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Abstract—We consider a multiplicative multiple access channel
in the presence of additive white Gaussian noise. Under individual
average power constraints at each of the transmitters, we char-
acterize the capacity region of this channel. The structure of the
region reveals some fundamental characteristics related to time-
sharing, power constraints and the auxiliary random variables
present in the converse theorems. As an example, it is shown that
to achieve the capacity region of a two user multiplicative MAC
for certain power levels, time-sharing of 3 strategies/rate-pairs is
required, as opposed to the sufficiency of time-sharing between
at most 2 rate-pairs in a discrete memoryless MAC.

I. INTRODUCTION

In a multiple access channel (MAC), several transmitters
communicate to a receiver, using a shared medium. We
describe a MAC channel with 2 users, generalization to 3
or more is possible, but is not covered here. In our model,
the transmissions from the two users at any instant are first
multiplied with each other. Additive white Gaussian noise of
variance σ2 is then added to this product. More precisely,
if X1, respectively X2 are the transmitted symbols (complex
scalars in baseband) from the two users, the channel output is
given by,

Y = X1X2 + Z. (1)

Here Z, the additive noise, is independent of Xi, and is
assumed to be circularly symmetric Gaussian of variance σ2,
denoted as N (0, σ2). The model is depicted in Figure 1.
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Fig. 1. Multiplicative MAC with AWGN

We will call this model a multiplicative MAC with AWGN,
and write it shortly as M-MAC. The channel characteristic can
be written in a manner similar to that of a discrete memoryless

MAC (DM-MAC) or the standard AWGN-MAC. In particular,
in the absence of any feedback,

p(yn|xn1 , xn2 ) =
n∏
i=1

p(yi|x1i, x2i), (2)

where p(yi|x1ix2i) is given by the Gaussian distribution
N (x1ix2i, σ

2). We assume that each user has to obey an aver-
age power constraint over its transmissions, i.e. E|Xk|2 ≤ Pk,
k ∈ {1, 2}.

At this point, we digress our discussion a bit to convey the
relevance of multiplicative MAC models in information theory.
A binary multiplicative MAC without noise has been long
used as one of the introductory models in network information
theory [1]. This is also known as the logical-AND MAC.
Apart from possessing a simple and clean characterization
of the capacity region, it also introduces the key concept
of time-sharing. The model in (1) also appears in [2], but
the main motivation there is not in computing the capacity
region, rather an information-lossy transformation is presented.
In the absence of the additive noise term, the channel becomes
a deterministic MAC [3]. The M-MAC model has some
resemblance to multiplicative fading channels. In particular, if
one of the transmissions does not carry any information, but
contributes as iid multiplicative fading, the model becomes a
fading channel. The capacity for point to point Rayleigh fading
model was evaluated in [4], and the optimal distribution was
shown to be discrete in nature. On a similar note, we will also
see that there is a certain discrete nature to one of our input
distributions.

It will turn out that the model in (1) is of significance
even from just a pedagogical standpoint. Somewhat like a
push-to-talk channel [5], which conveys the necessity of time-
sharing in a MAC, the M-MAC defies some popular notions
on computing the capacity region of continuous valued MAC
channels under power constraints. As an example, we will
show that for certain power levels, time-sharing between three
rate-pairs is required to achieve the boundary (almost all
points there) of the capacity region of our model. This should
be contrasted with the DM-MAC capacity region given in
Theorem 4, where at most 2 points are needed for time-
sharing.

The paper is organized as follows. Section II will present
some definitions and our main result. Section III presents an



upperbound to the sum-rate of M-MAC. A discussion on time-
sharing in the M-MAC context is presented in Section IV. We
further simplify our upper bound in Section V and furnish a
lower bound which equals the upper one. Some of the detailed
computations here are relegated to the appendix. Section VI
presents a concluding discussion.

