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1 Introduction

An overwhelming majority of systems dealt with in engineering applications is modelled as
differential equations. Irrespective of whether it is a mechanical system, or an electrical system,
or a thermal system, or a chemical system, or any hybrid of two or more of such systems, the
behavior of such a system is often described using ordinary or partial differential equations
(ODEs or PDEs, respectively). This apparent omnipresence of differential equations puts us
up against the job of solving such equations, which at times can be quite formidable. One of
the standard ways to tackle this problem is to write down the differential equations as first
order equations.

The ‘order’ of an ordinary differential equation is a natural number equal to the highest
number of times that the unknown variable is differentiated in the equation. For example, the

order of the equation d3y
dt3

+ 6d2y
dt2

+ 11dy
dt + 6y = 0 is equal to 3. It had long been realized (more

than two hundred years ago) that ODEs that have order equal to 1 are much easier to handle
than higher order ones. Let us look at some of the benefits of first order representations.

1. It is easier to solve first order differential equations.

2. Much easier to visualize/pictorially represent the solutions: velocity vector field.

3. Physical properties like stored energy are easy to represent.

4. Helps in quantifying the memory of the system.

5. The well-developed theory of matrices and linear algebra is readily applicable.

Because of the above-mentioned desirable properties, first order representations of systems
are always preferred. So much so that often systems are a priori assumed to be given in a
first order form: called state-space representation. However, in many practical scenarios, the
mathematical models, obtained by applying various laws of physics, are often higher order
differential equations. In this course we shall learn how the mathematical theory of linear and
commutative algebra can be applied to carry out the task of obtaining an equivalent first order
differential equation from a given higher order differential equation. And then we shall learn
how commutative algebraic ideas can be used to solve such equations.

2 The case of a single equation

In this course we shall consider only ordinary linear differential equations with constant co-
efficients. The simplest case of such differential equations is the one where we have only one
equation. For example,

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = 0.
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This is the general form of an nth order differential equation. Note that the order n is the
smallest positive integer n such that all ai = 0 for i > n. Since an 6= 0, we can divide through
all the terms by an, and obtain the more standard ‘monic’ form of the equation as

dny

dtn
+ bn−1

dn−1y

dtn−1
+ · · ·+ b1

dy

dt
+ b0y = 0,

where bi := ai/an.
We are quite familiar with such type of differential equations from systems and control

theory. It turns out to be an easy task to obtain a first order representation for such equations.
Indeed, given a monic differential equation

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = 0,

we create some new variables like

x1 := y,

x2 := dy
dt ,

x3 := d2y
dt2
,

...

xn−1 := dn−2y
dtn−2 ,

xn := dn−1y
dtn−1 .

It then follows that

dx1
dt = dy

dt = x2,
dx2
dt = d2y

dt2
= x3,

dx3
dt = d3y

dt3
= x4,

...
dxn−1

dt = dn−1y
dtn−1 = xn,

dxn
dt = dny

dtn = −an−1xn − · · · − a1x2 − a0x1.

This is a system of first order equations. Indeed, we can write down the above system of
equations in matrix-vector form in the following manner

d

dt



x1
x2
x3
...

xn−1
xn


=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1





x1
x2
x3
...

xn−1
xn


.

Defining

x :=



x1
x2
x3
...

xn−1
xn


, and A :=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1


,

we can write down the system of differential equations in a compact form as

dx

dt
= Ax. (1)
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Equation (1) is the so-called state-space equation – well-known in systems and control theory.
The vector-valued variable x is called state variable and the matrix A is called system matrix.
The solution to equation (1) is known to be given by the so-called matrix exponential in the
following manner:

x(t) = eAtx(0),

where x(0) ∈ Rn is an n-tuple of real numbers called the initial condition vector. The matrix
exponential is defined as the following ‘convergent’ power series of the matrix A:

eAt := I +At+
A2t2

2!
+
A3t3

3!
+ · · ·

The solution to the original differential equation is given by the first component of the vector
trajectory x(t) because y(t) = x1(t) follows from definition.

