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Abstract
In this paper we design a feasible schedule of suburban trains in an urban transport rail net-
work. The services that will be run on the network are decided earlier, from line planning
activities. The inputs to our decision are the hourly demands of different services in the
network. With these inputs we aim to create a cyclic timetable that can be physically im-
plemented on the network. For this we use an extension of the Periodic Event Scheduling
Problem (PESP) framework. A type of constraint, the rake-linkage constraints at terminals,
has been introduced in the model. Also, in our system, the platform availability is a serious
constraint in some terminals. These have been modeled in an implicit manner.
The entire problem has been modeled as a MILP and solved using Gurobi. The number of
rakes required has been computed as well.
The method seems to be applicable generally to suburban rail networks of the kind which
are operated in India. It would now permit more experimentation in timetabling options
and it is hoped that it leads to more integration of line planning options with timetabling, in
future.
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1 Introduction

Suburban railway networks form an integral part of the transport system in some of the
major cities of India. Although these networks in Mumbai, Kolkata and Chennai together
account for a mere 7% of the total track length of Indian Railways, they contribute more
than 50 % of the total number of passengers.



Planning forms a large number of activities such as:

• Line Planning: This is concerned with working out the different railway routes that
should be provided. With the different infrastructural constraints and passenger de-
mands as input this consists of deciding the number and types of services that should
be provided to the passengers

• Timetabling: Once the number and type of different services have been decided, the
planner must schedule them with the knowledge of the infrastructural constraints at
the terminals. Considerations of safety and quality of services provided are of utmost
importance to the planner in this step

• Rake-Linking: This step is extremely important from the economic point of view. In
this step, the timetable is realized with minimum rake-requirement. This problem is
often considered while scheduling the trains in the previous step

• Crew scheduling: Assigning manpower for properly running these services is part of
crew scheduling.

All the stages of planning are interlinked. In this paper we try to provide a framework
for Timetabling and Rake-linking.

2 Literature Survey

The creation of periodic timetables appeared as a natural extension and application of the
Periodic Event Scheduling Problem (PESP) introduced by Serafini and Ukovich (Serafini
and Ukovich (1989)). An extensive coverage of the different requirements of a railway
timetable and the way of handling them efficiently have been presented in Peeters in his
thesis Cyclic Railway Timetable Optimization (Peeters (2003)). In (Peeters (2003)) most
of the different types of constraints such as headway, traversal time, frequency, dwell time
constraints have been described in detail. Symmetry constraints are described in detail in
(Liebchen (2004)). The linking of the train services at the terminals is an issue which
has been discussed at length in the paper (Kroon et al. (2013)). This paper discusses the
importance of keeping the service links open at the terminals for optimality.

A timetable for the Berlin subway has been designed by Liebchen using two techniques,
namely, the Max T-PESP and a heuristic method called Cut-Heuristic (Liebchen (2008)). A
case study with timetable construction for the same network is also included in (Liebchen
and Möhring (2002)). A hierarchical decomposition method for solving the PESP problem
has been discussed in (Herrigel et al. (2013)). Such a method has then been used to prepare
timetables for central Switzerland (Herrigel et al. (2013)). Case studies of preparing timeta-
bles by this PESP framework have also been reported in (Kroon et al. (2009)). The national
timetable has been designed by two separate tools-CADANS and STATIONS.

The PESP problem is known to be hard to solve. It has been shown to be NP-complete
in (Serafini and Ukovich (1989)). Several techniques such as Integral Cycle basis have
been introduced for solving the PESP in (Liebchen and Peeeters (2009)). Another heuristic
method of solving the problem has been shown in (Caprara et al. (2002)).

However the PESP approach has certain drawbacks in what it is able to model. Its short-
comings were discussed in (Liebchen and Möhring (2007)). Symmetry, balanced reduction
of services is shown to be beyond the scope of pure PESP constraints.



