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Outline of the talk

Need for software tools in operations planning

Data availability/digitization: machine learning/artificial intelligence

Tools recently developed by our group in railway operations

Other tools (non-railway) developed by our group

FOSS and ‘development-participation & owning’ of tools

Suggestions about tool-specifications: primarily from ‘shop floor’

Quantity of service: more throughput, more services, more persons served

Quality of service: high-average speed, low waiting-time, high frequency,
medium occupancy within metros)
Need to operate at high quantity/quality of service
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Vehicles flow models: flow rate (throughput) vs density
(Partly relevant for trains)

Source: Traffic Flow Theory, D.L. Gerlough and M.J. Huber (1975)
Throughput peaks at an optimum density
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Vehicles flow models: average speed vs flow
Quality of service vs quantity of service

Source: Traffic Flow Theory, D.L. Gerlough and M.J. Huber (1975)

Bad for throughput: too low speed, also too high speed!
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Mumbai (full) suburban network
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Constraints

Hard constraints:

Headway: safety

Frequency of service: demands: origin/destination services

Traversal times

Turn-around constraints: ‘rake linking’

Platform dwell/occupancy constraints

Soft constraints:

Spacing between consecutive ‘similar’ services
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Mumbai
harbour-line

network
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Constraints tightest at CSTM (“VT”)

Platform vacating constraints:
An exit (from platform 2) hinders consecutive two entries

Ideal: ‘Scissor’ crossing

Fastest exit and least ‘hindrance’ to following entries

Curves are on only a small distance: hence smaller distance of low-speed
constraints

Pretty expensive (but not exorbitant)
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Platform-asymmetric layouts at a terminal
Not-too-bad layout:

But

Higher hindrance layout: at CSTM (due to curvature constraints: not
displayed)

Exit from platform 2 delays entry into platform 1
Higher hindrance in the lower layout
Lower layout: curve after bottleneck portion: slower exit
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Inputs to the tool

Inputs: different infrastructural parameters:

Stations, network layout

Passenger demands, traversal times

Turnaround times at terminals

Output: timetable meeting all constraints with least number of rakes

Madhu Belur (EE, IITB) Automation in operations planning Mar’23 10 / 30



Case Study: Harbour Line Network

Current Status: Mumbai Harbour line network

12 major stations

49 rakes in service in peak time - 38 for Harbour and 11 for Trans Harbour

For a 3 hour peak timetable, about:

750 Departure-Arrival Events

40500 Headway Variables (Integer or Binary)

10000 Linkage Variables (Integer or Binary)

6500 Platform Variables (Integer or Binary)

3200 Precedence Variables for Platform Allocation (Binary)
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Case Study: Harbour Line Network

Resources Used:

Modelling: AMPL to model all the constraints

Solver: Gurobi

Python & Bash Scripts for pre-processing and post-processing

Trying Pyomo and PuLP to replace AMPL/Gurobi
Status: able to save 3 rakes (out of 45 of the current timetable)

Madhu Belur (EE, IITB) Automation in operations planning Mar’23 12 / 30



Case Study: Harbour Line Network

Resources Used:

Modelling: AMPL to model all the constraints

Solver: Gurobi

Python & Bash Scripts for pre-processing and post-processing

Trying Pyomo and PuLP to replace AMPL/Gurobi
Status: able to save 3 rakes (out of 45 of the current timetable)

Madhu Belur (EE, IITB) Automation in operations planning Mar’23 12 / 30



Case Study: Harbour Line Network

Resources Used:

Modelling: AMPL to model all the constraints

Solver: Gurobi

Python & Bash Scripts for pre-processing and post-processing

Trying Pyomo and PuLP to replace AMPL/Gurobi
Status: able to save 3 rakes (out of 45 of the current timetable)

Madhu Belur (EE, IITB) Automation in operations planning Mar’23 12 / 30



Case Study: Harbour Line Network

Resources Used:

Modelling: AMPL to model all the constraints

Solver: Gurobi

Python & Bash Scripts for pre-processing and post-processing

Trying Pyomo and PuLP to replace AMPL/Gurobi

Status: able to save 3 rakes (out of 45 of the current timetable)

Madhu Belur (EE, IITB) Automation in operations planning Mar’23 12 / 30



Case Study: Harbour Line Network

Resources Used:

Modelling: AMPL to model all the constraints

Solver: Gurobi

Python & Bash Scripts for pre-processing and post-processing

Trying Pyomo and PuLP to replace AMPL/Gurobi
Status: able to save 3 rakes (out of 45 of the current timetable)