II. DEFINITIONS AND RESULTS

For completeness, and to better explain our objectives, we
will introduce some notations and definitions. Throughout
the paper, log(·) stands for natural logarithm. Let Xn

1
4
=

X11 · · ·X1n represent the codeword transmitted by user 1. In
general, Xn

k (Wk) is the codeword corresponding to message
Wk at user k, k ∈ {1, 2}. We assume that user k communicates
one among Mk messages in a block of n transmissions.
Furthermore, each message is equi-probable and is chosen
independently from block to block and across users. We
further assume that synchronization among transmitters can
be done at the block level. After observing the received
symbols Y n, the receiver tries to estimate the transmitted
pair W

4
= (W1,W2) as Ŵ . The objective is to minimize the

average error probability Pe, computed as P (Ŵ 6= W ).

Definition 1. We call a communication strategy feasible if it
obeys the power constraints, i.e.

n∑
i=1

|Xki|2 ≤ nPk , k = 1, 2. (3)

Definition 2. A rate-pair (R1, R2) is achievable if there exists
a feasible strategy with Mk = 2nRk , k ∈ {1, 2}, such that
the corresponding average error probability Pe can be made
arbitrarily small, possibly by taking n large enough.

Definition 3. The capacity region CMMAC of a M-MAC is
the convex closure of all achievable rate-pairs.

It is well known that we can replace1 the constraint on
the energy of each codeword, by an average power constraint
(in expectation), where the average is taken by considering
the empirical distribution induced on the transmitted symbols
by a uniform choice over the messages [1]. Thus the power
constraints can be modified to E|Xk|2 ≤ Pk, k ∈ {1, 2}. Let
us now recall the capacity region CDMAC of a conventional
two-user discrete memoryless MAC.
CDMAC is well known[6]. Consider the pentagonal region

Rmac defined by

0 ≤ R1 ≤ I(X1;Y1|X2, Q) ; 0 ≤ R2 ≤ I(X2;Y |X1, Q)
R1 +R2 ≤ I(X1, X2;Y |Q)

for some distribution on p(q)p(x1|q)p(x2|q)p(y|x1, x2).

Theorem 4. The capacity region of a DM-MAC is the union
of all Rmac, where the auxiliary random variable Q has
cardinality at most 2.

1the new constraints are less restrictive

A natural question is whether we can evaluate CMMAC by
substituting appropriate input distributions in the equations for
CDMAC . The answer in general turns out to be NO2.

We now state the capacity region of a 2−user M-MAC.

Theorem 5. CMMAC is a triangle with corners (0, 0), (0, R∗)
and (R∗, 0), where

R∗ = log
(

1 +
P1P2

σ2

)
I{P1P2≥c}

+

√
P1P2

c
log
(
1 +

c

σ2

)
I{P1P2<c}, (4)

in which c = βσ2, I{·} is the indicator function, and β is the
unique solution to the transcendental equation(

1 +
1
u

)
loge(1 + u) = 2. (5)

Remark 6. In Theorem 4, β is approximately 3.9215 .
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Fig. 2. Capacity Region of M-MAC

The theorem, though simple in its appearance, has some
peculiarities from a capacity region point of view. It is
instructive to compare the differences between the last two
theorems. As we mentioned earlier, the evaluation of the region
given in Theorem 4, albeit for possible continuous distributions
on (X1, X2, Y ) satisfying the input power-constraints, may
not yield the capacity region presented in Theorem 5 (see
Lemma 9 – 10). This shows a pit-fall in blindly applying the
discrete memoryless channel results to continuous channels
with input power-constraints. More specifically, we will show
that the cardinality bound on Q has to be relaxed to 3 for the
M-MAC. Let us now proceed to the proof of Theorem 5.

III. UPPER-BOUND ON SUM-RATE

In this section, we will present an upper-bound to the sum-
rate of our multiplicative MAC model. We first present a
structural result on CMMAC in Lemma 7. An outerbound to the
capacity region is then proposed. Our outerbound is a triangle
and its edge-points later turn out to be achievable by simple
communication schemes, see Figure 2.

2the author does not know of any prior instances where this difference
appears.