Thus, as mentioned earlier, the case of a single equation is pretty straight-forward. The
natural question that arises now is: what do we do when we have multiple simultaneous equa-
tions? For example, how can we obtain an equivalent first order system of differential equations
for a system of differential equations of the form:

d3y
dt3

+ dy
dt + y = 0,

d4y
dt4

+ d2y
dt2

+ 2y = 0.
(2)

Obviously, the method of assigning state-variables do not work out in this case. Then what
should be done in this case in order to obtain an equivalent first order system of differential
equations? Or, how do we know for sure whether such a representation is possible in the first
place?

The answer comes by exploiting the idea of equivalent system of equations. We first in-
troduce a notational convention: let ξ be a ‘symbol’ which is a placeholder for d

dt when it is

stripped off its operational meaning of differentiation. That is, ξ is a nickname for d
dt in its

friends’ circle outside its work-place. Notice that the two equations in (2) can be written in
terms of differential operators as (

d3

dt3
+ d

dt + 1
)
y = 0,(

d4

dt4
+ d2

dt2
+ 2
)
y = 0.

Thus, we have two operators g1(ξ) = ξ3 + ξ + 1 and g2(ξ) = ξ4 + ξ2 + 2. Now, we note
an interesting fact about the simultaneous equations. Suppose y is a solution to the pair of
equations given by (2), and let f1(ξ), f2(ξ) be two polynomials with real constant coefficients.
Define g(ξ) := f1(ξ)g1(ξ) +f2(ξ)g2(ξ). Then y also satisfies the differential equation g

(
d
dt

)
y =

0. This motivates us to do the following. Let us denote by R[ξ] the set of all polynomials
in ξ with constant real coefficients, and let C∞ (R,R) denote the space of infinitely often
differentiable functions from R to R. Define the following set of polynomials

a := {f1(ξ)g1(ξ) + f2(ξ)g2(ξ) | f1(ξ), f2(ξ) ∈ R[ξ]} .

Then define the following set of trajectories

B̃ :=

{
y ∈ C∞ (R,R) | g

(
d

dt

)
y = 0 for all g(ξ) ∈ a

}
.

Further, let B denote the set of smooth solutions to equation (2). From our discussion so far
it easily follows that

B = B̃.

Indeed, g1(ξ), g2(ξ) ∈ a, and hence any y ∈ C∞ (R,R) that belongs to B̃ also belongs to B.
On the other hand, if y ∈ C∞ (R,R) belongs to B, as we have seen before, it also belongs to
B̃.
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Notice that B̃ is described as the solution set of a system of infinitely many differential
equations. What purpose does it serve then? With little bit of thinking one would realize that
if we are able to find out a polynomial g(ξ) such that a = {f(ξ)g(ξ) | f(ξ) ∈ R[ξ]}, and denote

by
˜̃
B the solution set of g

(
d
dt

)
y = 0, then

B = B̃ =
˜̃
B.

In other words, we would have had a single differential equation that would give us exactly
the same set of solutions as that of the given system of simultaneous equations. The question
is: when is it possible to obtain such a g(ξ)? And if possible then how do we find it? We get
answers to these questions from some basic theory in commutative algebra.

3 Commutative algebra: rings and ideals

Commutative algebra is the study of an algebraic object called commutative ring.

Definition 1 (Commutative ring). A commutative ring with identity is abstractly defined as
a set A with two binary operations, addition (+) and multiplication (·), such that A satisfies
the following properties:

1. A has an additive identity 0. That is, a+ 0 = 0 + a = a for all a ∈ A.

2. Every element a has an additive inverse (−a). That is, a+ (−a) = (−a) + a = 0.

3. Addition is associative and commutative. That is, for all a, b, c ∈ A we have a+b = b+a
and (a+ b) + c = a+ (b+ c).

4. A has a multiplicative identity 1. That is, a · 1 = 1 · a = a for all a ∈ A.

5. Multiplication is commutative, associative. That is, for all a, b, c ∈ A we have a · b = b ·a
and (a · b) · c = a · (b · c).

6. Multiplication distributes over addition. That is, for all a, b, c ∈ A we have a · (b+ c) =
a · b+ a · c, and (a+ b) · c = a · c+ b · c.

Example 2. Examples of commutative rings include the set of integers Z, the set of all 1-
variable polynomials with constant real (or complex) coefficients R[ξ] (or C[ξ]). Polynomials
in n-variables with real (or complex) coefficients R[ξ1, . . . , ξn] (or C[ξ1, . . . , ξn]).

