Multi-Modal Integration around Metro Networks-Learnings from the Bengaluru Metro MMI Plans

Ravi Gadepalli Consultant with Asian Development Bank (ADB) Transit Intelligence LLP Email: ravi@transitintelligence.in

TA 6659-IND: Bengaluru Metro Rail Project - Consultancy Assignment to Support Integrated and Sustainable Urban Development Along Mass Rapid Transit Corridors in Bengaluru City (53326-001)

22nd March **2023**

Sub - consultants

What do metro users need?

~

- User satisfaction surveys of current users and non-users of Bengaluru metro provide interesting insights ٠
- Facilities within metro satisfactory to most users, although fares are repeatedly identified as 'too-high'
- Safe, convenient and economical access to metro by bus, walk and cycle highlighted as a key improvement area by both users and nonusers

ARCADIS

IBI GROUP

metro de main

Ь Г

Knight Frank

How do users access the metro now?

ADB 3

The Phase 2A and 2B Corridors of Bengaluru Metro

along the corridor

4.57%

of the city is

22.8%

of the city is

under blue cover .

under green cover

DEVELOPMENT

ENVIRONMENT

IT, the largest growth driver for the city since 2000, has major presence along the corridor. TOD is an opportunity to improve the urban experience and **attract the best talent and best investment to the city**. **ARCADIS**

IBI GROUP

L)

Knight Frank

50-60% Share of corridor in commercial office space transactions in the city
Highest demand for commercial development is along this corridor. TOD is an opportunity to increase housing options for people working here.

> Largest extent of loss of blue and green cover in the city has been along this corridor. TOD is an opportunity to **restore the corridor's blue and green assets.**

5

FIVE BIG MOVES			KEY STRATEGIES	PROJECT COMPONENTS
1	2	CUSTOMER CENTRIC INTEGRATED TRANSIT NETWORK	 Integrate metro, bus & rail as a cohesive network of high quality services Adopt a customer-first approach to ensure high levels of service across the network Build in flexibility to adapt to the growth & changes in demand patterns Phase out plans to incrementally strive towards enhanced & efficient public transit service 	Institutional integration Operational Integration Measures
2		MULTI-MODAL TRANSIT HUBS AS "THIRD PLACE"	 Create hierarchy of transit nodes to integrate variations in transit diversity & commuter preferences Integrate attractive public realm, placemaking & ancillary facilities 	Operational Integration & Physical Integration
3	•	ENHANCE & EXPAND FIRST- LAST MILE CONNECTIVITY	 Promote healthy streets by prioritizing walking & cycling infrastructure Integrate active transportation into blue-green networks Promoted regulated, flexible & shared mobility options 	Physical Integration at access sheds and station vicinity Operational Integration
4		PLAN FOR CUSTOMER CONVENIENCE	 Adopt integrated journey planning with common ticketing & real-time information sharing Monitor commuter satisfaction through regular feedback mechanisms Design for universally accessible & seamless transfers with a strong focus on commuter experience 	Technological Integration Physical integration at stations
5	P	STRATEGIC PARKING MANAGEMENT	 Discourage private mobility by introducing travel demand management strategies: Adopt reduced parking provision norms Encourage & regulate shared parking facilities Adopt parking pricing strategies 	Parking Management Plans & MMI Plans where appropriate

What is Multi Modal Integration (MMI)?

MMI refers to improving the end to end journey experience of public transport users such that they're encouraged to prefer public transport over personal travel modes

Effective MMI will expand the access area of metro rail systems and will help in retaining current users and attracting more ridership

MMI is typically evaluated across the following 5 pillars

01	02 information integration	03 Operational Integration	04 量 INSTITUTIONAL INTEGRATION	05 INTEGRATED TICKETING
Infrastructure and access points for different modes in close proximity and connected facilities to enable convenient interchange.	Information about fares, time and transfer between modes is clear and easily accessible, so users can make well-informed decision.	Integrated operations of various service modes (public & private) within same premises enhances ease of access & operational efficiency.	Improved coordination A single pl between agencies or level system en of government increases reserve, tr operational efficiency and standardisation. well integr technolog	atform or ables user to ansfer between nulti-modal trips ated through y.
 Accessible & safe bus stops Infrastructure for seamless multimodal transfers Network of footpath Dedicated/shared bikeways Safe crossings Bus priority lane Electric vehicle charging Bicycle share Bicycle parking Passenger pick-up & drop-off 	 Way finding Informal mobile retail services Real-time travel information 	 Network simplicity to create coherent and legible connections Service rationalization Seamless and synchronised transfers Bus feeders Last mile modes including on- demand taxi/ auto-rickshaw services and micro-mobility (bicycle share or e-scooter share). Smart and dynamic parking 	 Real-time data sharing and dynamic planning Sharing of costs and revenues Coordination and emergency management Real-tim trip plar platform Common 	e multi-modal ning and decision n mobility card
	Benefits for commuters	Benefits for operators	Benefits for the city	
	Reduced travel time Reduced hassle of interchange Savings in money Last mile connectivity	Higher revenue Higher operational efficiency Higher cost efficiency	Reduced traffic Reduced carbon emission Better air quality Higher guota for public spaces	

