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1 Introduction

In this paper, we deal with the linear matrix inequality (LMI) that arises in
the well-known infinite-horizon linear quadratic regulator (LQR) problem.

Problem 1.1 (Infinite-horizon LQR problem) Consider a controllable
system Σ with state-space dynamics d

dtx = Ax + Bu, where A ∈ Rn×n, B ∈
Rn×m. Then, for every initial condition x0, find an input u that minimizes the
functional

J(x0, u) :=

∫ ∞
0

[
x(t)

u(t)

]T [
Q S

ST R

] [
x(t)

u(t)

]
dt, (1.1)

with limt→∞ x(t) = 0, where
[
Q S

ST R

]
> 0 and R > 0.

It is known that for regular LQR problems, i.e., LQR problems with R > 0,
the input u that minimizes J(x0, u) in equation (1.1) can be obtained using a
static state-feedback constructed using the maximal solution of the algebraic
Riccati equation (ARE):

ATK +KA+Q+ (KB + S)R−1(BTK + ST ) = 0. (1.2)

However, for singular LQR problems, i.e., LQR problems with R singular,
the ARE does not exist due to non-invertibility of R. All LQR problems,
irrespective of being regular or singular, admit LMIs of the form:[

ATK +KA+Q KB + S

BTK + ST R

]
> 0. (1.3)

We call inequality (1.3) the LQR LMI. Interestingly, it has been established in
[19] that for any LQR problem, the optimal cost is given by xT0 Kmaxx0, where
Kmax is the maximal rank-minimizing solution of the LQR LMI (1.3). Hence,
in order to compute the optimal cost of an LQR problem, it is imperative that
the maximal rank-minimizing solution of the LQR LMI (1.3) be computed.
For a regular LQR problem, the maximal rank-minimizing solution of the
LQR LMI is given by the maximal solution of the corresponding ARE. There
are numerous methods to compute the maximal solution of an ARE: see [1],
[4] for different methods. However, these methods cannot be used to compute
the maximal rank-minimizing solution of an LQR LMI for the singular case
primarily due to the singularity of R matrix. In this paper, we show that
for single-input systems, one of the methods to compute the maximal rank-
minimizing solution of an LQR LMI for the regular case (Proposition 2.5)
can be extended to the singular case. This method, for the regular case, is
based on computing a suitable eigenspace of the corresponding Hamiltonian
system [12, Chapter 5]. A direct extension of this method to the singular
case fails, since the dimension of the suitable eigenspace of the Hamiltonian
system in such a case is less than what is required to compute the maximal
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rank-minimizing solution of the LQR LMI (see Example 2.1). We show in
this paper that the Hamiltonian system based method for the regular case
can indeed be extended to the singular case by substituting the role of the
eigenspace of the Hamiltonian system in the regular case by the subspaces
namely weakly unobservable (slow) and strongly reachable (fast) subspaces of
the Hamiltonian system.

The idea of weakly unobservable and strongly reachable subspaces have been
known to be crucial in singular LQR problems (see [10], [11], [20], [21]). In
these works, the weakly unobservable and strongly reachable subspaces of a
system, on which the singular LQR problem is posed, have been characterized.
Recursive algorithms, to compute such subspaces for a system, have also been
provided in these works. We, however, apply these notions not to the system
itself, but to the corresponding Hamiltonian system that one may obtain di-
rectly by applying Pontryagin’s maximum principle (PMP) to the problem
(notwithstanding the fact that the impulsive nature of the optimal control for
singular problems makes application of PMP inappropriate). The singularity of
R (and hence of the LQR problem) manifests itself in causing the Hamiltonian
system to be given by a system of differential algebraic equations (DAEs), as
opposed to a system of differential equations in state-space form for the regular
case. The DAEs of the Hamiltonian system naturally give rise to its weakly
unobservable and strongly reachable subspaces. These subspaces ultimately
lead us to an algorithm to construct maximal rank-minimizing solution of the
LQR LMI for a single-input system (Theorem 4.1).

In order to arrive at this algorithm, we first use the recursive algorithms to
characterize these special subspaces in terms of a suitable matrix pencil known
as the Rosenbrock system matrix (see Definition 2.2). These are the first two
main results of this paper; we develop them in Section 3 (Theorem 3.1 and
Theorem 3.2). The primary take away from the results in Section 3 is the
relation between the relative degree of the transfer function of a system and the
dimensions of its weakly unobservable and strongly reachable subspaces. We
make use of this relation and the fact that for autonomous systems the weakly
unobservable and strongly reachable subspaces are the direct summands of the
state-space to develop an algorithm to compute the maximal rank-minimizing
solution of the LQR LMI for the singular case. This is the third main result of
this paper (Theorem 4.1), which we present in Section 4. Another important
result crucial to the derivation of Theorem 4.1 is the disconjugacy property of
a certain eigenspace of a suitable matrix pencil called the Hamiltonian matrix
pencil. This is the fourth main result of this paper (Theorem 4.2) presented
in Section 4.

Application of the notion of slow and fast subspaces to the Hamiltonian sys-
tem not only leads to a method to compute the maximal rank-minimizing
solution of the LQR LMI, but also corroborates some of the findings in the
literature (see Corollary 4.3). Hence, the primary contribution of this paper is
the fact that, unlike the conventional approach ([10], [20], [21]) of applying the
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notion of slow and fast subspaces to the system, application of these notions
to the Hamiltonian system brings out further insight into the singular optimal
problem. Such an approach results in a methodology for designing feedback
controllers that solve the singular LQR problem: see [2]. In order to make
this paper self-contained, we present this result of obtaining such feedback
controllers in the form of an algorithm (Algorithm 5.1).

Another school of thought in the theory of singular LQR problems is based
on the notion of deflating subspaces; see [15], [17]. Numerical algorithms for
the computation of these deflating subspaces have been developed in [5], [16],
etc. The fundamentally different setup of our analysis does not allow for a
general comparison of our results with the results in [15] and [17]. Our results
carry forward the classical ideas developed by Silverman, Hautus, Willems, and
Kitapçi in [10], [20], and [21]. However, in Section 5.2, we provide a number
of examples that illustrate that our approach not only advances the theory
developed in [15] and [17] but also leads to practical improvements in cases
where the theory of [15] and [17] applies.

2 Notation and Preliminaries

2.1 Notation

The symbols R, C, and N are used for the sets of real numbers, complex
numbers, and natural numbers, respectively. We use the symbol R+ and C−
for the set of positive real numbers and the set of complex numbers with
negative real parts, respectively. The symbol Rn×p denotes the set of n × p

matrices with elements from R. We use • when a dimension need not be
specified: for example, Rw×• denotes the set of real constant matrices having
w rows. We use the symbol In for an n × n identity matrix and the symbol
0n,m for an n × m matrix with all entries zero. The symbol {0} is used to
denote the zero subspace. Symbol col(B1, B2,. . . ,Bn) represents a matrix of

the form [BT1 BT2 · · · BTn ]
T

. The symbol det(A) represents the determinant of
a square matrix A. Symbol rankA denotes the rank of a matrix A. We use
the symbol roots(p(s)) to denote the set of roots (over complex numbers) of a
polynomial p(s) with real or complex coefficients (counted with multiplicity).
Symbol num(p(s)) is used to denote the numerator of a rational function p(s).
The symbol σ(Γ ) denotes the set of eigenvalues of a square matrix Γ (counted
with multiplicity). The symbol |Γ | denotes the cardinality of a set Γ (counted
with multiplicity). We use the symbol σ(A|S) to represent the set of eigenvalues
of A restricted to a space S. We use the symbol dim (S) to denote the dimension
of a space S. The symbol imgA and kerA denote the image and nullspace of
a matrix A, respectively. The space of all infinitely differentiable functions and
locally square-integrable functions from R to Rn are represented by the symbol
C∞(R,Rn) and L2

loc(R,Rn), respectively. We use the symbol C∞(R,Rn)|R+
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to represent the set of all functions from R+ to Rn that are restrictions of
C∞(R,Rn) functions to R+. The symbol δ represents the Dirac delta impulse
function and δ(i) represents the i-th distributional derivative of δ with respect
to t.

2.2 Regular matrix pencils and their canonical form

Linear matrix pencils and their eigenvectors are crucially used throughout this
paper. Hence, we define eigenvalues and eigenvectors corresponding to linear
matrix pencils next.

Definition 2.1 Consider a regular matrix pencil (sU1 − U2) ∈ R[s]n×n, i.e.,
det(sU1−U2) 6= 0. Let λ ∈ roots (det(sU1 − U2)). Then λ is called an eigen-
value of (U1, U2) and every nonzero vector v ∈ ker (λU1 − U2) is called an
eigenvector of the matrix pair (U1, U2) corresponding to the eigenvalue λ. Fur-

ther, every nonzero vector ṽ ∈ ker (λU1 − U2)
i
, where i ∈ {2, 3, . . .}, is called a

generalized eigenvector of the matrix pair (U1, U2) corresponding to the eigen-
value λ.

We use the symbol σ(U1, U2) to denote the set of eigenvalues of (U1, U2) (with
λ ∈ σ(U1, U2) included in the set as many times as its algebraic multiplicity).

In this paper, we extensively use one of the canonical forms of a linear matrix
pencil (see [6] for more on different canonical forms). We review the result that
leads to such a canonical form next [6, Lemma 1-2.2].

Proposition 2.1 A matrix pair (U1, U2) is regular, i.e., det(sU1 − U2) 6= 0
if and only if there exist nonsingular matrices Z1 and Z2 such that Z1U1Z2 =
diag(In1 , Y ) and Z1U2Z2 = diag(U, In2), where n1 + n2 = n, U ∈ Rn1×n1 , and
Y ∈ Rn2×n2 is nilpotent.

A matrix pair (U1, U2) in the form
([

In1
Y

]
,
[
U
In2

])
is said to be in a canon-

ical form. Further, note that det(sU1 − U2) = k × det(sIn1 − U), where
k ∈ R \ {0}.

In the sequel, we also use the notion of Rosenbrock system matrix. We define
this next [18].

Definition 2.2 Consider a system with an input-state-output (i/s/o) repre-
sentation of the form d

dtx = Ax + Bu and y = Cx + Du. Then, the matrix[
sI−A −B
−C −D

]
is called the Rosenbrock system matrix.

Note that the Rosenbrock system matrix can also be written as s [ I 0
0 0 ]− [A B

C D ].
For the ease of exposition, we call the matrix pair ([ I 0

0 0 ] , [A B
C D ]) the Rosenbrock

matrix pair.
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2.3 (A,B)-invariant subspace and controllability subspace

The notions of (A,B)-invariant subspace and controllability subspace are es-
sential for this paper. We briefly review these notions next (see [22, Chapters
4 and 5] for more on these subspaces).

Definition 2.3 Consider A ∈ Rn×n and B ∈ Rn×m. A subspace S ⊆ Rn is said
to be (A,B)-invariant if there exists a matrix F ∈ Rm×n such that (A+BF )S ⊆
S.

Following the notation in [22], we use the symbol I(A,B) for the family of
(A,B)-invariant subspaces. The notation F(S) is used for the collection of
matrices F ∈ Rm×n such that (A+BF )S ⊆ S. The next proposition provides
a test for determining whether a given subspace is (A,B)-invariant [22, Lemma
4.2]. We use this test throughout this paper.

Proposition 2.2 A subspace S ⊆ Rn is (A,B)-invariant if and only if AS ⊆
S + imgB.

The notation I(A,B; kerC) denotes the family of (A,B)-invariant subspaces
that are contained in kerC, where C ∈ Rp×n. Importantly, it is known in the
literature that the set I(A,B; kerC) admits a supremal element [22, Lemma
4.4], and we represent this supremal element by the symbol sup I(A,B; kerC).
Formally this means that for all S ∈ I(A,B; kerC), we must have S ⊆
sup I(A,B; kerC). Such a subspace is of importance to us in this paper.

Definition 2.4 Consider A ∈ Rn×n and B ∈ Rn×m. A subspace R ⊆ Rn

is a controllability subspace of the pair (A,B) if there exist F ∈ Rm×n and
G ∈ Rm×m, such that R is the reachable subspace of the pair (A + BF,BG),
i.e.

R = img
[
BG (A+BF )BG (A+BF )2BG · · · (A+BF )n−1BG

]
.

We use the symbol C(A,B) for the family of controllability subspaces of (A,B).
The notation C(A,B; kerC) denotes the family of controllability subspaces
that are contained in kerC. Similar to I(A,B; kerC), the set C(A,B; kerC)
also admits a supremal element [22, Theorem 5.4]. We represent this element
as supC(A,B; kerC).

Define

B := {S ∈ I(A,B, kerC) | ∃F ∈ F(S) such that σ ((A+BF )|S) ( C−} .

