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Clustering of Self Powered Neutron Detectors:
Combining Prompt and Slow Dynamics
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Mahitosh Pramanik

Abstract—The focus of this work is on clustering Self Powered
Neutron Detectors (SPNDs) with different dynamic characteristics
into smaller groups, with each group containing highly correlated
SPNDs. In order to cluster the SPNDs correctly, we propose novel
ways to compensate for the effect of different dynamic response
characteristics. In particular, two types of SPNDs: (i) cobalt, which
give a prompt response, and (ii) vanadium, which give a delayed re-
sponse, are considered. We propose and compare three compensa-
tion methods to cluster both types of SPNDs together using their
measurement data: (i) pure delay applied to cobalt SPND data,
(ii) cobalt SPND data ‘slowed down’ to match the vanadium SPND
dynamics by passing it through vanadium SPND transfer function,
and (iii) vanadium SPND data ‘speeded up’ to match the cobalt
SPND dynamics by passing it through the inverse of vanadium
SPND transfer function. Based on extensive simulations, it is found
that slowing down cobalt SPND measurements to match the vana-
dium SPND dynamics yields the best results. This method is then
used to obtain clusters from data obtained from a nuclear reactor
in India for both vanadium and cobalt SPNDs and the resulting
clusters appear reasonable.

Index Terms—Clustering, correlation, dynamics matching, self
powered neutron detectors.

I. NOMENCLATURE

Reactor/SPND Related Variables and Their Units

vanadium SPND transfer function, A.cm s

current in cobalt SPND due to -decay of Co, A

current in cobalt SPND due to -decay of Co, A

delayed current for cobalt SPND, A

total prompt current produced by cobalt SPND, A

current due to the -rays produced internally, A

current generated by cobalt SPND due to the
external flux, A
output current of vanadium SPND, A

sensitivity constant for A.cm

Manuscript received November 04, 2013; revised March 28, 2014; accepted
October 27, 2014. Date of publication November 20, 2014; date of current ver-
sion December 11, 2014. This work was supported by the Board of Research in
Nuclear Sciences (BRNS), India.
R. A. Razak and M. N. Belur are with the Department of Electrical Engi-

neering, Indian Institute of Technology Bombay, Mumbai 400076, India.
M. Bhushan is with the Department of Chemical Engineering, Indian Institute

of Technology Bombay, Mumbai 400076, India, on leave at the Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(e-mail: mbhushan@iitb.ac.in).
A. P. Tiwari is with the Reactor Control Division, Bhabha Atomic Research

Centre, Mumbai 400085, India, and also with the Homi Bhabha National Insti-
tute, Mumbai 400085, India.
M. G. Kelkar and M. Pramanik are with the Nuclear Power Corporation of

India Ltd., Mumbai 400094, India.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNS.2014.2366931

sensitivity constant for A.cm
sensitivity constant corresponding to the delayed
current component of vanadium SPND, A.cm s
sensitivity constant corresponding to the prompt
current component of vanadium SPND, A.cm s
concentration of V, atoms.cm

concentration of V, atoms.cm

concentration of Co, atoms.cm

concentration of Co, atoms.cm

concentration of Co, atoms.cm

decay constant of V s

decay constant of Co s

decay constant of Co s

neutron flux, n.cm s

sensitivity constant corresponding to flux for cobalt
SPND = A.cm s.n
microscopic absorption cross section of V for
neutron capture cm
microscopic absorption cross section of Co for
neutron capture cm
microscopic absorption cross section of Co for
neutron capture cm
parameter in the denominator of vanadium SPND
transfer function (also the time-constant of
vanadium SPND response) s
parameter in the numerator of vanadium SPND
transfer function s
delay corresponding to the time constant of the
vanadium SPND transfer function s
delay corresponding to minimization of the integral
of squared error between vanadium SPND transfer
function output and delayed flux input s
delay corresponding to maximization of the
correlation between vanadium SPND transfer
function output and delayed flux input s

