Indian Institute of Technology Bombay
 Dept of Electrical Engineering

Handout 8
EE 101 Electrical \& Electronic Circuits
Tutorial 6
Aug 26, 2011
Question 1) Let an input of $V(t)=240 \sin \left(\omega_{0} t+\frac{\pi}{4}\right)$ Volts is applied as input to the circuit below. At what value of ω_{0} will the voltage sinusoid $v_{R}(t)$ achieve the minimal amplitude. (Recall that amplitude of a sine wave is the maximal level it can take, i.e. α in $\alpha \sin (\omega t)$)

Figure 1
Can you justify the term resonant frequency, for the ω_{0} you found in the question above.
Question 2) Find the voltage across the inductor if $V(t)=e^{-5 t} \cos \left(4 t-30^{\operatorname{deg}}\right) u(t)$ Volts.

Figure 2
Question 3) If $V(t)=10 \cos \left(2 t-\frac{\pi}{3}\right)$, find the Thevenin equivalent between A and B.

Figure 3

Question 4) In Figure 4, let $V(t)=24 \sqrt{2} \cos (2 t)$ Volts. Find the voltage across terminals A and B.

Figure 4
Question 5) If $V_{1}(t)=\cos 4 t$ and $V_{2}(t)=2 \sin 8 t$, find the current through the capacitor.

Figure 5