We call any subspace in B a good (A,B)-invariant subspace inside kerC. As
shown in [22, Lemma 5.8], the set B admits a supremal element defined as
S∗g := supB, i.e., for all elements S ∈ B,S ⊆ S∗g . Hence, S∗g is called the
largest good (A,B)-invariant subspace inside kerC.
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Let S∗ := sup I(A,B; kerC) and R∗ := supC(A,B; kerC). Further, let F ∈
F(S∗). Clearly, R∗ ⊆ S∗, hence S∗ admits factoring by the subspace R∗.
Let (A+BF )|S∗ denote the map induced by (A+BF )|S∗ on the factor space

S∗/R∗. Then, it is known that the set of eigenvalues σ
(

(A+BF )|S∗

)
remains

invariant for all F ∈ F(S∗). For a system with an i/s/o representation d
dtx =

Ax + Bu and y = Cx, the complex numbers σ
(

(A+BF )|S∗

)
are known

as the transmission zeros of the system. Note importantly that, for a single-
input controllable system, we have R∗ = {0}. Consequently, S∗/R∗ = S∗,
and (A+BF )|S∗ = (A + BF )|S∗ . This means that for single-input systems,
σ((A + BF )|S∗) is the set of the transmission zeros. In other words, the set
σ((A + BF )|S∗) remains invariant for all F ∈ F(S∗). Further, it can also be
shown that for a controllable and observable SISO system, σ((A+BF )|S∗) =
roots num(G(s)), where G(s) = C(sIn − A)−1B (see [22, Section 5.5]). This
property of single-input systems is essential for the development of the theory
in Section 3 and Section 4.

2.4 Weakly unobservable and strongly reachable subspaces

Consider the system Σ with an i/s/o representation d
dtx = Ax + Bu and

y = Cx, where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Associated with such a
system are two important subspaces called the weakly unobservable subspace
and the strongly reachable subspace. We briefly review the properties of these
subspaces next (see [10] for more on these spaces). Before we delve into the
definitions of these subspaces, we need to define the space of impulsive-smooth
distributions (see [10], [21]).

Definition 2.5 The set of impulsive-smooth distributions Cw
imp is defined as:

Cw
imp :=

{
f = freg + fimp | freg ∈ C∞(R,Rw)|R+

and

fimp =

k∑
i=0

aiδ
(i), with ai ∈ Rw, k ∈ N

}
.

In what follows, we denote the state-trajectory x and output-trajectory y of
the system Σ, that result from initial condition x0 and input u, using the
symbols x(x0, u) and y(x0, u), respectively. The symbol x(0+;x0, u) denotes
the value of the state-trajectory that can be reached from x0 instantaneously
on application of the input u at t = 0.

Definition 2.6 A state x0 ∈ Rn is called weakly unobservable if there exists
an input u ∈ C∞(R,Rm)|R+ such that y(t;x0, u) ≡ 0 for all t > 0. The collec-
tion of all such weakly unobservable states is called the weakly unobservable
subspace of the state-space and is denoted by Ow.
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The following property of the weakly unobservable subspace is crucially used
in this paper (see [10, Theorem 3.10]).

Proposition 2.3 The weakly unobservable subspace Ow is the largest (A,B)-
invariant subspace inside the kernel of C, i.e., Ow = sup I(A,B; kerC).

The other space that we are interested in, is the space of strongly reachable
states (see [10]).

Definition 2.7 A state x1 ∈ Rn is called strongly reachable (from the origin)
if there exists an input u ∈ Cm

imp such that x(0+; 0, u) = x1 and y(0, u) ∈
C∞(R,Rp)|R+

. The collection of all such strongly reachable states is called the
strongly reachable subspace of the state-space and is denoted by Rs.

A method to compute the space Rs is given by the following recursion

R0 := {0} ( Rn, and Ri+1 :=
[
A B

] {
(Wi ⊕P) ∩ ker

[
C 0p,m

]}
⊆ Rs,

(2.1)

where Wi := {[w0 ] ∈ Rn+m |w ∈ Ri} and P := {[ 0
α ] ∈ Rn+m |α ∈ Rm}. In Sec-

tion 3.1 we use this recursive algorithm to characterize the strongly reachable
subspace of a single-input system in terms of the Rosenbrock system matrix
(see [10] for more on the recursive algorithm).

Since the subspace Ow deals with inputs from the space of infinitely differ-
entiable functions, we call Ow the slow subspace of the system. Further, note
that since Ow is the largest (A,B)-invariant subspace inside the kernel of C,
such a subspace also admits largest good (A,B)-invariant subspace inside the
kernel of C. We call such a space the good slow subspace of the system. On the
other hand, since the space Rs admits impulsive inputs, we call Rs the fast
subspace of the system.

In the sequel, we use the notion of autonomy of a system and its relation with
the spaces Ow and Rs. Hence, we define autonomy of a system first and then
review the result [11, Lemma 3.3] that establishes a noteworthy property of
Ow and Rs for autonomous systems.

Definition 2.8 A system with an output-nulling representation of the form
d
dtx = Ax+Bu and 0 = Cx is called autonomous if for every initial condition
x0 ∈ Ow the system has a unique solution (x, u).

Proposition 2.4 Consider the system d
dtx = Ax+Bu and 0 = Cx. Then the

following are equivalent:

1. The system is autonomous.

2. G(s) := C(sIn −A)−1B is invertible as a rational matrix.

3. Ow ⊕Rs = Rn and ker
[
B
0m,m

]
= {0}.
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Throughout the paper, we consider the matrix B to be of full column-rank
without loss of generality. Thus the second condition of Statement (3) is as-
sumed to hold true throughout the paper unless stated otherwise.

2.5 ARE and Hamiltonian systems

One of the widely used methods to compute the maximal solution of the ARE
(1.2) is to use the basis of a suitable eigenspace of the matrix pair (E,H),
where

E :=

In 0 0

0 In 0

0 0 0

 , and H :=

 A 0 B

−Q −AT −S
ST BT R

 . (2.2)

We call the matrix pair (E,H) the Hamiltonian matrix pair and the matrix
pencil (sE−H) the Hamiltonian pencil. The suitable eigenspace used to com-
pute the maximal solution of the ARE (1.2) corresponds to certain choice of
eigenvalues of (E,H). In order to understand this choice of eigenvalues the no-
tion of Lambda-sets is essential and hence we define Lambda-sets next ([13]).

Definition 2.9 Let p(s) be an even-degree polynomial with roots (p(s)) ∩
jR = ∅. A set of complex numbers Λ ( roots (p(s)) is called a Lambda-set of
p(s) if it satisfies the following properties:

1. Λ = Λ̄.

2. Λ ∩ (−Λ) = ∅.

3. Λ ∪ (−Λ) = roots (p(s)) (counted with multiplicity).

Now that we have the definition for Lambda-sets, we review the method to
compute the maximal solution of the ARE (1.2) (see [12] for more). Recall that
the maximal solution of an ARE is the maximal rank-minimizing solution of
the corresponding LMI (1.3).

Proposition 2.5 Consider the LQR Problem 1.1 with R > 0. Let the cor-
responding Hamiltonian matrix pair (E,H) be as defined in equation (2.2).
Assume σ(E,H) ∩ jR = ∅. Let Λ be a Lambda-set of det(sE −H) with car-
dinality n and Λ ( C−. Let V1Λ, V2Λ ∈ Rn×n and V3Λ ∈ Rm×n be such that
the columns of VeΛ = col(V1Λ, V2Λ, V3Λ) form a basis of the n-dimensional
eigenspace of (E,H) corresponding to the eigenvalues of (E,H) in Λ. Then,
the following statements hold:

(1) V1Λ is invertible.

(2) Kmax := V2ΛV
−1
1Λ is symmetric.

(3) Kmax is the maximal solution of the ARE (1.2).
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(4) Kmax is the maximal rank-minimizing solution of the corresponding LQR
LMI (1.3).

(5) Kmax > 0.

Although Proposition 2.5 does not explicitly use invertibility of R while finding
the maximal rank-minimizing solution of the LQR LMI, yet the proposition
cannot be used to compute such a solution for the LQR LMI corresponding to
a singular LQR problem. We motivate the reason for this using an example.

Example 2.1 Consider a system with state-space dynamics

d

dt
x =

1 0 1

1 0 1

1 1 0

x+

0

1

0

u.
For every initial condition x0, find an input u that minimizes the functional∫ ∞

0

x(t)TQx(t) dt, where Q :=

0 0 0

0 0 0

0 0 1

 .
On construction of the Hamiltonian pencil pair (E,H) using A,B,Q, it can
be verified that det(sE − H) = 1 − s2. Hence, Λ = {−1}. The eigenvector

of (E,H) corresponding to −1, is [ 1 1 −2 2 0 0 0 ]
T

. Therefore, V1Λ = [ 1 1 −2 ]
T

and V2Λ = [ 2 0 0 ]
T

. But V1Λ is not a square matrix. Thus, Proposition 2.5
cannot be used to solve singular LQR problems.

From Example 2.1, it is clear that Proposition 2.5 fails in case of singular LQR
problems because the degree of det(sE −H) is strictly less than 2n. This fall
in the degree causes a deficit in the cardinality of possible Lambda-sets of
det(sE−H). Indeed, a Lambda set of det(sE−H) can now have cardinality
only ns, which is strictly less than n. Consequently, the eigenspace of (E,H)
corresponding to such a Lambda-set would also show a deficit in its dimension
from being n. This deficit in the dimension of the eigenspace is required to
be compensated by (n − ns) suitable vectors. Of course, this compensation
cannot be done by arbitrary vectors. Our main result, Theorem 4.1, shows
exactly how this compensation is done.

Since we deal with the singular LQR problem for single-input systems, we
rewrite the LQR Problem 1.1 for the single-input case as follows:

Problem 2.1 (Single-input singular LQR problem) Consider a control-
lable system Σ with state-space dynamics d

dtx = Ax+ bu, where A ∈ Rn×n and
b ∈ Rn×1. Then, for every initial condition x0, find an input u that minimizes
the functional

J(x0, u) :=

∫ ∞
0

x(t)TQx(t) dt, where Q > 0. (2.3)



Un
de
r r
ev
iew

The optimal cost of a singular LQR problem: Hamiltonian system approach 11

Note that the LQR LMI (1.3) with respect to Problem 2.1 takes the following
form:

[
ATK +KA+Q Kb

bTK 0

]
> 0 ⇔

{
ATK +KA+Q > 0,

Kb = 0.
(2.4)

Further for a single-input singular LQR problem as defined in Problem 2.1,
the Hamiltonian matrix pair in equation (2.2) takes the following form:

E :=

In 0 0

0 In 0

0 0 0

 , and H :=

 A 0 b

−Q −AT 0

0 bT 0

 . (2.5)

Interestingly, the Hamiltonian matrix pencil (E,H) in equation (2.5) can be
associated with a differential algebraic system as given below:

In 0 0

0 In 0

0 0 0


︸ ︷︷ ︸

E

d

dt

xz
u

 =

 A 0 b

−Q −AT 0

0 bT 0


︸ ︷︷ ︸

H

xz
u

 . (2.6)

The system represented by this first order representation (2.6) is called the
Hamiltonian system; we use ΣHam to denote this system (see [12] for more on
Hamiltonian systems).

Another representation of the Hamiltonian system (2.6) extensively used in
this paper is the output-nulling representation as given below:

d

dt

[
x

z

]
= Â

[
x

z

]
+ b̂u, 0 = ĉ

[
x

z

]
, (2.7)

where Â :=

[
A 0

−Q −AT

]
, b̂ :=

[
b

0

]
and ĉ :=

[
0 bT

]
. Note that the Hamilto-

nian matrix pair (E,H) is indeed the Rosenbrock matrix pair for the system
ΣHam. In what follows, we shall need the notion of disconjugacy related to the
Hamiltonian matrix pair [12, Definition 6.1.5]. We review this next.

Definition 2.10 Let E be an eigenspace of (E,H), where (E,H) is as defined
in equation (2.2). Assume the columns of a matrix Ve to be the basis of E.
Conforming to the partition of H, let Ve be partitioned as col(V1, V2, V3).
Then, E is called disconjugate if V1 is full column-rank.
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3 Characterization of slow and fast subspaces in terms of
Rosenbrock system matrix

Consider ΣP to be a system with an output-nulling representation of the form:

d

dt
x = Px+ Lu, and 0 = Mx, where P ∈ RN×N, L,MT ∈ RN×1 \ {0}. (3.1)

Define the matrix pair

U1 :=

[
IN 0

0 0

]
∈ R(N+1)×(N+1) and U2 :=

[
P L

M 0

]
∈ R(N+1)×(N+1). (3.2)

Note that (sU1 − U2) is the Rosenbrock system matrix for the system ΣP in
equation (3.1) and (U1, U2) is the Rosenbrock matrix pair. In this section we
characterize the slow subspace Ow and fast subspace Rs of the system ΣP in
terms of the matrix pair (U1, U2). Further, we also characterize the good slow
subspace of ΣP in terms of the eigenspace of (U1, U2). Hence, we have divided
this section into three subsections; the first being characterization of the fast
subspace of ΣP. In the second and third subsection we characterize the slow
and good slow subspaces of ΣP, respectively in terms of the eigenspace of the
Rosenbrock matrix pair (U1, U2).

3.1 Characterization of fast subspace in terms of the Rosenbrock matrix pair

In order to characterize the fast subspace, we need certain identities related to
the Markov parameters of the system ΣP. We present this in the next lemma
and follow it up with the first main result of this section.

Lemma 3.1 Consider the system ΣP as defined in equation (3.1), and the
corresponding Rosenbrock matrix pair (U1, U2) as defined in equation (3.2).
Assume det(sU1−U2) 6= 0. Define deg det(sU1−U2) =: Ns and Nf := N− Ns.
Then, MP kL = 0, for k ∈ {0, 1, . . . , Nf − 2} and MP Nf−1L 6= 0.

