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Abstract

In this paper, we provide a complete answer to the question of

characteristic cones for a general discrete autonomous nD system de-

scribed by partial difference equations with real constant coefficients.

A characteristic cone is a special subset (having the structure of a

cone) of the domain, here Zn, such that the knowledge of the trajec-

tories on this set uniquely determines them over the whole domain.

The study of characteristic sets is relevant in many system-theoretic

aspects. This importance of characteristic sets stems from the fact

that they help quantify the ‘information’ required to solve a system

of partial difference equations. In spite of its importance, the issue

of characteristic sets for multidimensional systems have not been ex-

plored in its full generality except for Valcher’s seminal work for the

special case of 2D systems in 2000. This apparent lack of progress

in the last fifteen years is perhaps due to inapplicability of a crucial

intermediate result by Valcher to cases with n > 2. We illustrate this

inapplicability of the above-mentioned result in Section 3 with the

help of an example. We then provide an answer to this open prob-

lem of characterizing characteristic cones for general n by proving a

necessary and sufficient condition for a cone to be a characteristic

cone for a given system of partial difference equations. In the second
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part of the paper we convert this necessary and sufficient condition

to another equivalent algebraic condition, which is more suited from

an algorithmic perspective. Using this result, we provide algorithms,

based on Gröbner bases theory, that are implementable using stan-

dard computer algebra packages for testing whether a given cone

is a characteristic cone for a given system of nD partial difference

equations.

1 Introduction

Research on multidimensional systems theory has been steadily progressing

in the past few decades benefiting from the interaction with modern alge-

braic and analytic geometry. A large number of highly diverse applications

such as, image and signal processing, seismic data processing, repetitive

processes, delay-differential systems, distributed systems etc. use the the-

ory developed for multidimensional systems. (See [1] for some case studies.)

In this paper, by nD systems we mean systems that are described by

linear partial difference equations with real constant coefficients. One of

the fundamental problems in nD systems theory is concerning their char-

acteristic sets. By a characteristic set we mean a subset of the domain

(here, Zn), with the defining property that, for every trajectory in the sys-

tem, the knowledge of its values on the characteristic set uniquely identifies

the trajectory over the whole domain. The question of characteristic sets

is irrelevant for systems having inputs/free variables. This is because free

variables can take arbitrary values over the entire domain Zn and therefore

no proper subset of Zn can be a characteristic set. Systems having no free

variables are called autonomous; these are the systems that admit proper

subsets of the domain as characteristic sets [2], [3]. In this paper, we fo-

cus on the question of finding characteristic cones (characteristic sets that

have the structure of a cone) for the above-mentioned type of nD systems,

i.e., autonomous systems described by simultaneous linear partial difference

equations with constant real coefficients. We provide a complete algebraic

characterization of characteristic cones for general autonomous nD systems,

with n > 2.

The necessity of studying characteristic sets, and their properties, arise

because of their applicability in studying a number of system-theoretic prop-
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erties such as stability [3], [4], Markovian-ness [5], finite dimensionality [3],

[2], time/space-relevance [6], [7], Lyapunov theory of nD systems [8], [9]

and many more. Characteristic sets also play a central role in the canonical

Cauchy problem [10]. For 1D discrete autonomous systems, it is known that

a characteristic set is always a finite collection of points (See [11]). How-

ever, for multidimensional systems with n > 2, characteristic sets are often

infinite. Moreover, for n > 2, characteristic sets may come in numerous

different shapes and sizes. For example, it was shown in [12] that every 2D

autonomous system admits a finite union of parallel lines as characteristic

sets.

As far as characteristic sets of nD systems are concerned, cones stand

out among various types of subsets of the domain. This special status

of cones arises from their significance in stability analysis of nD systems.

Indeed, the literature on stability of nD systems has been predominantly

concerned with stability with respect to cones [4], [3]. A possible reason

for this predominance is perhaps the natural ability of cones to provide

a dichotomy of the domain into ‘past’ and ‘future’ [4], [3]. A cone is a

collection of half-lines called rays, and stability with respect to a cone has

the natural meaning that every trajectory of the system must die down to

zero along every such ray as infinity is approached. However, in nD systems,

often such half-lines turn out to be free (see [13]). Meaning, the values that

an arbitrary trajectory takes on the half-line are freely assignable. Note

that the question of stability then becomes relevant only for those half-lines

that are not-free. Interestingly, the set of non-free half-lines often forms a

thin set [13, Theorem 28]. In this scenario, the question of conic stability

becomes irrelevant for most of the situations. However, a remedy to this

conundrum can be obtained in the following manner (see [3], [14]): stability

along a cone should be asked of those trajectories whose ‘initial conditions’

are well-behaved. In this sense, it was proposed in [3] that in order to

answer the question of stability with respect to a cone C the negative cone

−C must be a characteristic cone so that the values that a trajectory takes

on −C may serve as initial conditions. It is this point of view that we take

our inspiration from for this paper: given a cone in the domain and the

describing difference equations of an nD system, check whether the cone is

a characteristic set for the system or not. Note that, in this paper, we do

not delve into the question of conic stability at all; settling the issue of conic
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stability using the ideas and algorithms developed in this paper will be the

focus of our future work.

The problem of determining if a given cone is a characteristic cone for a

discrete nD system, with n = 2, was studied in meticulous detail by Valcher

in [3]. Valcher’s method of determining if a given cone is a characteristic

cone for a 2D system relies on the fact that every 2D autonomous system

can be decomposed into a finite dimensional subsystem and a square au-

tonomous subsystem [3, Proposition 4.1]. However, such a decomposition

does not always exist for n > 3 (see Example 2 in Section 3). Thus, Valcher’s

method becomes inapplicable for higher dimensional systems, with n > 3.

Interestingly, the question of characterizing characteristic cones for nD sys-

tems with n > 3 has remained open since Valcher’s seminal contribution in

the n = 2 case. Perhaps, the above-mentioned inapplicability of Valcher’s

crucial reduction step [3, Proposition 4.1] for the n > 3 case made it impos-

sible to have any straight-forward extension of Valcher’s methods to n > 3

case. This further could have caused the apparent lack of progress in the

study of characteristic sets for n > 3 case. In this paper, we provide a com-

plete solution to this problem that has remained open for the past fifteen

years.

A crucial observation that helps us in circumventing the problem as-

sociated with the above-mentioned decomposition ([3, Proposition 4.1]) (of

autonomous nD systems with n > 3) is that cones (under a mild assumption

of rationality) in higher dimensions have a rich algebraic structure: they are

affine semigroups (See [15, Chapter 7] for more details). We show in this

paper how this structure can be exploited to give a necessary and sufficient

algebraic condition for a given cone to be a characteristic set for a general

autonomous nD system (Theorem 4). We further provide an algorithm for

checking the same using Gröbner basis. We also delineate a crucial reduc-

tion process that converts the algebraic condition given by Theorem 4 to

an equivalent statement in terms of modules over polynomial rings so as to

ensure standard application of the Gröbner basis techniques.

The paper is organized as follows: Notation and preliminaries required

for this paper are stated in Section 2. Section 3 explains why extension of

Valcher’s result for n > 3 is not possible. The relation between polyhedral

cones, affine semigroups and the algebra generated by them is discussed

in Section 4. One of the main results, the algebraic characterization, is
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presented in Section 5. The second main result, the algorithm, is stated in

Section 6. We conclude the paper with some examples in Section 7.

2 Notation and Preliminaries

2.1 Notation

The notation used is standard. We use the symbols Z, R and C to denote,

respectively, the ring of integers, the field of real numbers and the field

of complex numbers. The set of n tuples of integers, real numbers and

complex numbers are denoted by Zn, Rn and Cn, respectively. The set

of non-negative real numbers is denoted by R>0 and the set of all non-

negative n-tuples of integers is denoted by Zn>0. We use R[ξ] to denote the

ring of polynomials in n variables ξ1, ξ2, . . . , ξn having real coefficients. For

Laurent polynomial rings in n variables with real coefficients R[ξ, ξ−1] =: A
is used. A monomial in A is of the form ξν = ξν11 . . . ξνnn where ν ∈ Zn.

We use the symbol W to denote the set of all scalar trajectories, that is,

W := {w : Zn → R}. We use σ and σ−1 to denote the n-tuples of shift

operators and inverse shift operators respectively, σ = (σ1, σ2, . . . , σn) and

σ−1 = (σ−1
1 , σ−1

2 , . . . , σ−1
n ). The action of the i-th shift operator, σi, on a

scalar trajectory w ∈ W is defined in the following manner:

(σiw) (k) = w(k1, k2, . . . , ki−1, ki + 1, ki+1, . . . , kn). (1)

The symbol • is used for denoting a quantity which is unspecified. For

example, R(ξ, ξ−1) ∈ A•×q means R is a matrix having entries from A with

q columns and an unspecified number of rows. For a set Γ, |Γ| denotes the

cardinality of Γ.

2.2 Discrete nD systems

A discrete nD system is described by a set of partial difference equations

having n independent variables. The difference equations are succinctly

written in terms of n shift operators σ1, σ2, . . . , σn. These shift operators

act on trajectories wi’s which are real valued multi-indexed sequences with

the n dimensional integer grid, Zn, as the indexing set (also called the

domain). In other words, for an integer n-tuple k = (k1, k2, . . . , kn) and a

trajectory wi ∈ W , we have wi(k1, k2, . . . , kn) ∈ R, that is, wi : Zn → R.
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The action of a Laurent monomial, ξν = ξν11 ξ
ν2
2 . . . ξνnn , on a scalar tra-

jectory wi ∈ W is defined in the following manner:

(σν)wi(k) = wi(k + ν) =
(
σk+ν

)
wi(0) = wi(k1 + ν1, . . . , kn + νn). (2)

A Laurent polynomial, f ∈ A, is a finite linear combination of Laurent

monomials; that is,

f(ξ, ξ−1) ∈ A ⇒ f =
∑
ν∈Γ

ανξ
ν (3)

where, Γ ⊆ Zn is finite and αν ∈ R. The action of a Laurent polynomial on

a scalar trajectory is defined as

f(σ,σ−1)wi :=
∑
ν∈Γ

ανσ
νwi. (4)

Thus f :W →W .