From standard converse arguments [1], we can obtain the
sum-rate bound for a M-MAC as

R1 +R2 ≤
1
n

n∑
i=1

I(X1iX2i;Yi). (6)

Considering this bound alone will give an outerbound to the
capacity region. We will focus on maximizing the right hand
side of the above equation. Before that, let us validate the
general appearance of CMMAC presented in Theorem 5.

Lemma 7. CMMAC is a triangle.

Proof: We will show that for any achievable rate-pair
(R1, R2), the pairs (R1 + R2, 0) and (0, R1 + R2) are also
achievable. To this end, notice that I(X1, X2;Y ) depends
on (X1, X2) only through their product. If U has the same
distribution as X1X2, then

I(U ;U + Z) = I(X1, X2;Y )

Now set X1 = 1√
P2
U and X2 =

√
P2 a.s. The individual

power constraints are satisfied, and also the overall sum-rate
remains the same. It is clear that (R1+R2, 0) can be achieved
this way. By reversing the roles of the transmitters, we can
similarly achieve the rate-pair (0, R1 +R2). Thus the capacity
region indeed is a triangle.

Lemma 7 implies that maximizing the RHS of (6) is
equivalent to maximizing R1 while R2 is set to zero. Notice
that this does not imply that X2 = 0. User 2 still transmits, so
as to enable user 1 achieve its maximal rate. For given average
power constraints of P1 and P2, let us denote the maximal rate
achieved by user 1 as R∗1.

Lemma 8. For the purpose of evaluating R∗1, the transmis-
sions Xn

2 from user 2 can be considered as a deterministic
sequence. Furthermore, the sum-rate is bounded as

R∗1 ≤ max
P1(τ),P2(τ)

lim
T→∞

1
T

∫ T

0

log
(

1 +
P1(τ)P2(τ)

σ2

)
dτ

subj to lim
T→∞

1
T

∫ T

0

Pi(τ)dτ ≤ Pi , i ∈ {1, 2}. (7)

Proof: The argument for choosing a deterministic X2

is contained in the proof of Lemma 7, as all the stochastic
contents can be captured in X1. Once Xn

2 is determined,
X1i should be chosen from appropriate Gaussian distributions.
This is due to the entropy maximization property of Gaussian
distribution under a variance constraint. Equation (7) covers
all possible power variations that can be attempted on the two
transmitters, hence will give an upper-bound to the sum-rate.

Notice that (7) is about computing the convex-hull of a
region in {R+}3 of the form (P1, P2, log(1 + P1P2

σ2 )). The
usual trick now is to apply Caratheodory-Fenchel Theorem [7]
to reduce the dimensionality of the optimization problem in
(7). However, we defer this to Section V, where it is shown that
the upperbound specified by (7) is indeed achievable. We will
now explain the need for a ternary auxiliary random variable
while time-sharing in a M-MAC.

IV. TIME-SHARING IN M-MAC

We digress a bit, and instead of obtaining bounds to the
sum-rate, let us consider maximizing I(X1, X2;Y ) for the M-
MAC. The following two lemmas, though not necessary for
our main theorem, will help us in explaining the significance
of our results.

Lemma 9. For any p(x1, x2) = p(x1)p(x2) in the M-MAC,

I(X1, X2;Y ) ≤ log(1 +
P1P2

σ2
)

Proof: Notice that,

I(X1, X2;Y ) = h(Y )− h(Z)

≤ log(πeE|Y |2)− log(πeσ2)

≤ log
(

1 +
P1P2

σ2

)
(8)

On the other hand, the bound in the above lemma is easily
achieved by taking X1 ∼ N (0, P1) and X2 =

√
P2 a.s. The

other corner point can be achieved by reversing the roles of the
transmitters. At first sight, it may appear that the RHS of the
lemma is indeed an upper-bound on the sum-rate, which can
be achieved but not beaten, and hence will give the capacity
region. However, we will now emphasize that this is not the
case.