For notational convenience, we use ab to denote the product a · b. An element a 6= 0 from
a ring A is said to be a zero-divisor if there exists 0 6= b ∈ A such that ab = 0. A ring that
has no zero-divisors in it is called an integral domain. All the examples above are examples of
integral domains.

A special type of subsets of a ring will be important for us. They are called ideals.

Definition 3 (Ideal). An ideal is a subset a ⊆ A such that the following two conditions hold:

1. For any two a, b ∈ a, a+ b ∈ a, that is, a is closed under addition.

2. For any a ∈ a and c ∈ A, ac ∈ a, that is, a is closed under multiplication from the ring.

Example 4. In the ring of integers Z, consider the set of all even integers {0,±2,±4,±6, . . .}.
It is easy to check that this set is an ideal. In fact, if n ∈ Z then the set of all integers that
are multiples of the given integer n, that is, the set {0,±n,±2n,±3n, . . .}, is an ideal. This
ideal is denoted by nZ or sometimes by 〈n〉. In this convention, the notation for the ideal of
even numbers is 2Z or 〈2〉. It is important to note here that the set of odd integers is not an
ideal; indeed, the set of odd numbers is not closed under addition because the sum of two odd
numbers is even.

4



Example 5. Let a ∈ A be given, consider the set a := {b ∈ A | there exists q ∈ A such that b =
qa}. Then a clearly satisfies the above two conditions; a is an ideal. In this case, a is said to
be generated by a, and we write a = 〈a〉. Sometimes, an ideal may be generated by more than
one element. In such a case, we write a = 〈a1, a2, . . . , ar〉, which means

a := {q1a1 + q2a2 + · · ·+ qrar | q1, q2, . . . , qr ∈ A}.

There are rings containing ideals which cannot be generated by finitely many elements.
However, because of a result due to D. Hilbert (1862-1943), which is called Hilbert’s Basis
Theorem, it follows that every ideal of the n-variable polynomial ring (for any positive natural
number n) is finitely generated. An ideal may have multiple sets of generators, which are
different from each other. For example, in Z, the ideal 〈4, 6〉 is also generated by 2. Ideals
which admit singletons for generating sets are called principal ideals. An integral domain where
every ideal is principal is called a principal ideal domain (PID). For example, Z is a PID, that
is, every ideal in Z is of the form 〈n〉 for some n ∈ Z. Interestingly, and very much crucially for
this course, the 1-variable polynomial ring R[ξ] (also, C[ξ]) is PID, too. This is not so obvious
at this point. We shall arrive at this conclusion through the following chain of observations.

We first introduce what is known as the Euclidean division process in R[ξ]. Note first that
every polynomial in R[ξ] can be written as

f(ξ) =
∑
i∈N

aiξ
i,

where, of course, the sum is finite. Another way of saying it is: only finitely many ai’s are
nonzero. Among the non-zero ai’s let n be the highest value of i. This number is of special
significance; it is called the degree of the polynomial f(ξ), and we denote this number by
deg(f).

Proposition 6 (Euclidean division). Let f(ξ), g(ξ) ∈ R[ξ]. Suppose deg(g) 6 deg(f). Then
there exist q(ξ), r(ξ) ∈ R[ξ] such that f(ξ) = q(ξ)g(ξ) + r(ξ) and deg(r) < deg(g).

Proof : The proof follows from carrying out the long division together with induction on deg(f).
�

Theorem 7. Let a ⊆ R[ξ] be an ideal. Then a is a principal ideal, that is, there exists
g(ξ) ∈ R[ξ] such that a = 〈g(ξ)〉. In other words, R[ξ] is a PID.