Clustering Related Variables

output of SPND at time

output of SPND at time

average value of output of SPND

average value of output of SPND
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correlation coefficient between SPNDs and

centroid of the th cluster, i.e. a time series with
value at time being the average of the values at
time of the time series of the individual SPNDs
in the th cluster
th SPND in th cluster

centroid of all the SPNDs

(correlation-based) distance between SPNDs
and defined as
sum (across all clusters) of the distances of each
SPND from its cluster centroid
total number of clusters

the minimum of the magnitude of all pair-wise
correlations between the SPNDs belonging to the
same cluster
number of SPNDs in the th cluster

number of available observations for an SPND

sum of inter-cluster distance

sum of intra-cluster distance (also equals )

index indicating separability of clusters

II. INTRODUCTION

S ELF powered neutron detectors (SPNDs) are a class of
widely used sensors for measuring neutron flux in a re-

actor in real-time. SPNDs operate based on the principle of ac-
tivation by neutron interaction ([1], [2], [3]). An SPND con-
sists of an emitter material that undergoes radioactive decay
upon absorption of neutrons leading to the production of elec-
trons. The output of an SPND is a current signal, usually of the
order of micro/nano amperes. Some SPNDs provide a prompt
response to the variation in neutron flux while others provide
a delayed response. The response characteristics depend on the
exact process of current generation in the emitter material. In
this paper, we consider two types of SPNDs - cobalt and vana-
dium, which are commonly used in Indian Pressurized Heavy
Water Reactors (PHWR). Cobalt SPNDs are of prompt type and
thus provide an instantaneous estimate of the flux value. On
the other hand, vanadium SPNDs are of delayed type. In spite
of this, vanadium SPNDs have several advantages over cobalt
SPNDs, such as low burn-up rate, small gamma response and
negligible background signal [4].
A typical nuclear reactor can have hundreds of such SPNDs

providing vital information for reactor monitoring and control
purposes. It may thus be useful to cluster these SPNDs into
smaller groups, each containing highly correlated detectors.
Once such groups are obtained, they could be used for several
purposes. As an illustration, data driven techniques such as
Principal Component Analysis (PCA) could be used to develop
models relating measurements of SPNDs in a particular group.
These models could then be used to identify a faulty SPND
and estimate its corresponding true flux in real-time, based on
the output signals of the other SPNDs in that group, thereby
allowing the reactor operations to continue [5].
It is essential that while obtaining these groups, SPNDs with

differing dynamics are considered simultaneously so that infor-

Fig. 1. Basic structure of SPNDs [4].

mation from all the SPNDs can be effectively utilized. Devel-
oping techniques for clustering SPNDs with different dynamics
is the aim of our current work. Here, by ‘dynamics’ we mean
the speed of the response. In particular, we consider cobalt and
vanadium SPNDs which have different dynamics. We propose
three data processing techniques to ensure that cobalt and vana-
dium SPNDs have similar time characteristics so that clusters
with highly correlated SPNDs can be obtained. These three tech-
niques are: (i) introducing a pure delay in cobalt SPND data to
match vanadium SPND dynamics, (ii) appropriately ‘slowing
down’ cobalt SPND data to match vanadium SPND dynamics,
and (iii) ‘speeding up’ vanadium SPND data to match cobalt
SPND dynamics. These procedures are elaborated in Section V
in this paper. Based on extensive simulations comparing these
dynamics matching methods, it is shown that the second method
provides the most meaningful results which is then used to ob-
tain SPND clusters for the data available from a PHWR oper-
ating in India. More specifically, we had data corresponding to
42 cobalt and 102 vanadium SPNDs. These SPNDs were clus-
tered after appropriately slowing down the cobalt SPND out-
puts. Several of the cobalt SPNDS known to be in a particular
spatial zone in the reactor were indeed identified as belonging
to the same cluster thereby validating our overall approach.
Using correlation based analysis for clustering of SPNDs

with different dynamics has not received any attention in the
literature. While [6] used correlation between SPNDs as a
criterion for validation of SPND signals, they did not perform
any clustering of these SPNDs.
The rest of the paper is organized as follows: in Section III,

the response characteristics of cobalt and vanadium SPNDs are
discussed based on theirfirst principlesmodels. Thewidely used
k-means clustering algorithm, which is also used in our cur-
rent work, is briefly discussed in Section IV. The various dy-
namics matching techniques used in this work are discussed in
Section V. These methods are compared based on simulations in
Section VI and the method which works best is identified. The
application of the proposed method to the SPND data available
from an Indian PHWR is given in Section VII and conclusions
are drawn in Section VIII.