ARCADIS

Proposed MMI hierarchy

Stations along the phase 2A-2B corridors are segregated into categories

7

MMI Planning Scale

ADB 8

Physical MMI proposal framework

ARCADIS IBI GROUP

9

Preliminary goals for MMI within the broader vision

Mode/	Intended Outcomes	Intended Outcomes Project Planning Goals					
User						Inst	Tckt
Universal	Unlocking potential connectivity to the entire public transport system	 Stations and station vicinities should promote seamless connectivity to other connecting public transport modes with amenities and information for all types of users (genders, ages, abilities). 	✓		✓	✓	
	Appropriateness of Entry and Exit Locations	Station entry and exits should be located such that dispersal from these points is safe, direct and convenient.	\checkmark				
Walk	Ensuring continuity, directness, and legibility of the walking infrastructure	 Pedestrian networks surrounding the station should offer maximum, continuous and direct, safe, connections to surrounding neighbourhoods. Wayfinding and access to information should be prioritized for pedestrians, to make walking a reliable choice. 	~		~	~	
	Enhancing walkability to major activity generators	 Streets connecting to major origins and destinations should be safe, comfortable, and attractive, such that walking is the most preferred choice within a 6 min walking distance. These connecting streets should be well-lit and activated to enhance personal safety for women, children, and other vulnerable groups at all times of the day. 	~		~		
	Ensuring adequate footpath widths and safe pedestrian crossing near stations	 Footpath widths surrounding the station should be sufficient to support dispersal of passengers during peak utilization of metro. Pedestrian priority should be maintained at intersections surrounding the station that connects to the complete network of streets, 	✓				
Bicycle	Ensuring continuity, directness, & legibility of the cyclable infrastructure	 Cycle networks to be planned to offer maximum, continuous and direct connections for cyclists to surrounding neighbourhoods. Wayfinding for cyclists should be available across the cycle shed to promote use of cycles for the first/last mile. 			~	~	
	Enhancing cycling safety & comfort to major activity generators	 Cycling tracks or lanes or cycle shared lane marking to be provided on all roads identified in the cycle network, and prioritized for the roads connecting the metro station. 	✓		✓	~	
	Ensuring safety of cyclists in cycle lane alignments near stations	 Protected cycle lanes to be provided near stations to protect cyclists from conflicts and potential crashes and connect back to the complete network of streets, 	✓				
	Adequacy of cycle parking or PBS station locations	 Cycle parking and PBS stations should be conveniently located so as to be within a quick 300m walk from any where within the cycle shed 	✓	✓	✓	✓	
	Ensuring adequate bus route alignments serving surrounding catchments	 Bus routes should provide connectivity from high demand locations that are beyond 1km from the metro station. 	✓	✓	✓	✓	
	Ensuring adequate bus service frequencies for high demand areas	 Bus service frequencies should be high for identified feeder routes to attract commuters to buses for the first and last mile. 		✓	✓	✓	
	Ensuring availability of essential information about bus/ other modes schedules & arrivals at decision points	 Information about bus routes, schedules and real-time location of buses should be easily available to commuters and allow them to plan their journey in an integrated manner. 			✓		
Feeder modes	Prioritization of bus stop location compared to other transfer facilities	 Where feeder routes are to be prioritized, bus stops should be located very close to station exits with displayed dynamic information about expected bus arrival time. Shared ride and pick-up zones should be provided where feeder routes are not possible, and or to be planned to be a longer walk from station exits. 	~		~		
	Appropriateness of auto stands, EV 2W parking, & pick-up/drop-off locations	 IPT and shared electric mobility options should be available as safe and comfortable, high quality choices where feeder options are needed. Pick-up/ drop-off and parking facilities for private vehicles should be provided at peripheral stations and other stations where public and/or shared feeder mobility options are not freely available and should be located so as to not conflict or interfere with pedestrian or bus transfer movement. 	~		~		

