Granting Agencies: Department of Science and Technology, Indian Space Research Organization

Time Optimal Feedback in Multi-Agent Systems

Joint Work with
Deepak Patil, Ameer Mulla, and Sujay Bhatt

Debraj Chakraborty

Department of Electrical Engineering, Control and Computing Group
Question

• Given a collection of autonomous dynamical systems (or ‘agents’) communicating with each other over (undirected/directed, time invariant/time varying) graph(s), how do we bring them to a consensus/synchronize them in minimum time?

GRASP Lab, UPenn
We solve two sub-questions

Computation of Time Optimal Feedback using Groebner Basis

(Feedback) Pursuit-Evasion Games

Time Optimal Multi-agent Consensus (complete graph)

Time Optimal Leader Tracking in Multi-agent systems (directed graphs)
TIME OPTIMAL FEEDBACK
Time Optimal Feedback

Problem: Go from A to B in minimum time with maximum allowed acceleration/deceleration = ± 1

\[
\dot{p} = v; \quad \dot{v} = u
\]

\[
|u| \leq 1
\]
Time Optimal Feedback

Problem: Go from A to B in minimum time with maximum allowed acceleration/deceleration = \pm 1

\[\dot{p} = v; \quad \dot{v} = u \]

\[|u| \leq 1 \]
Time Optimal Feedback

Problem: Go from A to B in minimum time with maximum allowed acceleration/deceleration = ± 1

\[\dot{p} = v; \quad \dot{v} = u \]

\[|u| \leq 1 \]
Time Optimal Feedback

Problem: Go from A to B in minimum time with maximum allowed acceleration/deceleration = ± 1

\[\dot{p} = v; \quad \dot{v} = u \]

\[|u| \leq 1 \]

Q. What if A/B is perturbed?
- Looks like we have to re-compute the switching instance all over again
Time Optimal Feedback

Q. What if A/B is perturbed?
- Looks like we have to recompute the switching instance all over again

NOT REALLY – On state space, switching occurs based on the SWITCHING SURFACE – the blue line
Switching Surface for Feedback

• If S (the switching surface) is known feedback control can be synthesized

Feedback Algorithm:

$$u = \begin{cases}
+1 & \text{if } S < 0 \\
-1 & \text{if } S > 0
\end{cases}$$

And change sign as soon as $S = 0$
Switching Surface for Feedback

- If S (the switching surface) is known feedback control can be synthesized

Feedback Algorithm:

$$u = \begin{cases}
+1 & \text{if } S < 0 \\
-1 & \text{if } S > 0
\end{cases}$$

And change sign as soon as

$$S = 0$$
Switching Surface for Feedback

• If S (the switching surface) is known feedback control can be synthesized

Feedback Algorithm:

$$u = \begin{cases}
+1 & \text{if } S < 0 \\
-1 & \text{if } S > 0
\end{cases}$$

And change sign as soon as $S = 0$

• The virtues of feedback over open loop are many — In fact, the initial motivation for this research was ISRO RLV RCS thruster control design
Switching Surface for Feedback

• But for this we need an **IMPLICIT** expression i.e. $S(x_1, x_2) = 0$ equation for the switching surface

Feedback Algorithm:

\[
u = \begin{cases}
+1 & \text{if } S < 0 \\
-1 & \text{if } S > 0
\end{cases}
\]

And change sign as soon as $S = 0$
Basic Idea

\[
A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \begin{cases} \dot{x}_1 = x_1 + u \\ \dot{x}_2 = 2x_2 + u \end{cases}
\]

Parametric Equations for the Switching Surface are easy – just solve above equations (for no switch, with origin target)

\[
0 = x_1 e^{t_1} \pm e^{t_1} \int_{0}^{t_1} e^{-\tau} \, d\tau
\]

\[
0 = x_2 e^{2t_1} \pm e^{2t_1} \int_{0}^{t_1} e^{-2\tau} \, d\tau
\]

\(t_1 \) is unknown and to be eliminated.

\[0 \leq t_1 < \infty \]
Basic Idea

\(A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) \begin{cases} \dot{x}_1 = x_1 + u \\ \dot{x}_2 = 2x_2 + u \end{cases}

Solving:

\[
\begin{align*}
 x_1 &= \pm \left(e^{-t_1} - 1 \right) \\
 x_2 &= \pm \frac{\left(e^{-2t_1} - 1 \right)}{2}
\end{align*}
\]

are the points from which we can go to the origin without further switching i.e.