3 Objective

Timetabling in India is presently done manually with some computer based visualization
and decision support.. The planner schedules trains based on track availability and histor-
ical demand patterns. This is an iterative procedure which starts by modifying the already
existing timetable. The existing approach completely ignores any sort of optimization that
one might use while designing such timetables. The Periodic Event Scheduling Problem
(PESP) proposed by (Serafini and Ukovich (1989)) led to generating timetables by solving
Mixed Integer Linear Programs (MILP). We have used a similar approach as proposed by
(Peeters (2003)) for modeling the timetabling problem.

The timetable which we wish to generate is a cyclic one, in that it repeats after a specific
period of time which in our case we have taken to be 1 hour. Cyclic Timetables are also
more acceptable to the railway authorities than aperiodic ones as activities such as rake as-
signments, crew-rostering become easier. Cyclic Timetables are also easier to comprehend
for the passenger because of their concise presentation. At every station the arrival and de-
parture (in minutes past the hour) of the trains are all that is specified in such a timetable.
Periodicity ensures that the same timetable repeats after every one hour. Estimating the
waiting time at stations or the amount of time required to reach the destination becomes
much easier for the commuter.

However it must be mentioned that Cyclic Timetables may be difficult to implement
practically. Planning for a single time period suffices for the entire day if the timetable is
cyclic. This requires identical situations at the end of every time period. This requirement
may not be fulfilled, which will then lead to planning activities for the entire day. Cyclic
timetables are most beneficial when they are implemented during the peak hours when the
demand is much higher. However we can propose a cyclic timetable, with lower frequencies
during off-peak hours as well and integrate the two timetables as a single one as another
exercise.

We also consider the problem of realizing the cyclic timetable with minimum number
of rakes. The entire problem is modeled as a Cyclic Railway Timetabling Problem (CRTP)
which has been implemented extensively in Europe. Apart from these considerations, sta-
tion capacity constraints have also been taken into account.

4 Problem Formulation

We now describe the way we have modeled the Timetabling Problem. The entire timetabling
exercise consists of assigning a time to the arrival or departure of trains at the different
stations. Since we are considering a cyclic timetable, all these events are periodic events
with a time period of T. As shown by (Peeters (2003)) the constraints in the MILP linking
these periodic events must also be periodic in nature. Periodicity of constraints is ensured
by modulo T operations. The formulation of the CRTP is briefly described below.

4.1 Decision Variables

• d[i]: Departure event of a train

• a[i]: Arrival event of a train

• p[i][j]: Integer variables to denote crossing of the hour mark between ith and jth event



• X[i][j]: Binary variables to denote linkage of an arrival and departure event

4.2 Objective Function

The MILP we have designed has no objective function.

4.3 Constraints

Headway Constraints
Trains leaving from a particular station using the same set of tracks must maintain a certain
minimum distance among themselves for safety (Peeters (2003)). However we note that
headway in both the situations below is 3 minutes:-

• Trains leaving at 8:01 and 7:58

• Trains leaving at 8:01 and 8:04

Let the minimum headway distance between two trains sharing a particular track be m min-
utes. Generalizing the constraint we define headway constraints as:

d[j]− d[i] + Tp[j, i] > m

d[j]− d[i] + Tp[j, i] 6 T −m
(1)

Traversal Constraints
In our model we have considered the traversal time to be constant between two pairs of sta-
tions. Considering the traversal time between stations i and j to be tij the periodic traversal
constraints can be written as (Peeters (2003)):

a[i]− d[j] + Tp[i, j] = tij (2)

Dwell time Constraints
Trains must stop at stations for some time for passengers to get in and come out. These are
modeled by the dwell time constraints. However trains cannot wait in the stations for too
long as this would introduce delays within the system. Let l and u denote the minimum and
the maximum time for which trains stop at any station. The periodic dwell time constraints
can be written as (Peeters (2003)):

d[j]− d[i] + Tp[j, i] > l

d[j]− d[i] + Tp[j, i] 6 u
(3)