Madhu Belur (EE, IITB) Automation in operations planning Mar’23 12 / 30



Case Study: Harbour Line Network

Resources Used:

Modelling: AMPL to model all the constraints

Solver: Gurobi

Python & Bash Scripts for pre-processing and post-processing

Trying Pyomo and PuLP to replace AMPL/Gurobi
Status: able to save 3 rakes (out of 45 of the current timetable)

Madhu Belur (EE, IITB) Automation in operations planning Mar’23 12 / 30



Case Study: Platform Allocation at CST
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Case Study: Rakes in Operation vs time
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Case Study: Rake Cycles vs time
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Large data problems: metro/suburban timetabling

Input: services/frequencies

Constraints: headway, turn-around, platform occupation

& vacating

Output: rake-cycles and the timetable

Number of rakes: need to optimize

Constructive timetables: rakes/services are incrementally introduced

Can handle rake-cycles constructively: still difficult task

Constrained programming based solvers:
• Gets a good feasible solution
• Helps to have spreadsheet based validators/checkers

(Though solvers have ensured satisfaction of constraints, one can validate by
introducing ‘test-flaws’)
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Periodic and Aperiodic Versions

Periodic Version:

Tough integer programming problem: but fewer variables (just one
period)

Needs identical situations at end of every time period

Very compact description of timetable

Makes crew-scheduling easier

Aperiodic Version:

Allows customization of services (peak 3-hour timetable need not have
all service-counts as multiple of 3)

Many more event arrival/departure variables

Have tried both versions in Mumbai suburban, but detailed case study is the
aperiodic version
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Delhi metro timetable: example
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Computation tools: example: spreadsheet/excel

A hand-calculator (or computer’s calculator) can perform complex
calculations

Insufficient for large repetitive calculations on data

Need spreadsheet/excel’s power
=SUM, =IF, =SUMIF, complex formula, etc.

Can use ‘VLOOKUP’ to quickly merge data across sheets

“Advanced and mature usage of spreadsheets for large data:
pivot-tables”: data analysis (summary)

However, spreadsheet:
insufficient for complex allocations/constraint validation
has limited ability as a ‘solver’
no ‘while’ loop, no jumping from one solution to another
not OK for automation, nor for large data
semi-automatic, at best
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Large data problems: crew allotment

Complex safety-based rules: Hours of Employment and Period of Rest
Rules (HOER)

Need to utilize crew members efficiently
Efficient utilization of crew: more buffer for:

robustness
can allow liberal leave policies

WR suburban services: ∼1400 services: to manage in ∼380 crew
members
Tool helps to:

tweak/modify and re-run: takes a minute for each program-run
add/delete services and re-run program
redecide/change lobby locations and check
optimize required number of lobby locations
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Tools: constructive/solvers/simulation/semi-automate

In my understanding

Constructive allocation tools: ensure constraints are satisfied:

Allocation based on ‘solvers’: satisfy all constraints (feasible solutions),
search for ‘best’ feasible solution

Validation/checker tools: easily checked in spreadsheet

Simulation: for complex scenarios/rules/constraints

Analysis: tool extracts statistics from simulation or other data

Visualization tools: to ratify data
and also view analysis-based statistics, aid further tool-usage

Semi-automate: provide portal/interface to simplify complex problems
portal takes inputs manually,
after showing statistics, awaits further inputs
Decision-support tools: can be visual
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Machine Learning/Artificial-intelligence

Data (digitally) available now for ‘pattern-searching’: can use ML and AI

Only humans (natural intelligence) can make use of these AI tools
Supervised learning: needs training data, validation data, and then
“deploy” to find more/better patterns, adapt and predict

Used to extrapolate/predict/fit new data into pre-calculated models
Find outliers (in timetabling?) too fast/too slow?

Unsupervised learning: no initial training: run heuristics to get good
solution

grouping of non-daily trains into same/almost-same path

Reinforcement learning: specify a ‘reward function’ on each solution,
and iterate/jump from a solution to another
often computationally easy to jump (rather than exhaustively search)

optimize crew allotment
choose start-timings to get ‘better and better’ grouping at congested
section
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Recent railway projects completed/ongoing

ZBTT (ongoing): only GQD routes (daily-paths) and freight trains

CR/WR locals: security personnel assignment for late-night travel in
ladies-compartments (9pm to 6am): 2017

RDSO: section simulator: 2018

Use of section simulator for ALD study: for RITES Ltd: 2018

Use of section simulator for Niti-Aayog: short study: 2017

Ahmedabad junction: simulation based congestion study: 2019

WR/CR: crew allotment and harbour line timetable: 2019 (but .... )

GQD: (long-distance) timetabling: ZBTT (in 2020)