Substitute: \(z_1 = e^{-t_1} \)

Switching Surface:

\[
 x_2 = \pm \frac{x_1^2}{2} + x_1
\]

Elimination not always this easy
How to eliminate?

\[
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad \text{; } B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

\[
x_1 = 2e^{-t_1} - e^{-t_2} - 1
\]

\[
x_2 = e^{-2t_1} - \frac{1}{2}e^{-2t_2} - \frac{1}{2}
\]

\[
x_3 = \frac{2}{3}e^{-3t_1} - \frac{1}{3}e^{-3t_2} - \frac{1}{3}
\]

\[0 \leq t_1 \leq t_2 < \infty\]

Q. How to eliminate \(t_1 \) and \(t_2 \)?
How to eliminate?

$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$x_1 = 2e^{-t_1} - e^{-t_2} - 1$

$x_2 = e^{-2t_1} - \frac{1}{2}e^{-2t_2} - \frac{1}{2}$

$x_3 = \frac{2}{3}e^{-3t_1} - \frac{1}{3}e^{-3t_2} - \frac{1}{3}$

$0 \leq t_1 \leq t_2 < \infty$

Q. How to eliminate t_1 and t_2?

* Set of points which can reach origin in ONE switch (colored surface above)
* Parametric representation of Switching Surface

Things get complicated fast
How to eliminate?

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix};
B = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

\[
x_1 = 2e^{-t_1} - e^{-t_2} - 1
\]

\[
x_2 = e^{-2t_1} - \frac{1}{2}e^{-2t_2} - \frac{1}{2}
\]

\[
x_3 = \frac{2}{3}e^{-3t_1} - \frac{1}{3}e^{-3t_2} - \frac{1}{3}
\]

\[0 \leq t_1 \leq t_2 < \infty\]

Q. How to eliminate \(t_1 \) and \(t_2 \) ?

Things get complicated fast

- Set of points which can reach origin in ONE switch (colored surface above)
- Parametric representation of Switching Surface
How to eliminate?

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix} ; \quad B = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

\[
x_1 = 2e^{-t_1} - e^{-t_2} - 1
\]

\[
x_2 = e^{-2t_1} - \frac{1}{2}e^{-2t_2} - \frac{1}{2}
\]

\[
x_3 = \frac{2}{3}e^{-3t_1} - \frac{1}{3}e^{-3t_2} - \frac{1}{3}
\]

\[
0 \leq t_1 \leq t_2 < \infty
\]

Q. How to eliminate \(t_1 \) and \(t_2 \)?

- Set of points which can reach origin in ONE switch (colored surface above)
- Parametric representation of Switching Surface
How to eliminate?

\[A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \]

Substitution to polynomials

\[x_1 = 2e^{-t_1} - e^{-t_2} - 1 \]
\[x_2 = e^{-2t_1} - \frac{1}{2}e^{-2t_2} - \frac{1}{2} \]
\[x_3 = \frac{2}{3}e^{-3t_1} - \frac{1}{3}e^{-3t_2} - \frac{1}{3} \]

\[0 \leq t_1 \leq t_2 < \infty \]

Set of points which can reach origin in ONE switch

\[z_1 = e^{-t_1} \]
\[z_2 = e^{-t_2} \]

\[x_1 = 2z_1 - z_2 - 1 \]
\[x_2 = z_1^2 - \frac{1}{2}z_2^2 - \frac{1}{2} \]
\[x_3 = \frac{2}{3}z_1^3 - \frac{1}{3}z_2^3 - \frac{1}{3} \]

\[0 < z_2 \leq z_1 \leq 1 \]

Polynomial Parametric representation of Switching Surface
How to eliminate?

\[g(x_1, x_2, x_3) = 0 \]

+ the inequalities

\[x_1 = 2z_1 - z_2 - 1 \]

\[x_2 = \frac{1}{2}z_1 - \frac{1}{2}z_2 - \frac{1}{2} \]

\[x_3 = \frac{2}{3}z_1^3 - \frac{1}{3}z_2^3 - \frac{1}{3} \]

\[0 < z_2 \leq z_1 \leq 1 \]

Set of points which can reach origin in ONE switch

Polynomial Parametric representation of Switching Surface
Elimination Algorithm

- Form an Ideal:
 \[J = \langle x_1 - 2z_1 + z_2 + 1, x_2 - z_1^2 + \frac{1}{2}z_2^2 + \frac{1}{2}, x_3 - \frac{2}{3}z_1^3 + \frac{1}{3}z_2^3 + \frac{1}{3} \rangle \]

- Compute Groebner basis \(G \) of \(J \) with lexicographic ordering \(z_1 \succ z_2 \succ x_1 \succ x_2 \succ x_3 \).

