EM Algarithm - an iterative method for numerically calculating MIE - increases the likelihood at each step 2(n] - real observed data y [n] > latent / imaginary data > used
if y[n] makes MIE calculation caries Example: Let $x[n] = \frac{1}{2} \cos 2x \int_{0}^{\infty} n + w[n] = 0,1.5, N-1$ $0 = \left[\int_{0}^{\infty} \frac{1}{x^{2}} + \frac$ Normally MIE would seq. minimization of $J(f) = \sum_{n=0}^{N-1} \left(2(n) - \sum_{i=1}^{N-1} \cos 2\pi f_i \cdot n \right)^{\frac{1}{2}}$ (fp) -> min aver p dimensions.

>> p caupled equations. On the other hand, if we had different data, say $y_i^{\circ}[n] = \cos 2\pi f_{\circ}n + w_i f_{n} f_{i}$ $i:1,2,\cdots,p$ $i=1,2,\cdots,p$ $n=0,1,\cdots,N-1$ where $w_{i}[n] \sim N(0,0^{-2})$, $w_{i} & w_{j}$ are ind. $\frac{5}{i-1} = 0^{2}$ Then, we can calculate f_i^o by minimizing $J(f_i^o) = \sum_{n=0}^{\infty} (y_i(n) - cas 2nf_i n)^{2}$ separately for each i=1,..., p.

p - decoupled equations; one for each p.

Fasier problem

 $\{y_{1}[n], y_{2}[n], \dots, y_{p}[n]\} \xrightarrow{} Complete | Actant Data (n = 0, 1, \dots, N-1) \}$ $\{x_{1}[n], y_{2}[n], \dots, y_{p}[n]\} \xrightarrow{} Tocomplete | Data$ Clearly 20[n] = \(\frac{1}{i-1} \) \(\frac{1 Note: This decomposition is over unique: erg. $y_1(n) = \frac{5}{2} \cos 2x f_i n$ $y_2[n] = W(n) f_i also$ $2(n) = \frac{1}{2} f_1(n) + \frac{1}{2} f_2(n)$ $f_2(n) = \frac{1}{2} f_2(n)$ In general: $x = g(y_1, \dots, y_p) = g(y)$ Main problem: yo [n] are not known in

Recall rewrity, whereas $\pi(n)$ is observed.

The mrse estimate of In p(y; 0) given π is: Ey| π [h $p_y(y; 0)$] = \int In p(y; 0) $p(y|\pi; 0)$ dy

known in known

Strulegy: 1) Replace p with the current gaes of p(y; 0) p(y; 0).

2) Herate E.M. Algo: (Espectation - Musimization) $\frac{E-8tep}{M-8tep}: U(0,0_{\kappa})=\int ln p_{y}(y;0) p(y/x;0_{\kappa})dy$ $\frac{M-8tep}{0}: 0_{\kappa+1}=arg mase U(0,0_{\kappa})$

#Colubation of the corchiticnes prob p(y/x;0) is
often very difficult.
For our example above: $ln p(y;0) = \frac{1}{2} ln p(y;0;0;0)$ $= \frac{1}{2n \sqrt{2n \sqrt{2n^{2}}}} \int_{1/2}^{1/2} \frac{1}{2n \sqrt{2n^{2}}} \int_{1$ Approximate $\sum_{n=0}^{N-1} \cos^2 2n f_n \approx \frac{N}{2}$ for f_0 not near Cals $0 = 1 \Rightarrow \frac{N}{2} = N$ Call $0 = 1 \Rightarrow \frac{N}{2} = N$ C Then $\ln p(y;0) = h(y) + \sum_{i=1}^{p} \frac{1}{\sigma_{i}^{2}} \sum_{n=0}^{N-1} y_{i}(n) \cos 2\alpha f_{i}n$ Let $C_i^{\circ} = \begin{bmatrix} 1 & \cos 2z f_{i}^{\circ} & ... & \cos 2z f_{i}^{\circ} (N-1) \end{bmatrix}^{T}$ Then $\ln p(y;0) = h(y) + \underbrace{\frac{1}{z-1}}_{i=1} \underbrace{\frac{1}{\sigma_{i}^{\circ} 2}}_{i} \underbrace{\frac{$

