Indian Institute of Technology Bombay
 Dept of Electrical Engineering

Handout 7

EE 101 Electrical \& Electronic Circuits
Tutorial 5
Aug 19, 2011
Question 1) Which of the following series RLC circuits are (i) under-damped, (ii) critically damped and (iii) over-damped? The capacitors and inductors were de-energized at $t<0$. If a step voltage of $2 V(v=0$ for $t<0$ and $v=2 V$ for $t \geq 0)$ is applied to the circuits, determine the current in each case.

1. $R=4 \Omega, L=2 H, C=\frac{1}{2} F$ - critically damped
2. $R=2 \Omega, L=1 H, C=\frac{1}{2} F$ - under damped
3. $R=5 \Omega, L=3 H, C=\frac{1}{3} F$ - under damped

Question 2) The initial conditions are zero for the circuit in Figure 2. A step voltage of $V_{\text {in }}$ Volts is applied at time $t=7 \mathrm{~s}$. This means that the applied voltage is zero before time 7 s and the level changes to $V_{i n}$ there after. You are required to find the voltage $v_{c}(t)$ across the capacitor.

Figure 2
Hint: This can be solved faster, if you know the current solution of the series RLC circuit. In particular, this circuit is in some sense a dual of the RLC circuit we extensively discussed in class.

Solution

$$
v_{c}(t)=V_{\text {in. }} \cdot(t-7) e^{-\frac{t-7}{2}} u(t-7) \text { Volts }
$$

Question 3) The switch in Figure 3 is closed at time $t=0$.

1. What is the voltage across the capacitor at $t=0$? ans: 80 Volts.
2. What are the values of $i_{1}(t)$ and $i_{2}(t)$.

Figure 3.

Solution

$$
\begin{align*}
& i_{1}(t)=2 e^{-5 \times 10^{4} t} u(t) A m p s \tag{1}\\
& i_{2}(t)=\left(6-2 e^{-20 t}\right) u(t) \mathrm{Amps} \tag{2}
\end{align*}
$$

Question 4) The switch in Figure 4 is at position a for a long time. At $t=5: 00 \mathrm{pm}$ today, the switch was moved to position b. Find the voltage $v_{c}(t)$ across the capacitor for all time.

Figure 4

Solution

$$
\begin{equation*}
v_{c}(t)=\left(2 e^{-2\left(t-t_{0}\right)}-e^{-\left(t-t_{0}\right)}\right) u\left(t-t_{0}\right) \tag{3}
\end{equation*}
$$

where t_{0} is the time when switch was moved.
Question 5) Find $v_{1}(t)$ and $v_{2}(t)$ if the voltage is $6(1-u(t))$. (This is to compensate for Problem 5 of Tutorial 4, where a switch was present, which renders the circuit currents to zero after time zero. So you can ignore Problem 5 from Tutorial 4).

Figure 5

Solution

$$
\begin{align*}
& v_{1}(t)=\left\{\begin{array}{l}
6 V, \text { if } t<0 \\
8 e^{-2 t}-2 e^{-8 t} V \text { otherwise }
\end{array}\right. \tag{4}\\
& v_{1}(t)=\left\{\begin{array}{l}
6 V, \text { if } t<0 \\
4 e^{-2 t}+2 e^{-8 t} V \text { otherwise }
\end{array}\right. \tag{5}
\end{align*}
$$

Question 6) Find $v(t)$ and $i(t)$ if the input $V(t)=12(1-u(t))$.

Figure 6

Solution

$$
\begin{aligned}
& v(t)=18 e^{-4 t} V, t>0 \\
& i(t)=-3 e^{-4 t} A, t>0
\end{aligned}
$$

Question 7) If $K_{1}=-3$, find the voltage across the capacitor $v_{c}(t)$.

Figure 7

Solution

$$
v_{c}(t)=4-e^{-\frac{3}{4} t}\left(2 \sin \frac{t}{4}+4 \cos \frac{t}{4}\right) u(t) \text { Volts }
$$

