=1

(xi−
1

2c(Bi)
`T Biv)Bi

)
v = 0

⇒

(
N

∑
i=1

xiBi

)
v =

N

∑
i=1

1
2c(Bi)

`T BivBiv

⇒ Xv = Dv` (4)

where Dv is defined as

Dv =
N

∑
i=1

1
2c(Bi)

Biv(Biv)T . (5)

Note that Dv is a symmetric nonnegative definite matrix. In
order to compute ` we solve linear system (4) to get

` = D−1
v Xv. (6)

Substituting ` from (6) in equation (2), we get,

yi = xi−
1

2c(Bi)
vT XT D−1

v Biv for i = 1,2, . . . ,N (7)

Thus the optimal value for the inner optimization problem I
is given by,

N

∑
i=1

c(Bi)(xi− yi)2 =
N

∑
i=1

(vT XT D−1
v Biv)2. (8)

The outer optimization can be stated completely in the
optimization variable v as follows:

min
v∈Rq

N

∑
i=1

(
vT XT D−1

v Biv
)2

(9)

subject to
vT v = 1.

Notice that the constraint set of this optimization problem is
Sq−1, a unit sphere in Rq, a smooth manifold. Alternatively
we can view this constrained optimization problem as a non
constrained optimization problem on the manifold Sq−1. We
use the gradient search algorithm (see [11]) to solve this
problem. Before proceeding further, we state the uncon-
strained optimization problem and expression for gradient
of the cost function that is required in the gradient search
algorithm.

min
v∈Sq−1

f (v) (10)

where

f (v) =
N

∑
i=1

(
vT XT D−1

v Biv
)2

. (11)

For a given matrix M(v) of size m×m, consider M(k, j) =
mk j(v) is a function of v = [v1,v2, . . . ,vn]

T . Then the notation
d

dvi
M means the following:

d
dvi

M =
[

d
dvi

mk j(v)
]

k, j=1,...,m
(12)
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The gradient of the cost function, denoted by ∇v f , is given
by,

∇v f = 2
N

∑
i=1

(
vT XT D−1

v Biv
)
×
{

XT D−1
v Biv+BT

i D−1
v Xv−

vT XT D−1
v

(
d

dv1
Dv

)
D−1

v Biv

vT XT D−1
v

(
d

dv2
Dv

)
D−1

v Biv
...

vT XT D−1
v

(
d

dvn
Dv

)
D−1

v Biv




(13)

The gradient search algorithm is implemented as in [11,
Chapter 4].

IV. EXAMPLES

Example 4.1: In this example, we consider a Hankel ma-
trix of size 6×6. We compute the nearest SLRA to the given
Hankel matrix. The dimension of space of Hankel matrices
of size n× n in the space of Rn×n is 2n− 1. Hence any
Hankel matrix of size n×n can be represented by a vector
in R2n−1. In this case, consider the given Hankel matrix, H,
be represented as a vector h∈R11. Let h = [ 3.1472 4.0579
−3.7301 4.1338 1.3236 −4.0246 −2.2150 0.4688 4.5751
4.6489 −3.4239 ]T denote the given Hankel matrix. The
nearest rank deficient Hankel matrix, H̃, is computed and
corresponding vector h̃ obtained as h̃ = [ 3.1489 4.0560
−3.7309 4.1323 1.3283 −4.0284 −2.2071 0.4674 4.6121
4.6183 −3.3530 ]T . Note that ‖H− H̃‖F = 0.1074 and the
smallest singular value of H̃ is 9.6469×10−16.

Example 4.2: In this example, we consider a matrix A ∈
R5×5. Since we do not consider any structure on A, the
dimension of the space under consideration is 5× 5 = 25.
The nearest low rank approximation of A is computed
using the proposed algorithm. The results of the proposed
algorithm match with the results obtained from singular value
decomposition of A.

V. CONCLUDING REMARKS

In this paper we proposed a numerical algorithm to
compute the nearest SLRA of a given structured low rank
approximation of the given linearly structured matrix. In
order to compute the nearest SLRA we formulated the
problem as an unconstrained optimization problem on a
matrix manifold, namely the unit sphere, SN , in RN . The
optimization problem on the sphere is solved using a line
search algorithm as proposed in [11]. The numerical results
are obtained for Hankel structured, a special linearly struc-
tured and unstructured matrices.
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