Introduction to the PCI Interface

Karumanchi Narasimha Naidu
Instructor:
Prof. Girish P. Saraph
IIT Bombay

May 18, 2005
Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
Introduction to the PCI Interface

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph
IIT Bombay

Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
Outline

- Motivation
- BUS standards
- PCI Technology Overview
- PCI Local Bus
- PCI protocol
- Special Cases
- Electrical and Mechanical Specifications
- Other Topics
- References
Introduction to the PCI Interface

Motivation

Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
Introduction to the PCI Interface

- Motivation

Inside a Computer

- What is a BUS?
 - Components - Processor, Memory etc
 - Peripherals
 - Interconnection

- Motivation
 - Data flow
 - Speed
Local Bus

- A set of parallel conductors, which allow devices attached to it to communicate with the CPU.
- The bus consists of three main parts:
 - Control lines, Address lines, Data lines

Diagram shows how devices are attached to a generic bus.

Key
- Data Lines
- Address lines
- Control lines
Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
Bus Protocols

- Requirements of a BUS standard
 - Electrical, Mechanical requirements
 - Protocol requirements

- Common BUS standards
 - ISA and EISA
 - MCA (Micro Channel Bus)
 - VESA Local BUS (Video Electronic Standard Associations) : 1-2 devices can be connected.
 - PCI Local BUS
ISA (Industry Std Arch.)

- Has a clock speed limit of 8 MHz
- Has a word length of 8 or 16 bits (8 or 16 data lines)
- Requires two clock ticks to transfer data (16 bit-transfers)
- Very slow for high performance disk accesses and high performance video cards
EISA (Enhanced Std Arch)

- Has a clock speed of 8.33 MHz
- Maximum of a 32-bit wide word length (32 data lines)
- Can support lots of devices
- Supports older devices which have Slower or Smaller word lengths (ISA)
- Transfers data every clock tick.
MCA (Micro-channel Bus)

- Has a clock speed of 10 MHz
- Has a 32 bit word length (32 data lines)
- Transfers data every clock tick.
VESA (Video Electronic Std Arch.)

- Has a clock speed limit of 33 MHz.
- Limited to a 32-Bit wide word length (32 data lines).
- Cannot take advantage of the Pentium’s 64 bit architecture.
- Limited support for Burst Transfers, thereby limiting the achievable throughput
- Restricted on the number of devices which can be connected (1 or 2 devices).
Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
PCI General Block Diagram
PCI - technology Information

- PCI: Peripheral Component Interconnect
- Conventional PCI
- PCI-X
 - 1.0
 - 2.0
- PCI Express
- Other
PCI-SIG

- PCI Special Interest Group
- Industry organization formed in 1992
- Over 900 members
- Promotes PCI as an industry-wide standard
- Full ownership and management of the PCI specifications
- Maintains the PCI specifications and forward-compatibility of all PCI revisions
PCI Technology Overview

PCI Technology

- Conventional PCI
 - Initial PCI 1.0 proposal by Intel in 1991
 - Introduced by PCI-SIG as PCI 2.0 in 1993
 - Version 2.1 approved in 1995
 - Recent version 2.3 approved in March 2002

- PCI-X
 - Version 1.0 approved in September 1999
 - Version 2.0 approved in July 2002

- PCI Express
 - Formerly known as 3GIO
 - Version 1.0 approved in July 2002
Conventional PCI

- Plug-and-Play Functionality
- Standard PCI is 32 bit and operates at 33 MHz
 - Throughput 133 MB/sec
- PCI 2.1 introduced
 - Universal PCI cards supporting both 3.3V and 5V
 - 64 Bit slots and 66 MHz capability
 - 32-Bit throughput @ 66 MHz: 266 MB/sec
 - 64-Bit throughput @ 66 MHz: 532 MB/sec
- PCI 2.3 system no longer supports 5V-only adapters
 - 3.3V and Universal PCI products are still fully supported
PCI-X 1.0

- Based on existing PCI architecture
- 64-Bit slots with support for 3.3V and Universal PCI
 - No support for 5V-only boards!
- Fully backwards-compatible
 - Conventional 33/66 MHz PCI adapters can be used in PCI-X slots
 - PCI-X adapters can be used in conventional PCI slots
- Provides two speed grades: 66 MHz and 133 MHz
 - The slowest board dictates the maximum speed on a particular bus!
 - Targeted at high-end data networking and storage network applications
PCI-X 2.0