Proof: Define G(s) := M(sIN − P )−1L. Using the notion of Schur comple-
ment we have det(sU1 − U2) = −M(sIN − P )−1L × det(sIN − P ). Since
degdet(sU1 − U2) =: Ns and degdet(sIN − P ) = N, the relative degree of
G(s) must be N − Ns = Nf. Expanding (sIN − P )−1 in a Taylor series about

s =∞, we have G(s) = ML
s + MPL

s2 + MP 2L
s3 + · · · . Since the relative degree of

the rational function G(s) is Nf. Hence, we can infer from the Taylor expansion
of G(s) that lims→∞ sk+1G(s) = 0 = MP kL for k ∈ {0, 1, . . . , Nf−2}. Further
since relative degree of G(s) is Nf, lims→∞ sNfG(s) 6= 0. Hence, MP Nf−1L 6= 0.
�



Un
de
r r
ev
iew

The optimal cost of a singular LQR problem: Hamiltonian system approach 13

Theorem 3.1 Consider the system ΣP as defined in equation (3.1), and the
corresponding Rosenbrock matrix pair (U1, U2) as defined in equation (3.2).
Assume det(sU1 −U2) 6= 0. Define degdet(sU1 −U2) =: Ns and Nf := N− Ns.
Let Rs be the fast subspace of ΣP. Then, the following statements are true:

1. Rs = img
[
L PL · · · P Nf−1L

]
.

2. dim(Rs) = Nf.

Proof: (1): From equation (2.1) in Section 2.3, the recursive algorithm to
compute the fast subspace of ΣP is given by:

R0 := {0} ( RN, and Ri+1 :=
[
P L

] {
(Wi ⊕P) ∩ ker

[
M 0

]}
⊆ Rs, (3.3)

where Wi :=
{

[w0 ] ∈ RN+1 |w ∈ Ri
}

and P :=
{

[ 0
α ] ∈ RN+1 |α ∈ R

}
. Note

that since P∩ker
[
M 0

]
= P, the recursion in equation (3.3) can be rewritten

as

R0 = {0} ( RN and Ri+1 :=
[
P L

] {
(Wi ∩ ker

[
M 0

]
)⊕P

}
⊆ Rs. (3.4)

Now, we claim that Rk = imgL + img (PL) + · · · + img (P k−1L) for k ∈
{1, 2, 3, . . . , Nf}. To prove this we use the principle of mathematical induction
along with Lemma 3.1.
Base case: (k = 1) Note that since (W0 ∩ ker

[
M 0

]
) = {0} ( RN+1, we must

have from equation (3.4), R1 =
[
P L

]
{{0} ⊕P} = imgL.

Induction step: Assume Rk = imgL + img (PL) + · · · + img (P k−1L) for
k < Nf. We prove that Rk+1 = imgL+ img (PL) + · · ·+ img (P kL).

From equation (3.4), we have

Rk+1 =
[
P L

] {(
Wk ∩ ker

[
M 0

])
⊕P

}
=
[
P L

]{((k−1∑
i=0

img
[
P iL

0

])
∩ ker

[
M 0

])
⊕P

}

=
[
P L

]{k−1∑
i=0

(
img

[
P iL

0

]
∩ ker [M 0 ]

)
⊕P

}
. (3.5)

Since [M 0 ]
[
P iL

0

]
= MP iL = 0 for i < Nf − 1 (from Lemma 3.1), we must

have
∑k−1
i=0

(
img

[
P iL

0

]
∩ ker [M 0 ]

)
=
∑k−1
i=0

(
img

[
P iL

0

])
. Thus, from equa-

tion (3.5) we have

Rk+1 =
[
P L

]{k−1∑
i=0

(
img

[
P iL

0

])
⊕P

}
= imgL+ img (PL) + · · ·+ img (P kL).

By the principle of mathematical induction, we conclude that

Rk = imgL+ img (PL) + · · ·+ img (P k−1L) for k ∈ {1, 2, 3, . . . , Nf}. (3.6)
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This proves our claim.

Next we claim that RNf+1 = RNf . From equation (3.4) and equation (3.6), we
have

RNf+1 =
[
P L

] {(
WNf ∩ ker

[
M 0

])
⊕P

}
=
[
P L

]{Nf−1∑
i=0

(
img

[
P iL

0

]
∩ ker

[
M 0

])
⊕P

}

=
[
P L

]{Nf−2∑
i=0

(
img

[
P iL

0

]
∩ ker

[
M 0

])
+

(
img

[
P Nf−1L

0

]
∩ ker

[
M 0

])
⊕P

}
. (3.7)

From Lemma 3.1, it is evident that MP Nf−1L 6= 0. Hence, img
[
P Nf−1L

0

]
∩

ker [M 0 ] = 0. Hence, from equation (3.6) and equation (3.7) we haveRNf+1 =
RNf . Thus, from [10] (see discussion after equation 3.22), we infer that RNf

characterized in equation (3.6) is the fast subspace Rs of ΣP, i.e., RNf = Rs.
From equation (3.6), Statement (1) of the lemma directly follows.

(2): Define W :=
[
L PL · · ·P Nf−1L

]
. We want to show that W is full column-

rank. To the contrary, let us assume that there exists a nontrivial vector
w ∈ RNf×1 such that Ww = 0. Conforming to the partition of W let w :=
col(w0, w1, . . . , wNf−1).

Now, we pre-multiply W with M in the equation Ww = 0 and use the fact
that MP kL = 0 for k ∈ {0, 1, . . . , Nf − 2} from Lemma 3.1:

[ML MPL ··· MP Nf−1L ]

 w0
w1

...
wNf−1

 = 0⇒MP Nf−1LwNf−1 = 0

⇒ wNf−1 = 0 (since MP Nf−1L 6= 0).

Next, we pre-multiply W with MP in the equation Ww = 0 and use Lemma
3.1 with the fact that wNf−1 = 0:

[MPL MP 2L ···MP Nf−1L MP NfL ]


w0
w1

...
wNf−2

0

 = 0⇒MP Nf−1LwNf−2 = 0

⇒ wNf−2 = 0.

Continuing in the same manner, it follows that wi = 0 for i ∈ {0, 1, . . . , Nf−1}.
However, this is a contradiction since we assume w to be nonzero. Therefore,
there exists no nontrivial vector in the kernel of W , i.e., W is full column-rank.
Hence, from Statement (1) of the lemma, it directly follows that dim(Rs) = Nf.
�
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The fact that the fast subspace of a system is spanned by the columns of
a truncated controllability matrix has been alluded to in [20]. However, the
important takeaway from Theorem 3.1 is the relation between the degree of the
determinant of the Rosenbrock system matrix (sU1 − U2), and the dimension
of the fast subspace. We use this relation crucially in Section 4 to compute the
maximal rank-minimizing solution of an LQR LMI.

3.2 Characterization of slow subspace as an eigenspace of the Rosenbrock
matrix pair

As motivated in Section 2.4, let Ow be the slow subspace of the system ΣP

defined in equation (3.1). In the next lemma we establish that Ow can be
characterized by the eigenvectors of (U1, U2).

Theorem 3.2 Consider the system ΣP as defined in equation (3.1) and the
corresponding Rosenbrock matrix pair (U1, U2) as defined in equation (3.2).
Assume det(sU1 − U2) 6= 0 and degdet(sU1 − U2) =: Ns. Consider Ow to

be the slow subspace of ΣP. Let V̂1 ∈ RN×Ns and V̂2 ∈ R1×Ns be such that
col(V̂1, V̂2) is full column-rank and

[
P L

M 0

]
︸ ︷︷ ︸

U2

[
V̂1

V̂2

]
=

[
IN 0

0 0

]
︸ ︷︷ ︸
U1

[
V̂1

V̂2

]
J, (3.8)

where J ∈ RNs×Ns and σ(J) = roots (det(sU1 − U2)). Then, the following
statements are true:

1. Ow = img V̂1.

2. dim(Ow) = Ns.

3. V̂1 is full column-rank.

Proof: (1): From equation (3.8), it is clear that PV̂1 +LV̂2 = V̂1J . Hence, by

Proposition 2.2, img V̂1 is a (P,L)-invariant subspace. Further, from equation

(3.8), MV̂1 = 0. Therefore, img V̂1 ∈ I (P,L; kerM). We claim that img V̂1 =
sup I (P,L; kerM) = Ow (Proposition 2.3).

Let us assume to the contrary that img V̂1 is not the largest (P,L)-invariant
subspace inside kerM . Then, there exists a nontrivial subspace Ve such that
the space img V̂1 ⊕ Ve = Ow, where dim(Ve) =: `. Let Ve = img V̂e, where

V̂e ∈ RN×` is a full column-rank matrix. Since img V̂1 ⊕ Ve = Ow and Ow is
(P,L)-invariant inside kerM , PVe ⊆ Ow + imgL (by Proposition 2.2) and
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MVe = {0}. Therefore, there exist T1 ∈ R1×`, T2 ∈ RNs×`, and T3 ∈ R`×` such
that

PV̂e = LT1 +
[
V̂1 V̂e

] [T2

T3

]
and MV̂e = 0. (3.9)

Therefore, writing equation (3.8) and equation (3.9) together we have[
P L

M 0

]
︸ ︷︷ ︸

U1

[
V̂1 V̂e
V̂2 −T1

]
=

[
IN 0

0 0

]
︸ ︷︷ ︸
U2

[
V̂1 V̂e
V̂2 −T1

] [
J T2

0 T3

]
. (3.10)

Since (sU1−U2) is a regular matrix pencil, we can rewrite (U1, U2) in the canon-
ical form as motivated in Section 2.2. Therefore there exist nonsingular ma-
trices Z1, Z2 ∈ R(N+1)×(N+1) such that U1 = Z1 [ I 0

0 Y ]Z2 and U2 = Z1 [ J 0
0 I ]Z2,

where Y ∈ R(N+1−Ns)×(N+1−Ns) is a nilpotent matrix. Define Û1 := [ I 0
0 Y ] and

Û2 := [ J 0
0 I ]. Using this in equation (3.10), we have

Z1

[
J 0

0 I

]
Z2

[
V̂1 V̂e
V̂2 −T1

]
= Z1

[
I 0

0 Y

]
Z2

[
V̂1 V̂e
V̂2 −T1

] [
J T2

0 T3

]
. (3.11)

From equation (3.11) it is clear that img
(
Z2

[
V̂1

V̂2

])
is the eigenspace of the

matrix pair (Û1, Û2). Note that any eigenvector (or generalized eigenvector)

of the matrix pair (Û1, Û2) will be of the form col(w, 0) ∈ R(N+1)×1, where
w ∈ RNs×1 is an eigenvector (or generalized eigenvector) of J . Therefore, there

must exist a nonsingular matrix TNs ∈ RNs×Ns such that Z2

[
V̂1

V̂2

]
=
[
TNs

0

]
∈

R(N+1)×Ns . Define Z2

[
V̂e
−T1

]
=:
[
Υ1

Υ2

]
, Υ1 ∈ RNs×` and Υ2 ∈ R(N+1−Ns)×`. Thus,

from equation (3.11) we have[
J 0

0 I

] [
TNs Υ1

0 Υ2

]
=

[
I 0

0 Y

] [
TNs Υ1

0 Υ2

] [
J T2

0 T3

]
. (3.12)

Thus, we have Υ2 = Y Υ2T3 ⇒ Y Υ2T3 = Y 2Υ2T
2
3 = Υ2. Using this line of

reasoning, it is evident that Y kΥ2T
k
3 = Υ2 for all k ∈ N. Since Y is a nilpotent

matrix, there exists an i ∈ N such that Y i = 0. Therefore, we must have
Υ2 = 0. Since, TNs is a nonsingular matrix, imgΥ1 ( TNs . Thus, we have

img
[
Υ1

Υ2

]
=img

[
Υ1
0

]
( img

[
TNs

0

]
⇒img

[
V̂e
−T1

]
( img

[
V̂1

V̂2

]
⇒ img V̂e ( img V̂1.

Therefore, there does not exist any nontrivial subspace Ve such that img V̂1 ⊕
Ve = Ow. This is a contradiction to img V̂1 6= sup I (P,L; kerM). Hence,

img V̂1 = Ow.

(2): Define G(s) := M(sIN − P )−1L. Further, note that det(sU1 − U2) =
det(−M(sIN−P )−1L)×det(sIN−P ). Since det(sU1−U2) 6= 0, det(M(sIN−
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P )−1L) 6= 0. Hence, G(s) is nonzero rational function. Therefore from Propo-
sition 2.4 we have Ow⊕Rs = RN. From Statement (2) of Lemma 3.1, we know
that dim(Rs) = N− Ns. Therefore, dim(Ow) = Ns.
(3): From Statements (1) and (2) of this theorem, it follows that dim(Ow) =

dim
(
img V̂1

)
= Ns. Therefore, V̂1 is full column-rank. �

Next we characterize the good slow subspace of the system ΣP in terms of the
eigenspace of the Rosenbrock matrix pair (U1, U2). From Theorem 3.2 it is

clear that the columns of V̂1 is the basis of Ow. Further, from equation (3.8)
we know that [

P L

M 0

][
V̂1

V̂2

]
=

[
IN 0

0 0

] [
V̂1

V̂2

]
J. (3.13)

Assuming that σ(J) ∩ jR = ∅, it is clear that σ(J) can be partitioned as
σ(J) = σg(J) ·∪σb(J), where σg(J) ( C−, σb(J) ( C+. Therefore, there exists

a nonsingular matrix T such that T−1JT =

[
Jg 0

0 Jb

]
, where σ(Jg) = σg(J)

and σ(Jb) = σb(J). Define

[
V̂1

V̂2

]
T =

[
V̂1g V̂1b

V̂2g V̂2b

]
where the partitioning is

done conforming to the partition in T−1JT . Then, equation (3.13) takes the
following form: [

P L

M 0

][
V̂1

V̂2

]
T =

[
IN 0

0 0

][
V̂1

V̂2

]
TT−1JT

⇒
[
P L

M 0

][
V̂1g V̂1b

V̂2g V̂2b

]
=

[
IN 0

0 0

][
V̂1g V̂1b

V̂2g V̂2b

][
Jg 0

0 Jb

]
. (3.14)

Assume |σg(J)| = |σ(U1, U2)∩C−| =: Ng. Obviously, from the discussion above

V̂1g ∈ RN×Ng . We claim in the next lemma that the good slow subspace of the

system ΣP is given by img V̂1g.