III. SPND MODELS

A representative SPND is shown in Fig. 1 [4]. It consists of
four main parts- emitter, insulator, sheath (collector) and min-
eral insulated coaxial cable ([1], [3], [4]).
The materials that can be used for the emitter include

rhodium, vanadium, platinum, silver and cobalt [7]. Typically,
Magnesium Oxide ( ) or Aluminium Oxide ( ) are
used as insulators while Inconel is used as the sheath [4]. The
insulator has high resistance of the order of to ohms.
The SPNDs in the Indian PHWR are typically less than 5 mm
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in diameter and 20 to 30 cm in length. The insulator in the
detector portion is same as that in the cable. It is to be noted
that the analysis presented in our work is specific neither to
SPND sizes nor to the insulation material, but depends on their
prompt/delayed characteristics only.
Detailed information on the working principle of SPNDs can

be found in literature ([1], [2], [3], [4], [8]). For completeness, a
brief summary is presented here. The emitter undergoes neutron
capture to produce radioactive nuclei which undergo decay to
producemore stable nuclei. Electrons are generated during these
processes. The electrons which cross the insulation and reach
the collector form a current whose path is completed through a
cable. The strength of the current is very small (of the order of
micro/nano amperes) and it needs to be amplified before further
processing. The current generation in SPNDs is due to the fol-
lowing three phenomena:
(a) Neutron capture by emitter atoms directly leads to

the generation of current-carrying electrons. When an
emitter atom undergoes neutron capture, -rays are pro-
duced which generate current-carrying electrons due to
photo-electric/Compton effect. Electrons are generated
immediately after neutron capture and hence this part of
the current signal is prompt ([1], [2]).

(b) When emitter atoms undergo neutron capture, radioactive
isotopes are produced. These undergo decay during
which high energy -rays (high energy electrons) are
emitted. These -rays contribute to the current signal of
the SPND. Also, the decay may produce -rays which
again generate electrons as mentioned above. Since the
decay occurs with a certain half-life, this part of the

current represents a delayed response [8].
(c) External flux in the reactor also generates current (back-

ground noise) in the SPND signal [1].
SPNDs can be classified as prompt SPNDs or delayed SPNDs

depending on whether the major component of the signal is
prompt or delayed ([3], [8]). Cobalt SPNDs are prompt whereas
vanadium SPNDs are delayed. We now describe the dynamic
models of cobalt and vanadium SPNDs.

A. Cobalt SPND Model

A brief description of cobalt SPNDs is presented here. More
details can be obtained from [1]. The isotope Co is the most
common and naturally occurring form of cobalt. This isotope
undergoes neutron capture to produce Co, which emits
-rays to produce the Co isotope. Next, Co undergoes
-decay with a half-life of 5.26 years to produce . The
isotope Co may also undergo neutron capture yielding Co,
which finally decays into with a half-life of 99 minutes.
The mathematical model of cobalt SPND is given by the fol-

lowing set of equations [1]:

(1)

The output current of the cobalt SPND is the sum of the prompt
and delayed components of current, and is given by

(2)

Where

and

In the case of a cobalt SPND, the delayed component is a
small fraction of the total current and will be ignored in our
work when using the cobalt SPND model to generate simulated
data. The delayed current component is negligible for a newly
installed SPND but increases with time because of the build-up
of Co and Co. Most of the prompt signal is produced by the
internally generated -rays. In addition, there is also a contri-
bution from externally produced flux. These may come from
fission in the reactor or neutron capture in other parts of the re-
actor. While generating our simulation data, the prompt compo-
nent due to the external flux is not considered, since it is likely
to be small.