10

ADB

Knight Frank

Ĵ

IBI GRC

ARCADIS

1

Physical MMI proposal by mode

SI. Mode No						Measures of Effectiveness (MoEs)							
		Recommendations on	Source of Analysis Applicable Standards		plicable Standards	Pedestri- an travel times	Pedes- trian-ve- hicle conflicts	Pedes- trian density on foot- paths	Vehicular Queue Length*	Vehicular average delay	% Cover- age**	MMLOS**	
1		Station entrance structure	Simulation										
2	Universal	Design parameters for universal ac- cessibility	Design Principles	٠	IIRC:SP:117-2018: Manual on Universal Accessi- bility for Urban Roads and Streets								
3		Continuity and directness	Pedshed and Barrier Analysis										
4	Walk	Walkability to activity generators	Shortest Route Anal- ysis and Walk LOS	•	IRC 103-2012: Guidelines for Pedestrian Facilities IRC 86-2018: Geometric Design Standards For								
5	VVCIN.	Footpath widths	Simulation		Urban Roads And Streets								
6		Pedestrian crossing locations	Simulation	1•	lender SURE								
7		Pedestrian grade separated facilities	Simulation	1									
8		Continuity and directness	Cycleshed Analysis										
9		Cyclability to activity generators	Bicycle LOS		IPC 11 2015: Percempended Practice for the								
	Cycle	Cycle lanes network	Cycleshed & Barrier Analysis	r	Design and Layout of Cycle Tracks								
		Cycle lane alignments	Simulation]									
		Cycle parking and size	Emperical Analysis	٠	Indo HCM								
	Feeder - Bus	Bus shelter location and size	Simulation	•	TOD Guidance Document, MoHUA 2016 IRC:70-2017 Guidelines on Regulation and Con- trol of Mixed Traffic in Urban Areas								
	Feeder: Shared	Auto PPUDO bay location and size	Simulation	•	TOD Guidance Document, MoHUA 2016 Indo HCM								
	mobility	Two-wheeler rental bay location & size	Simulation	٠	Indo HCM								
	Feeder	Two and four wheeler PPUDO bay location and size	Simulation	•	Indo HCM								
	Private	Traffic detours & median openings	Simulation										
	mobility	Geometric improvements and junc- tions	Design principles										
		Street furniture (benches,lighting)	Design Principles	•	IRC 103-2012: Guidelines for Pedestrian Facilities IRC 86-2018: Geometric Design Standards For Urban Roads And Streets								
	Urban	Signage (identification, informational, directional, regulatory)	Design Principles	•	IRC: 67-2012: Code of Practice for Road Signs								
	Elements	Landscape	Design Principles	٠	IRC 103-2012: Guidelines for Pedestrian Facilities								
		Bus shelter design	Design Principles	٠	ITDP Better Streets Better Cities								
		Cycle stand	Design Principles	٠	ITDP BRT Planning Guide, 4th Edition								
		Amenities (toilets/changing room etc)	Design Principles	٠	IRC 103-2012: Guidelines for Pedestrian Facilities								

Legend: Scales of recommendations

Corridor

Access shed

Station vicinity

Note": LOS is not evaluated for Vehicular Queue Lengths; instead, this is evaluated in terms of queue length at the junction up to the PPUDO zones outside the station entrance structure Note": % Coverage and MMLOS are evaluated as part of the access sheds

1

Exhibit 4.349: Conceptual visualisation of Kalyan negar metro station (service road south)

Physical MMI proposal by mode

B. BASE SCENARIO - 2031

lane(BPL)

1

On the same station alignment as the existing situation map, the BMRCL proposal has been overlapped and the MMI behaviour has been analysed for the year 2031. The exhibit below shows the base scenario of Bellandur. A simulation has been done on this scenario and the extracted issues and inferences have been highlighted on Exhibit 4.59 below.

Physical MMI proposal by mode

ADB 14

C. PROPOSED SCENARIO

1

The proposed scenario addresses the issues highlighted in the Base scenario-2031 and further improves them to create a more efficient MMI plan. Exhibit 4.60 below shows the proposed scenario of Bellandur. A simulation has been done on this scenario and the improved results has been highlighted on the map.

