
IP Router Architecture

OVS Bharadwaj



Outline

Evolution
IP Router functionality
IP Router Architecture

Bus based
Switch fabric

Queuing Mechanisms in a Switch fabric
Crossbar Scheduling



Evolution
Traditionally routers were implemented in Software.

High flexibility but
Performance limited by performance of the processor

Hardware implementation (ASICs)
High performance
Low flexibility

Need for both hardware and software for best overall 
performance



IP Router functionality

Basic Forwarding: IP packet validation, Packet lifetime control, 
Checksum recalculation, fragmentation

Complex forwarding: Packet translation, Traffic prioritization, 
Packet filtering

Router-specific tasks: Routing protocols, System configuration 
and management

Division into slow and fast path:
time critical (or fast path)
non-time critical (or slow path)



IP Router Architecture

Network Interfaces

Forwarding Engines

General Processing Module

Interconnection Unit



Bus-based Router Architectures with Single 
processor



Architectures with Route Caching



Multiple Parallel Forwarding Engines



Switch fabric



Modern Switch based architecture



Buffering and Queuing

Need for Queuing
More than one packet can may arrive for the same 
output during the same time slot.

Three basic types of queuing families
Output queuing
Input queuing
Shared Buffer



Output Queuing

Filter selects all incoming packets destined for that 
output and places them in the output buffer

Output links will never suffer from starvation, when 
there is at least more than one packet to be sent



Advantages of output queuing

Multicasting 

Delaying of packets can be controlled

QoS can be ensured by having multiples queues, one 
for each prioritization level



Disadvantage of output queuing

High speedup (K=N) is required
Memory must be working at (N+1).S speed
The internal crossbar must work N times faster than the output 
links
Example: N=16 ports, S=2.5 Gbits/sec

One line in the crossbar 40 Gbits/sec
The entire crossbar capacity needed 640 Gbits/sec

These requirements are too high for implementation of both 
crossbars and memories



Shared output buffer

Large memory is shared by all output links
Better utilization of memory 
Packets distributed across the memory and only pointers to the 
packet locations must be stored in the queues
Same performance under unicast traffic
Better throughput under multicast traffic
Large amount of required space and throughput can not be 
achieved with today’s memory technologies



Cross point or distributed output queuing



Cross point or distributed output queuing

One queue for each input at each output
Scheduler selects an appropriate packet from one of the N 
buffers and passes it to the output link
No speed up is required
Memory faces only two operations per cell time
But distributing the output queues into N.N memories if 
inefficient 
Can reduce some of the cost by using the knockout principle

L (<N) queues for each output
Drop packets if more than L packets arrive



Output queuing

Assume that packet arrivals on the N
input trunks are governed by i.i.d
Bernoulli processes.
P=Probability that a packet will arrive 
on a particular input in that time slot.
Each packet has equal probability 1/N
of being addressed to any given 
output, and successive packets are 
independent.
As N tends to infinity Pr[A=i] approaches 
possion probabilities
Therefore throughput under heavy load 
can be calculated to be 63.2%



Input queuing

Buffer Memory at input ports

No speed up required, 
internal switch fabric and 
memories only have to 
operate at the line rate S

HOL blocking – limits 
throughput to 58%



Virtual input queuing

Removes HOL blocking problem at the cost of the 
complexity of the scheduler

Separate queues for each output port at each input 
port



Crossbar scheduling

Problem- To find the configuration of the switch 
where each active input is connected to all necessary 
outputs in least time

Desirable properties of scheduling algorithms
High throughput 
Starvation free
Fast 
Simple to implement



2D Round Robin Scheduling

Request Matrix

Diagonal Pattern Matrix
DM[R, C] = (C – R) mod N.
If DM[R, C] = K, then RM[R, C] is covered by diagonal pattern 
K.

Pattern Sequence Matrix
PM[I, J] = K implies that for time slot index J of a cycle, the 
l-th diagonal pattern applied is the one numbered K in the 
diagonal pattern matrix.