Frequency Constraints
The idea behind introducing these constraints is to evenly distribute the departure events of
the trains from the terminal stations in an hour. Suppose the number of services between
two stations i and j are Nij . Then the commuter must get a train every T

Nij
minutes, where

T is the time period. However such equality constraints might lead to infeasibility of the
MILP. Thus we relax the constraints slightly to get periodic frequency constraints (Peeters



(2003)):

d[j]− d[i] + Tp[j, i] >
T

Nij
− δ

d[j]− d[i] + Tp[j, i] 6 T − (
T

Nij
+ δ)

(4)

In the above equation δ is the relaxation of the hardness of the equality frequency con-
straints.

Symmetry constraints
As has been mentioned in (Liebchen and Möhring (2007)), symmetry constraints are very
important for any periodic timetabling problem formulation. However these constraints
cannot be modeled by pure PESP type constraints.

We now describe the way we have included symmetry constraints in our model. Suppose
we have n types of services in a particular network. For each of these service types we have
the same number of services in both directions. Let us consider the ith service in the up
direction and the jth service in the down direction. Let the arrival time of the two services
at a particular station on the route be given by ai and aj respectively. Then we include
symmetry constraints in the following way:

ai + aj = T (5)

We know that departure of services of the same type are already constrained by frequency
constraints. Making the sum of arrival times of any one pair of up-down service at any
station T, will make the sum of all the other pairs to be very close to T.

Turnaround constraints
These constraints are important in all the terminal stations. All incoming and outgoing
services have to be linked at all terminal stations. As suggested in (Kroon et al. (2013)), we
do not fix these linkages manually. Rather we make use of the binary variables X[i,j], to
denote the connections between incoming and outgoing services. If two services i and j are
linked at any given terminal then X[i,j] = 1 else X[i,j] = 0. We first ensure that all incoming
services are linked with at least one outgoing service. If i denotes an incoming service,∑

j

X[i, j] = 1 for all terminal stations (6)

where j denotes any service that may be leaving a particular station.
Similarly we must ensure that every outgoing train is linked with only one incoming train.
Therefore, ∑

i

X[i, j] = 1 for all terminal stations (7)

With the linkages decided by (6) and (7), we constrain the amount of time an incoming
train waits at a terminal before leaving the station. However while including these con-
straints we do not know the values of X[i,j] for arbitrary i and j. We include the periodic
turnaround constraints as:

d[j]− d[i] + Tp[j, i] > l ∗X[j, i]

d[j]− d[i] + Tp[j, i] 6 T + us − T ∗X[j, i]
(8)



us denotes the maximum time that a train can wait at a particular terminal station s, while l
denotes the minimum time a train takes to turnaround at any station. For un-linked services
(8) does not play any role.
These constraints can also be used to model capacity constraints in an implicit manner. For
stations with smaller capacity, us needs to be made smaller. Therefore these constraints
can also be called Platform Constraints. It has been shown in (Kroon et al. (2013)) that
keeping the rake-linkages flexible enables one to implement the same timetable with fewer
rakes. Thus, these constraints can also be called Rake-linkage constraints. To the best of our
knowledge this is the first attempt at modeling turnaround and platform capacity constraints
together as one group.

Summary of the model
Thus we have seen that headway, traversal, dwell-time, frequency constraints can be mod-
eled by pure PESP type constraints. For adding symmetry constraints we included simple
additive constraints between a pair of up-down services. Frequency constraints ensure sym-
metry between all the services of the same type. However we require some Assignment
variables which in conjunction with some PESP type constraints give us the complete set
of Turnaround constraints.

4.4 Scheme for rake-linkages and counting number of rakes

We propose a scheme for computing rake-linkages and counting the number of rakes re-
quired for realizing the timetable. We have taken the number of rakes required to increase
by one if

• The arrival time of a train is less than its departure time.

• The train takes more than T to complete its journey.