B. Vanadium SPND Model

A first principles model for vanadium SPND has been devel-
oped in [4], [9] using the information available in [10] and is
described here. The isotope V undergoes neutron capture to
produce V which in turn undergoes decay. The equations
are given below,

(3)

Assuming the burn-up of V to be negligible [4], i.e. assuming
its concentration to be constant, leads to a linear model. We thus
get the vanadium SPND transfer function from to as

(4)

where , and
. The value of will vary depending

upon the SPND characteristics and reactor operation. In our
work, we obtain both and from the PHWR trip data for
an individual vanadium SPND. The values were found to be

s and s respectively [11]. The value of
the gain is obtained as A.cm s.n based on
experiments performed during SPND calibration in the Indian
PHWR. However, the value is not important in our work since
we will work with correlation, which is insensitive to the value
of the gain . Note that the ability to partially compensate for
burn-up and build-up in a SPND is built into the associated
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amplifier shown in Fig. 1 by providing options for modifying
the gain and specifying an offset.

IV. THE K-MEANS CLUSTERING ALGORITHM

In this section we briefly describe the k-means clustering al-
gorithm and also discuss its implementation.

A. Brief Description

The k-means ([12], [13]) is a non-hierarchical clustering tech-
nique in which a set of points are partitioned into a specified
number of clusters such that the sum of distances of each point
from its cluster centroid is minimized. The distance between the
points may be specified in a number of ways. In our work, we
are going to work with time series of SPNDs. Thus a single point
in clustering corresponds to a time-series. We require that those
SPNDs which have high correlation (positive or negative) be-
tween each other belong to the same cluster. This is motivated
by a possible end use of the resulting clusters, namely to de-
velop linear models between SPNDs in a given cluster [5]. Since
high correlation between a pair of SPNDs implies the possibility
of a strong linear relationship between them, we consider two
SPNDs to be close together if the absolute value of the correla-
tion coefficient between them is high. Thus, for the purpose of
clustering, we define the distance between SPNDs and as,

(5)

where

We aim to cluster the SPNDs into clusters where is to be
suitably chosen.
The input to the k-means algorithm consists of the data based

on which the clustering is to be performed and the number of
clusters . Let for be the centroid obtained for
the -th cluster consisting of SPNDs, i.e. is a time-series
with the value at any time being the average of the values of
the SPNDs in the cluster at time . For each cluster, the sum
of distances of the points from the centroid is given by

(6)

The sum of distances of each SPND from its cluster centroid
across all the clusters is then given by

(7)

The k-means algorithm minimizes in an iterative manner.
Given the initial cluster centroids, each SPND is assigned to

one of the clusters such that the distance between the SPND
and the cluster centroid is the least among all the clusters. The
initial cluster centroids may be user-specified or chosen ran-
domly. After all the SPNDs have been allocated to one of the
clusters, the cluster centroids are recomputed and the assign-
ment process is repeated with the new centroids. These iter-
ations are continued till the convergence criterion is met, i.e.

where is the -th centroid at the
-th iteration and is chosen to be a small number.

B. Implementation of the k-Means Algorithm

For the work done in this paper we have used the k-means al-
gorithm available in the Matlab Statistics toolbox [14], suitably
modified so as to incorporate the distance described by (5). The
k-means algorithm initially chooses a random set of cluster cen-
troids. We thus rerun the algorithm fifty times and take the best
set of clusters, i.e. the cluster set with the least value of sum of
points-to-centroid distances defined by (7). The number of clus-
ters to be considered will also be unknown for real (plant) data.
Hence, in Section VII we propose an approach for selecting a
suitable number of clusters for the PHWR data. However, for
comparison between various dynamics matching methods using
simulated data, we use the true number of clusters .
It should be noted that while we have used k-means algorithm

in our work, any other clustering approach could also have been
used. [15] presents a comprehensive review of various clus-
tering methods available in literature. We have used k-means
as it is one of the most popular algorithms for clustering.

V. DATA PROCESSING FOR CLUSTERING

A. Clustering Procedure

The measurement data of cobalt and vanadium SPNDs may
not be correlated even if they are subjected to the same neu-
tron flux because the response of cobalt SPND is prompt while
that of the vanadium SPND is delayed. Some form of dynamics
matching is thus required so that both the cobalt and vanadium
SPND data can be used together. The three methods which we
propose for dynamics matching are as follows:
(a) Using cobalt SPND data delayed by time (i.e. passed

through a transfer function ) for comparison with the
original vanadium SPND data.

(b) Using the cobalt SPND data obtained after passing it
through the vanadium SPND transfer function ( ,
given by (4)) for comparison with the original vanadium
SPND data.