Proof : Let g(ξ) be a non-zero element from the ideal a such that deg(g) 6 deg(f) for all
non-zero f(ξ) ∈ a. Such a g(ξ) exists because the set of degrees of all non-zero elements in a
is a subset of N, and N is bounded from below. We claim that 〈g(ξ)〉 = a.
(〈g(ξ)〉 ⊆ a) Since g(ξ) ∈ a this inclusion is trivially true.
(〈g(ξ)〉 ⊇ a) Let f(ξ) ∈ a be arbitrary. By the choice of g(ξ) we have deg(g) 6 deg(f).
Applying Proposition 6 to this situation we get that there is q(ξ), r(ξ) ∈ R[ξ] such that f(ξ) =
q(ξ)g(ξ) + r(ξ) and deg(r) < deg(g). Now, rearranging the equation f(ξ) = q(ξ)g(ξ) + r(ξ) we
get r(ξ) = f(ξ)− q(ξ)g(ξ). Note that f(ξ) ∈ a. Further, since g(ξ) ∈ a, and a is closed under
multiplication from R[ξ], we have −q(ξ)g(ξ) ∈ a. Hence r(ξ) = f(ξ)− q(ξ)g(ξ) ∈ a because a
is closed under addition. Thus, we have a polynomial r(ξ) ∈ a such that deg(r) < deg(g). It
follows that r(ξ) = 0, because if r(ξ) 6= 0 than we have a non-zero polynomial r(ξ) ∈ a that
has deg(r) < deg(g), which is contradictory to the choice of g(ξ) having least possible degree
among the elements in a. However, r(ξ) = 0 means f(ξ) = q(ξ)g(ξ), that is, f(ξ) ∈ 〈g(ξ)〉.
Since f(ξ) ∈ a was chosen arbitrarily it follows that 〈g(ξ)〉 ⊇ a. �

This result greatly simplifies the situation. No matter how convoluted the description of
an ideal (see Tutorial Question 5 for one such description) might be, it would always simplify
as one generated by a single polynomial. However, Theorem 7 does not tell us how to get

5



that generator. Well, this is not exactly true – Theorem 7 does give a method to construct a
generator, but, the method requires us to search all the polynomials in the ideal to fish out a
generator as the one having the least degree. This can be really difficult at times. Fortunately,
there is an easier way to construct a generator when we already know a presentation of the given
ideal by a finite generating set. That is, suppose we are given with {g1(ξ), g2(ξ), . . . , gm(ξ)} ⊆
R[ξ], then we can find g(ξ) ∈ R[ξ] such that

〈g(ξ)〉 = 〈g1(ξ), g2(ξ), . . . , gm(ξ)〉.

The tool that helps us in achieving this is the idea of a greatest common divisor (GCD). In
order to introduce this idea we need the definition of a polynomial being a divisor of another
polynomial. A polynomial d(ξ) is said to be a divisor of a polynomial f(ξ) if there exists a
polynomial q(ξ) such that f(ξ) = q(ξ)d(ξ). In this case we write d(ξ)|f(ξ) and say d divides f .

Definition 8. Let {g1(ξ), g2(ξ), . . . , gm(ξ)} ⊆ R[ξ] be a given set of polynomials. A monic
polynomial g(ξ) ∈ R[ξ] is said to be a greatest common divisor (GCD) of g1(ξ), g2(ξ), . . . , gm(ξ)
if

1. g(ξ)|gi(ξ) for all i ∈ {1, 2, . . . ,m}, and

2. for every f(ξ) ∈ R[ξ] that satisfies f(ξ)|gi(ξ) for all i ∈ {1, 2, . . . ,m}, we must have
f(ξ)|g(ξ).

Proposition 9. Let {g1(ξ), g2(ξ), . . . , gm(ξ)} ⊆ R[ξ] be a given set of polynomials. GCD of
g1(ξ), g2(ξ), . . . , gm(ξ) is unique.

Proof : Let g(ξ), g̃(ξ) ∈ R[ξ] be two distinct GCDs of g1(ξ), g2(ξ), . . . , gm(ξ). Then by definition
g(ξ)|g̃(ξ) and g̃(ξ)|g(ξ). Since both g(ξ) and g̃(ξ) are monic, this is possible if and only if
g(ξ) = g̃(ξ). �

This unique GCD is denoted by the notation GCD(g1, g2, . . . , gm). The monic GCD can
be found out by a neat algorithm known as Euclidean division algorithm (EDA). Before we
describe the algorithm, we state and prove the following lemma that will be used crucially in
EDA.

Lemma 10. Let {g1(ξ), g2(ξ), . . . , gm(ξ)} ⊆ R[ξ] be a given set of polynomials. Suppose
deg(g1) 6 deg(gi) for all i ∈ {2, 3, . . . ,m}. For i ∈ {2, 3, . . . ,m} let ri(ξ) be the remain-
der after division of gi(ξ) by g1(ξ). Then

GCD(g1, g2, . . . , gm) = GCD(g1, r2, . . . , rm).