Using this definition, a row of Laurent polynomials

r(ξ, ξ−1) :=
[
r1(ξ, ξ−1) r2(ξ, ξ−1) . . . rq(ξ, ξ

−1)
]
∈ A1×q

can be made to act on a column of trajectories w := col(w1, w2, . . . , wq) ∈
Wq in the following manner:

r(σ,σ−1)w :=

q∑
i=1

ri(σ,σ
−1)wi. (5)

We call w ∈ Wq a vector-valued trajectory and view it as a column vector.

Thus a discrete nD system described by a system of partial difference

equations with real constant coefficients can be represented as

R(σ,σ−1)w = 0 (6)

where, R(ξ, ξ−1) ∈ A•×q. In this article, we always consider that a q-tuple

of polynomials in the shift operators act on the vector valued trajectory w

as defined in equation (5). It is important to note that the rows of R(ξ, ξ−1)

form a submodule of the free module A1×q. We elaborate more on this in

the following section.

2.3 Kernel representation

Given a discrete nD system described by a system of partial difference equa-

tions, the collection of all trajectories that satisfy the system of equations

(6) is known as the behavior of the system and is denoted by B. That is,

B :=
{
w ∈ Wq | R(σ,σ−1)w = 0

}
= ker R(σ,σ−1).
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This is known as a kernel representation of the behavior B and R(ξ, ξ−1)

is called a kernel representation matrix.

It is known that kernel representations are not unique. However, if two

distinct kernel representations have the same row-span over A then they

give rise to the same behavior. Indeed, let R(ξ, ξ−1) ∈ A•×q and R :=

rowspanAR(ξ, ξ−1), then the behavior B = ker R(σ,σ−1) is equivalently

given by

B(R) =
{
w ∈ Wq|f(σ,σ−1)w = 0 ∀ f(ξ, ξ−1) ∈ R

}
. (7)

The submodule R of the free module A1×q generated by the rows of a kernel

representation matrix R(ξ, ξ−1) is known as the equation module of the

behavior B. It was shown in [16] that submodules of A1×q and discrete nD

behaviors having q dependent variables are in one-to-one inclusion reversing

correspondence with each other.

A behavior B defined by a kernel representation, or, equivalently by

an equation module, is closed under addition and under multiplication by

scalars in R. Thus B has the structure of an R-vector space. Further, B is

also closed under multiplication by scalars from A, where scalar multiplica-

tion by an f ∈ A to a trajectory w ∈ B is defined as the component-wise ac-

tion f(σ,σ−1)w given by equation (4). For w ∈ B we have f(σ,σ−1)w ∈ B

for all f ∈ A. Thus B also has the structure of a module over A.

2.4 Quotient Module

We now elaborate on the algebraic notion of a quotient module which will

be of crucial importance in the sequel. Given an equation module R, the

quotient module M := A1×q/R is the set of all equivalence classes orig-

inating from the equivalence relation on A1×q defined as: two elements

f1(ξ, ξ−1),f2(ξ, ξ−1) ∈ A1×q are related if f1 − f2 ∈ R. For an element

f(ξ, ξ−1) ∈ A1×q, its equivalence class is denoted by f . This gives us the A-

module homomorphism A1×q �M, called the canonical surjection, where,

every element in A1×q is mapped to its equivalence class in M.

For an element r(ξ, ξ−1) ∈ A1×q let r = m ∈ M be the image of

r(ξ, ξ−1) under the canonical surjection. We call r(ξ, ξ−1) a lift of m. The

action of elements from the quotient module on trajectories is defined in
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the following manner: suppose m ∈M and w ∈ B,

m(w) :=
(
r(σ,σ−1)w

)
=

q∑
i=1

ri(σ,σ
−1)wi (8)

where, r(ξ, ξ−1) ∈ A1×q is a lift of m. It is important to note that m may

have several distinct lifts in A1×q , but all of them have the same action on

w ∈ B. This can be seen from the following argument: let r1, r2 ∈ A be two

distinct lifts of the same m ∈ M. It then follows from the definition of M
that r1− r2 ∈ R. However, since r(σ,σ−1)w = 0 for all r ∈ R and w ∈ B,

we get that (r1(σ,σ−1)− r2(σ,σ−1))w = r1(σ,σ−1)w− r2(σ,σ−1)w = 0.

Therefore, r1(σ,σ−1)w = r2(σ,σ−1)w. Thus, the definition of action of

m ∈M on B is independent of the choice made in getting the lift of m. In

other words, the action of M on B is well-defined. Note that M also has

the structure of an A-module and an R-vector space.

2.5 Autonomous systems

An nD system is called autonomous if it does not have any free variables.

Several equivalent conditions for nD autonomous systems can be found; in

[17] it was shown that 2D autonomous systems have a full column rank

kernel representation matrix. This is equivalent to the condition that 2D

autonomous systems have proper subsets of Z2 as characteristic cones as

shown in [3]. In this paper, we follow the definition of autonomy given in

[4]; this definition is equivalent to the above-mentioned ones [3], [17]. In

order to state this definition of autonomy, we need the following algebraic

objects associated with an nD behavior: characteristic ideal, characteristic

variety and annihilator ideal.

Let the behavior B of a discrete nD system be given by a kernel repre-

sentation B = ker (R(σ,σ−1)) with R(ξ, ξ−1) ∈ A•×q. The characteristic

ideal of B, denoted by I(B), is defined as the ideal of A generated by the

(q × q) minors of R(ξ, ξ−1). Associated with the characteristic ideal is the

characteristic variety which is defined as the set

V(B) := {ζ ∈ Cn \ {0} | f(ζ) = 0 for all f ∈ I(B)} .

If the number of rows in R(ξ, ξ−1) is less than the number of columns q,

then I(B) is defined to be the zero ideal and V(B) is all of Cn \ {0}.
An element m of a module M over a ring A is called a torsion element if
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there exists an element f ∈ A such that fm = 0 ∈ M. A module M is

called a torsion module if all its elements are torsion elements. Let M be

a torsion module over the Laurent polynomial ring A. The collection of all

polynomials f ∈ A, whose actions on all elements from M produce zero,

has the structure of an ideal; this ideal is called the annihilator ideal. That

is,

ann M :=
{
f(ξ, ξ−1) ∈ A f(ξ, ξ−1)m = 0 ∀ m ∈M

}
.

A discrete nD system is said to be autonomous if the characteristic ideal

I(B) is nonzero. Equivalently, a behavior B is autonomous if and only if

the quotient module M is a torsion module. This, in turn, is equivalent

to the annihilator ideal, ann M being non-zero. Further, an autonomous

behavior is said to be strongly autonomous if the quotient ring A/I(B) is

a finite dimensional vector space over R. In other words, B is strongly

autonomous if and only if its characteristic variety V(B) is a finite set [4].

2.6 Characteristic sets

We first define what we mean by restriction of a trajectory to a subset of

the domain. Given a trajectory w : Zn → Rq and a subset C ⊆ Zn, the

restriction of w to C, denoted by w|C, is defined as

w|C : C → Rq (9)

w|C(k) = w(k) ∀ k ∈ C.

For a discrete autonomous nD system with behavior B, a characteristic

set is a special subset of the domain (here Zn) that has the property that

every trajectory w ∈ B can be uniquely extended to the entire domain

with the knowledge of w restricted to this set. The formal definition of a

characteristic set is adopted from [3].

Definition 1. Given a behavior B, a subset C of Zn is said to be a charac-

teristic set for B if for every trajectory w in B, the restriction of w to the

set C, allows to uniquely determine the remaining portion of w, i.e., w|Zn\C

can be uniquely determined if w|C is known.

Throughout this paper, we consider proper cones in Zn as characteristic

sets and call them characteristic cones. Valcher gives a complete descrip-

tion of characteristic cones for autonomous 2D behaviors in [3]. She also
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proposes a method to check if a given cone is a characteristic cone for a 2D

autonomous behavior. However, Valcher’s method becomes inapplicable for

higher dimensional systems with n > 3. We elaborate on this in the next

section.

3 Why Valcher’s results do not extend to n >

3?

Valcher’s crucial observation was that every discrete 2D autonomous be-

havior can be decomposed as a sum of two special type of autonomous be-

haviors. These two special subclasses of autonomous behaviors are: finite

dimensional behaviors and square behaviors. A finite dimensional behav-

ior is nothing but a strongly autonomous behavior. On the other hand,

square autonomous behaviors are defined as kernels of nonsingular square

Laurent polynomial matrices. Valcher’s method of determining whether a

given cone is a characteristic cone for a 2D autonomous behavior, heavily

uses this decomposition.

More elaborately, given a 2D autonomous behavior B = ker R where,

R ∈ R[σ±1
1 , σ±1

2 ]g×q, it was shown in [3, Proposition 4.1] that B can be

decomposed as B = Bfd + Bsq, where Bfd is a finite dimensional behavior

and Bsq is a square behavior. This decomposition is done in the following

manner. A kernel representation matrix R ∈ R[σ±1
1 , σ±1

2 ]g×q for B can

always be factorized as R = R̃∆ where, R̃ ∈ R[σ±1
1 , σ±1

2 ]g×q is right-factor-

prime1 and ∆ ∈ R[σ±1
1 , σ±1

2 ]q×q is square and non-singular. It then follows

that by defining Bsq := ker ∆ there exists a right-factor-prime matrix Rfd

such that Bfd := ker Rfd is a finite dimensional behavior and B can be

written as B = Bfd + Bsq. The construction of Rfd can be found in the

proof of [3, Proposition 4.1]. While it is clear why ker ∆ is square, the fact

that ker Rfd is finite dimensional (strongly autonomous) follows from Rfd

being right-factor-prime [19].