- Based on PCI-X 1.0
 - Still fully backwards-compatible
- Introduces ECC (Error Correction Codes mechanism to improve robustness and data integrity
- Provides two additional speed grades
 - PCI-X 266: 266 MHz (2.13 GB/sec)
 - PCI-X 533: 533 MHz (4.26 GB/sec)
- Bandwidth sufficient to support new breed of cutting-edge technologies
 - 10 Gigabit Ethernet / Fiber Channel
 - 4X/12X infiniBand
PCI-X Speed Limitations

- PCI-X supports point-to-point and multi-drop loads
- Highest speed grades are supported exclusively with point-to-point loads
 - PCI-X 133
 - PCI-X 266
 - PCI-X 533
- Two PCI-X 133 loads operate at 100 MHz
- Four loads operate at a maximum of 66 MHz
- OEMs can build connector-less systems with multiple loads utilizing high speed grades
PCI Express

- High-speed point-to-point architecture that is essentially a serialized, packetized version of PCI
- General purpose serial I/O bus for chip-to-chip communication, USB 2.0 / IEEE 1349b interconnects, and high-end graphics
 - Viable AGP replacement
- Bandwidth 4 Gigabit/second full duplex per lane
 - Up to 32 separate lanes 128 Gigabit/second
- Software-compatible with PCI device driver model
- Expected to coexist with and not displace technologies like PCI-X in the foreseeable future
Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
PCI Local Bus

- Bus Width: 32 or 64 bits
- Operating frequency: 0-66 MHz
- Can support many more devices than VESA
- 64 bit extension for Pentium proc.
- Greater Variety of Expansion cards available.
- Multiplexed Address and Data
- PCI SIG (Special Interest Group)
PCI Local Bus Revisions

- 2.0 - connector and expansion board specification
- 2.1 - 66MHz operation
- 2.2 - protocol, electrical and mechanical specs
Overview of Speeds of buses

<table>
<thead>
<tr>
<th>Bus Type</th>
<th>Bus Width</th>
<th>Bus Speed</th>
<th>MB/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA</td>
<td>16 bits</td>
<td>8 MHz</td>
<td>16 MBps</td>
</tr>
<tr>
<td>EISA</td>
<td>32 bits</td>
<td>8 MHz</td>
<td>32 MBps</td>
</tr>
<tr>
<td>VL-bus</td>
<td>32 bits</td>
<td>25 MHz</td>
<td>100 MBps</td>
</tr>
<tr>
<td>VI-bus</td>
<td>32 bits</td>
<td>33 MHz</td>
<td>132 MBps</td>
</tr>
<tr>
<td>PCI</td>
<td>32 bits</td>
<td>33 MHz</td>
<td>132 MBps</td>
</tr>
<tr>
<td>PCI</td>
<td>64 bits</td>
<td>33 MHz</td>
<td>264 MBps</td>
</tr>
<tr>
<td>PCI</td>
<td>64 bits</td>
<td>66 MHz</td>
<td>512 MBps</td>
</tr>
<tr>
<td>PCI</td>
<td>64 bits</td>
<td>133 MHz</td>
<td>1 GBps</td>
</tr>
</tbody>
</table>
PCI Local Bus Features

- **Performance** -
 - Burst Transfer at 528 m bps peak (64 bit- 66 MHz)
 - Fully concurrent with Processor-Memory subsystem
 - Access time is as fast as 60ns.
 - Hidden central arbitration.

