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 Problem description
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    Crowding at stations and on-
  b o a r d v e h i c l e s

Largely a result of an 
uneven distribution of 
passengers
– Travel demand temporal 

distribution 
– Travel demand spatial 

distribution
– Inter-vehicle arrival 

distribution 
– Within-vehicle distribution

An inefficient utilisation of capacity, higher costs (for all parties)
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  : -Exam p le Sch iphol Ut re ch t corridor
7-9 AM; 140 trains; 35-40k passengers
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 Re se a rch ob je c t ive s

• Develop (and validate) a model to 
reproduce crowding distribution across 
individual train cars

• Assess the potential impact of provisioning 
crowding information concerning individual 
train cars
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Spoiler alerts

• Closing a station entrance can result with 
overall greater passenger comfort

• Having 50% of the passengers accessing 
real-time information result with greater 
overall time savings than if all passengers 
are granted access
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 Modelling approach
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  D y n a m i c T r a n s i t
  O p e r a t i o n s a n d

A s s i g n m e n t
   B u s M e z z o , a n a g e n t -b a s e d
 s i m u l a t i o n m o d e l

Traffic Dynamics & 
Transit Operations

Dynamic 
Loading

Automated 
Data Collection

Real-Time 
Prediction

Control 
Centre

Traveler 
Decisions

Network

Traveller 
Population

Fleet

Within-day

Day-to-day

Passenger 
Assignment 

Transit 
Performance 

Traveler 
Perception

Service 
Planning

Traveller 
Strategy



9

App lica t ion s

Evaluating 
network 

alternatives
Network 

robustness 
analysis

Reliability of 
timetable 

design
Transfer 

synchronization 

Real-time 
control 

strategies
Disruption 

management

      Networks: Amsterdam, The Hague, Stockholm, Haifa, Krakow
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   Modelling emerging collective dynamics

• Individual train-car specific path choice
– Passenger arrival at/destined to different station entrances/exits
– Platform + Car selection (introducing compartments)
– Walking vs. in-vehicle time crowding

• Day-to-day experience and learning 
      (iterative network loading)

• Real-time information generation and dissemination 
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    Individual car-specific path decision
m a k i n g

Platform section choice is based on
– Walking time to the platform section
– Expected future travel attributes 
– Car-specific perceived in-vehicle times

Car choice is based on
– Selected platform section
– Car capacity constraints
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𝑪
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  Measuring crowding unevenness

• A single metric to quantify passengers’ di
stribution

• Measures how far the observed 
passenger distribution deviates from a 
totally even distribution

• Larger values  Less even passenger 
distribution

Observed 
distribution

Equally 
utilized 

cars
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 Passenger behavior
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Crowding matters, but much lower than previous research has 
suggested

 All seats occupied: perceived in-vehicle time multiplier: 1.16
 Standing passengers: ivt-multiplier increases by 0.06 per 

 1.31 for frequent travellers vs. 1.00 for infrequent travellers
 Infrequent passengers do no incorporate crowding
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  P e r c e p t i o n o f
  d e n i e d b o a r d i n g

in crowded 
s y s t e m s

Table 2. Estimation results 1 
Coefficient Name Value (robust t-value) 𝛽𝑖𝑣𝑡  in-vehicle time -0.0739** (-8.61) 𝛽𝑤𝑡𝑡 ,𝑖 initial waiting time -0.120** (-4.63) 𝛽𝑤𝑡𝑡 ,𝑑  waiting time after denied boarding -0.201** (-5.13) 𝛽𝑡𝑓  transfer penalty -0.627** (-5.21) 𝛽 𝑙𝑓  load factor   0.389** (3.16) 𝛽𝑟  log-path size factor  -2.46** (-12.9) 

robust t-values in parentheses. * p < 0.05; ** p < 0.01 2 

• One minute initial / denied boarding wait time is 
perceived as 1.62 / 2.72 minutes uncrowded on-board 
time, respectively

• Wait time after denied boarding is perceived 68% more 
negatively compared to initial wait time
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  W i l l i n g n e s s t o
 w a i t e s t i m a t i o n

• 380 respondents in Krakow
• Choice experiments

• Willingness to wait of
• Typically 5-10 min
• Up to 15-20 min in case of 

older travellers, non-time-
critical trips, longer journeys 
and over-crowding

• Considerable heterogeneity 
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Application
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   :Exam p le Stockholm m e t ro
s y s t e m
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    :App lica t ion Sou thbound pa rt of
  t h e R e d l i n e

•      Passengers are skewed towards the
 l e a d i n g c a r s



21

  Mode l va lid a t ion
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  S c e n a r i o s d e s i g n

• Base scenario: The studied area is 
simulated with the current average morning 
peak hour demand.

• Increased demand scenario: The studied 
area is simulated with increased demand by 
50%.

• Intervention scenario: Closure of an 
entrance point at DAS.
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  R o l e o f d a y -t o -
day learning
Experienced 
passengers alter 
their travel behavior 
aiming to minimize 
car-specific 
discomfort, leading 
to lower on-board 
crowding 
unevenness.

Increasingly so with 
increased demand.
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 S c e n a r i o s
a n a l y s i s

Closing an entrance at DAS  
skewed boarding distribution at DAS  
a more even on-board distribution at downstream 
stations.
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Real-Time Crowding 
Information (RTCI)



27

    Modelling impacts of information
p r o v i s i o n
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    Modelling car-specific RTCI in
B u s M e z z o

• Predict RTCI for each trip segment based on the 
measured car crowding level of the most recent 
train run. 

• Each passenger utilizes the generated car-
specific RTCI, as an in-vehicle time multiplier of a 
given trip segment, in the decision making 
process. 
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     Already tested at the vehicle
level

• share of the worst on-board overcrowding experience 
decreases by 27%

• waiting time due to denied boarding are reduces by 30%
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  RTCI provision schemes
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Application



32

   Case study application

• 1 million passengers daily
• 20% of the seats remain empty  in the morning 

peak hour

• Scenarios
– App with varying penetration
– 10 most heavily loaded
      stations with the largest 
      unevenness of boarding
      passengers
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Even when 
passenger load 
exceeds total seated 
capacity (378) for 
the train as a whole, 
there are still seats 
that remain 
unoccupied in 
individual cars.



34

  E f f e c t o f a p p -
   b a s e d R T C I o n

 o n -b o a r d
 c r o w d i n g

u n e v e n n e s s• Positive effect on 
crowding unevenness 
on-board trains 
departing from the 
most heavily loaded 
stops (upstream of 
the center)

• Some ‘global’ route 
choice effects along 
crowded corridors

Southbound

Northbound
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    RTCI at train- vs. car-level

• Train-level assumes an even on-board crowding 
distribution

• Train-level information is less actionable
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    E f f e c t o f a p p -b a s e d R T C I
  ’o n p a s s e n g e r s

  g e n e r a l i z e d t r a v e l c o s t

Better focus on 
selected locations

Best collective outcome 
obtained when only 50% 
have access to RTCI
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  Sweet demand spot?

Low demand levels 
 Low need

High demand levels  
little difference and 
high risk
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 Next s t e p s
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   -On going a nd fu tu re work

• Using the simulation tool to devise service 
planning and control measures (e.g. skip-
stop operations)

• Demand management tool (e.g. anti-
bunching)

• Crowding perceptions during the pandemic

• Customized information
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