(c) Comparing the original cobalt SPND data with the vana-
dium SPND data that has been passed through the inverse
vanadium SPND transfer function ( ).

A generic schematic showing these three methods of trans-
forming SPND data is shown in Fig. 2. Table I lists the corre-
sponding SPNDs I, II and the processing block for each of the
three methods. These three methods are discussed in detail in
the following sections. In each case, the unprocessed SPND I



RAZAK et al.: CLUSTERING OF SPNDs: COMBINING PROMPT AND SLOW DYNAMICS 3639

Fig. 2. Schematic of data processing framework for clustering.

TABLE I
DETAILS OF DATA PROCESSING METHODS

data and the processed SPND II data is passed to the k-means
clustering algorithm.

B. Pure Delay in Cobalt SPND Measurements

In this method, we use a pure delay to delay the cobalt SPND
data by samples i.e. pass the cobalt SPND measurements
through a pure delay transfer function . The delayed cobalt
SPND data is then clustered together with the original vanadium
SPND data. The choice of the delay is made in the following
three ways:
• We choose s which is the value of in (4).
• We consider a unit step change in input (i.e. neu-
tron flux) to the vanadium SPND transfer function.
We then seek the value of delay at which the error

is minimized, where

is the corresponding vanadium SPND transfer
function output. This is analytically calculated to be

s.
• We seek the value of delay which maximizes the corre-
lation between and . This value is numerically
obtained to be s.

To summarize, we delay the cobalt SPND data in order to
compensate for the slow response of the vanadium SPND data.
Three delays are considered: s, s and

s.

C. Cobalt SPND Measurements Passed Through Vanadium
SPND Transfer Function

In this method, we pass the cobalt SPND data through the
transfer function of vanadium SPND . This is used to
transform the cobalt SPND data to similar time characteristics
as that of vanadium SPND. Since is a lag-compensator,
this ‘slows down’ the cobalt SPND signal by attenuating the
high frequency components in the cobalt SPND measurements.

Fig. 3. Simulation process.

D. Vanadium SPND Measurements Passed Through its
Inverse Transfer Function

In this method, we ‘speed-up’ the vanadium SPND data by
passing its output through the inverse of its transfer function so
that the delayed dynamics of vanadium SPNDs are compensated
for. We then use the speeded up vanadium SPND data along
with the cobalt SPND data for clustering. Passing vanadium
SPND data through the inverse of vanadium SPND transfer
function leads to amplification of high frequency components.

VI. COMPARISON OF THE DYNAMICS MATCHING METHODS

The proposed methods for matching the dynamics of vana-
dium and cobalt SPNDs are now compared based on simula-
tions, that involve generating a flux profile and propagating it
through the cobalt and vanadium SPND dynamic models so as
to generate the corresponding SPND outputs. These outputs are
processed according to the various dynamics matching methods
listed in the last section and then compared.

A. Pure Sinusoidal Flux Profile

Pure sinusoidal flux profiles of amplitude n.cm s
and different frequencies were generated. The generated data
consisted of 10,000 samples. The time periods of sinusoids were

s, , thus giving 12 profiles.
Each profile was passed through cobalt and vanadium SPND
models as described in Section III to generate the corresponding
output currents. Towards this end, the continuous time state
spacemodels were integrated using Runge-Kutta-4method. The
outputs (currents) were then processed according to the var-
ious dynamics matching methods proposed in Section V. The
correlation between respective datasets is compared to find the
method that gives a higher correlation. The process is shown
in Fig. 3. For each method of dynamics matching, we obtain
a plot of the correlation between the corresponding cobalt and
vanadium SPND datasets versus the frequency of input flux.
This was repeated for different process noise levels in the SPND
models. The noisy states were generated by adding zero mean,
white Gaussian noise in the differential equations of the SPND
models given in Section III. The standard deviation of the noise
in a state equation was taken as a fraction of the peak response
of the corresponding noise free state trajectory obtained for a
positive step of magnitude n.cm s in the input flux.
The resulting correlation plots are shown in Figs. 4–9 for

the different techniques. In these figures, plots corresponding
to different process noise levels are shown in different colors.
The process noise level 1 represents the maximum process
noise (standard deviation 10%) and noise level 7 represents no
process noise. Noise levels from 1 to 6 represent decreasing
process noise standard deviation by a factor of 10 at each step.
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Fig. 4. Correlation versus for various noise levels: raw cobalt SPND data
and raw vanadium SPND data (i.e. without any dynamics matching).

