Transformer

Transformer :

Machine to transform levels of voltage and current but not power or volt-ampere.

From ampere's law:

CoreWinding

 $N_1 = no.$ of turns of the coil $i_m = current$ in the coil

Direction of flux given by right hand thumb rule

From Faraday's law:

$$v_1 = e_1 = N_1 \frac{d\phi_m}{dt}$$

Magnitude of core flux is determined by the induced voltage and hence applied voltage in case of an ideal transformer.

 $=\frac{N_1 i_m}{\text{reluctance}}$

For an ideal transformer, $i_m = 0$

Voltage induced in winding 2

Ideal transformer: Recluctance of core material is zero

$$v_1 = e_1 = N_1 \frac{d\phi_m}{dt}$$

$$v_2 = e_2 = N_2 \frac{d\phi_m}{dt}$$

Polarity of induced voltage is given by Lenz's law : "dotted" terminals gets ' similar polarity

$$\frac{v_1}{v_2} = \frac{e_1}{e_2} = \frac{N_1}{N_2}$$

Hence a current i_1 flows from v1 to "dot" terminal of winding 1. Flow of current i_1 in N₁ sets a flux ϕ_1 in the core

Steady state will reach when, $\phi_1 = \phi_2$ Therefore at steady state $\phi_1 = \frac{N_1 i_1}{\text{reluctance}}$ $\phi_2 = \frac{N_2 i_2}{\text{reluctance}}$ $N_1 i_1 = N_2 i_2$ $\frac{i_1 = N_2}{N_2}$

 $\frac{v_1}{v_2} = \frac{e_1}{e_2} = \frac{V_1}{V_2} = \frac{N_1}{N_2}$ $\frac{i_1}{i_2} = \frac{N_2}{N_1} = \frac{e_2}{e_1} = \frac{v_2}{v_1}$

Therefore,

 $v_1 i_1 = v_2 i_2$ $e_1 i_1 = e_2 i_2$

Volt-amperes at both the sides are same

Impedance seen by winding-1,

$$Z = \frac{v_2}{i_2} = \frac{e_2}{i_2}$$

Impedance seen by winding-2,

$$Z' = \frac{v_1}{i_1} = \frac{\frac{N_1 v_2}{N_2}}{\frac{N_2 i_2}{N_1}} = \left(\frac{N_1}{N_2}\right)^2 \frac{v_2}{i_2} = \left(\frac{N_1}{N_2}\right)^2 Z$$