Indian Institute of Technology Bombay
 Dept of Electrical Engineering

Handout 8

EE 101 Electrical \& Electronic Circuits

Question 1) Let an input of $V(t)=240 \sin \left(\omega_{0} t+\frac{\pi}{4}\right)$ Volts is applied as input to the circuit below. At what value of ω_{0} will the voltage sinusoid $v_{R}(t)$ achieve the minimal amplitude. (Recall that amplitude of a sine wave is the maximal level it can take, i.e. α in $\alpha \sin (\omega t)$)

Figure 1
Solution: Converting the voltage source to a current source, we get a parallel $R L C$ circuit, where $R=20 k \Omega$. Using phasor notation, we can write using $K C L$,

$$
\begin{aligned}
V & =I\left(\frac{1}{R}+j \omega C-\frac{j}{\omega L}\right) \\
& =I\left(G_{R}+j G_{I}\right)
\end{aligned}
$$

where $G_{R}=\frac{1}{R}$ and $G_{I}=\omega C-\frac{1}{\omega L}$. Notice that

$$
|V| \geq I G_{R}
$$

and equality happens when $G_{I}=0$, which in turn implies that

$$
j \omega C=\frac{j}{\omega L}
$$

or

$$
\omega^{2}=\frac{1}{\sqrt{L C}}=15.8 \times 10^{6} \mathrm{~Hz}
$$

This is known as the resonant frequency, because the admittance has the minimum magnitude. In a series RLC circuit, resonance occurs when the impedance is minimum, in either case the circuit becomes purely resistive.
Can you justify the term resonant frequency, for the ω_{0} you found in the question above.
Question 2) Find the voltage across the inductor if $V(t)=e^{-5 t} \cos \left(4 t-30^{\circ}\right) u(t)$ Volts.

Figure 2

Solution: The purpose of the question was also to indicate that phasor analysis will not apply here. Notice that the input is not a sinusoid, rather a restricted sinusoid, which is not just a single frequency. So we fall back to good old Laplace Transform. By source transformations, we can replace all the resistances by a single one of $\frac{3}{2} \Omega$ in series with a voltage source of $\frac{1}{2} V(t)$ and an inductance of $1 H$. Notice also that

$$
\cos \left(4 t+30^{\circ}\right)=\cos (4 t) \cos (30)-\sin (4 t) \sin (30)
$$

By taking Laplace transforms,

$$
\begin{align*}
& \frac{1}{4} \frac{s+4}{(s+5)^{2}+16}-\frac{\sqrt{3}}{(s+5)^{2}+16}=\left(s+\frac{3}{2}\right) I(s) \\
& I=\frac{1}{4} \frac{s+5-4 \sqrt{3}}{(s+5)^{2}+16} \frac{1}{(s+1.5)} \tag{1}\\
& \quad=\frac{1}{4}\left[\frac{1}{(s+5)^{2}+16}+\frac{3.5-4 \sqrt{3}}{\left((s+5)^{2}+16\right)(s+1.5)}\right] \tag{2}
\end{align*}
$$

Notice that

$$
\frac{1}{\left((s+5)^{2}+16\right)(s+1.5)}=\frac{1}{(41-8.5) \times 1.5}\left(\frac{1}{s+1.5}-\frac{s+8.5}{(s+5)^{2}+16}\right)
$$

Taking inverse Laplace transform, we get

$$
i(t)=\frac{1}{16} e^{-5 t} \cos (4 t)+(3.5-4 \sqrt{3}) \times 0.005\left(e^{-1.5 t}+e^{-5 t} \cos (4 t)+0.875 e^{-5 t} \sin (4 t)\right), t>0
$$

Question 3) If $V(t)=10 \cos \left(2 t-\frac{\pi}{3}\right)$, find the Thevenin equivalent between A and B.

Figure 3
Solution: $V_{T h}=3.48 / 84.3^{\circ}, Z_{T h}=5.8 / 53.3^{\circ}$.

Question 4) In Figure 4, let $V(t)=24 \sqrt{2} \cos (2 t)$ Volts. Find the voltage across terminals A and B.

Figure 4
Solution: $4.78 \sqrt{2} \cos \left(2 t+66^{\circ}\right)$.
Question 5) If $V_{1}(t)=\cos 4 t$ and $V_{2}(t)=2 \sin 8 t$, find the current through the capacitor.

Figure 5
Solution: $0.275 \cos \left(4 t-74^{\circ}\right)+0.256 \cos \left(8 t-82^{\circ}\right)$