Fig. 5. Correlation versus for various noise levels: cobalt SPND data delayed
by time units and raw vanadium SPND data.

Fig. 6. Correlation versus for various noise levels: cobalt SPND data delayed
by time units and raw vanadium SPND data.

The -axis represents the value which is a monotonically
increasing function of frequency ( , with

). For the sake of comparison with dynamics
matching techniques, the correlations between the raw (un-
processed) cobalt and vanadium SPND measurements are also
shown in Fig. 4.
It is expected that as the process noise level is decreased, the

curve shifts to the right implying high correlation for a larger
range of frequencies. The curve to the extreme right in each Fig.
corresponds to the case of zero process noise. It can be seen
from the plots that the correlation is higher for larger ranges
of frequencies in the case of slowing down cobalt SPND data
(Fig. 8) and speeding up vanadium SPND data (Fig. 9). Con-
sider the value of where the correlation drops to 0.9 for the

Fig. 7. Correlation versus for various noise levels: cobalt SPND data delayed
by time units and raw vanadium SPND data.

Fig. 8. Correlation versus for various noise levels: slowed cobalt SPND data
(passed through vanadium SPND transfer function) and raw vanadium SPND
data.

Fig. 9. Correlation versus for various noise levels: raw cobalt SPND data and
speeded-up vanadium SPND data (passed through the inverse of the vanadium
SPND transfer function).

zero process noise level curve. This value can be observed to be
3 for raw data case (Fig. 4), 3.5 for the case with cobalt SPND
signal delayed by time (Fig. 5), 4.5 for the case with cobalt
SPND signal delayed by time (Fig. 6), 3.5 for the case with
cobalt SPND signal delayed by time (Fig. 7), 6 for the case
with cobalt SPND signal slowed down (Fig. 8) and 6 for the
case with vanadium SPND signal speeded up (Fig. 9). Com-
paring the responses shown in Figs. 8 and 9, it is evident that
the cobalt SPND signal when slowed down gives higher corre-
lation overall at various noise levels and thus seems to perform
better. For the case of pure delay, it can be seen that the curves
show random variations and even show negative correlations for
some frequencies. This is because after a certain frequency, the
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TABLE II
CORRELATIONS FOR VARIOUS METHODS: FLUX PROFILE
CONSISTS OF SUM OF TWO SINUSOIDS WITH TIME-PERIODS

AS MENTIONED IN THE RESPECTIVE CASES

delay values ( , or ) become larger than the time period
of the input sinusoid and this changes the sign of the correlation.

B. Mixed Sinusoidal Flux Profile

In this case, we added two sinusoidal profiles, one of which
is of high frequency and the other of low frequency, from the
sinusoidal profiles listed earlier. The flux profiles thus obtained
were passed through the noise free cobalt and vanadium SPND
models. The resulting correlations for the various cases are
listed in Table II from which it can be seen that slowing the
cobalt SPND data leads to highest correlations.
In order to further test the performance of various dynamic

matching methods, a sinusoidal flux profile consisting of 10 si-
nusoids equally spaced in the range 0 to 0.5 Hertz was given as
input and the correlations were found to be as: 0.3148 for the raw
data case, 0.2951 for the delay case, 0.2958 for the delay
case, 0.2899 for the delay case, 0.9753 for the cobalt SPND
slowed down case and 0.3326 for the vanadium SPND speeded
up case. Once again, slowing the cobalt SPND data leads to
much better results than other data processing methods.