Allocation Matrix



2D Round Robin Scheduling



2D Round Robin Scheduling

Fair : Guarantees that each of the N2 requests will 
receive at least one opportunity for service during 
every cycle of N time slots.



Parallel Iterative Matching -PIM

Request

Grant

Accept



Parallel Iterative Matching -PIM

Each iteration will match, on average, at least ¾ of the 
remaining possible connections, and thus, the algorithm will 
converge to a maximal match, on average, in O(log N) 
iterations.

Randomness ensures that each request is eventually served, 
thus no input VOQ is starved.

It uses no memory or state. At the beginning of each cell time, 
the match begins over, independently of the matches that were 
made in previous cell times.



Parallel Iterative Matching -PIM

Random arbiters are difficult to implement at high speeds.
Leads to unfairness under heavy loads.

For single iteration – throughput is



Basic Round Robin Matching algorithm

RRM potentially overcomes two 
problems in PIM: complexity and 
unfairness.

If an output receives any 
requests, it chooses the one that 
appears next in a fixed, round 
robin schedule starting from the 
highest priority element. The 
pointer is incremented to one 
location beyond the granted 
input.



Basic Round Robin Matching algorithm

Fair
Synchronization of RR output arbiters leads to a 
throughput of just 50% 



iSLIP

Removes synchronization of the output arbiters. 

It achieves this by not moving the grant pointers 
unless the grant is accepted.

The Grant step of RRM is changed to
The pointer to the highest priority element of the round-
robin schedule is incremented to one location beyond the 
granted input if, and only if, the grant is accepted in Step 3.



Properties of iSLIP

Lowest priority is given to the most recently made 
connection.

No connection is starved.

Under heavy load, all queues with a common output 
have the same throughput.



iSLIP algorithm with multiple iterations



iSLIP algorithm with multiple iterations

How Many Iterations?
Ideally N

It takes log2N iterations for iSLIP to converge



iSLIP algorithm with multiple iterations

Updating Pointers

Starvation is eliminated if the pointers are not updated 
after the first iteration.

In the previous example, output 2 would continue to 
grant to input 1 with highest priority until it is successful.



References

The iSLIP Scheduling Algorithm for Input-Queued Switches Nick McKeown, 
Senior Member, IEEE

Two-Dimensional Round-Robin Schedulers for Packet Switches with Multiple 
Input Queue, Richard O. LaMaire, Member, IEEE, and Dimitrios N. Serpanos, 
Member, lEEE

J. Aweya. IP router architectures: An overview, 1999.

Anatomy of a high performance ip router. Florian Brodersen and Alexander 
Klimetschek.

Input Versus Output Queuing on a Space-Division Packet Switch, Mark J Karol 
and Samuel P Morgan

An engineering approach to computer networking, S. Keshav



THANK YOU 


	 IP Router Architecture
	Outline
	Evolution
	IP Router functionality
	IP Router Architecture
	Bus-based Router Architectures with Single processor
	Architectures with Route Caching
	Multiple Parallel Forwarding Engines
	Switch fabric
	Modern Switch based architecture
	Buffering and Queuing
	Output Queuing
	Advantages of output queuing
	Disadvantage of output queuing
	Shared output buffer
	Cross point or distributed output queuing
	Cross point or distributed output queuing
	Output queuing
	Input queuing
	Virtual input queuing
	Crossbar scheduling
	2D Round Robin Scheduling
	2D Round Robin Scheduling
	2D Round Robin Scheduling
	Parallel Iterative Matching -PIM
	Parallel Iterative Matching -PIM
	Parallel Iterative Matching -PIM
	Basic Round Robin Matching algorithm
	Basic Round Robin Matching algorithm
	iSLIP
	Properties of iSLIP
	iSLIP algorithm with multiple iterations
	iSLIP algorithm with multiple iterations
	iSLIP algorithm with multiple iterations
	References
	THANK YOU 