Lemma 3.2 Consider the system ΣP as defined in equation (3.1) and the
corresponding Rosenbrock matrix pair (U1, U2) as defined in equation (3.2).
Assume det(sU1 − U2) 6= 0 and σ(U1, U2) ∩ jR = ∅. Define the family of
subspaces:

B := {S ∈ I(P,L, ker(M)|∃F ∈ F(S) such that σ ((P + LF )|S) ( C−} .

Let Owg := supB. Consider V̂1g ∈ RN×Ng as defined in equation (3.14), where
|σ(U1, U2) ∩ C−| =: Ng. Then, the following statements are true:

(1) V̂1g is full column-rank.

(2) img V̂1g = Owg.
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Proof: (1): Since by construction V̂1T =
[
V̂1g V̂1g

]
with T being nonsingular

and V̂1 full column-rank (by Theorem 3.2), we must have V̂1g full column-rank,
as well.
(2): Using Proposition 2.2, from equation (3.14) we can infer that img V̂1g ∈
I(P,L; kerM). Further note that since V̂1g is full column-rank (from State-

ment (1) of this lemma), there exists F ∈ R1×N such that V̂2g = FV̂1g. There-

fore, from equation (3.14) it further follows that (P + LF )V̂1g = V̂1gJg ⇒
σ
(

(P + LF )|
img V̂1g

)
= σ(Jg) ( C− and F ∈ F(img V̂1g). Therefore, img V̂1g ∈

B. Let us assume to the contrary that img V̂1g ( Owg. Then there exists a

nontrivial subspace Ṽ such that img V̂1g ⊕ Ṽ = Owg. Define dim(Ṽ) =: N`.

Let Ṽ =: img Ṽ , where Ṽ ∈ RN×N` is full column-rank. Following the same
line of argument as in the proof of Statement (1) of Theorem 3.2, there exist

T̂1 ∈ R1×N` , T̂2 ∈ RNg×N` and T̂3 ∈ RN`×N` such that

PṼ = LT̂1 +
[
V̂1g Ṽ

] [T̂2

T̂3

]
,MṼ = 0 and σ(T̂3) ( C−. (3.15)

Therefore, from equation (3.14) and equation (3.15) we have[
P L

M 0

]
︸ ︷︷ ︸

U2

[
V̂1g Ṽ

V̂2g −T̂1

]
=

[
IN 0

0 0

]
︸ ︷︷ ︸
U1

[
V̂1g Ṽ

V̂2g −T̂1

][
Jg T̂2

0 T̂3

]
and σ(T̂3) ∪ σ(Jg) ( C−.

(3.16)

Now there exist nonsingular matrices Z1, Z2 ∈ R(N+1)×(N+1) such that U1 =
Z1 [ I 0

0 Y ]Z2 and U2 = Z1 [ J 0
0 I ]Z2. Therefore, equation (3.16) takes the follow-

ing form:

Z1

[
J 0

0 I

]
︸ ︷︷ ︸
Û2

Z2

[
V̂1g Ṽ

V̂2g −T̂1

]
= Z1

[
I 0

0 Y

]
︸ ︷︷ ︸
Û1

Z2

[
V̂1g Ṽ

V̂2g −T̂1

][
Jg T̂2

0 T̂3

]
. (3.17)

From equation (3.17) it is clear that img
(
Z2

[
V̂1g

V̂2g

])
is a subspace of the

eigenspace of the matrix pair (Û1, Û2). Note that any eigenvector (or general-

ized eigenvector) of the matrix pair (Û1, Û2) will be of the form col(w, 0) ∈
R(N+1)×1, where w ∈ RNs×1 is an eigenvector (or generalized eigenvector)
of Jg. Thus, there exists a full column-rank matrix TNg ∈ RNs×Ng such that

Z2

[
V̂1g

V̂2g

]
=
[
TNg

0

]
∈ R(N+1)×Ng . Define Z2

[
Ṽ
−T̂1

]
=:
[
Υ̂1

Υ̂2

]
, where Υ̂1 ∈ RNs×Ng

and Υ̂2 ∈ R(N+1−Ns)×Ng . Thus, from equation (3.17) we have[
J 0

0 I

] [
TNg Υ̂1

0 Υ̂2

]
=

[
I 0

0 Y

] [
TNg Υ̂1

0 Υ̂2

][
Jg T̂2

0 T̂3

]
. (3.18)
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From equation (3.18), we have Υ̂2 = Y Υ̂2T̂3. Using the fact that Y is nilpotent
it can be shown, similar to the proof of Statement (1) of Theorem 3.2, that

Υ̂2 = 0. Hence, equation (3.18) can be rewritten as

J
[
TNg Υ̂1

]
=
[
TNg Υ̂1

] [Jg T̂2

0 T̂3

]
. (3.19)

It follows from equation (3.19) that σ(Jg) ∪ σ(T̂3) ⊆ σ(J). But, recall that

σ(J)∩C− = σ(Jg), and σ(J)∩ jR = ∅. Therefore, we must have σ(T̂3) ( C+.

However this is a contradiction to the fact that σ(T̂3) ( C− (see equation

(3.15)). Therefore, there exists no nontrivial subspace Ṽ such that img V̂1g ⊕
Ṽ = Owg. Hence, V̂1g = Owg. �

4 Constructive solutions of the LQR LMI for single-input systems

At the very outset of this section, we present the first main result of this section
that leads to a method to compute the maximal rank-minimizing solution of
an LQR LMI. As motivated in Section 1, the next theorem also provides a
method to compute the optimal cost for a singular LQR problem.

Theorem 4.1 Consider Problem 2.1 with the corresponding Hamiltonian ma-
trix pair (E,H) as defined in equation (2.6). Assume σ(E,H) ∩ jR = ∅ and
det(sE −H) 6= 0. Define deg det(sE −H) =: 2ns. Let Λ be a Lambda-set of
det(sE −H) with cardinality ns < n such that Λ ( C−. Let V1Λ, V2Λ ∈ Rn×ns

and V3Λ ∈ R1×ns be such that the columns of VeΛ = col(V1Λ, V2Λ, V3Λ) form
a basis of the ns-dimensional eigenspace of (E,H) corresponding to the eigen-
values of (E,H) in Λ, i.e., A 0 b

−Q −AT 0

0 bT 0

V1Λ

V2Λ

V3Λ

 =

In 0 0

0 In 0

0 0 0

V1Λ

V2Λ

V3Λ

Γ, (4.1)

where σ(Γ ) = Λ. Construct VΛ := col (V1Λ, V2Λ) and assume nf := n − ns.

Define W :=
[
b̂ Âb̂ · · · Ânf−1b̂

]
∈ R2n×nf , where Â, b̂ and ĉ are as defined in

equation (2.7). Let XΛ :=
[
VΛ W

]
=:
[
X1Λ

X2Λ

]
, where X1Λ, X2Λ ∈ Rn×n. Then,

the following statements hold:

(1) X1Λ is invertible.

(2) Kmax := X2ΛX
−1
1Λ is symmetric.

(3) Kmax is a rank-minimizing solution of LMI (2.4).

(4) For any other solution K of LMI (2.4), K 6 Kmax.
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(5) Kmax > 0.

We defer the proof of this theorem till the development of a few auxiliary re-
sults. Note the close parallel between Proposition 2.5 and Theorem 4.1. For the
case when nf = 0, i.e. the regular LQR case, Theorem 4.1 is indeed equivalent
to Proposition 2.5. Thus, Theorem 4.1 is a generalization to Proposition 2.5.
To demonstrate that Theorem 4.1 finds the maximal rank-minimizing solution
of the LQR LMI (1.3), we revisit Example 2.1 that we have previously failed
to solve using Proposition 2.5.

Example 4.1 Note that in Example 2.1, we have n = 3 and ns = 1. Thus,
nf = n− ns = 2. Therefore, using Theorem 4.1, we have

[
VΛ W

]
=

[
V1Λ b Ab

V2Λ 0 0

]
=

 1 0 0
1 1 0
−2 0 1

2 0 0
0 0 0
0 0 0

⇒ Kmax =
[

2 0 0
0 0 0
0 0 0

]
.

It can be verified that LQR LMI (2.4) evaluated at Kmax turns out to be[
4 0 2 0
0 0 0 0
2 0 1 0
0 0 0 0

]
> 0. Further, rank(Kmax) = 1. This is the minimum rank achievable

by the LQR LMI (2.4) (see proof of Statement (3) of Theorem 4.1 in Section
4.3 for the justification of the LQR LMI’s minimum rank being 1 in this
case). Further, Kmax is also the maximal solution of the LQR LMI (2.4) (see
proof of Statement (4) of Theorem 4.1 in Section 4.3 for a justification of this
claim). Thus, from the example it is clear that Theorem 4.1 indeed provides
a method to compute the maximal rank-minimizing solution of an LQR LMI
corresponding to a singular LQR problem.

Now we relate the results in Section 3 with the Hamiltonian system ΣHam

defined in Section 2.5. Using the parallel between the output-nulling repre-
sentations of ΣP (in equation (3.1)) and ΣHam (in equation (2.7)), we de-

fine P := Â, L := b̂, M := ĉ, U1 := E, and U2 := H. Further, we have
degdet(sE−H) = 2ns. Therefore, Ns = 2ns and Nf = N−Ns = 2n−2ns = 2nf.
Hence, Theorem 3.1, Theorem 3.2, and Lemma 3.2 can be directly applied to
the system ΣHam.

Note that since |σ(Γ )| = ns and σ(E,H)∩C− = σ(Γ ), in terms of Lemma 3.2
we have Ng = ns. Further, since

[
V1Λ

V2Λ

]
∈ Rn×ns , we must have from Statement

(1) of Lemma 3.2 that
[
V1Λ

V2Λ

]
is full column-rank. From Lemma 3.2 it is also evi-

dent that img
[
V1Λ

V2Λ

]
is the largest good (Â, b̂)-invariant subspace inside the ker-

nel of ĉ. Hence, the good slow subspace of ΣHam is given by Owg = img
[
V1Λ

V2Λ

]
.

Further, using Theorem 3.1, it is also evident that imgW ( Rs, where W
is as defined in Theorem 4.1 and Rs is the fast subspace of ΣHam. For easy
reference in the sequel, we formally state these implications as a lemma next.

Lemma 4.1 Let V1Λ, V2Λ,W be as defined in Theorem 4.1. Let Owg and Rs
be the good slow subspace and fast subspace of ΣHam, respectively. Then, the
following statements are true:
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(1)
[
V1Λ

V2Λ

]
is full column-rank.

(2) Owg = img
[
V1Λ

V2Λ

]
.

(3) imgW ( Rs.

Before we start developing the results required for the proof of Theorem 4.1,
we review a result that establishes the relation between the basis vectors of the
left- and right-eigenspaces of the Hamiltonian matrix pair (see [12] for more
on these properties).

Proposition 4.1 Let the columns of VeΛ = col(V1Λ, V2Λ, V3Λ) be the eigenba-
sis of (E,H) corresponding to the eigenvalues in Λ, where E,H, V1Λ, V2Λ, V3Λ,
and Λ are as defined in Theorem 4.1. Then, the following statements are true:

1. Rows of
[
V T2Λ −V T1Λ V T3Λ

]
form a basis of the left eigenspace of (E,H) cor-

responding to eigenvalues in −Λ.

2. V T1ΛV2Λ = V T2ΛV1Λ.

These properties of the eigenspaces of (E,H) is crucially used in the sequel.
Now we develop the results required for the proof of Theorem 4.1. The first
step in the proof of Theorem 4.1 is the following theorem:

Theorem 4.2 Let V1Λ be as defined in Theorem 4.1. Then, V1Λ is full column-
rank.

Since the columns of VeΛ form a basis of an eigenspace of (E,H), in terms
of Definition 2.10, Theorem 4.2 establishes that the subspace imgVeΛ is dis-
conjugate. We develop the proof for the disconjugacy of imgVeΛ in the next
section.

4.1 Disconjugacy of imgVeΛ

We prove Theorem 4.2 using a few auxiliary results that we present next.

Lemma 4.2 Define the following family

BΣ :=
{
V ( Rn | ∃F ∈ R1×n such that (A+ bF )V ⊆ V, QV = 0,

σ((A+ bF )|V) ( C−} .

Then, BΣ has a unique supremal element.

Proof: It directly follows from [22, Lemma 5.8]. �

Note that the unique supremal element of BΣ is indeed the largest good (A, b)-
invariant subspace inside the kernel of Q. In the next lemma we establish the
relation between this subspace and the subspace Owg = img

[
V1Λ

V2Λ

]
of ΣHam.