Using this decomposition, it was shown in [3, Proposition 2.6] that a

proper cone2 is a characteristic cone for B if and only if it is a characteristic

1A matrix P (ξ, ξ−1) is called left-factor-prime if any decomposition P = EP1, where

E is square, implies E is unimodular. A matrix R(ξ, ξ−1) is said to be right-factor-prime

if RT (ξ, ξ−1) is left-factor-prime. See [18] for more details.
2A closed, pointed, solid, convex cone is called a proper cone; we elaborate more on
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cone for Bsq. It was further shown that a proper cone is a characteristic

set for the square behavior Bsq if and only if it is a characteristic set for

the scalar behavior Bδ, where Bδ := ker (det ∆). Thus the problem of

determining if a given proper cone is a characteristic cone for a 2D behavior

was reduced to checking if the cone is a characteristic cone for such a scalar

behavior, which is the kernel of a single polynomial. For a scalar behavior

then the verification of whether a proper cone is a characteristic cone was

done by a neat graphical method [3, Proposition 2.8].

Obviously, this analysis holds if the above-mentioned decomposition ex-

ists. Thus, in order to extend Valcher’s graphical method to nD systems,

with n > 3, an extension of the decomposition result becomes mandatory.

Unfortunately, the decomposition does not extend for n > 3 as we show in

Example 2 below.

Example 2. Consider the 3D discrete autonomous system B = ker R,

where R =

[
1 + σ1

1 + σ2

]
∈ R[σ±1

1 , σ±1
2 , σ±1

3 ]. Note that R is already right-factor-

prime. So, as per the above-mentioned decomposition of 2D behaviors, the

square part of B here is just {0}. In this scenario, for the decomposition to

work, the square part Bsq needs to be zero, which forces B to be equal to

Bfd. However, note that this is impossible, for B is not finite dimensional,

although R is right-factor-prime. (Indeed, B = ker R cannot be finite

dimensional because the characteristic variety is not a finite collection of

points.)

Thus extension of Valcher’s method for higher dimensional systems with

n > 3 is impossible. However, the question of characterizing characteristic

cones for nD systems with n > 3 still remains relevant and interesting.

Here, it is important to note that for 2D a proper cone has a relatively

simple structure: every proper cone in R2 is the collection of points that are

non-negative linear combination of two independent vectors in R2. However,

this is not the case for cones in higher dimensions. For example, in R3 a

cone can be given by the intersection of four half-spaces thus forming a cone

with a quadrilateral base, that is, 4 generating vectors. Hence a cone in Rn

can have a generating set whose cardinality is more than n. Therefore,

the first step in solving the problem of characteristic cones would be to

this in Section 4.
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understand the structure of cones in higher dimensions. Interestingly, cones

in Zn have a rich algebraic structure – that of an affine semigroup [15]. In

the following section we discuss in short this structure of polyhedral cones

as affine semigroups. For details readers are referred to [15]. This lays the

groundwork on which the algebraic analysis of characteristic cones would

be based in the sequel.

4 Polyhedral cones, affine semigroups and

semigroup-algebras

A set C ⊆ Rn is called a cone if λC ⊆ C for all λ ∈ R>0. If there exist

vectors c1, . . . , cd ∈ Rn such that

C = {λ1c1 + · · ·+ λdcd λ1, . . . , λd ∈ R>0} ,

then the cone C is said to be finitely generated by c1, . . . , cd and is called a

polyhedral cone. Further, C is called a rational cone if the generating vectors

c1, . . . , cd are vectors of rational numbers.

A cone C is said to be convex if the line segment joining any two points

in the cone also belongs to the cone. A convex cone is solid if it contains an

open ball of Rn and it is pointed if C ∩ −C = {0}. A closed, pointed, solid,

convex cone is a proper cone.

A semigroup is a subset of a group which is closed under the group

operation and follows associativity. A semigroup is an affine semigroup if it

is isomorphic to a subsemigroup of Zd for some d. According to Gordan’s

Lemma ([15, Theorem 7.16]), for every rational proper cone C ⊆ Rn, the

intersection C∩Zn is an affine sub-semigroup of the Abelian group Zn (under

addition as the group operation). It further follows from [15, Proposition

7.15, Theorem 7.16] that such a cone C ∩ Zn admits a representation

C ∩ Zn =
{
λ1c1 + · · ·+ λrcr λ1, . . . , λr ∈ Z>0

}
, (10)

where c1, . . . , cr ∈ Zn. In this paper, by a cone in Zn we mean the inter-

section of C ⊆ Rn with Zn, where, C is a proper rational polyhedral cone.

From now on, we do a slight abuse of notation by using C to mean a cone

in Zn which, as mentioned above, actually is the intersection of a rational

proper cone in Rn with Zn.
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Let C ⊆ Zn be a cone (that is, the intersection of a proper rational

cone in Rn with Zn). As mentioned above, C has the structure of an affine

sub-semigroup of Zn. Therefore, C is closed under addition, and C admits

a representation given by equation (10). The semigroup algebra, denoted

by R[C], is the R-vector space of finite linear combinations of monomials

having their exponent tuples in C. That is,

R[C] :=

{∑
ν∈S

ανξ
ν S ⊆ C, |S| <∞, αν ∈ R

}
. (11)

Note that, R[C] is closed under addition. Further, C being closed under

addition (because of the semigroup structure) implies R[C] is closed under

multiplication. Thus R[C] is a subring (or, equivalently, a subalgebra over

R) of A.

Next we consider the set R[C]1×q. Note that R[C]1×q is the free module

(of rank q) over the ring R[C]. Since R[C] is a subalgebra of A, it follows

that R[C]1×q sits inside A1×q, that is, R[C]1×q ↪→ A1×q, where the inclusion

map can be viewed as a morphism of R-algebra modules via the R-algebra

homomorphism R[C] ↪→ A. In particular, the inclusion map R[C]1×q ↪→
A1×q is R-linear.

5 Algebraic characterization of characteris-

tic cones

Given a cone C in Zn, let R[C] be the algebra defined by the cone (see equa-

tion (11) above). Recall that the equation module R is a submodule of the

free module A1×q. We also have the free R[C]-module R[C]1×q constructed

by taking q copies of R[C]. Let us define, Ψ̃, as

Ψ̃ : R[C]1×q ↪→ A1×q. (12)

As mentioned earlier, Ψ̃ is a morphism of R-algebra modules via the R-

algebra homomorphism R[C] ↪→ A. Clearly, Ψ̃−1(R) = R ∩ R[C]1×q is a

submodule of R[C]1×q. We denote by Q the quotient module R[C]1×q

R∩R[C]1×q , that

is,

Q :=
R[C]1×q

R∩ R[C]1×q
.

Note thatQ also has the structure of a (possibly infinite dimensional) vector

space over R. We define the homomorphism of R-algebra modules (via the

13



R-algebra homomorphism R[C] ↪→ A)

Ψ : Q →M (13)

in the following way: for p ∈ Q, let p̂ be a lift of p in R[C]1×q. By the

natural inclusion map Ψ̃, p̂ ∈ A1×q. Let p̂ be the image of p̂ under the

canonical surjection A1×q �M. Then Ψ is defined as

Ψ : p 7→ p̂. (14)

To show Ψ is well defined, suppose p has two distinct lifts p̂1 and p̂2

in R[C]1×q satisfying p̂1 − p̂2 ∈ R ∩ R[C]1×q. By the natural inclusion Ψ̃,

p̂1 6= p̂2 in A1×q. However, under the surjection A1×q � M, p̂1 = p̂2

because p̂1 and p̂2 are equivalent modulo R. Thus Ψ is well defined. The

definition of Ψ is illustrated by the commutative diagram (Figure 1) below.

R[C]1×q A1×q

Q M

Ψ̃

Ψ

Figure 1: Commutative diagram showing Ψ.

Recall that Ψ is a morphism of R-algebra modules via an R-algebra

homomorphism. Therefore, Ψ is R-linear. The following result follows im-

mediately from the definitions.

Lemma 3. The homomorphism of R-algebra modules Ψ : Q →M is injec-

tive.

Proof: Let p1,p2 ∈ Q be such that Ψ(p1) = Ψ(p2). It follows from the

definition of Ψ that p̂1 = p̂2, where p̂1, p̂2 ∈ R[C]1×q are lifts of p1,p2,

respectively. However, p̂1 = p̂2 implies that p̂1 − p̂2 ∈ R. Also, p̂1 − p̂2 ∈
R[C]1×q. It then follows that p̂1− p̂2 ∈ R∩R[C]1×q. Hence p1−p2 = 0 ∈ Q.

�

We now state one of the main results of this paper, Theorem 4. While

the map Ψ is always injective – as shown in Lemma 3 above – Theorem 4

shows that in order for a cone C to be a characteristic cone, it is necessary

and sufficient that the R-algebra homomorphism Ψ be surjective as well.

14



Theorem 4. Let B be an nD discrete autonomous behavior with equa-

tion module R ⊆ A1×q. Then a cone (or, equivalently, an affine semi-

group) C ⊆ Zn is a characteristic cone for the behavior B if and only if

the homomorphism of R-algebra modules (via the R-algebra homomorphism

R[C] ↪→ A) Ψ : Q →M, as defined in equation (14), is surjective.

The proof of Theorem 4 requires some more machinery which is devel-

oped in the following subsections.