Lemma 10. For the M-MAC, there exist achievable rate-pairs
(R1, R2) such that,

R1 +R2 > log
(

1 +
P1P2

σ2

)
,

when P1P2 is low enough.

Proof: We will prove this by an example. Consider an
alternate scheme where the transmitters employ generalized
time-sharing on top of the previous strategy, i.e. transmitting
half the time with double the power and no transmissions for
the latter half. This will achieve a sum-rate of

1
2

log
(

1 +
(2P1)× (2P2)

σ2

)
+ 0 =

1
2

log
(

1 +
4P1P2

σ2

)
.

(9)

If P1P2 is low enough,

1
2

log
(

1 +
4P1P2

σ2

)
≥ log

(
1 +

P1P2

σ2

)
.

Thus we have beaten the bound in Lemma 9. We should
underline that this is not a contradiction of any sort. The bound
in Lemma 9 did not account for the rate enlargement due to
the presence of auxiliary random variable Q, thus ruling out
the prospect of time sharing. The key observation is that even
for maximizing one of the rates in a M-MAC, time-sharing is
necessary at low values of power. Reversing the roles of the
transmitters, and taking convex combination of the rates, it can
be observed that |Q| = 3 is required for the auxiliary random
variable. More details are provided in the next section.



V. CAPACITY REGION (CMMAC )

We first show that the upperbound in Section III evaluates to
the rate-expression given in Theorem 5. Notice that Lemma 8
is about computing the convex-hull of points in R3 of the
form, (P1, P2, log(1+P1P2/σ

2)). The function log(1+ P1P2
σ2 )

is not in general concave, otherwise there is no need for taking
the convex-hull. However, we have concavity in a restricted
region, as stated below.

Lemma 11. The function log(1+ P1P2
σ2 ) is locally concave in

(P1, P2), if P1P2 > σ2.

Proof: Computing the Hessian H , we get

H =
1

(1 + P1P2
σ2 )2

−P 2
1
σ4

1
σ2

1
σ2 −P

2
2
σ4

 (10)

Observe that the trace of the above 2×2 matrix H is negative.
Furthermore, the determinant is positive when P1P2 > σ2.
Thus the Hessian becomes negative definite in this range,
hence the lemma.

We have already shown in Lemma 10 that log(1 + P1P2
σ2 )

is not concave when P1P2
σ2 is small enough. This makes time-

sharing necessary to obtain the convex-hull, particularly for
low values of P1P2

σ2 . Since the tuple (P1, P2, log(1+ 1
σ2P1P2))

defines a connected region in the positive quadrant of R3,
we can apply the Caratheodory-Fenchel theorem [7] in (7) to
obtain,

R∗1 ≤ max
3∑
i=1

λi log
(

1 +
P1(i)P2(i)

σ2

)
,

such that
3∑
i=1

λiPk(i) ≤ Pk , k ∈ {1, 2}. (11)

The maximization above is over non-negative values P1(j)
and P2(j) for j = 1, 2, 3. Performing the optimization will
give the RHS of (4). We have relegated the arguments to the
appendix. Let us now focus on achieving the RHS of (4).

A. Achievable Scheme

The rate in Theorem 5 can be achieved by a simple strategy.
Specifically, both the users simultaneously transmit for a
fraction δ of the time, using respective powers (P1

δ ,
P2
δ ). The

transmitters remain silent for the rest of the time. The rate R∗

can be achieved by letting one of the users employ a Gaussian
codebook, the other user sends a constant value throughout its
transmissions. The time-sharing parameter δ is chosen such
that,

δ =

{
1, if P1P2 ≥ c√

P1P2
c , otherwise ,

(12)

where c is the same parameter as in (4). In its ON state, the
first user transmits with a power of

Pmax1 =
√
cP1

P2
. (13)

The average power expenditure is

δPmax1 = P1,

thus satisfying the constraint. A similar argument holds true for
the other user. Thus our proposed rates in (4) can be achieved,
settling the capacity region CMMAC . Notice that the time-
sharing of two rate-pairs is required to achieve the maximal
sum-rate of each user, when P1P2 is low enough. Since one
of these pairs is always the origin, a total of three rate-pairs
suffice to achieve the capacity region.

