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1 Discrete Random Variables

We now learn an important special case of random-variables, the ones that take discrete
random variables. One good thing about these variables is that there is less ambiguity and
pathological cases are very rare.

Definition 1 Consider a countable set E, a function from Ω to E is called a discrete
random variable if {ω ∶X(ω) = n} ∈ F ,∀n ∈ E.

In other words, the definition ensures that X is measurable with respect to the space
(E,P(E)). (Recall that we have to only check measurability for a class of sets which gener-
ates the sigma-field of the range-space). Don’t be confused by the absence of conventional
(R,B(R)), it is indeed true that for any B ∈ B(R),

X−1(B⋂E) ∈ F ,

thus ensuring measurability with respect to (R,B(R)). So by slight abuse of the definition,
will define various random-quantities without explicitly stating measurability with respect
to (R,B(R)). For example, we will call X above as a random variable taking values in
E. We will use the notation {X = x} to signify X−1(x) = {ω ∶ X(ω) = x}. Consequently,
P (X = x) = P (X−1(x)), where P is the probability measure associated with the space
(Ω,F). In this way, we avoid referring to the probability measure induced by the random
variable X, and conveniently work with one probability measure, i.e. P (A),∀A ∈ F .

Proposition 1 A discrete random variable X is completely specified by its probability
distribution function, denoted as P (X = x),∀x ∈ E or PX(x).

Our first example of a discrete random variable is perhaps the most popular one.

1.1 Bernoulli Distribution: Bernoulli(p)

A binary valued random variable with

P (X = 1) = p,

is called a Bernoulli random variable with parameter p. This is often denoted concisely
as X ∼ Bernoulli(p).



1.2 Function of a Discrete Random Variable

Functions defined on random-variables allow us to zoom in and out on various aspects of
randomness, while preserving all the the measurability properties.

Theorem 1 Let E1 and E2 be countable sets. Let X be a random variable taking values
in E1, and g ∶ E1 → E2 be an arbitrary function. Then Y = g(X) is a random variable.

Proof: We have to show that {Y = y} ∈ F . Observe that

{Y = y} = {ω ∈ Ω ∶X(ω) = x and g(x) = y}

= ⋃
x∈E1∶g(x)=y

{X = x}

Clearly the RHS is the union of events which are already in F , and hence the proof. n

Example 1 Let E1 be RV in {1,2,3,4} and consider the function g(x) = tan(πi8 ). Is
Y = g(X) a random variable?

Solution: If we stick to our original definition, then Y cannot be called a random variable,
as its value is undefined when i = 4. However, observe that we can still ensure measurability
of Y as a function, by taking tan−1∞ as π

2 . Since measurability is the key property that
we need, we can also consider R̄− valued random variables, i.e. R⋃{±∞} is the possible
range1. Thus Y above can be treated as a random variable. n

As the last example shows, there is no harm in using R̄ or N̄ as the random variable’s
range. Also, whenever we talk about the function of a random-variable without any fur-
ther qualification, we are dealing with an R̄ valued random variable. Let us now propose
something which will be of immediate use and simple, however the proof of this will have
to wait for the next notes. While this may irk the mathematical purists, it saves the notes
from being just a monotonous listing of results. Please accept the following and proceed.

Proposition 2 If X1 and X2 are discrete random variables, so is X1 +X2.

The proposition deals with a function of two random variables and will be covered in detail
in later sections.

2 Expectation

Expectation of a random variable is a key parameter, which is governed by the distribu-
tion of the random variable. In this sense, it is a statistical parameter, something that we
can infer from past experiments or modeling experience. This is also known as statistical
mean or average, which has close connections to empirical averages of experimental mea-
surements. In fact let us get an intuitive understanding by using the classical frequency
interpretation. In particular, the fraction of times any event A occurs in n independent
trials of an experiment can be approximated by P (A) for large n, this is the frequency
interpretation. Consider repeated draws of a random variable X from the state-space E
in an iid fashion. Let us denote the n outcomes as X1,X2,⋯,Xn. What is the empirical

1R̄ is also known as the two-point compactification of R
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average of these quantities.