5.1 Duality of behaviors and A-modules

Suppose B is a behavior with equation module R. Recall that the quotient

module M has the structure of an R-vector space and an A-module. Also

note that the solution spaceWq has the structure of anA-module. The well-

known Malgrange’s Theorem [16] states that the set ofA-module morphisms

from M to Wq is isomorphic to the behavior B as an A-module, that is,

B ∼= HomA(M,Wq).

We define, M∗ := HomR(M,R), the algebraic dual of M as a vector

space over R. In other words, M∗ is the set of all R-linear functionals on

M. The following result, Proposition 5, is easy to prove.

Proposition 5. M∗ has the structure of an A-module, where multiplication

by scalars from A is defined as follows: for ϕ ∈M∗,

(fϕ)(m) := ϕ(fm) for all f ∈ A.

We prove the following result – a variant of Malgrange’s Theorem – that

the behavior B and M∗, the algebraic dual of M, are also isomorphic as

A-modules. This result is not new; it can be found in various earlier works,

see for example [16]. However, we give a proof of this result for the sake of

completeness and easy referencing in the sequel.

Proposition 6. Let B be a discrete autonomous nD behavior with equation

module R ⊆ A1×q. Let M be the quotient module A1×q/R and M∗ its

algebraic dual. Recall the definition of action of M on B as defined in

equation (8). Define the A-module morphism Γ : B→M∗ in the following

manner: for w ∈ B and m ∈M,

(Γ(w)) (m) := (m(w))(0).

Then Γ is an isomorphism of A-modules.

15



Proof: First note that Γ is an A-module homomorphism. That is, for

w1, w2 ∈ B, m ∈M and r(ξ, ξ−1) ∈ A, we have

(Γ(w1 + w2)) (m) = (m(w1 + w2)) (0)

= (m(w1)) (0) + (m(w2)) (0)

= Γ(w1)(m) + Γ(w2)(m),

and, (
Γ
(
r(σ,σ−1)w1

))
(m) =

(
m
(
r(σ,σ−1)w1

))
(0)

= r(σ,σ−1) (m(w1)) (0)

= r(σ,σ−1) (Γ(w1)) (m)

To show Γ is an isomorphism we need to show that Γ is injective and

surjective.

(Injectivity) Suppose, for a w ∈ B we have Γ(w) = 0 ∈ M∗, that is

(Γ(w)) (m) = 0 for all m ∈ M. We want to show that this means w ≡ 0,

that is, wi(k) = 0 for all i = 1, . . . q and for all k ∈ Zn. Let i ∈ {1, 2, . . . , q}
and k ∈ Zn both be arbitrary. Then for any w ∈ B, we have

wi(k) =
([

0 · · · 0 σk 0 · · · 0
]
w
)

(0)

=

([
0 · · · 0 σk 0 · · · 0

]
w

)
(0),

where σk appears at the ith position. Using the definition of Γ, and assuming

that Γ(w) = 0 ∈M∗, we get

wi(k) = (Γ(w))

([
0 · · · 0 σk 0 · · · 0

])
= 0.

Since this is true for any arbitrary i ∈ {1, 2, . . . , q} and k ∈ Zn, we have

w ≡ 0 thus proving Γ is injective.

(Surjectivity) Suppose ϕ ∈M∗, we want to show that there exists w ∈ B

such that Γ(w) = ϕ on M. We do this by constructing such a w. For

k ∈ Zn and i ∈ {1, 2, . . . , q}, define

wi(k) := ϕ

([
0 · · · 0 σk 0 · · · 0

])
= ϕ

(
σkeTi

)
where ei is the standard basis column vector in Rq. Using this definition,(

σkw
)

(0) = w(k) = w1(k)e1 + · · ·+ wq(k)eq

= ϕ
(
σkeT1

)
e1 + · · ·+ ϕ

(
σkeTq

)
eq.
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We first claim that w ∈ B. Note that w ∈ Wq. Let f(ξ, ξ−1) ∈ A be an

arbitrary Laurent polynomial given by

f(ξ, ξ−1) =
∑
ν∈S

ανξ
ν ,

where S ⊆ Zn is finite and αν ∈ R. It then follows that, for the f ∈ A
defined above, we must have(

f(σ,σ−1)wi
)

(0) =
∑
ν∈S

αν ((σνwi) (0))

=
∑
ν∈S

αν

(
ϕ
(
σνeTi

))
(from the definition of w)

= ϕ

(∑
ν∈S

ανσνeTi

)
(since ϕ is R-linear)

= ϕ
(
f(σ,σ−1)eTi

)
. (15)

Now, suppose r(ξ, ξ−1) ∈ A1×q, then

r(ξ, ξ−1) =
[
r1(ξ, ξ−1) r2(ξ, ξ−1) . . . rq(ξ, ξ

−1)
]
.

The action of r(ξ, ξ−1) on a trajectory w ∈ Wq is given by

(
r(σ,σ−1)w

)
(0) =

q∑
i=1

(
ri(σ,σ

−1)wi
)

(0).

Using equation (15) we have

(
r(σ,σ−1)w

)
(0) =

q∑
i=1

ϕ
(
ri(σ,σ−1)eTi

)
= ϕ

(
q∑
i=1

ri(σ,σ−1)eTi

)
= ϕ

(
r(σ,σ−1)

)
. (16)

Now r ∈ R ⊆ A1×q implies that r(ξ, ξ−1) = 0. Thus, for all r ∈ R we have(
r(σ,σ−1)w

)
(0) = ϕ

(
r(σ,σ−1)

)
= ϕ(0) = 0

since ϕ is R-linear. Given r ∈ R, observe that ξkr ∈ R for all k ∈ Zn.

Therefore, it follows that(
r(σ,σ−1)w

)
(k) =

(
σkr(σ,σ−1)w

)
(0) = ϕ

(
r(σ,σ−1)

)
= 0.

Thus, for all r ∈ R, we have r(σ,σ−1)w ≡ 0, which means w ∈ B.
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Next, we claim that for this w we must have Γ(w) = ϕ on M. Let

m ∈ M be arbitrary and suppose r ∈ A1×q is a lift of m. Then from the

definition of Γ we have

(Γ(w)) (m) = (m(w)) (0).

However, by equation (8), we have (m(w)) (0) = (r(σ,σ−1)w) (0). It fol-

lows from equation (16) that (r(σ,σ−1)w) (0) = ϕ
(
r(σ,σ−1)

)
= ϕ(m).

Since m ∈M was chosen arbitrarily, we have Γ(w) = ϕ onM. This proves

that Γ is surjective. �

Proposition 6 provides the desired duality between behaviors and the

algebraic dual of the quotient module. This duality enables us to devise

an algorithm for obtaining trajectories in a behavior, given the equation

module R. We elaborate on this algorithm in Lemma 7 below which will be

crucial in proving the main result Theorem 4. Similar methods have been

presented in various earlier works; see for example, [16].

Lemma 7. Let R ⊆ A1×q be an equation module with behavior B. Further,

let E = {m1,m2,m3, . . .} ⊆ M be a (Hamel) basis3 of M as a vector space

over R. Let ϕ ∈M∗ be given. Define wi : Zn → R in the following manner:

for k ∈ Zn, suppose σkeTi =
∑

j βjmj, then define

wi(k) :=
∑
j

βjϕ(mj). (17)

Since E is a basis of M, the above-mentioned sums are finite. Define w ∈
Wq as w := col(w1, w2, . . . , wq), each wi is as defined in equation (17).

Then w thus defined is a trajectory in B.

Proof: First we note the following fact, which follows from R-linearity of

ϕ: suppose m ∈ M can be written in the Hamel basis E as m =
∑

j αjmj,

3A Hamel basis of a possibly infinite dimensional vector space V over a field K is a

subset E of V that satisfies:

1. elements in E are linearly independent over K, that is, no finite non-zero linear

combination of elements in E equals zero, and

2. every element of V can be written as a finite linear combination of elements from

E .

See [20, Section 2]. Note also that M admits a countable Hamel basis. This justifies

writing the basis as a list.
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where all but finitely many αjs are zero, then we must have

ϕ(m) =
∑
j

αjϕ(mj). (18)

In particular, combining equations (17) and (18) we get that

wi(k) = ϕ
(
σkeTi

)
. (19)

Now suppose that r ∈ R. Note that r admits an expansion of the following

form:

r(ξ, ξ−1) =

q∑
i=1

∑
k∈Zn

αi,kξ
keTi ,

where all but finitely many αi,ks are zero. Making this r(σ,σ−1) act on

w = col(w1, w2, . . . , wq) ∈ Wq, as defined in the statement of the lemma,

we get that

(
r(σ,σ−1)w

)
(0) =

q∑
i=1

∑
k∈Zn

(
αi,kσ

keTi w
)

(0)

=

q∑
i=1

∑
k∈Zn

αi,kwi(k) =

q∑
i=1

∑
k∈Zn

αi,kϕ
(
σkeTi

)
,

where the last equality follows from equation (19). Applying the R-linearity

property of the map ϕ we get

(
r(σ,σ−1)w

)
(0) = ϕ

(
q∑
i=1

∑
k∈Zn

αi,kσkeTi

)

= ϕ

(
q∑
i=1

∑
k∈Zn

αi,kσkeTi

)
= ϕ

(
r(σ,σ−1)

)
= 0,

where the last equality comes from noting that r ∈ R implies r(σ,σ−1) =

0 ∈ M, and linearity of ϕ forces ϕ(0) = 0. Since r ∈ R was chosen

arbitrarily, we come to the conclusion that (r(σ,σ−1)w) (0) = 0 for all

r ∈ R. Therefore, w ∈ B. �

Remark 8. It is a noteworthy fact that equation (19) implies that Γ(w) =

ϕ, where Γ is as defined in Proposition 6. This follows from the ‘surjec-

tivity’ part of the proof of Proposition 6. Saying alternatively, w = Γ−1.