Proof : Define g(ξ) := GCD(g1, g2, . . . , gm) and g̃(ξ) := GCD(g1, r2, . . . , rm). Note that for
i ∈ {1, 2, 3, . . . ,m} we have g(ξ)|gi(ξ). Pick an arbitrary i ∈ {2, 3, . . . ,m}. We can write
gi(ξ) = qi(ξ)g1(ξ) + ri(ξ). Since g(ξ)|g1(ξ) and g(ξ)|gi(ξ), it follows that g(ξ)|ri(ξ). Hence, by
definition, g(ξ)|g̃(ξ) because g̃(ξ) = GCD(g1, r2, . . . , rm).

On the other hand, for i ∈ {2, 3, . . . ,m}, the equation gi(ξ) = qi(ξ)g1(ξ)+ri(ξ) also implies
that g̃(ξ)|gi(ξ) because g̃(ξ) divides both g1(ξ) and ri(ξ). Once again, by definition of GCD,
we must have g̃(ξ)|g(ξ) because g(ξ) = GCD(g1, g2, . . . , gm).

Thus we have g(ξ)|g̃(ξ) and g̃(ξ)|g(ξ). Since both g(ξ) and g̃(ξ) are monic, this is possible
if and only if g(ξ) = g̃(ξ). �

Theorem 11 (Euclidean division algorithm (EDA)). Carry out the following algorithm.

Input: A finite set of polynomials {g1(ξ), g2(ξ), . . . , gm(ξ)}

Computation:
do
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• Sort the set {g1(ξ), g2(ξ), . . . , gm(ξ)} so that deg(g1) 6 deg(gi) for all i ∈ {2, 3, . . . ,m}.
• for i ∈ {2, 3, . . . ,m}

if gi(ξ) 6= 0

– Obtain ri(ξ) by Euclidean division such that gi(ξ) = qi(ξ)g1(ξ) + ri(ξ) with
deg(r) < deg(g1).

– Substitute gi(ξ) := ri(ξ).

end if
end for

while gi(ξ) 6= 0 for some i ∈ {2, 3, . . . ,m}

Output The monic version of g1(ξ).

The algorithm stops after finitely many iterations. The output of the algorithm is equal to the
GCD(g1, g2, . . . , gm)

Proof : We first show that the algorithm stops after finitely many passes through the ‘do-while’
loop. Note that at each pass of the ‘do-while’ loop, after the sorting step is carried out, the
degree of g1(ξ) strictly decreases. Since deg(g1) is lower bounded by 0, the algorithm has to
stop after finitely many pass through the ‘do-while’ loop.

We now show the correctness. When the ‘do-while’ loop stops, that time only g1(ξ) 6= 0.
Now note that, by Lemma 10, it follows that GCD(g1, g2, . . . , gm) remains invariant after the
reassignment of the polynomials {g1(ξ), g2(ξ), . . . , gm(ξ)} inside the ‘do-while’ loop. However,
when gi(ξ) = 0 for all i ∈ {2, 3, . . . ,m}, GCD(g1, g2, . . . , gm) is just g1(ξ). �

The Euclidean division step in the algorithm can be written succinctly using matrix vector
notation. Suppose g2(ξ) is substituted by the remainder r2(ξ) upon long division by g1(ξ). We
can write this operation as

g1(ξ)
r2(ξ)
g3(ξ)

...
gm(ξ)

 =


1 0 0 · · · 0

−q2(ξ) 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




g1(ξ)
g2(ξ)
g3(ξ)

...
gm(ξ)

 .

Since, the EDA is nothing but finitely many repeated applications of the Euclidean division
step and a permutation step, it is easy to check that the entire process of the algorithm can

be encoded as repeated pre-multiplication of the vector
[
g1(ξ) g2(ξ) g3(ξ) · · · gm(ξ)

]T
by m × m matrices having entries from R[ξ]. This repeated pre-multiplication can then be
substituted by a single pre-multiplication because the product of these individual matrices is
just one single matrix. Thus, we can write

g(ξ)
0
0
...
0

 = U(ξ)


g1(ξ)
g2(ξ)
g3(ξ)

...
gm(ξ)

 ,

where g(ξ) = GCD(g1, g2, . . . , gm) and U(ξ) ∈ R[ξ]m×m. It then clearly follows that, there
exists a1(ξ), a2(ξ), . . . , am(ξ) such that

g(ξ) = a1(ξ)g1(ξ) + a2(ξ)g2(ξ) + · · ·+ am(ξ)gm(ξ).