- The element \(g \in G \cap Q[x_1, x_2, x_3] \) defines the smallest variety containing the parametric representation of the switching surface.

- Inequality constraints: \(z_1 \) and \(z_2 \) can be computed in terms of the states (skipped here).
Example

$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

- Form an ideal $J = \langle x_1 - 2z_1 + z_2 + 1, x_2 - z_1^2 + \frac{1}{2}z_2^2 + \frac{1}{2}, x_3 - \frac{2}{3}z_1^3 + \frac{1}{3}z_2^3 + \frac{1}{3} \rangle$.
- Using Elimination Algorithm compute $g_2^+(x_1, x_2, x_3) = 0$.
- Also compute $z_1 = \frac{-(x_1^3 - 3x_1^2 - 3x_1 + 3x_3)}{(3x_1^2 + 6x_1 - 6x_2)}$ and $z_2 = \frac{-(x_1^3 + 3x_1^2 - 6x_1x_2 - 6x_2 + 6x_3)}{(3x_1^2 + 6x_1 - 6x_2)}$.
- Thus $M_2^+ = \{ (x_1, x_2, x_3) : g_2^+(x_1, x_2, x_3) = 0, 0 < z_2 \leq z_1 \leq 1 \}$.
Guarantees

- $g(x_1, x_2, x_3)$ can be ‘cut-out’ to recover the actual switching surface.
- Switching based on $g(x_1, x_2, x_3)$ works.
- Inaccurate/practical switching converges to arbitrary neighborhood of origin.
- The null controllable set can be algebraically computed.
- Limit cycles occur for most non-origin targets - time period can be computed.

The Good: Time Optimal + works for entire null controllable region + feedback control

The Bad – only works for rational/imag eigenvalues - recently some hope of removing this limitation
Plan

Computation of Time Optimal Feedback using Groebner Basis

(Feedback) Pursuit-Evasion Games

Time Optimal Multi-agent Consensus (complete graph)

Time Optimal Leader Tracking in Multi-agent systems (directed graphs)
Pursuit Evasion Games
Time Optimal *(Feedback)* Pursuit Evasion

- Optimal Feedback strategy was hard to compute: can be computed now (for rational/imaginary eigenvalues)

\[
\begin{align*}
\dot{x}_e &= Ax_e + Bu_e; \quad |u_e| \leq \alpha \\
\dot{x}_p &= Ax_p + Bu_p \quad |u_p| \leq \beta
\end{align*}
\]

Problem: ‘e’ tries to maximize and ‘p’ tries to minimize the time T when

\[
x_e(T) = x_p(T)
\]
Pursuit Evasion Games - Assumptions

• P and E do not know each others strategies
• Each needs to guard against worst possible strategies of the other
• Proposed pursuer control strategy (similarly for evader):

\[u_p^*(t) = \arg \min_{|u_p| \leq \beta} \left(\max_{|u_e| \leq \alpha} T(u_p, u_e) \right) \]

\(T(u_p, u_e) \) is capture time

\[u_p^*(t): \text{ min-max control strategy for pursuer} \]
Trick: Difference System

Difference System:

\[\dot{x}(t) = Ax(t) + Bu_{ep}(t) \]

where, \(x(t) = x_p(t) - x_e(t) \) and \(u_{ep}(t) = u_p(t) - u_e(t) \)

Capture condition: \(x_p(t) = x_e(t) \implies x(t) = 0 \) for some \(t \geq T \)

Objective function:

\[J = \int_0^T 1dt = T(u_p, u_e) \]

Min-max strategies: \(u_p^* \) and \(u_e^* \) such that

\[J^* = T(u_p^*, u_e^*) = \min_{|u_p| \leq \beta} \max_{|u_e| \leq \alpha} T(u_p, u_e) \]
Bryson and Ho (1969)