Further let $C = \begin{bmatrix} \frac{1}{6} & 2 & 1 \\ \frac{1}{6} & 2 & 1 \end{bmatrix}$ $y = \begin{bmatrix} y_1 & y_2 \\ y_2 & y_3 \end{bmatrix}$ Thump (y;0) = h(y) + cTy E-Step: U/O;On) = E/m p(y;O)/n; On]

= E/h(y)/ne;On] + CT E(y/ne;On)

ind. of O

here ignored perally gransian
in next H-step jointly Granssian

store n = \(\frac{2}{3} \); = [I I \cdot 1] \(\frac{3}{3} \) Stree $\alpha = \{ y_i = [I \ I \cdot I] \}$ $N \times I \quad N \times N \quad N \times N$ Sim x & y are jointly branssian: $E(y|x; 0_n) = E(y) + CyceC_{non}(x - E(x))$ Recall: $E(y) = \begin{pmatrix} c_i \\ c_p \end{pmatrix}_{Np\times 1}$ $E(x) = \begin{cases} c_0 \\ c_1 \\ c_2 \end{cases}$ $C_{20} = \sigma^2 I \qquad (y_{20} - E / w_1)$ $(w_{20} - W_1)$ $= \left\{ \begin{array}{c} w_1 \\ w_2 \\ \end{array} \right\} \left\{ \begin{array}{c} w_2 \\ w_3 \\ \end{array} \right\} \left\{ \begin{array}{c} w_1 \\ w_2 \\ \end{array} \right\} \left\{ \begin{array}{c} w_2 \\ w_3 \\ \end{array} \right\} \left\{ \begin{array}{c} w_1 \\ w_2 \\ \end{array} \right\} \left\{ \begin{array}{c} w_2 \\ w_3 \\ \end{array} \right\} \left\{ \begin{array}{c} w_1 \\ w_2 \\ \end{array} \right\} \left\{ \begin{array}{c} w_1 \\ w_2$

$$\begin{bmatrix}
\sigma_{i}^{2}I \\
\vdots \\
\sigma_{p}^{2}I
\end{bmatrix} = \begin{bmatrix}
\sigma_{i}^{2}I \\
\vdots \\
\sigma_{p}^{2}I
\end{bmatrix} = \begin{bmatrix}
\sigma_{i}^{2}I \\
\vdots \\
\sigma_{p}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\sigma_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}^{2}I \\
\varepsilon_{i}^{2}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix}$$

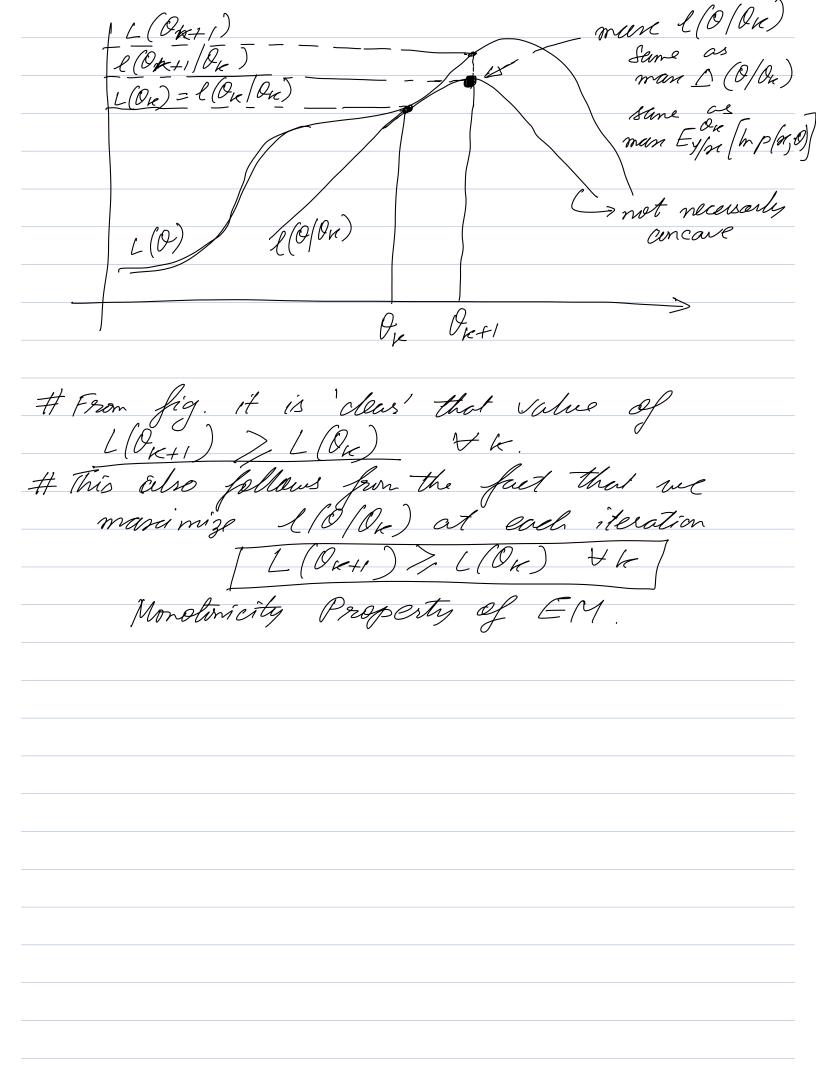
$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i}I
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{i}I \\
\varepsilon_{i$$

