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EE 622: Optimal Control Systems

Homework-1
For the following function,

F(zy, %9, x3) = 22} + 325 + 622 — 3z 29 — 6073

(a) Find the minimum(s).

(b) Are there any other stationary points? If so, what are they?

This problem explores the steepest descent algorithm. For the following function,
F(Q?J_,ZEQ.‘ Ig) = ‘Bf + ’L% + ’Lé — &g — Tolg — 23’1 — 81‘3

(a) Give an expression for the search direction p, for the steepest descent method.

(b) Using xg = [1 1 1]¥, write out the first iteration of the steepest descent algorithm.
What is x; in terms of ap? What is the optimal value for ey that minimizes
F(xg + copo)?

(¢) Write a MATLAB program to solve this problem using a steepest descent algo-
rithm and an initial value of xo = [1 1 1]7. Using a tolerance of 107%, how many
iterations does it take to converge with o = 0.1, @ = 0.2, a = 0.5, a = 17 Explain
your results.

(d) Use MATLAB’s fminunc function to solve for the minimum and compare its
performance with your algorithm.

Problem 2. Find the rectangle of maximum perimeter that can be in-
scribed in an ellipse; i.e., maximize

P=4(x+y)
with the constraint
2 2
LYy .
a}! b?.

Problem 4. Quadratic performance index with linear con.?tmints.
Show that the control vector « that minimizes the nonnegative defi-

nite quadratic form

S 1 r
L—2x0x+2uﬂu,

with the linear constrainté
flxu)=x+Gu+c=0,
is
u=—(R+ GTQG)'G™Qc .

Show, also, that the minimum value of L is
J=Lpw=%c"(Q — QG(R + GTQG) 'G"Q) c
and that
A= (Q — QG(R + GTQG)'G"Q) ¢
= (Q'+ GR'G") ¢ if Q- exists;t  —
x=—(I—GR+ GTQCG)GTQ)c.

Note, also, that

roal
ac

- +This is known as the “matrix inversion lemma.”



Prob.5

Prob.6

/ problem 5. Sail setting and heading for maximum upwind velocity.
A simplified model of a sailboat moving at constant velocity is shown

in Figure 1.3.2.
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Figure 1.3.2. Force equilibrium of sailboat.

The sailboat’s velocity relative to the water is V, at an angle ¢ to
the wind, which is blowing with velocity W relative to the water.
The sail is set at an angle 8 to the centerline of the boat, and the aero-
dynamic force S is assumed to act normal to the sail. The hydro-
dynamic force on the hull is resolved into components perpendicular
to the centerline K and parallel to the centerline D. The magnitude
of § is assumed to vary with the square of the relative wind, V_, and
the sine of the sail angle of attack, a:

§=C,Visina,

where C, is a constant and V and e are as defined in Figure 1.3.2.
The drag is assumed to vary with the square of the boat velocity, V:

D=C,V,

where C, is a constant. For equilibrium of forces parallel to the
centerline, we have

D= Ssiné.

Show that: (a) For given ¥, maximum V is obtained when a=46.
(b) The maximum velocity for ¢ = 180° (running before the wind) is
Wul(1 + ) and is obtained when 8 = 90°, where u* = C,/C, . (c) The
maximum upwind velocity, V cos ¢, is equal to Wu/4 and is ob-
tained when the sail setting and the heading are chosen to be

0= [(ut+2)p2 + 4]-V2, Yr=45°,

Assume for this part of the problem that o and @ are small angles so
thatsina=a«a,sinf@=6,cosa=1,cosf=1. -

" Problem 6. Angle of attack and bank angle for maximum lateral range

—glide. A quasisteady approximation for gliding turns of a low-speed

(subsonic) glider, made with constant angle of attack and constant
bank angle, gives lateral gliding range, y,, as

y,=r(l — cos By,
where

£ cos? . ,
r= __]f_ = radius of the helix,
a sino

z, asino

= —2———— = final heading angle,
£ sinycosy

By

y = tan"[(o: + :—fg—) sec cr] = gliding helix angle,
o



and

@ =mnk; & = angle of attack, } (decision parameters),
o = bank angle
7, = initial altitude,
= 2mn__ characteristic length (= 10 ft for typical sailplane),
pSC Ly

o= 2(1JCDGICLG)“3 = minimum drag to lift ratio (= ¥ for typical sail-
plane),

n = efficiency factor (0 <9 <1).