Un
de
r r
ev
iew

22 Chayan Bhawal et al.

Lemma 4.3 Let Vg := supBΣ. Suppose Vg ∈ Rn×g be such that Vg is full

column-rank and imgVg = Vg. Define VgHam := img
[
Vg

0n,g

]
. Let V1Λ, V2Λ ∈

Rn×ns be as defined in Theorem 4.1. Then, VgHam ⊆ img
[
V1Λ

V2Λ

]
. In particular,

if g = dim (Vg) = ns then VgHam = img
[
V1Λ

V2Λ

]
.

Proof: Since Vg = imgVg ∈ BΣ , there exists F ∈ F(Vg) such that (A+bF )Vg =
VgJg, where Jg = (A + bF )|Vg and QVg = 0. On defining V3g := FVg we can,
therefore, have the following equation: A 0 b

−Q −AT 0

0 bT 0

 Vg0n,g
V3g

 =

In 0 0

0 In 0

0 0 0

 Vg0n,g
V3g

 Jg ⇒ [
Â b̂

ĉ 0

] Vg0n,g
V3g

 =

[
I2n 0

0 0

] Vg0n,g
V3g

 Jg.
(4.2)

Thus, σ(Jg) ( σ(E,H). Using Proposition 2.2 in equation (4.2) we can infer

that VgHam = img
[
Vg

0n,g

]
is an (Â, b̂)-invariant subspace. Further, using the fact

that ĉ
[
Vg

0n,g

]
= 0 in equation (4.2), it is evident that VgHam is indeed an (Â, b̂)-

invariant subspace inside ker ĉ with σ(Jg) ( C−. Since Owg is the largest

good (Â, b̂)-invariant subspace inside ker ĉ, we have VgHam ⊆ Owg = img
[
V1Λ

V2Λ

]
(Statement (2) of Lemma 4.1).

If g = ns, then VgHam = img
[
V1Λ

V2Λ

]
is trivially true. �

Since img
[
Vg

0n,g

]
⊆ img

[
V1Λ

V2Λ

]
and

[
V1Λ

V2Λ

]
∈ R2n×ns is full column-rank (State-

ment (1) of Lemma 4.1), it is evident that there exists a full column-rank

matrix
[
V1e

V2e

]
∈ R2n×(ns−g) such that img

[
Vg V1e

0n,g V2e

]
= img

[
V1Λ

V2Λ

]
. The next

lemma deals with such an extension.

Lemma 4.4 Let V1e, V2e ∈ Rn×(ns−g) be such that
[
Vg V1e

0n,g V2e

]
is full column-

rank and img
[
Vg V1e

0n,g V2e

]
= Owg, where Owg = img

[
V1Λ

V2Λ

]
with V1Λ, V2Λ as

defined in Theorem 4.1 and Vg is as defined in Lemma 4.3. Then, the following
statements are true:

1. V2e is full column-rank.

2.
[
Vg V1e

]
is full column-rank.

Proof: (1): Since img
[
Vg V1e

0 V2e

]
is an (Â, b̂)-invariant subspace inside ker ĉ,

there exist V3e ∈ R1×(ns−g), Γ12 ∈ Rg×(ns−g) and Γ22 ∈ R(ns−g)×(ns−g) such
that

Â

[
V1e

V2e

]
=

[
Vg
0

]
Γ12 +

[
V1e

V2e

]
Γ22 − b̂V3e, and ĉ

[
V1e

V2e

]
= 0. (4.3)
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Now writing equation (4.2) and equation (4.3) together, we have A 0 b

−Q −AT 0

0 bT 0

 Vg V1e

0 V2e

V3g V3e

 =

In 0 0

0 In 0

0 0 0

 Vg V1e

0 V2e

V3g V3e

[Jg Γ12

0 Γ22

]
. (4.4)

Since img
[
Vg V1e

0n,g V2e

]
= Owg, from equation (4.4) we have σ

([
Jg Γ12

0 Γ22

])
( C− ⇒

σ(Γ22) ( C−. From equation (4.4) we have the following equations:

AV1e + bV3e = VgΓ12 + V1eΓ22, (4.5)

−QV1e −ATV2e = V2eΓ22, (4.6)

bTV2e = 0. (4.7)

From Statement (2) of Proposition 4.1, we can infer that

[
0 V2e

]T [
Vg V1e

]
=
[
Vg V1e

]T [
0 V2e

]
⇒

{
V T2eVg = 0,

V T2eV1e = V T1eV2e.
(4.8)

Now pre-multiplying equations (4.5) and equation (4.6) with V T2e and −V T1e,
respectively and adding, we get

V T2eAV1e + V T2ebV3e + V T1eQV1e + V T1eA
TV2e

= V T2eVgΓ12 + V T2eV1eΓ22 − V T1eV2eΓ22. (4.9)

Using equation (4.7), equation (4.8) in equation (4.9) , we have

V T2eAV1e + V T1eQV1e + V T1eA
TV2e = 0. (4.10)

Now we prove that V2e is full column-rank by contradiction. Hence, to the
contrary, let us assume V2e is not full column-rank. Therefore, there exists a
nonzero w ∈ R(ns−g)×1 such that V2ew = 0. Pre- and post-multiplying equation
(4.10) with wT and w, respectively, we get wTV T1eQV1ew = 0. Since Q > 0, we
must have

QV1ew = 0⇒ kerV2e ⊆ ker(QV1e). (4.11)

Post-multiplying equation (4.6) with w and using the fact that V2ew = 0 and
QV1ew = 0, we have

−QV1ew −ATV2ew = V2eΓ22w ⇒ 0 = V2eΓ22w ⇒ kerV2e is Γ22-invariant.
(4.12)

Therefore, from equation (4.12) it follows that there exists a full column-rank

matrix T̃ ∈ R(ns−g)×• such that V2eT̃ = 0 and Γ22T̃ = T̃ Γ̃ , σ(Γ̃ ) ⊆ σ(Γ22) (
C−. Further, from equation (4.11), we must have QV1eT̃ = 0. Post-multiplying

equation (4.5) by T̃ , we get

AV1eT̃ + bV3eT̃ = VgΓ12T̃ + V1eΓ22T̃ ⇒ AV1eT̃ + bV3eT̃ = VgΓ12T̃ + V1eT̃ Γ̃ .
(4.13)
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Using Proposition 2.2 in equation (4.13) combined with the fact that imgVg is

a good (A, b)-invariant subspace and σ(Γ̃ ) ( C−, we infer that img
[
Vg V1eT̃

]
is also a good (A, b)-invariant subspace. Further, Q

[
Vg V1eT̃

]
= 0. Thus,

img
[
Vg V1eT̃

]
∈ BΣ , where BΣ is as defined in Lemma 4.2. Since Vg = supBΣ

and imgVg = Vg, we must have img
[
Vg V1eT̃

]
= Vg. Therefore, there exist

α1 ∈ Rg×1 and a nonzero α2 ∈ R•×1 such that Vgα1 + V1eT̃α2 = 0, i.e.,[
Vg V1e

0 V2e

] [
α1

T̃α2

]
=
[
Vgα1+V1eT̃α2

V2eT̃α2

]
= 0 (Recall that V2eT̃ = 0). Note that since

T̃ is full column-rank, T̃α2 6= 0. Thus, we have a nonzero vector
[
α1

T̃α2

]
inside

ker
[
Vg V1e

0 V2e

]
. This is a contradiction to the fact that

[
Vg V1e

0 V2e

]
is full column-

rank. Thus, V2e must be full column-rank.

(2): To the contrary, assume that
[
Vg V1e

]
is not full column-rank. Then, there

exist β1 ∈ Rg×1 and β2 ∈ R(n−g)×1 such that
[
β1

β2

]
6= 0 and Vgβ1 + V1eβ2 = 0.

Now pre-multiplying equation (4.5) with V T2e and adding it to the transpose
of equation (4.6) post-multiplied with V1e, we have

V T2eAV1e + V T2ebV3e − V T1eQV1e − V T2eAV1e

= V T2eVgΓ12 + V T2eV1eΓ22 + ΓT22V
T
2eV1e. (4.14)

Using equation (4.7) and equation (4.8) in equation (4.14), we have

ΓT22V
T
2eV1e + V T2eV1eΓ22 = −V T1eQV1e. (4.15)

Now we assume that there exists a nonzero y ∈ ker (V T2eV1e). Pre- and post-
multiplying (4.15) by yT and y, respectively and using equation (4.8) we have

yTΓT22V
T
2eV1ey + yTV T2eV1eΓ22y = −yTV T1eQV1ey ⇒ yTV T1eQV1ey = 0

⇒ QV1ey = 0. (4.16)

Now, post-multiplying equation (4.15) with y and using equation (4.16), we
have

V T2eV1eΓ22y = 0⇒ ker(V T2eV1e) is Γ22-invariant. (4.17)

Therefore, using equation (4.17) and the fact that σ(Γ22) ( C−, we have

∃ a nonzero q ∈ C(n−g)×1 such that V T2eV1eq = 0 &Γ22q = µq, where µ ∈ C−.
(4.18)

Post-multiplying equation (4.6), by q, we have −QV1eq−ATV2eq = V2eΓ22q ⇒
ATV2eq = −µV2eq. If V2eq is nonzero, then it is a left-eigenvector of A. How-
ever, from equation (4.7) we can infer that (V2eq)

T b = 0. This means that the
system (A, b) is uncontrollable. This is a contradiction. Therefore, V2eq must
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be a zero vector. Now from the fact that V2e is full column-rank (Statement
(1) of this lemma), it is evident that q = 0, which contradicts equation (4.18).
Thus, our initial assumption that there exists a nonzero vector y ∈ ker(V T2eV1e)
is not true. Hence, ker(V T2eV1e) = {0}.

Recall that we have assumed Vgβ1 + V1eβ2 = 0. Pre-multiplying this equation
with V T2e, we have V T2eVgβ1 + V T2eV1eβ2 = 0. Using equation (4.8) and the fact
that ker(V T2eV1e) = {0}, we have V T2eV1eβ2 = 0 ⇒ β2 = 0. Thus, we have
Vgβ1 + V1eβ2 = 0⇒ Vgβ1 = 0. However, since Vg is full column-rank, we must

have β1 = 0. This is a contradiction to the fact that
[
β1

β2

]
6= 0. Hence,

[
Vg V1e

]
is full column-rank. �

Now using Lemma 4.4, we proceed to prove Theorem 4.2.

Proof of Theorem 4.2: Since img
[
V1Λ

V2Λ

]
= img

[
Vg V1e

0 V2e

]
, where Vg ∈ Rn×g, and

V1e, V2e ∈ Rn×(ns−g) is as defined in Lemma 4.4, we must have imgV1Λ =
img

[
Vg V1e

]
. Note that the number of columns of V1Λ and

[
Vg V1e

]
are the

same. Therefore, using Statement (2) of Lemma 4.4 it follows that V1Λ is full
column-rank. �

Since V1Λ is full column-rank, it follows from Definition 2.10 that imgVeΛ is
disconjugate. This property of disconjugacy is crucially used to prove Theorem
4.1. Apart from this property, there are a few more identities that are required
to prove Theorem 4.1. We present these identities as two lemmas in the next
section.

4.2 Auxiliary results for the proof of Theorem 4.1

In this section, we present two lemmas that establish a few identities involving
the system matrices (A, b), cost matrix Q and a solution K of the LQR LMI
(2.4). These identities are crucially used in the proof of Theorem 4.1.

Lemma 4.5 Let (Â, b̂, ĉ), Q and nf be as defined in Theorem 4.1. Then, the
following statements are true:

(1) ĉÂk b̂ = 0 for k ∈ {0, 1, . . . , 2(nf − 1)}.

(2) QA`b = 0 for ` ∈ {0, 1, . . . , nf − 2}.

(3) Â`b̂ = col(A`b, 0) and ĉÂ` =
[
0 (−1)`(A`b)T

]
for ` ∈ {0, 1, . . . , nf − 1}.

Proof: (1): We define P := Â, L := b̂, M := ĉ, U1 := E, and U2 := H in
Lemma 3.1. Further we have degdet(sE − H) = 2ns. Therefore, Ns = 2ns
and Nf = N− Ns = 2n− 2ns = 2nf. Therefore from Lemma 3.1 Statement (1)
immediately follows.
(2) and (3): Now, we use induction to prove these statements.
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Base step: (` = 0) Using Statement (1) of this lemma we have

ĉÂb̂ = 0⇒
[
0 bT

] [ A 0

−Q −AT

] [
b

0

]
= bTQb = 0. (4.19)

Since Q > 0, using the property of positive-semidefinite matrices in equation
(4.19) we get Qb = 0. Further, b̂ = col(b, 0) and ĉ =

[
0 bT

]
by definition.

Induction step: Assume

QA`b = 0, Â`b̂ = col(A`b, 0), and ĉÂ` =
[
0 (−1)`bT (AT )`

]
, where `<nf−2.

We prove that

QA`+1b = 0, Â`+1b̂ = col(A`+1b, 0), and ĉÂ`+1 =
[
0 (−1)`+1bT (AT )`+1

]
.

Note that

Â`+1b̂ =

[
A 0

−Q −AT

] [
A`b

0

]
=

[
A`+1b

−QA`b

]
=

[
A`+1b

0

]
,

ĉÂ`+1 =
[
0(−1)`(A`b)T

][ A 0

−Q−AT

]
=
[
(−1)`(QA`b)T (−1)`+1(A`+1b)T

]
=
[
0(−1)`+1(A`+1b)T

]
.