∑
n
i=1Xi

n
=
∑
n
i=1 (∑j∈E j1{Xi=j})

n

= ∑
j∈E

j (
∑
n
i=1 1{Xi=j}

n
)

≈ ∑
j∈E

j P (X = j),

where the last step used the frequency interpretation. This is the concept behind the
operator called expectation, which we more formally define below.

Definition 2 Let X be a discrete random variable in E, and let g ∶ E → R be
such that EITHER

1. g is non-negative, OR

2. ∑x∈E ∣g(x)∣P (X = x) < ∞,

then the expectation of the random variable g(X) is

E[g(X)]
△
= ∑
x∈E

g(x)P (X = x) (1)

It is common to call g(X) as an integrable random variable when E[∣g(X)∣] < ∞, whereas a
more accurate nomenclature is to call it summable. Clearly, expectation is a linear operator.

E[λ1g1(X) + λ2g2(X)] = λ1E[g1(X)] + λ2E[g2(X)].

Furthermore, the following monotonicity property is also evident. If g1(x) ≤ g2(x),∀x ∈ E,

E[g1(X)] ≤ E[g2(X)].

Example 2 Let Sn represent the number of HEADs in n tosses of a fair coin. The prob-
ability law that we choose for this experiment is

P (Sn = k) =
(
n
k
)

2n
.

Find the expectation of Sn, for a given value of n.

Solution: Let Xi ∈ {H,T} be the outcome of toss i. Observe that

Sn =
n

∑
i=1

1{Xi=H}.

Thus

E[Sn] =
n

∑
i=1

E1{Xi=H}

=
n

∑
i=1

1

2

=
n

2
.
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n

In the last example, we used the indicator function to seamlessly move between the
space {H,T} and {0,1}. In fact this can be done in a more general fashion. Recall that
Y = g(X) is a random variable if X is a random variable.

Theorem 2 Let g(X) be an integrable random variable and take Y = g(X). Then

E[Y ] = E[g(X)] (2)

Proof: At the first look it is too obvious, but observe that E[Y ] = ∑y yP (Y = y), whereas
E[g(X)] = ∑x g(x)P (X = x). What guarantees that they are the same? Let X ∶ E1 → E2,
where E2 is a countable subset of R.

∑
y∈E2

yP (Y = y) = ∑
y∈E2

y ∑
x∶g(x)=y

P (X = x)

= ∑
y∈E2

y ∑
x∈E1

P (X = x)1{g(x)=y}

= ∑
x∈E1

P (X = x) ∑
y∈E2

y1{g(x)=y}

= ∑
x∈E1

P (X = x)g(x)

= E[g(X)].

The integrability assumption allows us to seamlessly interchange the two summations in
the second step above.

2.1 Probability is an Expectation

The last example contains an additional lesson, that the probability of an event is nothing
but an appropriate expectation. No wonder that both the quantities are specified by the
distribution of a random variable.

Theorem 3 Consider a discrete random variable X in E ⊂ R. Then for any A ∈ B(R̄),

E[1{X∈A}] = P (A). (3)

Proof: Clearly P (A) is the probability induced by the random variable X. Notice that
Y = 1{X∈A} is indeed a random variable. By using Theorem 2,

E[Y ] = ∑
x

1{x∈A}P (X = x)

= ∑
x∈A

P (X = x)

= P (A).

Example 3 Coupon Collector Let there be m categories of coupons available, with one
coupon packed per box. The coupon for each box is randomly chosen. Consider n boxes,
and let Sn represent the number of coupons which didn’t find its way to any of the boxes.
Find E[Sn].

Solution: Let Xi be the number of boxes with coupon i. Then

Sn =
m

∑
i=1

1{Xi=0}.
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Taking expectations.