- Hamiltonian: \[H = \lambda^T (Ax + B(u_p - u_e)) + 1 \]

- Necessary condition for stationarity of \(J \)

\[
\dot{\lambda} = -\frac{\partial H}{\partial t} = -A^T \lambda \quad \lambda(0) = \lambda_0
\]

\[
H^* = \min_{|u_p| \leq \beta} \max_{|u_e| \leq \alpha} (\lambda^T (Ax + B(u_p - u_e)) + 1)
\]

- Optimal inputs:

\[
\begin{align*}
 u_e^*(t) &= \arg \max_{u_e} H(u_p, u_e) = -\alpha \text{sign}(\lambda_0^T e^{-At} B) \\
 u_p^*(t) &= \arg \min_{u_p} H(u_p, u_e^*) = -\beta \text{sign}(\lambda_0^T e^{-At} B)
\end{align*}
\]

- \(u_p^* \) and \(u_e^* \) should have same sign and switch according to same switching function.
Switching Surface

\[u^*_e(t) = \arg \max_{u_e} H(u_p, u_e) = -\alpha \text{sign}(\lambda_0^T e^{-At} B) \]
\[u^*_p(t) = \arg \min_{u_p} H(u_p, u^*_e) = -\beta \text{sign}(\lambda_0^T e^{-At} B) \]

A switching surface corresponding to this switching function can be computed by considering the difference system

- The “difference” system:
 \[D: \dot{x}_p - \dot{x}_e = A(x_p - x_e)x_e + B(u_p - u_e); \quad |u_p - u_e| \leq \beta - \alpha \]

- Capture when \(D \) reaches origin = Time Optimal transfer to origin with the changed input bound

- Feedback pursuit-evasion strategies can be computed

- Capture can be guaranteed if \(\alpha < \beta \)
Example Pursuit Evasion

\[\dot{p}_p = v_p; \quad \dot{v}_p = u_p \]
\[|u_p| \leq 2 \]

\[\dot{p}_e = v_e; \quad \dot{v}_e = u_e \]
\[|u_e| \leq 1 \]

'p' plays min-max feedback while e plays max-min feedback strategy, but still gets captured.
Example Pursuit Evasion

\[\dot{p}_p = v_p; \quad \dot{v}_p = u_p \]

\[|u_p| \leq 2 \]

\[\dot{p}_e = v_e; \quad \dot{v}_e = u_e \]

\[|u_e| \leq 1 \]

'p' plays **min-max feedback** while e plays **NON-OPTIMAL** strategy, gets captured earlier.
Successful Escape
Time Optimal Leader Tracking in Multi-agent systems
Consensus Tracking for Multiple Agents

Assumptions:
- All agents are stable with identical dynamics and input bounds
- a_0 is the leader
- a_0 moves along a given fixed trajectory
- State information flows in the direction of the arrows (directed graph)

Problem: Find the *local* control laws for a_1, \ldots, a_4 such that all of them track a_0’s trajectory in the minimum time possible.

Assumption: a_0 is “capturable” by the followers
Min-Max Pursuit

- Identify a directed spanning tree rooted at the leader (later)
- Apply the min-max pursuit policy for each follower
- For example: consider \((a_0, a_1)\) pair and apply the min-max pursuit policy for \(a_1\)

![Diagram of Min-Max Pursuit](image)
Min-Max Pursuit

- Identify a directed spanning tree rooted at the leader (later)
- Apply the min-max pursuit policy for each follower
- For example: consider \((a_0,a_1)\) pair and apply the min-max pursuit policy for \(a_1\)
- Similarly for all pairwise leader-follower pairs
- For each pair the upper bound on capture time is given by:
 \[
 \bar{t}_{ij} = \min_{|u_i| \leq \beta_i} \max_{|u_j| \leq \beta_j} T(u_i, u_j)
 \]
- But there is no upper bound for identical bounds on the leader and follower
Min Time Leader Tracking

Example

5-agent systems communicating over a tree. Agent dynamics is given by

\[\dot{x}_i(t) = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x_i(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u_i(t) \quad \text{for } i = 0, 1, \ldots, 4 \]

\[|u_0(t)| \leq 1 \text{ and } |u_i(t)| \leq 3 \text{ for } i = 1, \ldots, 4 \]
Selection of Directed Spanning Tree