This is known as Bezout/Aryabhatta identity.
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Theorem 12 (Bezout/Aryabhatta identity). Let {g1(ξ), g2(ξ), . . . , gm(ξ)} ⊆ R[ξ] be a given
set of polynomials. Then there exist a1(ξ), a2(ξ), . . . , am(ξ) ∈ R[ξ] such that

GCD(g1, g2, . . . , gm) = a1(ξ)g1(ξ) + a2(ξ)g2(ξ) + · · ·+ am(ξ)gm(ξ). (3)

With Bezout/Aryabhatta identity we are now in a position to state and prove the following
crucial result of this course.

Theorem 13. Let {g1(ξ), g2(ξ), . . . , gm(ξ)} ⊆ R[ξ] be a given set of polynomials. Suppose
g(ξ) = GCD(g1, g2, . . . , gm). Then

〈g1(ξ), g2(ξ), . . . , gm(ξ)〉 = 〈g(ξ)〉.

Proof : (〈g1(ξ), g2(ξ), . . . , gm(ξ)〉 ⊆ 〈g(ξ)〉) Let f(ξ) be an arbitrary element in the ideal
〈g1(ξ), g2(ξ), . . . , gm(ξ)〉. This means there exist α1(ξ), α2(ξ), . . . , αm(ξ) ∈ R[ξ] such that

f(ξ) = α1(ξ)g1(ξ) + α2(ξ)g2(ξ) + · · ·+ αm(ξ)gm(ξ). (4)

Since g(ξ)|gi(ξ) for all i ∈ {1, 2, . . . ,m} it follows that every term on the right-hand-side of
equation (4) is divisible by g(ξ). Therefore, the entire right-hand-side, and hence f(ξ), is
divisible by g(ξ). In other words, f(ξ) ∈ 〈g(ξ)〉. Since f(ξ) was chosen arbitrarily, we have
〈g1(ξ), g2(ξ), . . . , gm(ξ)〉 ⊆ 〈g(ξ)〉.
(〈g1(ξ), g2(ξ), . . . , gm(ξ)〉 ⊇ 〈g(ξ)〉) It is enough to show that g(ξ) ∈ 〈g1(ξ), g2(ξ), . . . , gm(ξ)〉.
This follows directly from Bezout/Aryabhatta identity. Indeed, by Theorem 12 there exist
a1(ξ), a2(ξ), . . . , am(ξ) ∈ R[ξ] such that

g(ξ) = a1(ξ)g1(ξ) + a2(ξ)g2(ξ) + · · ·+ am(ξ)gm(ξ) ∈ 〈g1(ξ), g2(ξ), . . . , gm(ξ)〉.

�

4 First order representation of a system of simultaneous scalar
ODEs

Suppose we have a system of simultaneous ODEs of the form

g1(
d
dt )y = 0

g2(
d
dt )y = 0

...

gm( d
dt )y = 0.

(5)

Let B denote the set of all smooth (that is, C∞ (R,R)) solutions to this given set of equations.
Now consider the polynomials g1(ξ), g2(ξ), . . . , gm(ξ) ∈ R[ξ], and define by a the ideal generated
by these polynomials. That is a := 〈g1(ξ), g2(ξ), . . . , gm(ξ)〉. Define the following set

B(a) :=

{
y ∈ C∞ (R,R) | f(

d

dt
)y = 0 for all f(ξ) ∈ a

}
. (6)

It is easy to check the following.

Lemma 14. Let B denote the set of all smooth solutions of a given system of simultaneous
ODEs as in equation (5). Let a and B(a) be as defined above. Then we have

B = B(a).
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Proof : Straightforward verification. �

The following main result now is a direct consequence of Lemma 14 and Theorems 7 and
13.

Theorem 15. Let B be the set of all smooth solutions of a given system of simultaneous ODEs

g1(
d
dt )y = 0

g2(
d
dt )y = 0

...

gm( d
dt )y = 0.