Since ` < nf − 2 ⇒ 2` + 3 < 2nf − 1, using Statement (1) of this lemma and
the induction hypothesis, we have

ĉÂ2`+3b̂ = 0⇒ (ĉÂ`+1)Â(Â`+1b̂) = 0

⇒
[
0(−1)`+1(A`+1b)T

] [ A 0

−Q −AT

] [
A`+1b

0

]
= 0

⇒ (A`+1b)TQ(A`+1b) = 0⇒ QA`+1b = 0 (Since Q > 0).

This completes the proof of Statements (2) and (3) for ` ∈ {0, 1, . . . , nf − 2}.

In what follows we complete the proof of Statement (3) by proving the iden-

tity for the case ` = nf − 1. Ânf−1b̂ =
[
A 0
−Q −AT

] [
Anf−2b

0

]
=
[
Anf−1b

0

]
(Since

QAnf−2b = 0 from Statement (2) of this lemma). Similarly,

ĉÂnf−1 =
[
(−1)nf−1(Anf−2b)TQ (−1)nf−1(Anf−1b)T

]
=
[
0 (−1)nf−1(Anf−1b)T

]
.

This completes the proof of Statement (3) of this lemma. �

Lemma 4.6 Let K be any solution of the singular LQR LMI (2.4) with
degdet(sE − H) = 2ns and nf := n − ns, where (E,H) are as defined in
Theorem 4.1. Then, for any α ∈ {0, 1, . . . , nf − 1}, KAαb = 0.
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Proof: We prove this using induction and Lemma 4.5.
Base case: (α = 0) Since K is a solution of the LQR LMI (2.4), Kb = 0 is
trivially true.
Inductive step: Suppose α 6 nf − 1. Assume KA(α−1)b = 0, we show
that KAαb = 0 . Pre- and post-multiplying L(K) := ATK + KA + Q by
(A(α−1)b)T and A(α−1)b, respectively, we get (A(α−1)b)TL(K)(A(α−1)b) > 0.
Opening the brackets and using the inductive hypothesis this inequality be-
comes (A(α−1)b)TQ(A(α−1)b) > 0. Further, using Statement (2) of Lemma

(4.5) in this inequality, we get
(
A(α−1)b

)T
Q
(
A(α−1)b

)
= 0⇒ L(K)A(α−1)b =

0 (Since L(K) > 0). Therefore, (ATK+KA+Q)A(α−1)b = 0⇒ ATKA(α−1)b+
KAαb + QA(α−1)b = 0. Using inductive hypothesis and Statement (2) of
Lemma 4.5, we therefore have KAαb = 0. �

Now that we have developed all the crucial results required to prove Theorem
4.1, in the ensuing section we prove Theorem 4.1.

4.3 Proof of Theorem 4.1

Proof of Statement (1) of Theorem 4.1: Partition W =:
[
W1

W2

]
, where W1,W2 ∈

Rn×nf . Using Statement (3) of Lemma 4.5, it is evident that

W =

[
W1

W2

]
=
[
b̂ Âb̂ · · · Ânf−1b̂

]
=

[
b Ab · · ·Anf−1b

0 0 · · · 0

]
⇒

{
W1 =

[
b Ab · · · Anf−1b

]
,

W2 =0n,nf .

(4.20)

Therefore, XΛ =
[
XΛ W

]
=

[
V1Λ W1

V2Λ 0n,nf

]
=

[
X1Λ

X2Λ

]
. Then, we need to prove

that X1Λ =
[
V1Λ W1

]
is invertible.

Note that since V1Λ is full column-rank (Theorem 4.2), there exists F ∈ R1×n

such that V3Λ = FV1Λ. Thus, from equation (4.1), (A+bF )V1Λ = V1ΛΓ . Define
W1F := [ b (A+bF )b ··· (A+bF )nf−1b ]. Then, clearly imgW1 = imgW1F. Since Σ
is controllable, W1 is full column-rank ⇔ W1F is also full column-rank. Thus,
proving X1Λ is invertible is equivalent to proving X̃1Λ := [ V1Λ W1F ] is invertible.

Now, we extend the columns of V1Λ to form a basis of Rn, say B. Without loss
of generality, we assume that the matrices A, b are represented in the basis B.
Since V1Λ is (A, b)-invariant, in the new basis (A+bF ) must have the following

structure A + bF =
[
Ā11 Ā12

0 Ā22

]
, where Ā11 ∈ Rns×ns and Ā22 ∈ R(n−ns)×(n−ns).

Conforming to the partition in A + bF , we partition b =:
[
b̄1
b̄2

]
. Note V1Λ in

the basis B is of the form
[
Ins
0

]
. Further, W1F in this new basis B has the

following structure W1F =
[
b̄1 ? ··· ?

b̄2 Ā22b̄2 ··· Ānf−1b̄2

]
, where ? are suitable matri-

ces with elements from R. Since the system is controllable, we have (A, b)
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controllable ⇔ (A+ bF, b) controllable ⇒ (Ā22, b̄2) is controllable. Therefore,
T := [ b̄2 Ā22b̄2 ··· Ānf−1b̄2 ] ∈ Rnf×nf is a nonsingular matrix. Now, note that

the matrix X̃1Λ = [ V1Λ W1F ] in the basis B takes the form
[
Ins ?
0 T

]
. Thus, X̃1Λ

is a block upper-triangular matrix with the diagonal blocks Ins and T being

nonsingular. Therefore, X̃1Λ is invertible and hence X1Λ is invertible. �

Proof of Statement (2) of Theorem 4.1: To prove X2ΛX
−1
1Λ = (X2ΛX

−1
1Λ )T is

equivalent to proving XT
1ΛX2Λ = XT

2ΛX1Λ. Hence instead of proving X2ΛX
−1
1Λ

= (X2ΛX
−1
1Λ )T we prove that XT

1ΛX2Λ − XT
2ΛX1Λ = 0. Now, using equation

(4.20) to evaluate XT
1ΛX2Λ −XT

2ΛX1Λ, we get

XT
1ΛX2Λ −XT

2ΛX1Λ =

[
V T1Λ
WT

1

] [
V2Λ 0n,nf

]
−
[
V T2Λ
0nf,n

] [
V1Λ W1

]
=

[
V T1ΛV2Λ − V T2ΛV1Λ −V T2ΛW1

WT
1 V2Λ 0nf,nf

]
. (4.21)

From Proposition 4.1, we have V T1ΛV2Λ = V T2ΛV1Λ. Hence, to prove XT
1ΛX2Λ −

XT
2ΛX1Λ = 0, we need to prove that V T2ΛW1 = 0. From equation (4.1), we have

−QV1Λ −ATV2Λ = V2ΛΓ ⇒ V T1ΛQ+ V T2ΛA = −ΓTV T2Λ. (4.22)

We first prove that V T2ΛA
kb = 0 for k ∈ {0, 1, . . . , nf − 1} using mathematical

induction.
Base step: (k = 0) V T2Λb = 0 follows from equation (4.1).
Induction step: Let V T2ΛA

kb = 0 for k < nf−1. We prove that V T2ΛA
k+1b = 0.

Post-multiplying equation (4.22) with Akb gives V T1ΛQA
kb + V T2ΛA

k+1b =
−ΓTV T2ΛAkb. Since k < nf − 1, we know that QAkb = 0 (Lemma 4.5).
This equation along with the inductive hypothesis imply that V T2ΛA

k+1b = 0.
Hence, by mathematical induction, we have proved that V T2ΛA

kb = 0 for
k ∈ {0, 1, 2, . . . , nf − 1}. In other words, we proved that

V T2Λ
[
b Ab · · · Anf−1b

]
= 0⇒ V T2ΛW1 = 0. (4.23)

Thus, from equation (4.21), we have XT
1ΛX2Λ = XT

2ΛX1Λ. Therefore, X2ΛX
−1
1Λ

is symmetric. �

Proof of Statement (3) of Theorem 4.1: Define L(Kmax) := ATKmax +KmaxA+
Q. Evaluating XT

1ΛL(Kmax)X1Λ, we get

XT
1ΛL(Kmax)X1Λ =

[
V T1ΛL(Kmax)V1Λ V T1ΛL(Kmax)W1

WT
1 L(Kmax)V1Λ W

T
1 L(Kmax)W1

]
. (4.24)

Note that KmaxV1Λ = X2ΛX
−1
1Λ V1Λ =

[
V2Λ W2

] [
V1Λ W1

]−1
V1Λ = V2Λ, and

KmaxW1 =
[
V2Λ W2

] [
V1Λ W1

]−1
W1 = W2 = 0 (From equation (4.20)). Using
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the fact that KmaxV1Λ = V2Λ and evaluating V T1ΛL(Kmax)V1Λ gives

V T1ΛL(Kmax)V1Λ = V1Λ(ATKmax +KmaxA+Q)V1Λ

=
[
V T2Λ −V T1Λ

] [ A 0

−Q −AT

] [
V1Λ

V2Λ

]
(4.25)

Using equation (4.1) and Proposition 4.1 in equation (4.25), we have

V T1ΛL(Kmax)V1Λ =
[
V T2Λ −V T1Λ

]([V1Λ

V2Λ

]
Γ −

[
b

0

]
V3Λ

)
= −V T2ΛbV3Λ = 0.

(4.26)

Using the fact that KmaxV1Λ = V2Λ and KmaxW1 = 0 to evaluate V T1ΛL(Kmax)W1

gives

V T1ΛL(Kmax)W1 = V T1ΛA
TKmaxW1 + V T1ΛKmaxAW1 + V T1ΛQW1

= V T2ΛAW1 + V T1ΛQW1. (4.27)

Post-multiplying equation (4.22) by W1 and using it in equation (4.27) gives

V T1ΛL(Kmax)W1 = V T1ΛQW1 + V T2ΛAW1 = −ΓTV T2ΛW1. (4.28)

From equation (4.23), we have V T2ΛW1 = 0. Thus, V T1ΛL(Kmax)W1 = 0.

Since KmaxW1 = 0, we must have

WT
1 L(Kmax)W1 = WT

1 A
TKmaxW1 +WT

1 KmaxAW1 +WT
1 QW1 = WT

1 QW1.

Now, using Statement (1) of Lemma 4.5, we have

WT
1 QW1 =

[
0(nf−1),(nf−1) 0(nf−1),1

01,(nf−1) (Anf−1b)TQAnf−1b

]
.

Thus, equation (4.24) becomes

XT
1ΛL(Kmax)X1Λ =

[
0(n−1),(n−1) 0(n−1),1

01,(n−1) (Anf−1b)TQAnf−1b

]
. (4.29)

Since Q > 0, we have (Anf−1b)TQAnf−1b > 0. Therefore, XT
1ΛL(Kmax)X1Λ > 0.

Since X1Λ is invertible, we must have L(Kmax) > 0. Next using Statement (2)
of this theorem and the fact that V T2Λb = 0 from equation (4.1) we have

Kmaxb = X2ΛX
−1
1Λ b = (X−1

1Λ )TXT
2Λb = (X−1

1Λ )T
[
V T2Λ
0

]
b = 0. (4.30)

Thus, Kmax is a solution of the LQR LMI (2.4). From equation (4.29), we infer
that rank(L(Kmax)) is either 0 or 1.

Note that rank(L(Kmax)) = 0 is equivalent to L(Kmax) = 0, i.e., ATKmax +
KmaxA+Q = 0 and Kmaxb = 0. The equations ATK+KA+Q = 0 and Kb = 0
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are the continuous generalized constrained ARE (CGCARE) corresponding to
the LQR Problem 2.1 (see [7], [8], [3] for more on CGCARE). Interestingly,
from [3, Corollary 1] it is evident that a necessary condition for solvability of
CGCARE is det(sE − H) = 0. Since in this theorem det(sE − H) 6= 0 by
assumption, CGCARE is not solvable here. This implies that L(K) = 0, i.e.,
rank(L(K)) = 0 is not possible in our case. Therefore, the minimum rank that
can be attained by LQR LMI (2.4) is 1 and L(Kmax) attains this rank. �

Proof of Statement (4) and (5) of Theorem 4.1: Note that proving Statement
(4) of this theorem is equivalent to proving that K −Kmax 6 0 for all K that
satisfies the LQR LMI (2.4). We prove this in two steps. First, we prove that
for V1Λ defined in the theorem, ∆ := V1Λ(K − Kmax)V1Λ satisfies a suitable
Lyapunov inequality (see equation (4.37) below). Then, using this Lyapunov
inequality we finally show that K −Kmax 6 0 for all K that satisfies the LQR
LMI (2.4).

Step 1: Note that for all (x, u) that satisfies d
dtx = Ax + bu, evaluation of

d
dt (x

TKx) + xTQx results in the following equation:

d

dt
(xTKx) + xTQx = ẋTKx+ xTKẋ+ xTQx

= (Ax+ bu)TKx+ xTK(Ax+ bu) + xTQx

=

[
x

u

]T [
ATK +KA+Q Kb

bTK 0

] [
x

u

]
, for all t ∈ R.

(4.31)

Since K is a solution of the LQR LMI (2.4), using the LMI
[
ATK+KA+Q Kb

bTK 0

]
>

0 in equation (4.31), we have

d

dt
(xTKx) + xTQx =

[
x

u

]T [
ATK +KA+Q Kb

bTK 0

] [
x

u

]
> 0, for all t ∈ R.