ZA
T ¥

Zy

Figure 1.3.3. Geometry of flight path for lateral turn.

S?mw that the maximum value of y, for a given z, is obtained when we
have
eanPro B
an —- = s
2" 1+ (4B

which may be regarded as a transcendental equation for 8, as a func-
tion of £ = z,/¢ . The corresponding values of o, a, and y are obtained

from
2B, S
T *T 3Wcos2a’

Assume that a, y, 8 are << 1.

tano = y=2acoso,

[NoTE 1. Within this same approximation, the maximum value of X,
for given z, is

X, = z,/8
and is obtained with
a=(1/2)5, o=0=>tany=25.]

[NOTE 2: Further definition of symbols:

m = mass of glider, V = velocity,
p = density of the atmosphere (approximated
as constant in this problem),

C,. = lift coefficient slope,
Co, = zero-lift drag coefficient
S = reference area for coefficients,
Lift=C, &% . Drag = (Cpo"""-'CL &2}%‘13.]



Prob.7 /Problem 7. Maximum steady rate of climb for an aircraft. For the /[~
" problem stated in Example 2 of Section 1.2, find the maximum steady
rate of climb at sea level and at altitudes of 10,000 ft, 20,000 ft, 30,000
ft, and 40,000 ft for an airplane with weight mg = 34,000 lbs and wing
area S = 530 fi2. The lift, drag, and thrust characteristics are given
below:
2

pV? PV
58, D= (Cp, + MC,, @)~

Here C!-a‘ CDo’ and n are functions of Mach number M= V/c, as
shown in Figures 1.3.4 and 1.3.5; ¢ = speed of sound and p = density
of the air, both of which are functions of altitude, that is, ¢ = c(h),
p = p(h). These functions are given in Table 1.3.1. The thrust, T,

S.

L= Cbﬂa

at full throttle, is a function of Mach number and altitude, as shown in
Figure 1.3.5. Use € = 3°.
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Figure 1.3.4. Drag and lift coefficients as function af Mach
number.

Find, also, the altitude at which the maximum rate of climb is zero.
This is called the “ceiling” of the airplane.

Table 1.3.1. Air density and speed of sound variation with altitude

Altitude ~h, Speed of sound ~C, Air density ~p,

ft ft/sec slugs/ft?
0 1,116 2,377 x 104
5,000 1,097 2,048
10,000 1,077 1,755
15,000 1,057 1,496
20,000 1,037 1,266
25,000 1,016 1,065
30,000 994.7 ' 889.3
36,090 968.1 706.1
40,000 968.1 585.1
45,000 968.1 460.1
50,000 968.1 361.8
55,000 968.1 284.5
60,000 968.1 223.8
70,000 968.1 138.4
80,000 968.1 85.56
82,020 968.1 77.64
90,000 984.2 51.51

100,000 1,004 31.38




1.6
Static sea level thrust= 23,500 1b

Specific fuel consumption —gm/T=.29X10-3
Ib sec-! per 1b of thrust
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Figure 1.3.5. Thrust as function of Mach number and altitude
at full throttle.

Problem 8. Minimum fuel turn at constant altitude. A steady turn
Prob.8 : . : i !
(V =0,# = 0) at constant altitude is described by
. PV?
(Cp, + -qCLaa‘_’) 5-S=T (drag = thrust),
- pV? . ' . .
mg=C, a3 S (cos o) (weight = vertical component of lift),
. V2 .
mVpB=C, &-‘OO—S (sin o) (turn rate = horizontal component
* = of lift),
where

*= angle-of—attack,} decision parameters

o : bank angle
and the rest of the symbols are as defined in Problem 6. -
Find a & n& and o to minimize the fuel in making a turn from g8 = g,
to 8 = B, where fuel is proportional to ' )

Jéf‘detEF’IgﬁE%(ﬁfﬂﬁn);
0 Bo

that is, minimize

T (Cp, +7C,, a2) mV

B CLa&sincr

subject to mg =C,_ &(p_.vi) S cos o.
2

ANSWER. a = (V3/2)8, o = cos~'(1/V3) =54.7°,
where 8 =2 VnC, /C, .