In effect: the E-M Steps are:
$\mathcal{L}_{\mathcal{A}}$ \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}
$\frac{\text{E-Step:}}{\text{Joln J= coes } 2\pi f_{k}^{\circ} n + \beta_{i} \left[\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \right]}$
M-Sten: Fas 1-132,, P.
$\frac{M-Step: Fols (-1,3)\cdots P_{N-1}}{\int_{k+1}^{0} = arg mase} \frac{\int_{N-1}^{N-1} J_{co}[n] coes 2\pi J_{co}[n]}{\int_{k+1}^{0} = arg mase} \frac{\int_{N-1}^{N-1} J_{co}[n] coes 2\pi J_{co}[n]}{\int_{N-1}^{0} = arg mase}$
Bis we arbitary as long as I Bio=I]
62 are not unique, they can be chosen arbitrarily
Gi are not unique, they can be chosen arbitrarily as lung as $\frac{5}{i=1}$ or $\frac{5}{i=1}$ or $\frac{5}{i=1}$ $\frac{6i}{i=1}$ = 1
Q. Why does it work?
Jensen's Trequality: Let of be a convex function
Jensen's Trequality: Let f be a convex function defined on an interval I . If $x_1, \dots, x_n \in I$ and $\lambda_1, \lambda_2, \dots, \lambda_n \geq 0$ with $\sum_{i=1}^n \lambda_i = 1$, then
2 M
$f\left(\sum_{i=1}^{r} \lambda_{i} \mathcal{X}_{i}\right) \leqslant \sum_{i=1}^{r} \lambda_{i} f\left(\mathcal{X}_{i}\right)$
Proof: $n=1$ trivial $ \begin{cases} 2\lambda_i f(n_i) \\ n=2 \end{cases} $ defin of convenity $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ and $ \begin{cases} \lambda_i f(n_i) \\ \lambda_i f(n_i) \end{cases} $ a
Induction: assure true foes n. $ \frac{1}{2} \left(\frac{1}{2} \lambda_{i} n_{i} \right) = \int \left(\lambda_{n+1} \chi_{n+1} + \frac{1}{2} \lambda_{i} \chi_{i} \right) $
$= \sum_{i} \lambda_{i} \lambda_{i}$


$$= \int (\lambda_{n+1}x_{n+1} + (1-\lambda_{n+1})(\frac{1}{1-\lambda_{n+1}}) \leq \lambda_{1}x_{1})$$

$$\leq \lambda_{n+1} \int (x_{n+1}) + (1-\lambda_{n+1}) \int (\frac{1}{1-\lambda_{n+1}} + x_{1})$$

$$= \lambda_{n+1} \int (x_{n+1}) + (1-\lambda_{n+1}) \int (\frac{1}{1-\lambda_{n+1}} + x_{1})$$

$$\leq \lambda_{n+1} \int (x_{n+1}) + (1-\lambda_{n+1}) \int \frac{\lambda_{1}}{(x_{1})} + \frac{\lambda_{1}}{(x_{1}-\lambda_{n+1})} \int \frac{\lambda_{1}}{(x_{1}-\lambda_{n+1}$$

=
$$\ln \left(\frac{P(y,\alpha;0)}{P(y,\alpha;0)}P(y|\alpha;0_{R})dy\right)$$
= $\ln \left(\frac{P(y;0)}{P(y;0_{R})}P(x|y)\right)$
 $P(y,\alpha;0_{R})$
 $P(y,\alpha;0_{R$