C. Clustering Multiple SPNDs

Until now, we considered correlations amongst the processed
outputs of a cobalt and a vanadium SPND, each of which is
exposed to the same single input flux profile. Since we intend
to identify the best data processing method that can be used to
extract clusters from a group of cobalt and vanadium SPNDs
using data obtained from the PHWR, we now perform the fol-
lowing simulation experiments that involve clustering of mul-
tiple SPNDs.
We generate data for 24 SPNDs such that the SPNDs belong

to four predefined clusters. Using this data, clustering is per-
formed according to the various dynamics matching methods
and compared to find the methods leading to correct identifica-
tion of the clusters on using k-means clustering algorithm. The
data is generated as follows: we generate four different flux
profiles uncorrelated to each other. Each of these flux profiles
are used to generate six sets of SPND data - two for cobalt
and four for vanadium SPNDs. White, zero mean Gaussian
process noise with standard deviation of 1% as mentioned in
Section VI-A is also added to the SPND models during data
generation. Since the four flux profiles are uncorrelated to each
other, the SPND data generated from a single profile forms a

single cluster. Thus, each true cluster consists of two cobalt and
four vanadium SPNDs. Different types of flux profiles were
generated as discussed below.
1) Each flux profile was a random Gaussian sequence (mean
0 and standard deviation ) uncorrelated to each other.

2) Same as case 1 but with additional random noise added
to the fluxes input to the individual SPNDs within a given
cluster: The input flux profile for a given SPND was thus
an addition of two components: (i) a random Gaussian
sequence (mean 0 and standard deviation ) which
was the same for each SPND in a given cluster, and (ii) a
random Gaussian sequence (mean 0, standard deviation

) which was different for each SPND.
3) Each flux profile consisted of a sinusoidal component and
a random Gaussian component along with random noise:
In other words, the flux profiles were same as in case 2 but
with additional sinusoidal component added to them. The
sinusoidal component consisted of five sinusoids which
were of different frequencies for the different flux profiles.
Two of the four flux profiles consisted of low frequency si-
nusoids in the range 0.15-0.20 and 0.25-0.30 respectively
in terms of the normalized frequency, which refers to the
frequency as a percentage of where is the sam-
pling frequency (1 Hertz in our case). The other two pro-
files consisted of high frequency sinusoids in the range
0.75-0.80 and 0.85-0.90 respectively in terms of normal-
ized frequency. The sinusoidal component was the same
for all SPNDs within a given cluster.

In each of the above cases, clustering was performed after
processing SPND signals using the techniques discussed in pre-
vious sections. It was found that correct clusters were retrieved
when the data was transformed by either slowing the cobalt
SPND measurements or speeding-up the vanadium SPND re-
sponses. For the cases when pure delays were introduced in the
cobalt SPND measurements, the clusters were sometimes not
correctly identified. In order to further compare the slowing-
down cobalt and speeding-up vanadium SPND data processing
methods, we additionally calculate,

sum of intra-cluster distance
sum of inter-cluster distance

(8)

with being the distance of the SPND in cluster
from the centroid of cluster and representing the dis-
tance of the centroid of the cluster with the overall centroid.
Thus, in general a large means that the cluster centres are far
apart while a smaller value of indicates that the individual
clusters are quite compact. However, neither nor can give
a complete picture of the obtained clusters. Ideally, one would
like each individual cluster to be compact, i.e. to be small,
while being well separated from each other, i.e. to be high.
Thus, their ratio can be used as a measure of separation of
the resulting clusters. In particular, a lower value of can be
associated with better clustering performance.
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TABLE III
VALUES OF , AND WITH VARIOUS PROCESSING METHODS

Fig. 10. Data for cobalt-18 SPND (an illustrative cobalt SPND).

The values of , and for the two methods as well as
for the unprocessed raw data are shown in Table. III for the case
3 above, i.e., flux profile consisting of sinusoidal components
and random Gaussian component along with random noise. It
can be seen that the value of is lowest for the clusters ob-
tained when cobalt SPND output was slowed down. This sug-
gests that this method would be able to identify the clusters
better as compared to the method of speeding up the vanadium
SPND output. Based on the above comprehensive simulations,
slowing down cobalt SPND output is identified as the method
to be used for dynamics matching for clustering the SPND data
available from the PHWR.

