Transformer

Transformer :

Machine to transform
levels of voltage and current but not power or volt-ampere.

From ampere's law:

$$
\phi_{m}=\frac{\mathrm{N}_{1} \mathrm{i}_{m}}{\text { reluctance }}
$$

- Core
- Winding
$\mathrm{N}_{1}=$ no. of turns of the coil
$\mathrm{i}_{\mathrm{m}}=$ current in the coil

Direction of flux given by right hand thumb rule

From Faraday's law:

$$
v_{1}=e_{1}=N_{1} \frac{d \phi_{m}}{d t}
$$

Magnitude of core flux is determined by the induced voltage and hence applied voltage in case of an ideal

$$
\phi_{m}=\frac{\mathrm{N}_{1} \mathrm{i}_{m}}{\text { reluctance }}
$$ transformer.

For an ideal transformer, $\mathrm{i}_{\mathrm{m}}=0$

Voltage induced in winding 2

Ideal transformer: Recluctance of core material is zero

$$
\begin{aligned}
& v_{1}=e_{1}=N_{1} \frac{d \phi_{m}}{d t} \\
& v_{2}=e_{2}=N_{2} \frac{d \phi_{m}}{d t}
\end{aligned}
$$

Polarity of induced voltage is given by Lenz's law : "dotted" terminals gets " similar polarity

$$
\frac{v_{1}}{v_{2}}=\frac{e_{1}}{e_{2}}=\frac{N_{1}}{N_{2}}
$$

Ideal Transformer on load

$$
e_{1}=N_{1} \frac{d\left(\phi_{m}-\phi_{2}\right)}{d t}
$$

Therefore, $\quad e_{1}<v_{1}$
Hence a current \dot{l}_{1} flows from v1 to "dot" terminal of winding 1.
Flow of current i_{1} in N_{1} sets a flux ϕ_{1} in the core

Ideal Transformer on load

Steady state will reach when, $\phi_{1}=\phi_{2}$
$\phi_{1}=\frac{\mathrm{N}_{1} \mathrm{i}_{1}}{\text { reluctance }} \quad \phi_{2}=\frac{\mathrm{N}_{2} \mathrm{i}_{2}}{\text { reluctance }}$

Therefore at steady state

$$
\begin{gathered}
N_{1} i_{1}=N_{2} i_{2} \\
\frac{i_{1}}{i_{2}}=\frac{N_{2}}{N_{1}}
\end{gathered}
$$

Ideal Transformer on load

$\frac{v_{1}}{v_{2}}=\frac{e_{1}}{e_{2}}=\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$
Therefore,

$$
\begin{aligned}
& v_{1} i_{1}=v_{2} i_{2} \\
& e_{1} i_{1}=e_{2} \dot{i}_{2}
\end{aligned}
$$

Volt-amperes at both the sides are same

Ideal Transformer on load

Impedance seen by winding-1,

$$
Z=\frac{v_{2}}{i_{2}}=\frac{e_{2}}{i_{2}}
$$

Impedance seen by winding-2,

$$
Z^{\prime}=\frac{v_{1}}{i_{1}}=\frac{\frac{N_{1} v_{2}}{N_{2}}}{\frac{N_{2} i_{2}}{N_{1}}}=\left(\frac{N_{1}}{N_{2}}\right)^{2} \frac{v_{2}}{i_{2}}=\left(\frac{N_{1}}{N_{2}}\right)^{2} Z
$$