Since Γ is an isomorphism between B and M∗, Lemma 7 can be used to

provide all trajectories in B by varying ϕ over M∗. Thus Lemma 7 gives a

parametrization of B by ϕ ∈M∗.
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5.2 Proof of Theorem 4

With Proposition 6 and Lemma 7 in place, we are now in a position to prove

one of our main results, Theorem 4.

Proof of Theorem 4: (If) Suppose Ψ is surjective, we have to show that

C is a characteristic cone for B. It is enough to show that for all w ∈ B we

have, w|C = 0 implies w ≡ 0. That is, for w ∈ B,

w(k) = 0 for all k ∈ C ⇒ w(k) = 0 for all k ∈ Zn.

In order to show this let w ∈ B be such that w|C = 0, and let k ∈ Zn be

arbitrary. Now, since Ψ is surjective, it follows from the definition of Ψ that

for all i ∈ {1, 2, . . . , q} there exists fi ∈ R[C]1×q such that

ξkeTi − fi ∈ R.

It then follows that
(
σkeTi − fi(σ,σ−1)

)
(w) ≡ 0. Therefore,

wi(k) =
(
σkwi

)
(0) =

(
fi(σ,σ

−1)w
)

(0). (20)

Now, w|C = 0 implies that for all fi ∈ R[C]1×q we must have (fi(σ,σ
−1)w) (0) =

0. Hence from equation (20)

wi(k) =
(
σkwi

)
(0) = (fi(σ,σ

−1)w)(0) = 0.

Since k ∈ Zn was arbitrary, it follows that w ≡ 0.

(Only if) We want to show that if Ψ is not surjective then C is not a

characteristic cone for B. Recall that Q denotes the R[C]-module R[C]1×q

R∩R[C]1×q .

Let E = {ε1, ε2, . . . } ⊆ Q be a (Hamel) basis of Q as a vector space over R.

Define

Ẽ := {ε̃1, ε̃2, . . . } ,

where Ẽ = Ψ(E). That is, Ẽ = {Ψ(ε1),Ψ(ε2), . . . }. Since Ψ is injective (see

Lemma 3), Ẽ is a linearly independent set in M. It then follows that M
admits a (Hamel) basis E ′ such that Ẽ ⊆ E ′ (see [20, Corollary 2.2]). Note

that we must have Ẽ ( E ′ because we have assumed that Ψ is not surjective.

Recall the definition of the map under consideration Ψ : Q → M (see

equation (14)). It follows that we have for all i ∈ {1, 2, . . . , q}

Ψ(εi) = ε̂i,
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where ε̂i ∈ R[C]1×q is a lift of εi. Due to this, we get that for all k ∈ C and

i ∈ {1, 2, . . . , q} we must have

ξkeTi ∈ span Ẽ . (21)

Furthermore, Ψ being not surjective also implies that there exists k∗ ∈
Zn \ C and j ∈ {1, 2, . . . , q} such that

ξk∗eTj 6∈ span Ẽ .

In other words, there exists c ∈ E ′ \ Ẽ such that

ξk∗eTj = αc+
∑
mi∈E ′

βimi, (22)

where the sum is finite and α 6= 0.

Now, we shall define a ϕ ∈ M∗ in the following manner. Since ϕ is R-

linear and E ′ is a basis ofM as a vector space over R, in order to define ϕ,

it is enough to define its action on the elements of E ′. Moreover, this action

of ϕ on the elements of E ′ can be defined independently because elements

in E ′ are linearly independent. Therefore, we can define ϕ ∈M∗ to be such

that
ϕ(c) = 1

ϕ|E ′\{c} = 0.

Then we construct a trajectory w : Zn → Rq,

w(k) = ϕ(σkeT1 )e1 + ϕ(σkeT2 )e2 + · · ·+ ϕ(σkeTq )eq (23)

following equation (19) in Lemma 7. By Lemma 7, this w ∈ B. Now, for

all k ∈ C, σkeTi ∈ span Ẽ . Therefore, from the construction of ϕ it follows

that

w(k) = 0 for all k ∈ C.

In other words, w|C = 0. However, w 6≡ 0, because wj(k
∗) = α 6= 0. This

shows that C cannot be a characteristic set for B. �

6 Algorithm to verify whether a cone is a

characteristic cone

In the last section (Section 5) we have given an algebraic characterization

for a given cone to be a characteristic cone for a discrete autonomous nD
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behavior in terms of a homomorphism between two R-algebra modules. In

fact, a given cone is a characteristic cone if and only if the homomorphism is

surjective. Checking surjectivity of module morphisms is a standard prob-

lem in computational commutative algebra and the theory of Gröbner bases

is one of the approaches used for solving this problem. In this section we

reduce the condition of Theorem 4 to another equivalent algebraic condition

which is more suitable for checking using Gröbner bases techniques.

In the first part of this section we briefly state some preliminary results

on Gröbner bases theory. Details can be found in textbooks like [21], [22].

Subsection 6.2 discusses various reductions required to transform Theorem

4 to another equivalent condition given by Proposition 13. Using this propo-

sition and Lemma 14 we state Theorem 15 which is an equivalent condition

based on Gröbner basis to check when a given cone is a characteristic cone

for a behavior B. We finally provide an algorithm for doing this test.

6.1 Gröbner basis preliminaries

Let R[ξ] be the polynomial ring in n variables. Ordering of monomials play

an important role in multivariable polynomial rings. Such an ordering in

R[ξ], equivalently on Zn>0, is called a term ordering. We use the symbol �
to denote monomial term ordering. By a term ordering we mean a total

ordering on Zn>0, such that, if ν1,ν2,β ∈ Zn>0 and ν1 � ν2, then ν1 + β �
ν2 + β. Also � is a well-ordering on Zn>0. (See [21, Chapter 2, Section

2] for more details). Some common monomial orderings are lexicographic

ordering, graded reverse lexicographic ordering etc. (See [21, Chapter 2,

Section 2] for more details). Under a given term ordering �, the terms of a

polynomial are ordered uniquely.

Let f =
∑
ανξ

ν be a polynomial in R[ξ] and � be a term order. The

multidegree of f is defined as

md(f) := max(ν ∈ Zn>0|αν 6= 0).

The leading term of f is the term corresponding to the multidegree of f

with respect to a given monomial order, that is,

LT(f) := αmd(f)ξ
md(f). (24)

The idea of term ordering can be generalized to polynomial modules (see

[22], [23]). To define a module term ordering let � be a term ordering on
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Zn>0 and let ξν
′

and ξν
′′

be monomials in R[ξ]. Then for ξν
′
ei ∈ R[ξ]q and

ξν
′′
ej ∈ R[ξ]q we have,

ξν
′
ei �TOP ξ

ν′′ej

⇐⇒
(
ξν
′ � ξν′′

)
or (ξν

′
= ξν

′′
and i > j).

Such an ordering is called “term over position” (TOP) ordering. Another

term ordering is the “position over term” (POT) ordering. We consider

TOP module ordering here. Once the term ordering is fixed, the leading

term of an element f ∈ R[ξ]q can be defined in the following manner (See

[22, Chapter 3, Section 5]). For a non-zero f ∈ R[ξ]q,

f = f1e1 + f2e2 + · · ·+ fqeq

=

(∑
ν∈S1

ανξ
ν

)
e1 +

(∑
ν∈S2

ανξ
ν

)
e2 + · · ·+

∑
ν∈Sq

ανξ
ν

 eq
where, Si ⊆ Zn is finite and αν ∈ R. Since Si’s are finite, using the TOP

term ordering we can write

f = α1X1 + α2X2 + · · ·+ αrXr

where, Xi := ξνej, j ∈ {0, 1, . . . , q} are monomial tuples such that X1 �
X2 � · · · � Xr. Now, the leading monomial of f is X1 and the leading

term of f is α1X1.

For a submodule D ⊆ R[ξ]q, the leading term module of D is defined as

〈LT(D)〉 = 〈LT(d) d ∈ D〉 ⊆ R[ξ]q.

A finite subset G = {g1, . . . , gt} ⊆ D with gi 6= 0 is said to be a Gröbner

basis of D if the module generated by the leading terms of G and the module

generated by the leading terms of elements in D are equal. That is,

〈LT(G)〉 = 〈LT(D)〉.

We state some important properties of Gröbner bases, without proof,

which are used later in this paper. Proofs can be found in any standard

textbook on Gröbner bases, for instance, [22].

Proposition 9. [22, Chapter 3, Section 5, Theorem 14] Let G = {g1, . . . , gt}
be a Gröbner basis for a submodule D ⊆ R[ξ]q and let f ∈ R[ξ]q. Then
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1. There exists h1, . . . , ht ∈ R[ξ] and a unique remainder r ∈ R[ξ]q such

that f = h1g1 + · · ·+ htgt + r.

2. Let f
G

denote the remainder obtained after dividing4 f by elements

in G. Then, f ∈ D if and only if f
G

= 0.

Eliminating variables from a system of equations will be of crucial im-

portance in the sequel. For this we next state the elimination theorem [22,

Chapter 3, Section 6, Theorem 6].

Proposition 10. Consider a module D ⊆ R[ξ]q. Let � be an elimination

term order in R[ξ] with ξ1 � · · · � ξn. Let G be a Gröbner basis for D

with respect to TOP module ordering �TOP on R[ξ]q. Then Gr := G ∩
R[ξk, ξk+1, . . . , ξn]q is a Gröbner basis for D ∩ R[ξk, ξk+1, . . . , ξn]q.

The theory of Gröbner bases is well suited for polynomial rings in several

indeterminates. However, they are not suited for Laurent polynomial rings

[10] [24]. To apply Gröbner bases results for Laurent polynomial rings in n

variables we define the 2n variable polynomial ring R[ξ,η] and the R-algebra

map as

π : R[ξ,η] � A (25)

ξi 7→ ξi

ηi 7→ ξ−1
i .