Physical MMI proposal by mode

The design proposal along with the details of all MMI facilities have been shown below in Exhibit 4.61. Note: The quantity requirements for PPUDO bays have been achieved

through demand estimation method as explained in the Annexure. In the MMI plan in Exhibit 4.61, these quantities have been adjusted according to the prioritisation of modes as per the MMI hierarchy of the station.

	MMI Excilition	Dimensions	NO OI	opaces	Distance from Entrance Lobby (iii)			
	mimi raciliues	(m)	North	South	North	South		
\$	Pvt cycle/PBS Stands	2 x 1	8	8	66	63		
8	Rental E- scooter Stands	2 x 1	10	10	87	70		
Ē	Feeder Bus Shelter	8 x 2.5	2	2	14	15		
ij	ORR Bus Shelter	8 x 2.5	3	3	55	50		
3	Auto Bays	3 x 1.5	4	4	38	54		
÷.	2W Bays	2.5 x 0.8	3	5	78	70		
	Shared Taxi/Private Car	6 x 2.5	2	2	60	73		

City level information and ticketing integration strategy

ADB 16

Advantages

2

- Allows multiple players to innovate the market
- Coordination between participating organizations is streamlined

Disadvantages

 Financial & regulatory management of open data platform Alternative 2 Data Aggregation by one single authority

CENTRAL MOBILITY DATA CENTRE

Advantages

- Data Centre can facilitate faster customer-centric solutions
- Builds on the existing trust & relationship with the authority

Disadvantages

- Rules are set by the Data Centre
- Less innovation-centric as data is restricted

RECOMMENDED STUCTURE

Alternative 3 Direct Data Sharing Between Operators & Agencies

Advantages

- Solution providers can have preferential contracts with individual mobility agencies
- Faster solution implementation due to direct interaction

Disadvantages

- Potential bias in mode suggestion due to nature of contract with mobility agency
- Tedious for mobility agencies to get into multiple contracts

Alternative 4 One-to-One Data Sharing without any central platform

Advantages

 Each mobility agency can develop their own information dissemination system

Disadvantages

- No easy way for small innovative market players to enter the market
 No single all-encompassing source
- of information for consumers

MaaS enables better institutional & ticketing integration

 Data centre is envisioned to create the platform on which MaaS can be developed going forward

Integrated Information & Ticketing for BMRCL and BMTC

Information Systems

Current Status

- BMTC deploying ITS system with the vendor developing GTFS data and can be shared with DULT
- BMRCL (and KRIDE) need to develop GTFS data

Actions needed

- DULT/ BMLTA to build an open data portal across transit agencies
- Staff to be recruited for GTFS data creation and maintenance for BMRCL (and KRIDE)
- Open data portal needs to sign datasharing agreements with APIs (Google/ Moovit etc.)

Smart card based ticketing

Current Status

- BMRCL has an open-loop card vendor and acquirer bank to collect revenue. Yet to launch the card
- BMTC deployed ETMs which can read open loop cards. Looking for a vendor to issue smart cards

Actions needed

- Explore using BMRCL smart card for BMTC
- Revenue sharing protocols to be identified (direct money transfer to BMTC instead of T+ 1)
- Transaction fees to be renegotiated in coordination with BMTC

Mobile ticketing

Current Status

- QR code reading enables in both BMTC and BMRCL
- BMTC and BMRCL piloting mobile ticketing with separate vendors
- No integration planned currently

Actions needed

- Develop an open-ticketing layer covering BMTC and BMRCL with revenue reconciliation protocols
- E.g. Delhi's DTC+ DIMTS integration can be a model
- The open ticketing layer can be shared with any vendor (Paytm/ Tummoc, RBL etc.)
- Issue one QR code which can be read in both BMTC and BMRCL

Integrated journey planning and multimodal ticketing are key priorities for users

Learnings from the UK BODS example

Bus Open Data Service (BODS)

Department for Transport

- "World first" to make national schedule, real-time, and fares data openly available
- Over 500 private bus agencies and ~26,500 vehicles in scope
- Digitally transformative to the government and the wider industry
- Data standards legally mandated
- Currently in first full year of adoption (regulations came into force 7 January 2021)
- Proper aggregated approach rather than a simple 'index'

"The Bus Open Data Service will digitally transform bus services – high quality open data will help passengers plan journeys, find best value tickets and get real time service updates whatever part of England they are in."