• We have an algorithm which does this with local information (skipped here)
• How does the selection of the spanning tree affect time to consensus?
• Does using information from multiple leaders help reduce time to consensus?
• How do cycles (if allowed to remain) affect time to consensus?
Plan

Computation of Time Optimal **Feedback** using Groebner Basis

(Feedback) Pursuit-Evasion Games

Time Optimal Multi-agent Consensus (complete graph)

Time Optimal Leader Tracking in Multi-agent systems (directed graphs)
Multi Agent: Minimum Time Consensus

Consensus: Many ‘agents’ try to reach a previously unspecified point autonomously
Min Time Consensus

- **Problem**: Consider N double integrator ‘agents’ communicating over a complete graph

\[
\dot{x}_i(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x_i(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_i(t) \quad i = 1, \ldots, N
\]

with $x_i(t) = \begin{bmatrix} r_i(t) \\ v_i(t) \end{bmatrix}$, $x_i(0) = x_{i0} = \begin{bmatrix} r_{i0} \\ v_{i0} \end{bmatrix}$ and $|u_i(t)| \leq 1$.

Find \bar{x} and $\min \bar{t}$ such that, for all i, j

$x_i(\bar{t}) = \bar{x}$ and $x_i(t) = x_j(t)$ for all $t \geq \bar{t}$.
Attainable Set

Attainable Set from p at time t

\[\mathcal{A}_p(t) = \left\{ x : x = e^{At}p + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau, \quad \forall u(t) : |u(t)| \leq 1 \right\} \]

- Each point on the boundary can be reached using bang-bang time optimal control.
- **Polynomial Expressions for the boundaries can be obtained**
Main Idea

• For consensus, it would seem that the attainable sets of all the agents need to intersect, i.e. for consensus at time t

$$\bigcap_{1 \leq i \leq N} A_i(t) \neq \emptyset \ (A_i(t) := A_{x_{i0}}(t))$$

• Solution requires solving large set of coupled polynomial equations and inequalities
• Computation cannot be distributed between the agents

Helly’s theorem comes to the rescue

Let F be a finite family of convex sets in \mathbb{R}^n, containing at least $n + 1$ elements. If every $n + 1$ sets of F have a point in common, then all the sets of F have a point in common.
Parallel Computation

\[\bar{t}_{ijk} : \text{Minimum time to consensus for agents } \{a_i, a_j, a_k\} \]

Lemma: \[\bar{t} = \max_{1 \leq i, j, k \leq N} \bar{t}_{ijk} \]

Theorem:

Let \(\{a_p, a_q, a_r\} \) be the triple of agents such that \(\bar{t}_{pqr} = \max_{1 \leq i, j, k \leq N} \bar{t}_{ijk} \). Then the minimum time to consensus \(\bar{t} = \bar{t}_{pqr} \) and the corresponding consensus point \(\bar{x} = \bar{x}_{pqr} \).

This means:

- We have to check \(^3 \text{N} \text{C}_3 \) combinations for the max.
- But each of these computations are decoupled from the other – can be distributed between the agents
Two ways to three agent consensus

Case 1: \(t_{ijk} = \bar{t}_{ij} = \max \{ \bar{t}_{ij}, \bar{t}_{jk}, \bar{t}_{ik} \} \) i.e.

\[\bar{x}_{ij} \in A_k(\bar{t}_{ij}) \]

Figure: Case 1
Two ways to three agent consensus

Case 2: \(\tilde{t}_{ijk} > \max\{\tilde{t}_{ij}, \tilde{t}_{jk}, \tilde{t}_{ik}\} \) i.e. \(\bar{x}_{ij} \notin \mathcal{A}_k(\tilde{t}_{ij}) \)
Computation

- Algebraic formula for computation in both cases have been derived.
- Can be used to directly compute the min time and the consensus point based on the current states.
- Proposed algorithm can handle disturbances to the agents by dynamically (feedback) re-computing the target point.
 - Then full computation ($\binom{N}{3}/N$) needs to be done only once at the beginning.
Six agents min time consensus
Min time consensus on \mathbb{R}^1
Anything useful?
Quadcopter testbed
GPS waypoint-Leader Follower
Video: Leader Follower - 1
Still a long way to go before we can catch up with the leopard, duck or even cows
Thank You