It follows from First Isomorphism Theorem [25] that, A ∼= R[ξ,η]/ker π,

where, ker π is the ideal of relations between variables ξ and η given by

〈ξ1η1 − 1, . . . , ξnηn − 1〉.
Remark: Another way to apply Gröbner bases results to Laurent poly-

nomial rings is to introduce one additional variable and form the (n + 1)

variable polynomial ring and define a similar R-algebra homomorphism from

this new ring to A. We, however, do not follow this approach, in spite of

its advantages like, being computationally more efficient. This is mainly

because, here, we do not intend to delve into computational aspects but

rather provide algorithms that can be implemented. Discussions pertaining

to computational issues of the algorithms presented here will be dealt with

in future works.

4It is important to note that division here refers to division in R[ξ]q. An algorithm

for this can be found in [22, Algorithm 3.5.1]
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Consider the 2n variable polynomial ring R[ξ,η] and the set R[ξ,η]1×q.

Now, R[ξ,η]1×q is the free module of rank q over the ring R[ξ,η]. Also

π : R[ξ,η] � A is a surjection given in equation (25). We construct the

homomorphism of R-algebra modules induced by the R-algebra homomor-

phism π in the following manner.

Π : R[ξ,η]1×q � A1×q (26)

ξie
T
j 7→ ξie

T
j ∀i = 1, . . . , n, ∀j = 1, . . . , q,

ηie
T
j 7→ ξ−1

i e
T
j ∀i = 1, . . . , n, ∀j = 1, . . . , q.

The kernel of Π is a submodule of R[ξ,η]1×q and is given by the rowspan

of the following matrix,

P = diag



ξ1η1 − 1

...

ξnηn − 1

 ,

ξ1η1 − 1

...

ξnηn − 1

 , . . . ,

ξ1η1 − 1

...

ξnηn − 1


︸ ︷︷ ︸

q entries


.

In other words,

ker Π = rowspanR[ξ,η]P.

6.2 Cones and semigroup rings

We now define the algebra of the cone in terms of a ring homomorphism. Re-

call that a cone C is an affine sub-semigroup of Zn generated by {c1, . . . , cr} ⊆
Zn. Therefore, any element c ∈ C can be written as a non-negative linear

combination of elements in C. That is, c = α1c1 + α2c2 + · · · + αrcr,

where αi ∈ Z>0. Also the generators c1, . . . , cr are associated to monomials

ξc1 , . . . , ξcr respectively. Thus, the monomial corresponding to c, that is,

ξc ∈ R[C] can be written as

ξc = ξα1c1+α2c2+···+αrcr = ξα1c1ξα2c2 . . . ξαrcr

= (ξc1)α1(ξc2)α2 . . . (ξcr)αr . (27)

Since every element in R[C] is a finite R-linear combination of monomials

of the form ξc, where c ∈ C, it follows from equation (27) above that every

element in R[C] is a polynomial in ξc1 , . . . , ξcr . In other words, R[C] is

generated by the monomials ξc1 , . . . , ξcr as an R-algebra. That is R[C] =
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R[ξc1 , . . . , ξcr ]. Therefore, for every element f(ξ, ξ−1) ∈ R[C] there exists

an r-variable polynomial z such that f can be written as

f(ξ, ξ−1) = z(ξc)

where, z(ξc) ∈ R[ξc1 , . . . , ξcr ]. This is the content of Lemma 11 below. We

follow this convention frequently henceforth. Since there are r generators

of the cone we define the r-variable polynomial ring R[δ] and the R-algebra

map

Φ : R[δ] −→ A (28)

δ1 7→ ξc1 ,

δ2 7→ ξc2 ,
...

δr 7→ ξcr .

Lemma 11. Let C ⊆ Zn be a cone and R[C] be the algebra generated by the

cone as defined in equation (11). Then R[C] = im Φ, where, Φ : R[δ]→ A
is as defined in equation (28).

Proof: To show im Φ ⊆ R[C], let f ∈ im Φ. Then there exists R[δ] 3 t =∑p
i=1 ανiδ

νi , where, νi ∈ Zr>0 and ανi ∈ R, such that

f = Φ(t) = Φ

(
p∑
i=1

ανiδ
νi

)

=

p∑
i=1

ανiΦ (δνi)

=

p∑
i=1

ανiξ
∑r

j=1 νijcj .

Since ξcj are monomials in C and νij ∈ Z>0,
∑r

j=1 νijcj ∈ C. Thus f ∈ R[C].
Conversely, for an element s ∈ R[C], s =

∑q
j=1 ανjξ

νj where νj’s are

indices in C and ανj ∈ R. Therefore, each νj can be expressed as a linear

combination of ci’s with coefficients from Z>0. That is, νj =
∑r

i=1 γijci,

with γij’s ∈ Z>0. Thus

s =

q∑
j=1

ανjξ
∑r

i=1 γijci =

q∑
j=1

ανj

(
r∏
i=1

ξciγij

)
.

Hence s = Φ(f) where,

f(δ) =

q∑
j=1

ανj

(
r∏
i=1

δi
γij

)
∈ R[δ].

26



Therefore, R[C] = im Φ. �

From Lemma 11 and standard results from commutative algebra (See

[25]) it follows,

R[C] = im Φ ∼=
R[δ]

ker Φ
.

For the vector case, consider the free module R[δ]1×q over R[δ]. We

define the R-linear map Φ? which is a homomorphism of R-algebra modules

(via the R-algebra homomorphism Φ : R[δ] → A). Thus, Φ? is defined for

all j = 1, 2, . . . , n, as

Φ? : R[δ]1×q −→ A1×q (29)

δ1e
T
j 7→ ξc1eTj ,

δ2e
T
j 7→ ξc2eTj ,

...

δre
T
j 7→ ξcreTj .

The following Lemma is a vector version of Lemma 11 and the proof follows

using similar arguments as in the scalar case.

Lemma 12. Consider the free module R[C]1×q of rank q over R[C]. Let Φ? be

the homomorphism of R-algebra modules via the R-algebra homomorphism

Φ as defined in equation (29). Then,

R[C]1×q = im Φ? ∼=
R[δ]1×q

ker Φ?
,

where, the isomorphism is between modules over R-algebras via the R-algebra

map Φ : R[δ]→ A.

Therefore, for an element f(ξ, ξ−1) ∈ R[C]1×q there exists r-variable

polynomials zi’s in R[ξc1 , . . . , ξcr ] such that, for i ∈ {1, 2, . . . , q},

f(ξ, ξ−1) =
[
z1(ξc) z2(ξc) . . . zq(ξ

c)
]
. (30)

Recall that the generators of the cone c1, c2, . . . , cr were in Zn. Let

ci+ ∈ Zn>0 denote the n-tuple of non-negative integers that contains the

non-negative components of ci with the negative components replaced by

zero. Similarly, ci− ∈ Zn>0 represents the n-tuple of non-negative integers

that contains the negative of the negative components of ci with the positive

components replaced by zero. That is, every ci ∈ Zn can be written as

ci = ci+ − ci−,
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where ci+, ci− ∈ Zn>0. Now, under the map π as defined in equation

(25) every monomial ξci ∈ R[ξ, ξ−1] has a preimage in R[ξ,η]. Define

mi(ξ,η) := π−1(ξci). Then the monomial mi(ξ,η) ∈ R[ξ,η] can be written

as

π−1(ξci) = mi(ξ,η) := ξci+ηci−.

In other words, since the generators of the cone c1, . . . , cr are in Zn, the

following R-algebra map can be defined

Φ̂ : R[δ] −→ R[ξ,η] (31)

δ1 7→ m1(ξ,η),

δ2 7→ m2(ξ,η),
...

δr 7→ mr(ξ,η).

The R-algebra map Φ̂ induces a homomorphism of R-algebra modules

Φ̂?. We define Φ̂? as, for all j = 1, 2, . . . , n,

Φ̂? : R[δ]1×q −→ R[ξ,η]1×q (32)

δ1e
T
j 7→ m1(ξ,η)eTj ,

δ2e
T
j 7→ m2(ξ,η)eTj ,

...

δre
T
j 7→ mr(ξ,η)eTj .

The complete commutative diagram is shown in Fig. 2 where, Φ̃? is, by

R[ξ,η]1×q

R[δ]1×q A1×q

M

Π

Φ?

Φ̃?

Φ̂?

Figure 2: Complete commutative diagram.

construction, the composition of Φ? with the canonical surjection A1×q �

M.
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Proposition 13. Consider the homomorphism of R-algebra modules Ψ :

Q → M as defined in equation (14) and Φ̃? as shown in the commutative

diagram of Fig. 2. Then, Ψ is surjective if and only if Φ̃? is surjective.

Proof: Recall that an element f(ξ, ξ−1) ∈ R[C]1×q can be written as

f(ξ, ξ−1) =
[
z1(ξc) z1(ξc) . . . z1(ξc)

]
.

Define z(ξc) :=
[
z1(ξc) z1(ξc) . . . z1(ξc)

]
. Also by Lemma 12, R[C]1×q =

im Φ?, therefore, there exists g(δ) ∈ R[δ]1×q such that z(ξc) = Φ?(g(δ)).

(Only if) Ψ being surjective implies for all f(ξ, ξ−1) ∈ A1×q, there exists

z(ξc) ∈ R[C]1×q such that

f(ξ, ξ−1) ≡ z(ξc) mod R

≡ Φ? (g(δ)) mod R.

Under the canonical surjection,

f(ξ, ξ−1) = Φ?(g(δ))

= Φ̃?(g(δ)).

Since f ∈ A1×q was chosen arbitrarily, Φ̃? is surjective.

(If) The map Φ̃? being surjective implies for every m ∈ M, there exists

g(δ) ∈ R[δ]1×q such that

Φ̃?(g(δ)) = m

This implies that for all f(ξ, ξ−1) ∈ A1×q, there exists g(δ) ∈ R[δ]1×q such

that

Φ?(g(δ)) = f(ξ, ξ−1).