Consider the polynomials g1(ξ), g2(ξ), . . . , gm(ξ) and suppose g(ξ) is the GCD(g1, g2, . . . , gm).
Let B̃ be the set of all smooth solutions of

g(
d

dt
)y = 0.

Then we have
B = B̃.

Proof : Define the ideal a := 〈g1(ξ), g2(ξ), . . . , gm(ξ)〉. By Theorem 13 a = 〈g(ξ)〉. Recall the
definition of B(a) given by equation (6). By Lemma 14 we first get B = B(a). Further, since
a = 〈g(ξ)〉, applying Lemma 14 again to this situation we get B̃ = B(a). Thus

B = B(a) = B̃.

�

In the remaining part of this course we shall see how remainder finding, Euclidean division
etc. can be substituted completely by matrix manipulations and linear equations, and finally,
how a linear ODE can be solved using these ideas. This will require us to make use of an
altogether different type of algebra: the algebra of remainders.

5 The algebra of remainders AKA the quotient

Suppose we are given a monic polynomial g(ξ) ∈ R[ξ]. What we now do is we pick all possible
polynomials and perform Euclidean division on them by g(ξ) and collect the remainders. This
collection of all remainders has nice algebraic properties. We first notice that, for a given
f(ξ) ∈ R[ξ], suppose we write f(ξ) = q(ξ)g(ξ) + r(ξ), where deg(r) < deg(g), then r(ξ) must
be unique. In order to see this, suppose we have two different representations for the same
f(ξ) as f(ξ) = q1(ξ)g(ξ) + r1(ξ) = q2(ξ)g(ξ) + r2(ξ). Rearranging we get that r1(ξ)− r2(ξ) =
(q2(ξ)−q1(ξ))g(ξ). This means g(ξ)|(r1(ξ)−r2(ξ)), but this is possible only if (r1(ξ)−r2(ξ)) = 0
because deg(r1 − r2) 6 max {deg(r1),deg(r2)} < deg(g). Thus, r1(ξ) = r2(ξ). Because of this
uniqueness, given f(ξ) ∈ R[ξ], we can write [f ] to denote this unique remainder without any
ambiguity. We now define the following set

M := {[f ] | f(ξ) ∈ R[ξ]}.

Note that several different polynomials may have the same remainder. That is, there could be
f1(ξ), f2(ξ) ∈ R[ξ], f1(ξ) 6= f2(ξ) such that [f1] = [f2]. It is not difficult to check that [f1] = [f2]
if and only if g(ξ)|(f1(ξ) − f2(ξ)). Thus, one can define a relation on the set R[ξ] as: f1(ξ)
is related with f2(ξ) if and only if [f1] = [f2] (equivalently, if and only if g(ξ)|(f(ξ)− f2(ξ))).
That way, every element in the set M, as defined above, stands for a set of polynomials that
are related with each other. Indeed, [f ] can be identified with the set f(ξ) + 〈g(ξ)〉; this set is
called the coset of f(ξ). This is a standard construction in mathematics known as factoring or

9



quotienting under an equivalence relation. The gruesome details about this construction will
not be required for this course and is also beyond the limited scope of this course; much much
more details of this can be found in textbooks like [AM69, CLO07].

The set M has the structure of a commutative ring. The addition and multiplication of
the elements of M are not obvious here, they need to be defined. This is done as follows.

Definition 16. For f1(ξ), f2(ξ) ∈ R[ξ] we define

[f1] + [f2] := [f1 + f2],

and
[f1][f2] := [f1f2].

Proposition 17. The addition and multiplication are well-defined.

Proof : We verify this here only for multiplication and leave the same for addition as an
exercise. Suppose f̃1(ξ), f̃2(ξ) ∈ R[ξ] are such that [f1] = [f̃1] and [f2] = [f̃2]. We need
to verify that [f1f2] = [f̃1f̃2]. Since [f1] = [f̃1] we have f1(ξ) − f̃1(ξ) = q1(ξ)g(ξ). Hence,
f1(ξ) = f̃1(ξ) + q1(ξ)g(ξ). Similarly, since [f2] = [f̃2] we have f2(ξ) = f̃2(ξ) + q2(ξ)g(ξ). It then
follows that

f1(ξ)f2(ξ) =
(
f̃1(ξ) + q1(ξ)g(ξ)

)(
f̃2(ξ) + q2(ξ)g(ξ)

)
= f̃1(ξ)f̃2(ξ) + f̃1(ξ)q2(ξ)g(ξ) + f̃2(ξ)q1(ξ)g(ξ) + q1(ξ)q2(ξ)g(ξ)2

⇒ f1(ξ)f2(ξ)− f̃1(ξ)f̃2(ξ) = f̃1(ξ)q2(ξ)g(ξ) + f̃2(ξ)q1(ξ)g(ξ) + q1(ξ)q2(ξ)g(ξ)2

⇒ [f1f2] = [f̃1f̃2].

