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Question 1) An input of V (t) = 230 sin(ω0t + π
4
)V olts is applied across a circuit element.

What is the effective voltage (also known as rms) voltage.
Solution: 230√

2
= 162.6 Watts.

If a sinusoidal current of Irms = 10A passes through this circuit element, what is the dissipated
power for a lag (with respect to V (t)) of

1. θ = 30deg ⇒ P = 1408 Watts

2. θ = 45deg ⇒ P = 1150 Watts

3. θ = 90deg ⇒ P = 0 Watts

Question 2) One way to understand phasors is to treat them as complex numbers, with
appropriate meanings (of magnitudes and phase angles) which correspond to sinusoids. In this
consideration, it is sometimes useful to represent a sinusoid as a complex number a + jb, with
magnitude √

a2 + b2 = Vrms.

Notice the slight abuse of earlier notation, here the magnitude represents the rms value. This
is useful in power computations. The phase angle φ represents the shift with respect to cosine
waveform, which is our standard reference waveform.

φ = tan−1

(
b

a

)
a) Let Ṽ and Ĩ be complex numbers representing the voltage and current respectively (rms
value), for a given circuit element. Show that the average active power is given by the formula

P = Real (Ṽ Ĩ∗).

Solution: We know that the average power delivered is |V ||I|
2

cos θ. If Ṽ = V θ1 and Ĩ = I θ2,
the average active power is

P = V I θ1 − θ2 = Real (Ṽ Ĩ∗)

b) Compute the power factor, cos θ.

cos θ = cos tan−1

(
Imag (Ṽ Ĩ∗)

Real (Ṽ Ĩ∗)

)
(1)

Question 3) In the last question, the quantity Ṽ Ĩ∗ is known as complex power, denoted by
S. As you have already shown, the real part of S gives the active power. The imaginary part
of S is known as reactive power, which in some sense is not the useful power. Nevertheless,
from basic energy conservation principles, the total complex power in a closed system is zero,
implying that the used up reactive power is equal to that supplied. Verify this conservation by
computing the complex power dissipated by each element in the following circuit.
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Solution Let the PR be the power through the resistor, and similarly PL and PC for the inductor
and capacitor.

PR = Ṽ 0Ĩ∗R = 240 0
240 −0

40 −0
= 1440W

PC =
Ṽ 0

j40− j10
(−j10)

Ṽ 0

j10− j40
= j640W

PL =
Ṽ 0

j40− j10
(j40)

Ṽ 0

j10− j40
= −j2560W

Let us now find the power delivered by the source.

PS = Ṽ 0

(
6 0 +

Ṽ −0

j10− j40

)
= 1440 + j1920W

Thus the total active power and reactive power are conserved.
Question 4) The load in the circuit shown below is a 1000W motor. The input voltage is
V (t) = 200 cos 120πt. Suppose the motor has a lagging power factor (p.f.) of 0.8. Find the
complex power absorbed by each element in the circuit.
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Solution: Given that the power is 1000W, with a power factor of 0.8, the current(magnitude)
through the motor is

|I| = P

Ṽ cos θ
=

1000
√

2

200× 0.8
= 8.84A

From this the current through the motor is

im = 8.84× 0.8− j8.84× 0.6 = 7.07− j5.3

The complex power aborbed by the motor is

Pm = Preal + j|V ||I| sin θ = 1000 + j750W

The complex power absorbed by the capacitor is

Pc =
200 ∗ 200

2
(−j120π.28× 10−6) = −j211W
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The complex power supplied by the source is

Ps =
200√

2
(i∗m − j

200√
2
.120π.28× 10−6) = 1000− j539W

b) What is the use of the capacitor in the above circuit. (Think what will happen if we remove
the capacitor) Removing the capacitor will decrease the power factor of the source and thus
the effective rms current will increase. Having a higher current value will generate more losses
in practical circuits. The presence of the capacitor provides a better match (in terms of phase)
between the voltage and current, thus lower currents(effective values) are required to deliver
the same active power. Thus the capacitor improves the energy utilization in practical circuits,
this is known as power factor correction.
Question 5) Consider the following series circuit, where ZL is a complex load. Let Irms be the
effective current passing through the circuit. Justify each step in the expressions shown below.
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P = VrmsIrms cos(θL) (2)

≤ VrmsIrms (3)

= Vrms
Vrms√

(ZR + Re (ZL))2 + (ZI + Im (ZL))2
(4)

≤ V 2
rms

ZR + Re (ZL)
(5)

≤ V 2
rms

ZR
(6)

There was a typo in the last inequality. This is not quite the inequality that I was hoping
to get. So let us take an alternate approach to obtain what is known as the maximum power
transfer theorem.
b) Deduce the ZL that has to be connected to deliver the maximal load power.
Solution: We know that the active powered delivered to the load is the real part of Ṽ Ĩ∗, where
Ṽ is the rms voltage and Ĩ the rms current. Let ZL = XR + jXI .

VLI
∗
L =

V 0

ZR +XR + j(ZI +XI)
(XR + jXI)Ĩ

∗ (7)

=
V 2

(ZR +XR + j(ZI +XI))

XR + jXI

(ZR +XR − j(ZI +XI))
(8)

=
V 2

(ZR +XR)2 + (ZI +XI)2
(XR + jXI) (9)
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By taking the real part,

P =
V 2

(ZR +XR)2 + (ZI +XI)2
XR (10)

≤ V 2

(ZR +XR)2
XR (11)

≤ V 2

4XR

(12)

where the last step is obtained by maximizing over all XR. Clearly, the maximal power is
transferred when XR + jXI = ZR − jZI .

....

Question 6) If each inductance is 1H, show that the effective inductance is 5
6
H

A

B

Solution: While one can use star-delta conversions to do this job, the easiest way is to use the
symmettry in the problem. In particular, draw each inductance connected to the terminals A
and B as two parallel inductances of value 2H each. The notice that the circuit separates out
to 6 parallel current paths, each of value 5H.
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