VI. CONCLUSION

We computed the capacity region of a multiplicative MAC
with AWGN under individual average power constraints at
the transmitters. This is one of the channels where the
convexification/time-sharing needs more operating modes than
the number of users. On inspection, it becomes evident that
almost all points in the boundary of the capacity region is
obtained by time-sharing between at most three modes, viz.
• a mode in which the first user transmits information while

the second one sends a constant value.
• a mode in which the users reverse their roles from the

above.
• a silent mode, where both users switch themselves off.

The time-sharing parameter and operating powers are chosen
in such a way so as to satisfy the average power constraints.

The results can be generalized to more than 2 users, where
we again obtain a simplex like structure for the capacity
region.

VII. APPENDIX

A. Upperbound on R∗1
For simplicity we will assume that σ2 = 1 and compute the

convex-hull of (P1, P2, log(1+P1P2)). A quick handle on this
region can be obtained by looking along the P1 = P2 line. The
function f(x) = log(1 +x2) can be convexified by drawing a
tangent from (0, 0) to f(x), as the function is convex for low
values of x, and then inflects to a concave one, see Figure 3.

Let α be the x-coordinate where the tangent from origin
grazes the function log(1 + x2), see Figure 3. The value α2

plays a key role in performing the maximization in (11), i.e.
the convex-hull of (P1, P2, log(1 + P1P2)). Consider the the
points (P1, P2) such that P1P2 = α2. For any such point,
the line drawn from the origin to (P1, P2, log(1+P1P2)) is a
tangent along this direction. To see this, consider the P2 = θP1

line. By computing the slope at the point where the tangent
touches log(1 + P1P2) we have,

log(1 + θP 2
1 )

P1
=

2θP1

1 + θP 2
1

. (14)

When θP 2
1 is a constant, the above equation is invariant with

respect to P1 and P2. Notice that θP 2
1 is nothing but P1P2. It

is also evident that there is only one solution for (14) when
θ ≥ 0.

Thus for every (P1, P2) such that P1P2 < α2, the function
log(1+P1P2) is below the line connecting (0, 0) and log(1+
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Fig. 3. Convex-Concave nature of log(1 + x2)

α2) along this direction. In other words, we are just connecting
each point in the level-set of log(1+α2) to the origin, and the
surface thus generated will lie above (P1, P2, log(1 + P1P2))
for P1P2 < α2.

Notice that the collection of all such tangent lines forms
part of a cone. Specifically, the cone is formed by its vertex at
the origin and the cross-section in the z = log(1 + α2)-plane
given by a convex curve, i.e. {(x, y) ∈ R+×R+ : xy = α2}.
Notice that the section is not a closed curve, see the illustration
in Figure 4.
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Fig. 4. 3D Illustration of CMMAC

In Figure 4, the shaded region in the xy− plane (z = 0)
represents pairs of average powers (P1, P2) for which no
time sharing is necessary. Thus the convexification will yield
log(1 + P1P2) as the value of the function in this region. On
the other hand, the conical structure drawn in the xyz−plane
represents time-sharing between the level-set of log(1 + α2)
and the origin. Elementary arguments suffice to show that the
union of the two proposed regions will indeed be concave.

Putting the pieces together, we obtain the bound

R∗1 ≤ log (1 + P1P2) I{P1P2≥α2}

+

√
P1P2

α2
log
(
1 + α2

)
I{P1P2<α2}, (15)

Rescaling P1P2 by 1
σ2 will yield the RHS of (4). Observe

that for the region corresponding to the cone, time-sharing
between the origin and another point is required. In this
range, if the upperbound happens to be achievable, then time-
sharing is required to maximize even the x−coordinate of the
capacity region. This will necessitate a cardinality relaxation
in Theorem 4, so that it becomes applicable to the M-MAC.
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