Let us consider T to be 60 minutes. Both of the points above correspond to the hour mark
being crossed while the train is still to reach its journey. The justification of such a algorithm
is explained by the following simple example

Suppose a particular train goes from station A to B. Let us consider it leaves A at 0815
hrs. Let us consider the following cases

• It reaches B at 0840 hrs, in which case it might be back in A by 0910 hrs

• It reaches B at 0913 hrs, in which case the same rake cannot service the train that will
leave around 0915 hrs from A

• It reaches B after 0915 hrs, in which case the same rake cannot service the train that
will leave around 0915 hrs from A

In the last two cases we need to have extra rakes introduced into the system at station A for
maintaining periodicity of the timetable.

As we have included the turnaround time for any terminating train, we must have a
originating train 3 to 10 minutes later. In this way rake-linkages are done.



5 Description of the Case Study

In this section we briefly discuss the network and the model used for our analysis. The
suburban network in Mumbai consists of mainly three parts-the Central line, the Western
line and the Harbour-Transharbour line. We have selected the Harbour-Transharbour line
for our analysis. A network diagram of the network with the major stations is shown in
Fig 1 for reference.
All the stations except Turbhe have trains terminating in them. Of all these stations siding
lines are available near Vashi, Belapur, Turbhe and Panvel. It is worthwhile to note that all
siding lines are towards one side of the network which poses problems when the transition
from the periodic to aperiodic timetable is made.

CST Panvel

Bandra

Road
Wadala

Andheri

Mankhurd

Vashi

Turbhe

Thane

Nerul

Belapur

Figure 1: A schematic of the suburban network

5.1 Headways

Headway has to be specified for trains sharing a particular length of track. For our network
we have taken a headway of 3 minutes between any such train pair.

5.2 Dwell Times

A dwell time of a minimum of 30 seconds and maximum of one minute has been kept at all
the stations.



5.3 Traversal Times

The minimum traversal times between the different stations have been taken according to
Table 1:

Table 1: Traversal Times
Origin Station Destination Station Traversal Time

in minutes
CST Wadala Road 17
Wadala Road Mankhurd 20
Mankhurd Vashi 7
Vashi Nerul 8
Nerul Belapur 5
Belapur Panvel 16
Wadala Road Bandra 9
Bandra Andheri 14
Vashi Turbhe 8
Nerul Turbhe 11
Turbhe Thane 20

5.4 Frequency constraints

The demanded frequency in the section is shown in Table 2 along with the existing fre-
quency. The number of services shown in the table are for a period of 3 hours (during
morning peak and evening peak). We can see from the present scenario that timetables are
roughly periodic, while we try to make the timetable completely periodic.

Table 2: Comparison of demanded frequency
Origin Station Destination Station Present Demanded

Frequency Frequency
CST Panvel 13 15
CST Belapur 7 9
CST Vashi 6 6
CST Mankhurd 2 0
CST Bandra 7 6
CST Andheri 7 9
Wadala Road Panvel 3 6
Wadala Road Belapur 1 3
Wadala Road Vashi 0 3
Panvel Andheri 2 3
Thane Panvel 4 6
Thane Nerul 7 9
Thane Vashi 11 15
CST Chembur 1 0



The frequency of all the reverse services are the same as the ones in the table. Inclusion
of frequency constraints in the Integer Program is straightforward.

5.5 Symmetry constraints

Adding symmetry constraints to the model is straightforward. We provide a simple example
below for the CST-Panvel service.

As can be seen from Table 2, we have 5 services of this type every hour. We consider
the arrival event of any one service in up and down direction each at the station Vashi. Let
these events be aupvashi and adown

vashi.

aupvashi + adown
vashi = 60 (9)

(9) adds symmetry constraints between all the 5 services of type CST-Panvel.

5.6 Turnaround constraints

The number of platforms in CST are 2. Due to the shortage of the platforms, the turnaround
time is kept between 3 and 5 minutes at CST. At all the other stations it is kept between 3
and 10 minutes.