- UK Department for Transport

Learnings from the UK BODS example

Data standards & interoperability

Interoperable standards makes data easier to use/ reduces friction

Data interoperability

Learnings from the UK BODS example

Implementation

Implemented through continuous process of industry consultation and specific user research

Providing a unique national dataset

3 Operations Integration with bus

Approach for bus and metro network Integration

ANALYSE IMPACT OF PHASE-1 METRO ON BMTC

1.1 Service supply of BMRCL and BMTC

- Network analysis
 - Network mapping in GIS
 - Metro and bus service area overlap
 - Overlapping and feeder routes
- Service analysis
 - Bus routes in metro influence area
 - Supply before and after metro (Jan 2017 Vs Jan 2020)
 - Supply before and after Covid (Jan 2020 Vs March 2021)
 - Hourly service volumes planned and delivered

1.2 Travel demand characteristics of BMRCL and BMTC

- BMRCL ticketing data analysis
- BMTC ticketing data analysis
 - Data from Intelligent Transport Systems (ITS)
 - Travel demand within and outside metro influence
- Comparison of bus and metro travel demand characteristics
 - Ticket (token) vs pass (smart card) users
 - Daily and Hourly variation in demand
 - Trip length characteristics of users

IDENTIFY OPPORTUNITIES FOR BUS-METRO INTEGRATION

2.1 Route network improvements

- Identification of parallel and feeder routes
- Travel demand on overlapping routes
- Routes to be rationalised
- Location of bus terminals near metro stations
- New areas of service coverage

2.2 Service improvements

- Peak hours of supply for better integration
- Improved schedule adherence
- Location of bus terminals near metro stations

- BMTC routes and stops mapped using the ITS network database and Form four data
- BMTC serves the Bangalore metropolitan region
- However, bus stop density decreases significantly beyond BBMP boundaries and even further beyond Bangalore urban district boundaries

Bus network mapping in Bengaluru's metro influence area

- 2 km service area from metro stops considered as the catchment for the metro
- All bus stops, routes and their schedules in this area were identified through ITS database mapped in GIS

Bus service supply in metro influence area

- BMTC's services in the 2km influence area of the metro haven't been significantly impacted by the phase-1 metro
 - 91% of all routes operating in the metro influence area for some length.
 - Between January 2017 and January 2020, the number of buses operating on these routes increased by 11% increase
 - Increase in fleet led to just 2% increase in bus service-km within the metro influence area
- The revenue patterns of metro influence and the remaining network essentially similar and growing at 13-15% every year

2017 VS 2020 EPKM (IN INR) OF BMTC

Bus network parallel to the metro

- Despite 91% rotes within a 2 km radius of metro, routes along the metro corridor are limited
- Definition of 'along the metro': Route has more than one stop within 400m from metro stations
- 78% of the routes overlap for less than 25% of their length
 - 40 routes have more than 50% of their length and at least 5km of overlap
 - 382 routes in the 25-50% overlap category
- Travel demand on these routes needs to be analysed to decide on their rationalisation

BMTC ROUTES PARALLEL TO THE PHASE-1 METRO

> Travel demand characteristics: Covid impact

- Demand data for March 2021 compared with January 2020 to understand impact of Covid-19
- Metro demand dropped to 28% of pre-Covid daily ridership
- Bus demand dropped to 37% of pre-Covid daily ridership
- Bus demand in BMTC 7-8 times metro demand pre-Covid, increased to 10 times post-Covid

Daily Metro Demand (in lakhs) (Jan'2020 Vs Mar'2021)

Jan-20 Mar-21

> Hourly distribution of bus and metro trips

- Both metro and bus have sharp 2-hour peaks in the morning and evening
 - Only Sundays have a spread-out demand throughout the day
- Morning peak occurs between 7AM-9AM for both modes
- Evening peak for metro spread between 6PM-8PM, while for buses demand drops sharply after 6 PM
 - Evening peak for buses lower than morning peak
- Peak spread similar before and after COvid

- Average trip length of metro and bus users similar at 9.5-10 km
- 40-50% of bus trips shorter than 5 km
 - Average skewed by >20 km long suburban trips
- 63-64% metro trips between 5-15 km
 - >15 km trips small due to limited network connectivity

Trip length distribution of metro users (Jan'20 Vs Marc'21)

Jan-20 Mar-21

Trip length distribution of bus users (Jan'20 Vs Mar'21)

Analysis

- Key objective
 - Reduce routes with high service and demand overlap

with metro for improved complementarity

• Approach to identify routes for reduced service:

