

Indian Metro workshop, 22-03-2023

Prof. dr. Oded Cats
with contributions by Soumela Peftitsi, Erik Jenelius, Arek Drabicki, Rafał Kucharski, and lab members

Crowding at stations and onb o a r d vehicle s

Largely a result of an uneven distribution of passengers

- Travel demand temporal distribution
- Travel demand spatial distribution
- Inter-vehicle arrival distribution

- Within-vehicle distribution

An inefficient utilisation of capacity, higher costs (for all parti TUDelft

7-9 AM; 140 trains; 35-40k passengers

Level-of-service: $\mathbf{A}-$ - $-\mathbf{C}$ - (- E-F

- Develop (and validate) a model to reproduce crowding distribution across individual train cars
- Assess the potential impact of provisioning crowding information concerning individual train cars
- Closing a station entrance can result with overall greater passenger comfort
- Having 50\% of the passengers accessing real-time information result with greater overall time savings than if all passengers are granted access

Applications

Modelling emerging collective dynamics

- Individual train-car specific path choice
- Passenger arrival at/destined to different station entrances/exits
- Platform + Car selection (introducing compartments)
- Walking vs. in-vehicle time crowding
- Day-to-day experience and learning (iterative network loading)
- Real-time information generation and dissemination

Individual car-specific path decision

Platform section choice is based on

- Walking time to the platform section
- Expected future travel attributes
- Car-specific perceived in-vehicle

Car choice is based on

- Selected platform section
- Car capacity constraints

Measuring crowding unevenness

$$
G_{j s}=\frac{1}{2 \mid \| \sum_{i=1}^{\prime} q_{i j s}^{\text {onboard }}} \sum_{i=1}^{\prime} \sum_{i^{\prime}=1}^{\prime}\left|q_{i j s}^{\text {onboard }}-q_{i^{\prime} j \text { ons }}^{\text {onboard }}\right|
$$

- A single metric to quantify passengers' di stribution
- Measures how far the observed passenger distribution deviates from a totally even distribution

HTM

Table 4. Scaled estimation results

| | Model 1
 (no crowding,
 no segments) | Model 2
 (crowding,
 no segments) | Model 3
 (segments,
 no crowding) | Model 4
 (segments,
 crowding) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Infrequent | | | | |

Crowding matters, but much lower than previous research has suggested

All seats occupied: perceived in-vehicle time multiplier: 1.16
Standing passengers: ivt-multiplier increases by 0.06 per
1.31 for frequent travellers vs. 1.00 for infrequent travellers

Infrequent passengers do no incorporate crowding

robustt-values inparentheses * $p<0.05 ; * * p<0.01$

- One minute initial / denied boarding wait time is perceived as 1.62 / 2.72 minutes uncrowded on-board time, respectively
- Wait time after denied boarding is perceived 68% more negatively compared to initial wait time

- Willingness to wait of
- Typically 5-10 min
- Up to 15-20 min in case of older travellers, non-timecritical trips, longer journeys and over-crowding

Application

Stockholm • Spártrafikkarta Rail Network Map

Irafikinformation Servict intornation
 $\mathrm{Ha}_{\mathrm{m}}^{\mathrm{Man}}$

Lab
 Smart Public Transport

TUDelft

Example: Stockholm

metro

$\begin{array}{ll}00.10 & \text { - Line 10 } \\ 0.20 & \text { - Line } 11 \\ 0.30 & \text { - Line 13 } \\ 0.40 & \text { - Line 14 } \\ 0.50 & \text { Line 17 } \\ 0.50 & \text { Line 18 } \\ 0.0\end{array}$

Application:
 Southbound
 part
 of
 $t h e r \quad$ e $d \quad 1 \quad i \quad n e$

- Passengers are
skewed towards the

Model validation

Smart Publlic Transport

Scenarios design

- Base scenario: The studied area is simulated with the current average morning peak hour demand.
- Increased demand scenario: The studied area is simulated with increased demand by 50\%.
- Intervention scenario: Closure of an entrance point at DAS.
Role
0 f
d a y -t o -

Experienced passengers alter their travel behavior aiming to minimize car-specific discomfort, leading to lower on-board crowding unevenness.