Note that this implies V = V2gl/é ,-I%-= (V3/2) (1/8) and T =2mg 8,
2mm

C.PS’

where ¢ =



Prob.9 Problem 2. Aircraft cruise condition for minimum fuel consumption.
For the airplane described in Example 2, Section 1.2, and in Prob-
lem 7, Section 1.3, find the steady level-flight (y = 0) condition for
minimum fuel consumption per unit distance. Assume constant
specific fuel consumption, o = .29 X 10-* b sec™* per Ib of thrust, so
that fuel consumption per unit distance is given by

oT
l— V’

where

T = Trax(V.h)
and Tmax(V,h) is as given graphically in Problem 7, Section 1.3.

The constraint equations are
L-mg+ Tsinla+¢e)=0, D—-Tcos(a+€)=0,
where L = L(V,h,a), D = D(V,h,a) are as given in Problem 7, Sec-
tion 1.3.

Prob.10 Problem 3. Write out a mathematical proof of the geometrical argument
of Figure 1.7.2. In particular, show why A= 0.

3'21

>N
Figure 1.7.2. Two-dimensional illustration showing the neces-
sity of Equation (1.7.10).

3 ) _
— parallel to —65 and pointing in opposite directions. (1.7.10)

Prob.11 For the following cost function, F = 22 + y? — 6zy — 4a — 5y
(a) Show analytically how to minimize the cost subject to the constraints,
fi:224+y+1=0
forx+y—4<0
farx =1

(b) How is the optimal cost affected if the constraint f; is changed to,

fl=-2x4+y+11=0

Estimate this difference and explain your answer.

(c) Write a Matlab script to confirm your results in parts (a) and (b)



Example 2. Maximum steady rate of climb for aircraft. The net force
on an aircraft maintaining a steady rate of climb must be zero. If we
choose force components parallel and perpendicular to the flight
path (see Figure 1.2.2), this requires that

fi(Voy,a)=Tcos(ax+¢€)—D—mgsiny=0,
f,(Vy,a)=Tsin (e +€) + L —mgcosy=0,
where

V = velocity,

v = flight path angle to horizontal,

a = angle-of-attack,

m = mass of aircraft,

g = gravitational force per unit mass,

e = angle between thrust axis and zero-lift axis,

and, at a given altitude,

L = L(V,a) = lift force,
D = D(V,x) = drag force,
T = T(V) = thrust of engine.

Zero-lift axis
L \/

",“\ Flight path (parallel
v to velocity vector)

Horizontal ————————; .

o

Figure 1.2.2. Force equilibrium of climbing aircraft.

D

The rate of climb is simply
Vsiny.

We choose V and vy as state parameters and a as the control parameter
since, at a given altitude, a choice of « determines V, 'y from the two
force equilibrium relations.

The H function is

H =Vsiny + A (T cos (a +€) —D — mgsiny)
+ M\,(T sin (e + €) + L — mg cos y) .

Hence, the necessary conditions for a stationary value of rate of climb
are:

f,=T(V)cos(a+e€)—D(V,a) —mgsiny=0,
£, =T(V)sin(a + €) — L(V,a) - mgcosy =0,

%{J—= siny-:—:\,[—qzcos (a+e)—£‘p—]+)\2[£sin(a +€)+£]=0,

aVv av av v
oH .
——=Vcosy~\ mgcosy+A,mgsiny=0,
SH _\ | _rg; _8D &]_
o )\1[ T sin (o + €) am]+J\2[Tcos(«:‘c+wz)+M =0.

These five equations for the five unknowns, V, v, &, A, , and A, , will,
in general, have to be solved numerically for realistic lift, drag, and
thrust functions.