5.7 Integer Variables

We have two types of integer variables in our MILP formulation.

• p[i][j]: Present in all the PESP type constraints in the model

• X[i][j]: Binary variables used for linkages at the terminals

In the network that we have considered, the two events linked by PESP constraints cannot
be separated by a time interval in which the hour marks is crossed twice. For this reason in
our case we modify the integer variables p[i][j] and make them binary as well. This reduces
the search space of the MILP considerably.

6 Results

The network is described by nodes and edges. Nodes refer to stations in the network, while
edges refer to direct connections between two stations. Since our objective is to generalize
the entire timetabling exercise, we need to work out the paths between two stations just by
getting the distances between each consecutive pair of stations in the network. We use the
shortest-path algorithm to actually work out the routes of all the trains.

The problem consists of approximately 200000 variables which is then being solved in
an Intel Xeon server with 128 GB RAM and 20 cores using Gurobi. The computation time
for the timetable is shown in Table (3). The output of the MILP is a feasible timetable that re-
spects headway, frequency, dwell time and traversal constraints. The turnaround constraints
that we have included result in a timetable which satisfies station capacity constraints. In
the table turn-time refers to the turnaround time of the trains at stations other than CST.

We note from Table (3) that including symmetry reduces computation time. It is worth
noting that the turnaround time is something that needs to be decided carefully. As turnaround



Table 3: Comparison of demanded frequency
turn-time=10mins turn-time=10mins turn-time=8mins

No Symmetry with Symmetry
Simplex iterations 2104048 1846794 229464598

Branch-and-cut nodes 35635 27409 10740969
Solved in 49.62s 42.87s Not solved

time has been included by using some non-PESP constraints changing them might lead to
the problem not being solved in reasonable time.

Now that we get a feasible timetable, we consider the problem of rake-linking. Using
the scheme in 4.4, the number of rakes required for operating the timetable is 53. The rake
linkages help us create the station occupancy charts. These charts also allow us to check
the practical aspect of the timetable with respect to station capacity. As CST is the most
constrained terminal in our case study we include the station capacity chart and platform
allocated at CST for reference.

Table 4: CST platform occupancy
Arriving Service Arrival Time Departure time Departing Service Platform

Vashi-CST 0.5 5.5 CST-Panvel 1
Andheri-CST 4.5 8.5 CST-Belapur 2
Panvel-CST 7.5 11.5 CST-Bandra 1
Bandra-CST 10.5 15.5 CST-Panvel 2
Belapur-CST 15.5 20.5 CST-Andheri 1
Panvel-CST 21.5 24.5 CST-Panvel 2

Andheri-CST 25 30 CST-Vashi 1
Panvel-CST 30 33 CST-Belapur 2
Vashi-CST 33 36 CST-Panvel 1

Belapur-CST 36 39 CST-Andheri 2
Bandra-CST 39 42 CST-Bandra 1
Panvel-CST 45 50 CST-Belapur 1

Andheri-CST 48 53 CST-Panvel 2
Belapur-CST 54 57 CST-Vashi 1
Panvel-CST 57 0 CST-Andheri 2

As seen from Table (4), our timetable satisfies all the platform constraints at CST. This
can be concluded from the fact that the minimum interval between arrival and departure of
trains at this terminal is 2 minutes, which is acceptable.

7 Conclusion

In this paper we have considered a part of the Mumbai Suburban Network and applied the
PESP framework based Cyclic Timetable formulation. We have calculated the number of
rakes and also prepared rake linkage charts for the timetable.

However, feasibility of such a timetable in practice requires it to be integrated with the



existing off-peak hour timetable. Wadala Road is the station that has an issue in our case
study in this respect. Since we do not have any siding lines in Wadala Road and the nearest
car shed is at Vashi, the number of services at Wadala Road has to be increased in the
existing off-peak hour timetable as well. Such a change needs to be introduced at least one
hour before the periodic timetable comes into force.
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