(4.32)

From equation (4.1), we know that AV1Λ+ bV3Λ = V1ΛΓ . Further, since V1Λ is
full column-rank (Theorem 4.2), we infer that there exists F ∈ R1×ns such that
FV1Λ = V3Λ. Therefore, we have (A + bF )V1Λ = V1ΛΓ . Thus, corresponding
to an initial condition x0 = V1Λβ, where β ∈ Rns×1, x̄s := V1Λe

Γtβ, ūs :=
FV1Λe

Γtβ must satisfy d
dtx = Ax+ bu. Using x̄s in equation (4.32), we have

d

dt
(x̄Ts Kx̄s) + x̄Ts Qx̄s > 0⇒ d

dt
(x̄Ts Kx̄s) > −x̄Ts Qx̄s, for all t ∈ R. (4.33)

Note that ˙̄xs = V1ΛΓe
Γtβ = (A + bF )V1Λe

Γtβ (Since (A + bF )V1Λ = V1ΛΓ ).
Since Kmax is a solution of the LQR LMI (2.4), using the fact that Kmaxb = 0
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we have for all t ∈ R.

d

dt
(x̄Ts Kmaxx̄s) +x̄Ts Qx̄s = ˙̄xs

T
Kmaxx̄s + x̄Ts Kmax ˙̄xs + x̄Ts Qx̄s

= βT eΓ
T tV T1Λ(A+ bF )TKmaxV1Λe

Γtβ

+βT eΓ
T tV T1ΛKmax(A+ bF )V1Λe

ΓT tβ + x̄Ts Qx̄s

= βT eΓ
T tV T1Λ(ATKmax +KmaxA+Q)V1Λe

Γtβ. (4.34)

From equation (4.26), it is evident that the right hand side of equation (4.34)
is 0. Therefore,

d

dt

(
x̄Ts Kmaxx̄s

)
= −x̄Ts Qx̄s, for all t ∈ R. (4.35)

Subtracting equation (4.35) from inequality (4.33) gives

d

dt

(
x̄Ts (K −Kmax)x̄s

)
= ˙̄xs

T
(K−Kmax)x̄s+x̄Ts (K−Kmax) ˙̄xs > 0, for all t ∈ R.

On using x̄s = V1Λe
Γtβ and ˙̄xs = V1ΛΓe

Γtβ in this inequality, we get

(V1Λe
ΓtΓβ)T (K −Kmax)(V1Λe

Γtβ) + (V1Λe
Γtβ)T (K −Kmax)(V1Λe

ΓtΓβ) > 0,
(4.36)

for all t ∈ R. Since inequality (4.36) is true for all t, evaluating it at t = 0,
in particular, we get βT (ΓTV T1Λ(K − Kmax)V1Λ + V T1Λ(K − Kmax)V1ΛΓ )β =
βT (ΓT∆+∆Γ )β > 0, where ∆ := V T1Λ(K −Kmax)V1Λ. Since this inequality is
true for all β ∈ Rns×1, we have

ΓT∆+∆Γ > 0, where ∆ = V T1Λ(K −Kmax)V1Λ. (4.37)

This ends the first step of the proof.

Step 2: Note that since X1Λ is nonsingular, proving K −Kmax 6 0 is equiv-
alent to proving that XT

1Λ(K −Kmax)X1Λ 6 0 (by congruence transformation
property). Hence, we prove XT

1Λ(K −Kmax)X1Λ 6 0 in the sequel.

Note that X1Λ =
[
V1Λ W1

]
, where W1 is as defined in equation (4.20). On

evaluating XT
1Λ(K −Kmax)X1Λ, we therefore have

XT
1Λ(K −Kmax)X1Λ =

[
V T1Λ(K −Kmax)V1Λ V T1Λ(K −Kmax)W1

WT
1 (K −Kmax)V1Λ W

T
1 (K −Kmax)W1

]
. (4.38)

Since W1 =
[
b Ab · · ·Anf−1b

]
(equation (4.20)), we have from Lemma 4.6,

KW1 = 0 and KmaxW1 = 0. Therefore, (K−Kmax)W1 = 0. Thus, from equation
(4.38) it follows that

XT
1Λ(K −Kmax)X1Λ =

[
V T1Λ(K −Kmax)V1Λ 0

0 0

]
=

[
∆ 0

0 0

]
, (4.39)
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Since σ(Γ ) ( C−, from equation (4.37), we have ∆ 6 0. Using this negative-
semidefiniteness property of ∆ in equation (4.39), we infer that XT

1Λ(K −
Kmax)X1Λ 6 0 ⇔ K −Kmax 6 0. This completes the proof of Statement (4) of
the theorem.

Note that 0 is a solution of the LQR LMI (2.4). Thus, from Statement (4) of
Theorem (4.1) we must have 0 6 Kmax. Thus, Statement (5) of the theorem is
proved. �

Now that we have proved Theorem 4.1, using the main results of this paper,
we present a few corollaries next. These corollaries reaffirm some of the well-
known findings present in the literature: see [14], [9], [10], [21].

Recall from Statement (1) of Theorem 4.1 and equation (4.20) we know that

XΛ =
[
X1Λ

X2Λ

]
=
[
V1Λ W1

V2Λ 0n,nf

]
. Thus, we have X1Λ =

[
V1Λ W1

]
and X2Λ =[

V2Λ 0
]
. Further, from Lemma 4.4, we know that img

[
Vg V1e

0n,g V2e

]
= img

[
V1Λ

V2Λ

]
and

[
Vg V1e

]
is full column-rank. Hence, the matrix X1Λ, without loss of gen-

erality, is given by X1Λ =
[
Vg V1e W1

]
and the corresponding X2Λ matrix is

then X2Λ =
[
0n,g V2e 0n,nf

]
.

Since X1Λ is invertible (Statement (1) of Theorem 4.1), it is evident that
the columns of X1Λ can be assumed to be a basis for Rn. Hence, any initial
condition x0 of the system Σ can be decomposed as

x0 =: xgs + xes + x0f, where xgs ∈ imgVg =: Vg, xes ∈ imgV1e =: Ve,
x0f ∈ imgW1 =:W. (4.40)

Now we have the following corollary.

Corollary 4.1 Consider the LQR Problem 2.1 and let Kmax be the maximal
rank-minimizing solution of the corresponding LQR LMI (2.4). Assume x0 =:
xgs+xes+x0f to be an initial condition of the system Σ as defined in equation
(4.40). Then the following statements hold:

(1) xTgsKmaxxgs = 0.

(2) xT0fKmaxx0f = 0.

(3) The optimal cost of the LQR problem is xTesKmaxxes.

Proof: (1): Let xgs := Vgα, where α ∈ Rg×1. Note that

Kmaxxgs = KmaxVgα = X2ΛX
−1
1Λ Vgα =

[
0n,g V2e 0n,f

] [
Vg V1e W1

]−1
Vgα = 0.

(4.41)
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Therefore, xTgsKmaxxgs = αTV Tg KmaxVgα = 0.

(2): Let x0f := W1β, where β ∈ Rnf×1. Note that

Kmaxx0f = KmaxW1β =
[
0n,g V2e 0n,f

] [
Vg V1e W1

]−1
W1β = 0. (4.42)

Therefore, xT0fKmaxx0f = βTWT
1 KmaxW1β = 0.

(3): From [19], it is known that the optimal cost corresponding to the LQR
Problem 2.1 is given by xT0 Kmaxx0, where Kmax is the maximal rank-minimizing
solution of the LQR LMI (2.4). Hence, using equations (4.41) and (4.42) and
evaluating the optimal cost for the LQR Problem 2.1, we have

xT0 Kmaxx0 = (xgs + xes + x0f)
TKmax(xgs + xes + x0f) = xTesKmaxxes. (4.43)

This completes the proof of the corollary. �

From Corollary 4.1 it is evident that if the initial condition of the system is from
W or Vg then the cost incurred by the system is zero. Thus, the optimal cost
of an LQR problem depends only on the maximal rank-minimizing solution of
the corresponding LQR LMI and the projection of the initial condition of the
system onto the subspace Ve.

Next we look at a special case of LQR Problems when the system admits the
zero matrix as the only solution to the corresponding LQR LMI.

Corollary 4.2 Consider the singular LQR Problem 2.1 with assumptions as
given in Theorem 4.1. Suppose dim (supBΣ) = ns, where BΣ is as defined in
Lemma 4.3. Then, Kmax = 0n,n.

Proof: Since dim (supBΣ) = ns and dimOwg = ns, from Lemma 4.4 it is

evident that img
[
Vg

0n,ns

]
= img

[
V1Λ

V2Λ

]
. Therefore, V2Λ = 0n,ns . Further, from

equation (4.20) we have W2 = 0. Therefore, X2Λ = 0 and hence using Theorem
4.1, we must have Kmax = 0n,n. �

The next corollary states that if the transfer function induced by the cost-
matrix Q and the system Σ is minimum-phase1, then the optimal cost of the
corresponding LQR problem is zero.

Corollary 4.3 Consider the singular LQR Problem 2.1 with rankQ = 1 and
(Q,A) observable. Let c ∈ R1×n be such that Q = cT c. Define G(s) := c(sIn −
A)−1b. If the system G(s) is minimum-phase, then the optimal cost of the LQR
problem is zero.

Proof: Recall Â, b̂, ĉ are as defined in equation (2.7). Define det(sIn − A) =:

d(s). Therefore, det(sI2n− Â) = d(s)d(−s). Further, since the system is (A, b)
controllable and (Q,A) observable, there exists a real-polynomial n(s) such

that G(s) = n(s)
d(s) with n(s) and d(s) are coprime.

1 A transfer function G(s) =
n(s)
d(s)

is said to be minimum-phase if roots(n(s)) ( C−.
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Note that det(sE−H) = det
[
sI2n−Â −b̂
−ĉ 0

]
= ĉ(sI2n−Â)−1b̂×det(sI2n−Â) =:

p(s).

Further, by simple multiplication it can be seen that

G(−s)G(s) = ĉ(sI2n − Â)−1b̂⇒ n(−s)n(s)

d(−s)d(s)
=

p(s)

d(−s)d(s)
,

Therefore, p(s) = n(−s)n(s). Since |σ(E,H)| = 2ns ⇒ |roots p(s)| = 2ns ⇒
|roots (n(s))| = ns. Since G(s) is minimum-phase, roots(n(s)) ( C−.

Consider the system d
dtx = Ax + bu and y := cx. Note that this is a SISO

system which is (A, b) controllable and (Q,A) observable ⇒ (c, A) observable.
Therefore, as discussed in Section 2.3, σ((A+ bF )|supBΣ ) = roots num (G(s)).
Therefore, dim (supBΣ) = ns. Hence, by Corollary 4.2 we have Kmax = 0n,n ⇒
the optimal cost is zero. �

Note that Corollary 4.3, albeit for single-input systems, corroborates the find-
ings on minimum-phase systems in [9, Theorem 2] and [14].

5 Application of the main result and comparison with results in
literature

In this section we present an algorithm to design proportional-derivative (PD)
state-feedback controllers that solve singular LQR problems and tabulate the
optimal trajectories related to Problem 2.1. Further, we also elaborate on the
restrictions of the deflating subspace method presented in [17] with the help
of suitable examples.

5.1 Algorithm to compute PD-controllers for single-input singular LQR
problems

Using Theorem 4.1 and the results in [2], we now present an algorithm to
design PD state-feedback controllers to solve a singular LQR problem.

Algorithm 5.1 Algorithm to compute the gain matrices (proportional and
derivative) to solve a singular LQR problem

Input: (A, b,Q) matrices corresponding to a singular LQR problem.
Output: K = KT ∈ Rn×n.

1: Construct (E,H) as defined in equation (2.5) and compute ns = {degdet(sE −H)} /2.
2: Use generalized real-Schur decomposition algorithm on (E,H) to compute basis of

eigenspace corresponding to all eigenvalues of (E,H) in C−. Let columns of VeΛ ∈
R(2n+1)×ns be the basis.
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3: Partition VeΛ =: col(V1Λ, V2Λ, V3Λ) where V1Λ, V2Λ ∈ Rn×ns , V3Λ ∈ Rns and construct
the matrix VΛ := col(V1Λ, V2Λ).

4: if ns 6= n then
5: Compute nf = n− ns and construct

W :=
[
b̂ Âb̂ Â2b̂ · · · Ânf−1b̂

]
∈ R2n×nf .

6: Construct X :=
[
VΛ W

]
∈ R2n×n

7: else
8: Construct X := VΛ ∈ R2n×n

9: end if

10: Partition X as X =:

[
X1Λ

X2Λ

]
where X1Λ, X2Λ ∈ Rn×n.

11: Compute K := X2ΛX
−1
1Λ ∈ Rn×n.

12: Construct

Fp :=
[
V3Λ f0 f1 · · · fnf−1

]
X−1

1Λ Fd :=
[
01,ns 1 −f0 · · · −fnf−2

]
X−1

1Λ ,

where f0, f1, · · · , fnf−1 ∈ R such that det (s(In − bFd)− (A + bFp)) 6= 0.

Step 1 to Step 11 of Algorithm 5.1 is based on Theorem 4.1. The final step
(Step 12) of the algorithm involves computation of matrices Fp and Fd. On
using these gain matrices in a feedback law given by u = Fpx + Fd

d
dtx, one

gets a control law that solves the corresponding singular LQR problem. This
result has been proved in [2] (see Theorems 2 and 3 there).

5.2 Comparison with deflating subspace method

In this section we present a few instructive examples that demonstrate the
restrictions of the results in [17]. For the ease of reference, we present the
LQR problem dealt with in [17] next.