Now, from Lemma 12 we have R[C]1×q = im Φ?. Also any element in R[C]1×q

can be written as z(ξc) using equation (30). Therefore, Φ?(g(δ)) = z(ξc),

thus, z(ξc) = f(ξ, ξ−1). Hence, Ψ is surjective. �

According to Theorem 4, for a cone C ⊆ Zn to be a characteristic cone

for a behavior B defined by the equation module R, the map Ψ : Q →M
must be surjective. We have shown in Proposition 13 that this is equivalent

to Φ̃? being surjective. In other words, the homomorphism of R-algebra

modules

Φ̃? : R[δ]1×q −→M (33)
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must be surjective. Recall that R ⊆ A1×q and Π : R[ξ,η]1×q → A1×q.

Define R̃ := Π−1(R). Therefore, R̃ ⊆ R[ξ,η]1×q. From the commutative

diagram, we have

R[ξ,η]1×q
Π−→ A1×q −→M.

Using the First Isomorphism theorem, A1×q ∼= R[ξ,η]1×q

ker Π
as Π is surjective.

Combining it with the canonical surjection we have

M =
A1×q

R
∼=

R[ξ,η]1×q

R̃+ ker Π
.

To check surjectivity of Φ̃?, we require the following construction. This

facilitates the use of Gröbner bases techniques. Recall the homomorphism

Φ̂? of R-algebra modules induced by the R-algebra map Φ̂. Consider the

free module R[ξ,η, δ]1×q. Define a submodule T of R[ξ,η, δ]1×q as

T = rowspanR[ξ,η,δ]T

where the matrix

T = diag




δ1 −m1

...

δr −mr

 ,

δ1 −m1

...

δr −mr

 , . . . ,

δ1 −m1

...

δr −mr


︸ ︷︷ ︸

q entries


.

Define the submodule

K = R̃R[ξ,η, δ] + (ker Π)R[ξ,η, δ] + T ⊆ R[ξ,η, δ]1×q. (34)

Let � be an elimination term ordering on R[ξ,η, δ] such that ξ � η � δ.

Define the corresponding “term over position” module ordering �TOP. Let

G = {g1, . . . , gs} be a Gröbner basis of K with respect to the term ordering

�TOP.

Lemma 14. Let Φ̃? be the homomorphism of R-algebra modules defined in

equation (33). Consider the free module R[ξ,η, δ]1×q and the submodule

K ⊆ R[ξ,η, δ]1×q as defined in equation (34). Let G be a Gröbner basis of

K with respect to the elimination module ordering �TOP. For an element

f ∈ R[ξ,η]1×q, f ∈ im Φ̃? if and only if f
G ∈ R[δ]1×q, where, f

G
denotes

the remainder of f obtained after dividing it by elements of G.
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Proof: The element f ∈ R[ξ,η, δ]1×q can be written as

f = q1g1 + · · ·+ qsgs + r

where qi ∈ R[ξ,η, δ] and r = f
G ∈ R[ξ,η, δ]1×q.

(If) Suppose r ∈ R[δ]1×q. This implies f(ξ,η)−r(δ) ∈ K (see Proposition

9). Under Φ? we have

f(ξ,η)− r(m1, . . . ,mr) ∈ R̃+ ker Π.

Applying the equivalence relation on R[ξ,η], that is, Π followed by the

canonical surjection, we get

0 = f − r(m1, . . . ,mr)

⇒ f = r(m1, . . . ,mr)

⇒ f = Φ̃? (r(δ1, . . . , δr))

which shows f ∈ im Φ̃?.

(Only if) Conversely, suppose f ∈ im Φ̃?. Then, there exists h ∈ R[δ]1×q

such that f = Φ̃?(h). This implies there exists p ∈ R̃+ ker Π such that,

f(ξ,η) + p(ξ,η) = Φ̂?(h(δ))

f(ξ,η) + p(ξ,η) = h(m1, . . . ,mr)

Now,

f(ξ,η) ≡ h(m1, . . . ,mr) mod K

f(ξ,η) ≡ h(δ) mod K.

Thus

f(ξ,η)
G

= h(m1, . . . ,mr)
G

= h(δ1, . . . , δr)
G
.

Since ξ � η � δ, from elimination theorem (Proposition 10) it follows that

a Gröbner basis for K ∩ R[δ]1×q is G ∩ R[δ]1×q. Therefore,

h(δ1, . . . , δr)
G

= h(δ1, . . . , δr)
G∩R[δ]1×q

because h(δ1, . . . , δr) ∈ R[δ]1×q.

But, h(δ1, . . . , δr)
G∩R[δ]1×q

∈ R[δ]1×q. Therefore f(ξ,η)
G
∈ R[δ]1×q. �
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In order to check if a given cone is a characteristic cone for a behavior

B the first algebraic characterization states that the homomorphism of R-

algebra modules Ψ : Q → M needs to be surjective (Theorem 4). This

condition was transformed into another equivalent algebraic condition in

Proposition 13 which states that Ψ being surjective is equivalent to Φ̃?

being surjective. To check surjectivity of Φ̃? we defined the submodule K ⊆
R[ξ,η, δ]1×q as in equation (34). Using the previous lemma (Lemma 14) we

now state the second main result which gives an equivalent condition for a

cone to be a characteristic cone using a Gröbner basis for the submodule

K. This in turn provides a directly implementable algorithm for testing.

Theorem 15. Let B be an nD discrete autonomous behavior with equation

module R ⊆ A1×q. Consider the free module R[ξ,η, δ]1×q and the submodule

K = R̃R[ξ,η, δ] + (ker Π)R[ξ,η, δ] + T ⊆ R[ξ,η, δ]1×q. Then a cone (or,

equivalently, an affine semigroup) C ⊆ Zn is a characteristic cone for the

behavior B if and only if the elements

ξ1e
T
j , . . . , ξne

T
j , η1e

T
j , . . . , ηne

T
j

on division by the Gröbner basis of K under the elimination module term

ordering �TOP contains elements only in R[δ]1×q for all j ∈ {1, 2, . . . , q}.

Proof: (Only if) By Theorem 4, C being a characteristic cone implies

Ψ is surjective. This in turn implies Φ̃? is surjective by Proposition 13.

Now, Φ̃? being surjective implies for every ξ1e
T
j , . . . , ξne

T
j , η1e

T
j , . . . , ηne

T
j ∈

R[ξ,η]1×q, there exists a preimage in R[δ]1×q. By Lemma 14, f ∈ im Φ̃? im-

plies f
G ∈ R[δ]1×q. Since Φ̃? is surjective this holds for all ξ1e

T
j , . . . , ξne

T
j , η1e

T
j ,

. . . , ηne
T
j for all j ∈ {1, 2, . . . , q}.

(If) If ξ1e
T
j , . . . , ξne

T
j , η1e

T
j , . . . , ηne

T
j on division by the Gröbner basis of

K contains elements in R[δ] then by Lemma 14, ξ1eTj , . . . , ξne
T
j , η1eTj , . . . , ηne

T
j

∈ im Φ̃? for all j ∈ {1, 2, . . . , q} which implies Φ̃? is surjective. By Propo-

sition 13 this implies Ψ is surjective which in turn implies, by Theorem 4,

that C is a characteristic cone. �

This algorithm checks if a given cone C ⊆ Zn is a characteristic cone for

a behavior B given by the equation module R.

Algorithm 16. Input:
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1. The system equations given in kernel representation as B = ker R

where, R(ξ, ξ−1) ∈ Ar×q.

2. The cone C generated by c1, . . . , cr ∈ Zn.

Output:

Yes, if C is a characteristic cone for B.

No, if C is not a characteristic cone.

Algorithm

1. Define the free module R[ξ,η, δ]1×q and the ideal K ⊆ R[ξ,η, δ]1×q as

K = R̃R[ξ,η, δ] + (ker Π)R[ξ,η, δ] + T .

Note that if r1(ξ, ξ−1), r2(ξ, ξ−1), . . . , rm(ξ, ξ−1) ∈ A1×q are rows of

R(ξ, ξ−1) then

R = {a1r1 + · · ·+ amrm ai ∈ A, i = 1, . . . ,m} ⊆ A1×q.

2. Calculate the Gröbner basis5 G = {g1, . . . , gs} of K with elimination

term ordering ξ � η � δ on R[ξ,η, δ] and the corresponding elimina-

tion module term ordering �TOP.

3. Calculate the remainders of ξ1e
T
j , . . . , ξne

T
j , η1e

T
j , . . . , ηne

T
j for all j ∈

{1, 2, . . . q} by division with G.

4. If ξ1eTj
G
, . . . , ξneTj

G
, η1eTj

G
, . . . , ηneTj

G
∈ R[δ]1×q for all j ∈ {1, 2, . . . q},

then C is a characteristic cone for B.

5. If not, then C is not a characteristic cone.

7 Examples

In this section we illustrate the above ideas with some examples.

5An algorithm for calculating the Gröbner basis of a module can be found in [22,

Algorithm 3.5.2].
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Example 17. Here we verify Example 4 of [3] to show that the proposed

method is indeed a generalization of the method proposed in [3]. Consider

the 2D behavior with kernel representation

B = ker

[
1 + σ−1

1 −σ−1
1 σ−1

2

−2− σ−1
2 σ−1

2

]
. (35)

The equation moduleR = rowspanA

[
1 + ξ−1

1 −ξ−1
1 ξ−1

2

−2− ξ−1
2 ξ−1

2

]
⊆ R[ξ±1

1 , ξ±1
2 ]1×2.

According to [3] we need to check if the cones C1, C2 and C3 are characteristic

cones for B.