Increasingly so with increased demand.

Closing an entrance at DAS

skewed boarding distribution at DAS \triangle
a more even on-board distribution at downstream s†atinns

i Information

\section*{Modelling impacts of information
 | p | r | o | V | i | s | i | o | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Performance

Modelling car-specific RTCI in

| $<=80 \%$ seated capacity | 1.0 |
| :---: | :---: | :---: | :---: |
| $>80 \%$ seated capacity $\mid<=100 \%$ seated capacity | 1.3 |
| $>100 \%$ seated capacity $\mid<=50 \%$ total capacity | 1.5 |
| $>50 \%$ total capacity | 1.8 |

- Predict RTCI for each trip segment based on the measured car crowding level of the most recent train run.
- Each passenger utilizes the generated carspecific RTCI, as an in-vehicle time multiplier of a given trip segment, in the decision making process.

Already tested at the vehicle

on-board comfort experience - Kraków PM peak hour

- share of the worst on-board overcrowding experience decreases by 27%
- waiting time due to denied boarding are reduces by 30%

RTCI provision schemes

TUDelft

Case study application

- 1 million passengers daily
- 20% of the seats remain empty in the morning peak hour
- Scenarios
- App with varying penetr
- 10 most heavily loaded stations with the larges unevenness of boardin passengers

Even when passenger load exceeds total seated capacity (378) for the train as a whole, there are still seats that remain unoccupied in individual cars.

bacr d T C I o n
0 n -b o a r d
c. Positive effect on ${ }^{\text {n }}$
u cłoŵdiñg ûnẻvehnêsss on-board trains departing from the most heavily loaded stops (upstream of the center)

- Some 'global' route choice effects along crowded corridors

THDelft

RTCI at train- vs. car-level

- Train-level assumes an even on-board crowding distribution
- Train-level information is less actionable
Effectof app-based RTCI

Sweet demand spot?

On-going and future work

- Using the simulation tool to devise service planning and control measures (e.g. skipstop operations)
- Demand management tool (e.g. antibunching)
- Crowding perceptions during the pandemic
- Customized information

Relevant
 references: Data
 analysis

- Peftitsi S., Jenelius E. and Cats O. (2019).

Determinants of Passengers' Metro Car Choice Revealed through Automated Data Sources: A Stockholm Case Study
. Transportmetrica A, 16 (3).

- Peftitsi S., Jenelius E. and Cats O. (2021).

Evaluating Crowding in Individual Train Cars using a Dynamic Transit Assignment Model
. Transportmetrica B, 9 (1), 693-711.

- Peftitsi S., Jenelius E. and Cats O. (2022).

Modelling the Effect of Real-Time Crowding Information (RTCI) on Passenger Distri bution in Trains
. Transportation Research Part A, 166, 354-368.

- Hänseler F.S., van den Heuvel J., Cats O., Daamen W. and Hoogendoorn S. (2020). A Passenger-Pedestrian Model to Assess Platform and Train Usage from Automate d Data
. Transportation Research Part A, 132, 948-968.
- Drabicki A., Kucharski R., Cats O. and Szarata A. (2020).

Modelling the Effects of Real-time Crowding Information in Urban Public Transport ${ }^{40}$

Relevant references: Behavioral

- Yap M., Cats O. and van Arem B. (2020). Crowding Valuation in Urban Tram and Bus Transportation base d on Smart Card Data
. Transportmetrica A, 16(1).
- Yap M. and Cats O. (2021).

Taking the Path Less Travelled: Valuation of Denied Boarding in Crowded Public Transport Systems
. Transportation Research Part A, 147, 1-13.

- Drabicki A., Cats O., Kucharski R., Fonzone A. and Szarata A. (2023).

Should I Stay or Should I Board? Willingness to Wait with Real-t ime Crowding Information in Urban Public Transport
. Research in Transportation Business \& Management, in press.