Problem 5.2 Consider a differential-algebraic system of the form:

E
d

dt
x = Ax+Bu, where A,E ∈ Rn×n and B ∈ Rn×m. (5.1)

Find an input u that minimizes the cost-functional∫ ∞
0

[
x(t)

u(t)

]T [
Q S

ST R

] [
x(t)

u(t)

]
dt

subject to (x, u) ∈ B[E,A,B] with Ex(0) = Ex0 and limt→∞Ex(t) = 0, where

B[E,A,B] := {(x, u) ∈L2
loc(R,Rn)× L2

loc(R,Rm) |E d

dt
x ∈ L2

loc(R,Rn) and

(x, u) satisfies equation (5.1) at almost all t ∈ R}.
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Note that unlike Problem 1.1, the inputs and states in Problem 5.2 are con-
sidered to be from the space of locally square-integrable functions. Further
Problem 5.2 also imposes restrictions on the initial conditions of the system.
Such restrictions, specially the ones on the initial conditions, are not desirable
for a system, since a state-space system can always have arbitrary initial con-
ditions. In this paper we do not impose any such restrictions on the function
space or initial conditions. In the next few examples we highlight the advantage
of using the results in this paper by illustrating the restrictions of the results
in [17] and demonstrating how our methods can overcome these restrictions.

In the first example we consider a single-integrator system. Such systems find
widespread application in the field of multi-agent systems. The same example
had also been used in [10] to demonstrate the importance of Cimp functions in
singular LQR problems. The next example illustrates that the singular LQR
problem admits no solution if the results in [17] are used. However, the same
problem does admit a solution using the results in this paper.

Example 5.3 Consider the system d
dtx = u. Let the performance index be J :=∫∞

0
x2(t)dt.

Corresponding to an arbitrary non-zero initial condition α ∈ R, the state of
the single-integrator system is given by x = α +

∫ t
0
u(τ)dτ . It is evident that

J can be made arbitrarily small using an input u ∈ L2
loc(R,R). However, J

can never be made zero unless we chose u = −αδ /∈ L2
loc(R,R). Hence, by

the theory provided in [17] the problem does not have an optimal solution.
However, using the theory developed in this paper one can find the optimal
input to be −αδ.

Note that the state-space system in Example 5.3 can trivially be written as a
differential-algebraic system as follows.[

1 0

0 0

]
︸ ︷︷ ︸
E

d

dt

[
x

p

]
=

[
0 1

0 −1

]
︸ ︷︷ ︸

A

[
x

p

]
+

[
0

1

]
u (5.2)

Since all state-space systems can always be rewritten as differential-algebraic
systems, from the example above it becomes clear that the consideration of
differential-algebraic state-space systems as in [17] does not provide addi-
tional tools for solving this particular issue. Here, the restriction of inputs
to L2

loc(R,R) prevents the theory of [17] from providing an optimal solution.
A related and similarly significant restriction is posed by the consistency re-
quirement on parts of the initial conditions of the underlying system [17]. We
elaborate on this next.

Note that in Problem 5.2 the initial conditions corresponding to the system
are subjected to the constraint Ex(0) = Ex0 and the continuity of Ex. In the
context of a state-space system with E = I, this transfers to the continuity of
x at t = 0 or, in other words, the initial conditions are restricted to be such
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that the states of the system do not exhibit any jump at t = 0+. We explain
next, with the help of an example, the implications of such a restriction on
the initial conditions of a system in the context of an LQR problem.

Example 5.4 Consider the following system:

d

dt

[
x1

x2

]
=

[
0 1

−1 −1

] [
x1

x2

]
+

[
0

1

]
u

Let the cost-functional be
∫∞

0
(x2

1 + x2
2)dt.

For this example, using Theorem 4.1 we have V1Λ =

[
1

−1

]
. Further, here

W1 = b =

[
0

1

]
.

Using our results in [2, Theorem 1], the optimal input corresponding to an

arbitrary initial condition x0 = V1Λβ + W1α =

[
1

−1

]
β +

[
0

1

]
α is given by

uopt = e−tβ−δα, where α, β ∈ R. The optimal states would then be:

[
x1opt

x2opt

]
=[

1

−1

]
e−tβ. (see [2, Theorem 1] for method to compute optimal inputs).

For initial conditions with α = 0, it is evident that x(0) = x0. This satisfies
the constraints on initial condition as given in Problem 5.2. However, if β = 0
and α 6= 0, then we have x(0) = 0 6= x0. This is a violation of the constraint
x(0) = x0.

Note that if one imposes the constraint x(0) = x0 as in Problem 5.2, then the
optimal input would be u = e−tβ and the corresponding optimal state would be[

1

−1

]
e−tβ. This conforms with the results in [17].

Note that from our results in [2] it follows that whenever the initial conditions
of the system are from img(V1Λ), the optimal inputs/states are exponential in
nature. On the other hand, if the initial conditions are from img(W1), then
the optimal inputs/states are impulsive. Thus, the restriction x(0) = x0 in
Problem 5.2, when rewritten in terms of the notions developed in this paper
is equivalent to x(0) ∈ img(V1Λ). Evidently, any singular LQR problem that
admits a trivial img(V1Λ), i.e., img(V1Λ) = {0}, does not admit any optimal
input according to the results in [17]. A typical example of such a system is
Example 5.3. In case of Example 5.3, it can be verified that det(sE −H) = 1
and therefore ns = 0 and nf = 1. Thus, img(V1Λ) = {0} in Example 5.3. Hence,
for such a singular LQR problem, there exists no locally square-integrable
input that can attain the minimum cost of 0 for arbitrary initial condition.
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Even if a singular LQR problem admits a non-trivial img(V1Λ), like that in
Example 5.4, it is evident that Problem 5.2 in the state-space setting does
not cater to all initial conditions; in particular it does not cater to the initial
conditions in the non-trivial subspace img(W1). In this respect, the results
of this paper cover a problem class that exceeds the theory of [17], since the
results in this paper consider arbitrary initial condition.

A fundamental advantage of our theory over [17] is evident from an engineering
viewpoint. In [17] the authors show that an optimal control law corresponding
to a singular LQR problem fulfills an implicit control law of the form Px+Lu =
0, where P and L are solutions of the Luré equations involved with the LQR
LMI: see [17, Sec. 7] for the details. Thus, even if we allow for restrictions on
initial conditions of the system as given in Problem 5.2, the implementability of
the control law is a concern. We elaborate on this with the help of Example 5.4.
Using Algorithm 5.1 we can compute the maximal stabilizing rank-minimizing

solution of the corresponding LQR LMI to beKmax =

[
1 0

0 0

]
. The corresponding

LQR LMI then becomes

[
ATKmax +KmaxA+Q KmaxB

BTKmax R

]
=

1 1 0

1 1 0

0 0 0

 =

1

1

0

 [1 1 0
]

Hence, P =
[
1 1
]

and L = 0 and the control law proposed in [17] becomes[
1 1
] [x1

x2

]
+ 0u = 0⇒ x1 + x2 = 0.

Note that the optimal states in Example 5.4 do satisfy x1 + x2 = 0. However,
from an engineering perspective the implementation of this control law, in its
current form, is not possible as no information about the input is divulged in
such a law. In other words, this controller is not feedback implementable in
its current form. On the other hand, application of Algorithm 5.1 based on
Theorem 4.1 provides us with an explicit state-feedback control law of the form
u = Fpx+ Fd

d
dtx. In case of Example 5.4 one of the control laws (on choosing

f0 = −1 in Step 12 of Algorithm 5.1) would be u =
[
0 −1

] [x1

x2

]
+
[
1 1
]
d
dt

[
x1

x2

]
.

This is a PD state-feedback control law and is implementable.

In the above example, an optimal control that fulfills the requirements of
the theory [17] exists and such an optimal control can be recovered from the
implicit relation together with the state equations. However, in the case of
Example 5.3 where it does not, the implicit relation gives x = 0 but no further
indication on the (non)existence of u.

Thus, the theory developed in this paper is suitable from an implementation
point of view as well.
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Summing up, one of the primary advantages of the method developed in this
paper is the use of the notion of strongly reachable subspaces. The defini-
tion of a strongly reachable subspace inherently uses the function-space of
impulsive-smooth distributions that are excluded in the L2

loc theory of [17].
With L2

loc restrictions, optimal solutions that feature impulses in the control
or jumps/impulses in the states do not qualify as admissible solutions by the
theory in [17]. Moreover, since such solutions can be approximated arbitrarily
closely by L2

loc functions but never reached, the corresponding optimal control
problems are not solvable using the theory in [17].

6 Conclusion

In this paper, we presented a method to compute the maximal rank-minimizing
solution of an LQR LMI corresponding to a single-input system (Theorem 4.1).
We have developed this method using the notion of fast subspace (strongly
reachable subspace) and slow subspace (weakly unobservable subspace) of the
Hamiltonian system. We have shown that augmenting the basis of the good
slow subspace of the Hamiltonian system ΣHam with the basis of a subspace of
the fast subspace of ΣHam is the crucial idea that leads to the method. While
developing this method, we also showed that the fast subspace and the slow
subspace of a SISO system can be characterized in terms of its Rosenbrock
system matrix (Theorem 3.1 and Theorem 3.2). Further, we showed that the
good slow subspace of the Hamiltonian system is disconjugate (Theorem 4.2).
Using the results in this paper, we also inferred that the optimal cost of an
LQR problem depends on the maximal rank-minimizing solution of the corre-
sponding LQR LMI and the projection of the initial condition of the system
onto the subspace Ve only. The theory in this paper finally leads to a method
to design PD state-feedback controllers to solve singular LQR problem for
single-input systems (Algorithm 5.1).

Although this paper deals with singular LQR problems for single-input sys-
tems, the results presented in this paper will form the bedrock for solving
such problems for the multi-input case. The key idea of weakly unobservable
subspace and strongly reachable subspace used in this paper are valid for the
multi-input systems as well and hence it is a matter of extending the con-
cepts developed in this paper for the multi-input case. Since the results for the
single-input case itself provide great insights into the working of a single-input
singular LQR problem, we present the results for single-input systems only in
this paper. An extension of the results of this paper to the multi-input case
will be a matter of our forthcoming paper.

Present results in the literature, in particular the ones in [17], consider the case
of a singular LQR problem but are not sufficient to treat truly singular control
problems with impulses in the input or jumps/impulses in the state. This work
provides singular solutions to corresponding LQR problems based on the ideas
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introduced in [10], [20], [21] that used impulsive-smooth distributions as the
function-space for the states and inputs. Such a setting seems particularly
advantageous for differential-algebraic systems, since such systems inherently
admit impulsive states. Hence, the approach adapted in this paper to solve
singular LQR problems for state-space systems have the potential of being
generalized to differential-algebraic systems as well. This will be a matter of
our future research.
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1

Almost every single-input LQR optimal control problem admits a PD
feedback solution: An addendum

Chayan Bhawal and Debasattam Pal

Abstract

In this technical note we present an example to demonstrate the method to design PD controllers that solve singular LQR problems.

Consider a system with state-space dynamics

d

dt
x =

1 0 1
1 0 1
1 1 0

x+

0
1
0

u.
For every initial condition x0, find an input u that minimizes the functional∫ ∞

0

(
xTQx

)
dt, where Q :=

0 0 0
0 0 0
0 0 1

 .
Step1 (Computation of eigen-basis of (E,H) corresponding to Λ ⊂ σ(E,H) ⊂ C−):
The Hamiltonian pencil pair (E,H) for this problem is

E :=



1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0


and H :=



1 0 1 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 0 0 0
0 0 0 −1 −1 −1 0
0 0 0 0 0 −1 0
0 0 −1 −1 −1 0 0
0 0 0 0 1 0 0


.

It can be verified that det(sE − H) = 1 − s2. Hence, Λ = {−1}. The eigenvector of (E,H) corresponding to −1, is[
1 1 −2 2 0 0 0

]T
. Therefore, V1Λ =

[
1 1 −2

]T
, V2Λ =

[
2 0 0

]T
and V3Λ = 0. Here, n = 3 and s = 1.

Thus, f = n− s = 2. Therefore, we have

X1Λ =
[
V1Λ b Ab

]
=

 1 0 0
1 1 0
−2 0 1


Step2 (Computation of the controller matrice Fp and Fd):
We compute Fp and Fd using the following equations:

Fp :=
[
V3Λ g0 g1

]
X−1

1Λ , (1)

Fd :=
[
01,s 1 −g0

]
X−1

1Λ , (2)
Assigning g0 = 0 and defining g1 =: g in equation (1), we have

Fp =
[
0 0 g

]  1 0 0
1 1 0
−2 0 1

−1

=
[
0 0 g

]  1 0 0
−1 1 0

2 0 1

 =
[
2g 0 g

]
Similarly, from equation (2), we have

Fd =
[
0 1 0

]  1 0 0
1 1 0
−2 0 1

−1

=
[
−1 1 0

]
Thus,

I3 −BFd =

1 0 0
1 0 0
0 0 1

 , and A+BFp =

 1 0 1
1 + 2g 0 1 + g

1 1 0

 .
Note that det

(
s(I3 −BFd)− (A+BFp)

)
= −g(s+1). Thus, if we chose any g ∈ R\0 then det

(
s(I3 −BFd)− (A+BFp)

)
6=

0. Hence, for any value of g ∈ R \ 0, we have a PD-controller that solves the singular LQR problem. Note that there are
uncountable numbers of PD-controllers that solve this singular optimal control problem.

For initial condition x0 =
[

1
1

−2

]
β +

[
0
1
0

]
α0 +

[
0
0
1

]
α1, the optimal input for this problem is ū = −2e−tβ − α0δ − α1δ̇.