C1 =

[
−1 0

1 −1

]
, C2 =

[
−1 1

−2 1

]
, C3 =

[
1 −1

0 1

]
.

The claims are validated using the Algorithm 16. To check if C1 is charac-

teristic cone we obtain

ξ1e1T
G

= δ2e2
T − e1T , ξ2e1T

G
= −1

2
e1

T + 1
2
e2

T ,

η1e1T
G

= (−δ1 − 1
2
)e1

T + 1
2
e2

T , η2e1T
G

= δ2e2
T − 2e1

T ,

ξ1e2T
G

= (δ2 + 1)e2
T , ξ2e2T

G
= (δ1 − 1

2
)e1

T + (δ1 + 1
2
)e2

T ,

η1e2T
G

= (δ1 − 1
2
)e1

T + 1
2
e2

T , η2e2T
G

= δ2e2
T ,

which ensures C1 is a characteristic cone by Theorem 15. For verifying if C2

is a characteristic cone, we obtain

ξ1e1T
G

= (1
2
δ1 + 1)e1

T + 1
2
δ1e2

T , ξ2e1T
G

= −1
2
e1

T + 1
2
e2

T ,

η1e1T
G

= (1
2
δ1 + 1)e1

T − 1
2
δ1e2

T , η2e1T
G

= 1
2
δ1e1

T + 1
2
δ2e2

T ,

ξ1e2T
G

= (1
2
δ1 + 2)e1

T + (1
2
δ1 + 1)e2

T , ξ2e2T
G

= (δ2 − 1)e2
T ,

η1e2T
G

= (−1
2
δ1 − 2)e1

T + (1
2
δ1 + 1)e2

T , η2e2T
G

= (1
2
δ1 + 2)e1

T + 1
2
δ1e2

T ,

which verifies C2 to be a characteristic cone. Finally, for the cone C3 we follow

the same exercise of computing the remainders ξ1ejT
G
, ξ2ejT

G
, η1ejT

G
, η2ejT

G

for j = 1, 2. We obtain

ξ1e1T
G

= (δ1 − 1)e2
T − e1T , ξ2e1T

G
= −1

2
e1

T + 1
2
e2

T ,

η1e1T
G

= (−δ2 − 1
2
)e1

T + 1
2
e2

T , η2e1T
G

= (δ1 − 1)e2
T − 2e1

T ,

ξ1e2T
G

= δ1e2
T , ξ2e2T

G
= (δ2 − 1

2
)e1

T + (δ2 + 1
2
)e2

T ,

η1e2T
G

= (δ2 − 1
2
)e1

T + 1
2
e2

T , η2e2T
G

= (δ1 − 1)e2
T ,

which validates the claim of C3 being a characteristic cone.
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Example 18. Consider the 3D behavior with kernel representation

B = ker


σ2 σ−1

2 σ−1
3 − 1

σ−1
1 σ−1

3 σ1 + σ2

σ3 σ3
2

 (36)

The equation module

R = rowspanA


ξ2 ξ−1

2 ξ−1
3 − 1

ξ−1
1 ξ−1

3 ξ1 + ξ2

ξ3 ξ3
2

 ⊆ R[ξ±1
1 , ξ±1

2 , ξ±1
3 ]1×2.

The claim is that the all positive orthant, that is, the cone generated by

c1 =
[
1 0 0

]T
, c2 =

[
0 1 0

]T
and c3 =

[
0 0 1

]T
is a character-

istic cone for the behavior B. To verify the claim we compute the re-

mainders of ξ1e
T
j , ξ2e

T
j , ξ3e

T
j , η1e

T
j , η2e

T
j , η3e

T
j for j = 1, 2 by division with

a Gröbner basis G of K constructed using equation (34). We find that

ξ1e1T
G

= δ1e1
T , ξ2e1T

G
= δ2e1

T ,

ξ3e1T
G

= δ3e1
T , η1e1T

G
= (−δ1δ3 − δ2δ3)e2

T ,

η2e1T
G

= (δ4
2 + δ3)e1

T , η3e1T
G

= (−δ2
1 − δ1δ2)e2

T ,

ξ1e2T
G

= δ1e2
T , ξ2e2T

G
= δ2e2

T ,

ξ3e2T
G

= δ3e2
T , η1e2T

G
= (−δ1δ2δ

5
3 − δ1δ

4
3 − δ2δ

4
3−

δ3
3)e1

T + (δ1δ
2
2δ

2
3 + δ1δ

5
3 + δ4

3)e2
T ,

η2e2T
G

= −δ2δ3e1
T + δ3e2

T , η3e2T
G

= −δ2
2e1

T + δ2e2
T .

Thus, by Algorithm 16, C is a characteristic cone for the behavior B.

8 Concluding Remarks

This paper gives an algebraic characterization of characteristic cones for

discrete autonomous nD systems. The crucial observation of the fact that

cones in Zn have the structure of an affine semigroup have been explored.

First a necessary and sufficient condition for checking if a given cone is a

characteristic cone for an autonomous nD behavior is given. This condition

is converted to another equivalent algebraic condition which enables us to

provide an algorithm for doing this check using standard computer algebra

packages. Lastly we provide an algorithm which can be used to do this test.

Thus a complete solution to the problem of determining if a given cone is a

characteristic cone for a discrete autonomous nD system is given here.
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Investigating the computational aspects associated with Gröbner basis

calculation for modules, such as, improvement of speed and computational

efficiency is a future goal. Other possible future directions of research in-

clude carrying forward this analysis of characterizing characteristic sets to

various subsets other than cones. We would like to extend the results on

stability analysis of autonomous nD systems with respect to characteris-

tic cones. Design of stabilizing controllers in the presence of inputs is yet

another direction of future research.

References

[1] E. Rogers, K. Galkowski, W. Paszke, K. L. Moore, P. H. Bauer, L. Hlad-

owski, and P. Dabkowski, “Multidimensional control systems: case

studies in design and evaluation,” Multidimensional Systems and Sig-

nal Processing, vol. 26, pp. 895–939, 2015.

[2] P. Rocha and J. C. Willems, “State for 2-D systems,” Linear Algebra

and Its Applications, vol. 122-124, pp. 1003–1038, 1989.

[3] M. E. Valcher, “Characteristic cones and stability properties of two-

dimensional autonomous behaviors,” IEEE Transactions On Circuits

and Systems - Part I: Fundamental Theory and Applications, vol. 47,

no. 3, pp. 290–302, 2000.

[4] H. K. Pillai and S. Shankar, “A behavioral approach to control of dis-

tributed systems,” SIAM Journal on Control and Optimization, vol. 37,

no. 2, pp. 388–408, 1998.

[5] P. Rocha and J. C. Willems, “Markov properties for systems described

by PDEs and first-order representations,” Systems and Control Letters,

vol. 55, pp. 538–542, 2006.

[6] D. N. Avelli, P. Rapisarda, and P. Rocha, “Time-relevant 2D behav-

iors,” Automatica, vol. 47, No. 11, pp. 2373–2382, 2011.

[7] D. N. Avelli, P. Rapisarda, and P. Rocha, “Lyapunov functions for

time-relevant 2D systems, with application to first-orthant stable sys-

tems,” Automatica, vol. 48, No. 9, pp. 1998–2006, 2012.

36



[8] D. N. Avelli, P. Rapisarda, and P. Rocha, “Lyapunov stability of

2D finite-dimensional behaviours,” International Journal of Control,

vol. 84, No. 4, pp. 737–745, 2011.

[9] D. Pal and H. K. Pillai, “Lyapunov stability of n-D strongly au-

tonomous systems,” International Journal of Control, vol. 84, No. 11,

pp. 1759–1768, 2011.

[10] E. Zerz and U. Oberst, “The canonical Cauchy problem for linear sys-

tems of partial difference equations with constant coefficients over the

complete r-dimensional integral lattice Zr,” Acta Applicandae Mathe-

maticae, vol. 31, pp. 249–273, 1993.

[11] J. C. Willems, “Paradigms and puzzles in theory of dynamical sys-

tems,” IEEE Transactions On Automatic Control, vol. 36, no. 6,

pp. 259–294, 1991.

[12] D. Pal, “Every discrete 2D autonomous system admits a finite union

of parallel lines as a characteristic set,” Multidimensional Systems and

Signal Processing, vol. DOI:10.1007/s11045-015-0330-y, pp. 1–25, 2015.

[13] D. Pal and H. Pillai, “on restrictions of n-d systems to 1-d subspaces,”

Multidimensional Systems and Signal Processing, vol. 25, pp. 115–144,

2014.

[14] J. Wood, V. R. Sule, and E. Rogers, “Causal and stable input/output

structures on multidimensional behaviors,” SIAM Journal on Control

and Optimization, vol. 43, No. 4, pp. 1493–1520, 2005.

[15] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra. USA:

Springer, 2004.

[16] U. Oberst, “Multidimensional constant linear systems,” Acta Appli-

candae Mathematicae, vol. 20, pp. 1–175, 1990.

[17] E. Fornasini, P. Rocha, and S. Zampieri, “State space realizations of

2-D finite-dimensional behaviours,” SIAM Journal of Control and Op-

timization, vol. 31, no. 6, pp. 1502–1517, 1993.

[18] D. C. Youla and G. Gnavi, “Notes on n-dimensional system the-

ory,” IEEE Transactions on Circuits and Systems, vol. Cas-26, no.

2, pp. 105–111, 1979.

37



[19] E. Fornasini and M. E. Valcher, “nD polynomial matrices with applica-

tions to multidimensional signal analysis,” Multidimensional Systems

and Signal Processing, vol. 8, pp. 387–407, 1997.

[20] B. V. Limaye, Functional Analysis. New Delhi: New Age International

(P) Ltd., Publishers, 1996.

[21] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties and Algorithms. NY:

Springer, 2007.

[22] W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases,
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