VII. APPLICATION TO DATA FROM INDIAN PHWR

We now perform clustering on SPND data available from the
Indian PHWR that consists of a cylindrical core with 42 cobalt
and 102 vanadium SPNDs. The reactor core is divided into
fourteen control zones with each zone containing three cobalt
SPNDs. Data from the SPNDs sampled at an interval of one
minute are available for a period of 10 days. The 144 SPNDs are
labeled using serial numbers from 1 to 144. The numbers 1 to 42
represent cobalt SPNDs and 43 to 144 represent the vanadium
SPNDs. Data for 15 of the vanadium SPNDs were temporarily
unavailable for the duration under consideration and therefore
those SPNDs have been neglected in the following work.
Plots of the raw data of one of the cobalt SPNDs and the

corresponding transformed data obtaining by passing the raw
data through the vanadium SPND transfer function are shown
in Figs. 10 and 11 respectively. It is seen from these plots that as
expected, some attenuation of high frequency components has
occurred due to this transformation. In order to facilitate a better
comparison, a plot of the data of a randomly chosen vanadium
SPND is also shown in Fig. 12. In this figure, the regions ap-
pearing shaded correspond to very high frequency oscillations
in the detector measurements and are not actually shaded. As

Fig. 11. Cobalt-18 SPND data passed through vanadium SPND transfer func-
tion.

Fig. 12. Data for vanadium-46 SPND (an illustrative vanadium SPND).

mentioned in Section VI, we will slow down the cobalt SPND
data for the purpose of clustering. It can be noted from Figs. 10
and 12 that the cobalt and vanadium SPND measurements from
the plant are available in different units (have different scaling).
However, this is not important for us, as we are using correla-
tion based distance for clustering.
Choosing number of clusters: We considered three criteria

for deciding the number of clusters . Towards this end, we
performed clustering for various values of from 2 to 50. In
each case, we computed the following three quantities:
1) For each cluster, was calculated. This quantity
gives the maximum pairwise spread within each cluster.
Then, the average value of is computed over
all the clusters.

2) The sum of the point-to-centroid distances within each
cluster is calculated and is summed over all the clusters,
i.e. (7) is computed.

3) The ratio (8) is computed.
The above quantities are plotted with respect to the number

of clusters in Fig. 13 for the cobalt SPND slowed down method.
As expected, these quantities generally decrease with increasing
number of clusters. It is seen that there is no appreciable de-
crease in any of the three quantities on increasing the number
of clusters beyond 15. Hence we choose the number of clusters

.
Clustering Results: The k-means algorithm in Matlab ver-

sion R2008b is then applied to obtain 15 clusters. The imple-
mentation took 55.98 seconds (for 50 reruns with different ini-
tial-cluster choices) when executed on a 4 GB RAM Linux ma-
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Fig. 13. Variation of avg(1- ), , and with number of clusters.

TABLE IV
CLUSTERS OBTAINED FOR THE INDIAN PHWR

chine with Fedora FC 15 as the operating system. An additional
4.33 seconds were spent on the preprocessing step i.e. the dy-
namics matching step. The resulting clusters had value of
0.6043 and are listed in Table IV. It can be seen that while most
of the clusters are pure clusters consisting of only cobalt (SPND
numbers 1-42) or vanadium (SPND numbers 43-144) SPNDs,
one of the clusters (cluster number 3) is a mixed one containing
six cobalt and two vanadium SPNDs. It is also noted that while
several cobalt sensors located in the same spatial zone get clus-
tered together, the process of combining SPNDs of different dy-
namics reveals high correlation between SPNDs across multiple
zones as well.

VIII. CONCLUSION

In this paper, we simultaneously cluster cobalt and vanadium
SPNDs in a nuclear reactor into smaller groups. Towards

this end, we explore three methods for dynamics matching to
ensure that the cobalt and vanadium SPNDs have same time
characteristics before clustering is performed. These methods
are: delaying cobalt SPND data, slowing cobalt SPND data and
speeding up vanadium SPND data. It was found by extensive
simulations that the method of slowing the cobalt SPND data
resulted in the best clustering performance. This is reasonable
since this method involves a lag-compensator (the vanadium
SPND transfer function), which attenuates high-frequency
components including noise. This method was then used to
cluster SPNDs in an Indian pressurized heavy water reactor.
The resulting clusters can be used for building data-driven
models amongst the SPNDs. These models can then be used for
a variety of tasks such as data reconciliation and fault detection
and diagnosis of SPNDs [5].
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