- **Low cost** - multiplexed
- **Low Pin count** - 47 pin for target; 49 pin as initiator.
- **Ease of Use** - full auto configuration
- **Flexibility** - processor independent, accommodates other protocols
- **Green Machine** ‘CMOS drivers → low power
Every device on the PCI bus is either
- PCI compliant - has the same signals as the PCI bus
- Connected via a PCI core - this piece of hardware does the interfacing

Common devices
- Audio/Video cards
- LAN cards
- SCSI controllers
PCI Interface Signals

Required Pins
- Address & Data:
 - AD[31::00]
 - C/BE[3::0]#
 - PAR
 - FRAME#
 - TRDY#
 - IRDY#
 - STOP#
 - DEVSEL#
 - IDSEL

Interface Control
- PERR#
- SERR#
- REQ#
- GNT#

Error Reporting
- CLK
- RST#

System

Optional Pins
- AD[63::32]
- C/BE[7::4]#
- PAR64
- REQ64#
- ACK64#
- LOCK#
- INTA#
- INTB#
- INTC#
- INTD#

- TDI
- TDO
- TCK
- TMS
- TRST#
Introduction to the PCI Interface

PCI Local Bus

PCI System Signals

- CLK: clean signal derived from the clock generator (33MHz, 66MHz)
- RST: Active Low Asynchronous reset
- PAR: Parity Signal to ensure the parity across the AD bus and C/BE.
PCI Bus Protocol - Signal Definition

- **AD** - Multiplexed address and data lines
- **C/BE** - Command and Byte Enables
- **FRAME** - Master indicating start/end of transfer
- **IRDY** - Master (initiator) ready
- **TRDY** - Target ready
- **DEVSEL** - Target device selected
- **REQ** - Request for bus
- **GNT** - Bus Grant
PCI control signals contd.

- **STOP [I/0]**: Target asserts to stop the transaction in Progress.
- **IDSEL [I]**: Used as chip select
- **LOCK [I/0]**: During semaphore currently accessed target locked by initiator
- **DEVSEL [I/0]**: Asserted by target when the target asserts has decoded its address. (If by 6 clk not asserted \Rightarrow master abort.
PCI Configuration Register

- Device ID
- Vendor ID
- Status / Command reg
- Base Address \([0,1,2,3,4,5]\)
- Maximum Latency
- Minimum GNT
- Subsystem ID, Subsystem Vendor ID
PCI Command Types [C/BE]

- 0000 → INTR ack
- 0010 → I/O Read
- 0011 → I/O Write
- 0110 → Memory Read
- 0111 → Memory Write
- 1010 → Configuration read
- 1011 → Configuration write
JTAG boundary scan

- Test Access Port
 - Test Clock
 - Test Data in
 - Test Data out
 - Test Mode select
 - Test Reset
- IEEE standard 1149.1 compliant
Interrupts

- Asynchronous events
- 4 interrupt lines for multi-functional devices.
- Interrupt lines go to the interrupt controller to execute the ISR
PCI Bus Protocol-Transfer mechanism

- Configuration read/write
- IO read/write
- Burst
 - Basic form of data transfer
 - Includes one address phase
 - One or more data phase
Burst Transfer Mechanism

- Assert REQ
- GNT granted
- Wait for current transaction to end
- Assert FRAME
- Transfer data when both TRDY and IRDY are asserted
- De-assert FRAME during last data phase
Timing Diagram for a basic Read operation

CLK
FRAME#
AD
C/BE#
IRDY#
TRDY#
DEVSEL#

ADDRESS
DATA-
ADDRESS PHASE
DATA PHASE
DATA TRANSFER
DATA PHASE

WAIT
DATA TRANSFER
WAIT
DATA TRANSFER
WAIT
DATA TRANSFER

BUS TRANSACTION
Various read transaction

- Single cycle Read
- Burst data read
- Read with no wait states
- Byte Enables can be changed for every data cycle
- Data Cycle with NO byte enables.
Introduction to the PCI Interface

PCI Local Bus

Basic Write Operation
Transaction termination

- Last data phase completes when
 - !FRAME and TRDY (normal - master)
 - !FRAME and STOP (target termination)
 - !FRAME and Device Select Timer expires (Master abort)
 - !DEVSEL and STOP (Target abort)
Introduction to the PCI Interface

PCI Local Bus

Multiple bus

- PCI to PCI bridge
- Concept of LOCK
- All on one level
Outline

1. Outline
2. Motivation
3. Bus Standards
4. PCI Technology Overview
5. PCI Local Bus
6. References
References

- PCI System Architecture Tom Shanley and Don Anderson.. Mindshare
- http://www.mitsi.com/Engineering/pci.htm
- http://computer.howstuffworks.com/pci1.htm