Approach

Conclusions and key takeaways

- Multi-Modal Integration is crucial to attracting passengers to metro rail systems
- Each of the five pillars of integration are crucial- Physical, Information, Operations, Institutional and Ticketing integration
 - Physical integration
 - Metro agencies need to collaborate with local road owning agencies to ensure adequate access infrastructure

31

- National-level guidelines for MMI need to incorporate adequate provisions
- Operations integration
 - Buses are not competition to metro. Need to evolve an integrated network and service plan
- Information integration
 - Metro agencies need to explore a National data centre and common integration platform with GTFS feeds
- Ticketing integration
 - Need to enable open loop cards and account-based ticketing across bus and metro
- Institutional integration
 - Metro needs to play the lead-role in institutional integration through the State urban development department
- Customer engagement is lacking across Indian public transport agencies. Metro agencies need to take up concerted efforts to improve this
- iMetro can explore facilitating engagements through MoHUA and Indian Roads Congress (IRC) to advance conversations with other agencies.

Additional slides

Blue Line - Phase 2A

KEY FEATURES OF PHASE 2A METRO PROJECT

⊲→>	Ţ			8898 1911
Length	Stations	Expected Year of Completion	Interchange Stations	Projected Daily Ridership 2031 2041
18.5Kms	13 Nos	2025	3	4,49,990 5,82,912

KEY FACTS OF THE STUDY AREA

Traffic & Transit

Key Workplaces Major Intersections **Interchange Stations** RMZ Ecoworld along ORR Central Silk board RMZ Ecospace Whitefield Main Road Embassy Tech Village Ibbalur ٠ . Marathahalli Main Road Cessna Business Park KR Puram Kadubeesanahalli Road . Global Technology Park Doddakanelli Road • Prestige Tech Park **IR Stations in proximity** ٠ Bellandur Main Road • Bagmane Tech Park KR Puram Sarjapur Road . **KRIDE Station in proximity Key Institutions Open spaces** Bellandur road ٠ ISRO Campus Marathaballi Lakes ٠ DRDO Kaggadasapura . Agara Lake ٠ HAL Baiyapanahalli . Bellandur Lake . New Horizon College Ibbalur Lake Sakra World Hospital . Nekkundhi Lake **Bus Terminal** . B Narayanapura Lake . Silkboard TTMC Other developments . Doddanekundi Lake Vydehi TTMC . HSR BDA Complex KR Puram Bus Terminal . Adarsh Palm Retreat Major Open Spaces Green Glen Layout **Bus Priority Lane** Purva Parkridge ٠ Ibbalur Park

Agara Park

Pop up Cycle Lane

Brigade Metropolis

Development

Blue Line - Phase 2B

KEY FEATURES OF PHASE 2B METRO PROJECT

d—⊅ Lengti 36.4Kr	h ms	Stations 17 Nos	Expected Year of Completion 2025	C Interchange Stations 5	Projected Da 2031 8,35,623	ily Ridership 2041 11,14,240
KEY FACTS Traffic Intercha • Nagau • Hebbs IR Static • Yelahs • Hebbs • Baiya KRIDE S • Kodig • Judici • Yelahs • Dodd • Trump • KIAL Bus Terr • Hebbs • Yelahs • Dodd • Trump	S OF TI c & T ange S wara St al Statio ons in anka al panaha Statior gehalli ial Layo anka lajala pet Termina minals al anka ur	HE STUDY AR ransit tations tation on Proximity alli in Proximity out alls a	Lakes • Beninganah • Chalkere La • Nagawara L • Hebbala Lak • Hunasemara Lake Major Open S • Hennur Lake Biodiversity	aCES alli Lake ke ake ke anahalli paces Park	Develop Key Workp • Umiya Ve • Brigade r Opus • L&T Tech Key Institut • Manipal F • Aster CM • GKVK (U • Yelahank Campus base • Sir MVIT Other deve • Embassy terraces • Century I • L&T Rain Boulevar • RMZ Gal	oment laces elociti nagnum & park tions Hospital II Hospital AS) a BSF & Airforce lopments Lake Ethos tree d
Major In along O • KIAL I • Vidya • Bagal • Kogilu • Yelah • Jakku • Kemp	Rerseo RR Road Iur Mair U Main U Main anka M ur Main Dapura I	Cross Road n Road Road lain Road Road Main Road	 Nagawara M Hennur Mair Kammanaha Road Horamavu N Ramamurthy Main Road 	fain Road n Road alli Main fain Road y Nagar		