E[Sn] =
m

∑
i=1

E1{Xi=0}

=
m

∑
i=1

(1 −
1

m
)
n

=m(1 −
1

m
)n.

3 Independent Random Variables

We have defined independence of events in terms of the probability of events. Similarly, we
can define independence of two random variables by demanding the events corresponding
to each random-variable be independent. Recall that for a discrete random variable X, the
collection of sets of the form X−1(x), x ∈ E is called the events corresponding to X.

Definition 3 Two discrete random variables X1 and X2 taking respective values in E1 and
E2 are said to be independent if

P (X−1
1 (u),X−1

2 (v)) = P (X−1
1 (u))P (X−1

2 (v)) , ∀(u, v) ∈ E1 ×E2.

i.e. any pair of their respective associated events are independent.

The standard textbook variety of this same statement is repeated below for more clarity.

Definition 4 Random Variables X1 and X2 taking values in E1 and E2 respectively are
independent if ∀(i, j) ∈ (E1 ×E2)

P (X1 = i,X2 = j) = P (X1 = i)P (X2 = j).

The last two definitions are indeed the same.

Example 4 Consider throwing 2 fair dice, where the probability association is given by

P (X1 = i,X2 = j) =
1

36
for 1 ≤ i, j ≤ 6.

Does this correspond to independent trials.

Solution: Verify that

P (Xi = i,X2 = j) =
1

36
= P (X1 = i)P (X2 = j),

since we assumed that the die is a fair one. Thus this probability assignment indeed
models an experiment where a fair die is thrown two times, or two fair dice are thrown
independently. n

We can extend the notion of independence to many random variables. (Recall the
definition of independence of many events in class).

Definition 5 The discrete random variables X1,X2,⋯Xn, are called independent if all
possible tuple of the respective events associated with them are independent.
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Exercise 1 Show that iff, ∀ui ∈ Ei,

P (
n

⋂
i=1

X−1
i (ui)) =

n

∏
i=1

P (X−1
i (ui)),

then X1,⋯,Xn are independent random variables.

We can even extend our definition to a countable collection of random variables. In par-
ticular, independence of a sequence is defined in terms of finite dimensional probabilities.

Definition 6 A sequence of discrete random variables Xn, n ≥ 1 are called independent if
for all finite set of indices, i1,⋯, ik

P (Xi1 = xi1 ,⋯,Xik = xik) =
k

∏
j=1

P (Xij = xij).

Example 5 Consider a discrete random variable taking values in {1,2,⋯, k} with P (X =

i) = pi,1 ≤ i ≤ k. For n draws of this random variable, say X̄ = X1,⋯,Xn, and for any
given sequence ū = (u1,⋯, un) it is specified that

P (X̄ = ū) =
k

∏
i=1

p
Ni(ū)
i ,

where Ni(ū) counts the number of times i appears in the sequence ū. Are the draws in X̄
independent.

Solution: It is easily verified by our definition that these throws are independent. n

Notice that in the previous example, Ni(u) is a random variable too. This is evident
since it is a sum of binary valued random variables. When X is binary, the random variable
Ni(1) is called the Binomial distribution.

3.1 Binomial Distribution - Binomial(n, p)

Like the name implies, this is closely related the binomial expansion. Recall that

(p + q)n =
n

∑
i=0

(
n

i
)piqn−i.

How does this connect to throwing a coin? Imagine a coin with P (HEADs) = p. Let
Sn represent the number of HEADs in n independent throws of this coin. Then Sn is
Binomial(n, p). To see this, let us denote by Xi the indicator of HEADs in toss i. For any
sequence x1,⋯, xn with k HEADs

P (X1 = x1,⋯,Xk = xk) = p
k(1 − p)n−k.

Since there are (
n
k
) sequences with k heads,

P (Sn = k) = (
n

k
)pk(1 − p)n−k.

We will denote a random variable having Binomial distribution as X ∼ Binomial(n, p).

Example 6 Compute E[X] for X ∼ Binomial(n,p).

6