Several other usages of this simulator: before 2016: kept in the link
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Our other projects involving development of tools
Together with collaborators, supervised/developed tools for:

Fault diagnosis in nuclear reactor sensors (140 sensors, complex
dynamics)
BRNS project: implementation in Matlab/Scilab,

in 2nd phase: Python
Joint Admission for M.Sc.: allocation program
(ties/reservation/multiple-papers/multiple-rounds/transparency):
2300 M.Sc. seats across IITs (amongst ∼6k JAM-qualified candidates)
Final project/position allotment for MTech/PhD candidates: EE, IITB
Admission shortlisting portal: semi-automation (in EE, IITB)
About 400 candidates (and parents) can leave a day early (to
home/other-IITs)
Interview committee allotment (in EE, IITB): reduce from 4 hrs to 1 min
About 150 candidates (and parents) can leave a day early (to
home/other-IITs)
PhD-students portal: database/scheduling: semi-automation (in EE,
IITB)
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Machinery/tools

Java and Python: free and open source

Free and Open-Source (FOSS): ‘independence’

Helps to use open-source tools: else exorbitant (non-academic) prices
(and strings on usage)

Gurobi as the solver: Gurobi’s limited version is free

IPOPT/COIN-OR (open-source and state of the art solvers):
will shift soon to this

Commercial software: dependence: cannot install on many computers

Software made in FOSS can be modified to yield valuable statistics for
analysis
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Ready-made/proprietary vs ‘home-grown’ software

Our metro-rail operations: complex and unique challenges

Other metro/suburban-railways elsewhere: have their own challenges

Each software needs significant local customization

For complex requirements: prudent to have our own slowly-grown
‘home-grown’ software

Problem specifications: from our own ‘shop-floor’: operations personnel

Railways/Academia/Software-agency: combination inevitable
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Zero-base TT efforts elsewhere: example

The New Dutch Timetable: The OR Revolution, 2009 paper in Interfaces
Paper abstract
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Authors/affiliations (of the famous paper in Interfaces)

The New Dutch Timetable: The OR Revolution, 2009 paper in Interfaces
Authors: Kroon, Huisman, Abbink, Fioole, Ybema, Maroti, Schrijver,
Steenbeek, Fischetti
Affiliations: railway personnel/software-firm/academia

Department of Logistics, Netherlands Railways: Kroon, Huisman,
Abbink, Fioole, Ybema

Rotterdam School of Management, Erasmus University: Kroon, Maroti

Econometric Institute, Erasmus University Rotterdam: Huisman

CWI and University of Amsterdam: Schrijver

Safiro Software Solutions: Steenbeek

University of Padova Italy: Fischetti

Similar efforts in Germany: Narayan Rangaraj’s collaborators

Madhu Belur (EE, IITB) Automation in operations planning Mar’23 28 / 30



Authors/affiliations (of the famous paper in Interfaces)

The New Dutch Timetable: The OR Revolution, 2009 paper in Interfaces
Authors: Kroon, Huisman, Abbink, Fioole, Ybema, Maroti, Schrijver,
Steenbeek, Fischetti
Affiliations: railway personnel/software-firm/academia

Department of Logistics, Netherlands Railways: Kroon, Huisman,
Abbink, Fioole, Ybema

Rotterdam School of Management, Erasmus University: Kroon, Maroti

Econometric Institute, Erasmus University Rotterdam: Huisman

CWI and University of Amsterdam: Schrijver

Safiro Software Solutions: Steenbeek

University of Padova Italy: Fischetti

Similar efforts in Germany: Narayan Rangaraj’s collaborators
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Summary: need to shift to automated/semi-automated tools

Need to shift to modern tools for

• self-growth (and ourselves remaining relevant over next few decades)

• system productivity/efficiency

Tools that are ‘home-grown’ and in FOSS allow complete
flexibility/independence and customization

Describing/formulating the specs of the tool:
• from on-field/operations personnel

(primarily)
• from anybody interested in the area
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Contact details

Thanks to Karthik, Husna, Samay: from EE/IEOR: IITB team
Thanks to CEP office, IITB: Mr. Surendra Gaikwad
Thanks to I-Metro: Ms. Manjari Srivastava, Mr. Sandeep Sharma

Madhu Belur: 99874 66 279, belur@iitb.ac.in

This talk will soon be available at
www.ee.iitb.ac.in/%7Ebelur/talks

www.ee.iitb.ac.in/%7Ebelur/railways/workshop

www.ee.iitb.ac.in/%7Ebelur/railways

Narayan Rangaraj
narayan.rangaraj@iitb.ac.in
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