�

With this notion of addition and multiplication, the setM becomes a commutative ring (see
Tutorial Question 9). In other words, the remainder can be added, subtracted and multiplied;
there are additive and multiplicative identities; and there is additive inverse. Note that this
also makes M a finite dimensional vector space. Indeed, if deg(g) = n, then every element
in M would be a polynomial of degree at most n − 1 because degree of a remainder upon
division by g(ξ) is strictly less than deg(g). Thus, {1, ξ, ξ2, . . . , ξn−1} can be taken as a basis
forM as a vector space over R. Note that under this basis, every remainder is identified with
a row-vector (of size n) consisting of the coefficients of the remainder in ascending order of
their corresponding degrees. For example, the remainder a0 + a1ξ + a2ξ

2 + . . . + an−1ξ
n−1 is

identified with [a0 a1 a2 · · · an−1]. It follows thatM is isomorphic as a vector space with
Rn, where n = deg(g).

Vector spaces are arguably much easier to handle than commutative rings. Therefore, it is
tempting to work withM viewing it as a vector space. However, there is one issue: although,
addition and scalar multiplication are exactly the same for M in both points of view, the
vector space structure does not automatically provide with a means to multiply two vectors.
Multiplication of vectors can be brought into the picture of M as a vector space by invoking
the notion of linear maps from a vector space to itself. A map ϕ :M→M is said to be linear
if it satisfies the following two properties:

1. ϕ([f1] + [f2]) = ϕ([f1]) + ϕ([f2]), for all [f1], [f2] ∈M,

2. ϕ(α[f ]) = αϕ([f ]), for all [f ] ∈M and α ∈ R.

In what comes next, we shall see that multiplication by a fixed [f ] can be viewed as a linear
map fromM to itself. Suppose f(ξ) ∈ R[ξ] is chosen arbitrarily and fixed. Define the following
map µf :M→M in the following manner: for [h] ∈M

µf ([h]) := [fh].

10



It is easy to check that µf is linear. Now, once we have a linear map from a finite dimensional
vector space to itself, that linear map can be expressed as a square matrix. Indeed, suppose
we have

µf
(
[ξi]
)

= ai,0 + ai,1ξ + ai,2ξ
2 + · · ·+ ai,(n−1)ξ

n−1 for 0 6 i 6 n− 1. (7)

We can store this data in the form of a matrix as shown below

Af :=


a0,0 a0,1 a0,2 · · · a0,(n−1)
a1,0 a1,1 a1,2 · · · a1,(n−1)
a2,0 a2,1 a2,2 · · · a2,(n−1)

...
...

...
. . .

...
a(n−1),0 a(n−1),1 a(n−1),2 · · · a(n−1),(n−1)

 . (8)

An interesting fact emerges from this matrix: the linear map µf is completely described by
the matrix Af . In order to see this, take a typical element fromM, say [h], and write it in the
form a remainder as [h] = h0+h1ξ+h2ξ

2+ · · ·+hn−1ξn−1, hi ∈ R for all i ∈ {0, 1, 2, . . . , n−1}.
Note that, due to linearity of µf it follows that

µf ([h]) = h0µf ([1]) + h1µf ([ξ]) + h2µf
([
ξ2
])

+ · · ·+ hn−1µf
([
ξn−1

])
= h0

n−1∑
j=0

a0,jξ
j

+ h1

n−1∑
j=0

a1,jξ
j

+ h2

n−1∑
j=0

a2,jξ
j

+ · · ·+

hn−1

n−1∑
j=0

a(n−1),jξ
j


=

(
n−1∑
i=0

hiai,0

)
+

(
n−1∑
i=0

hiai,1

)
ξ +

(
n−1∑
i=0

hiai,2

)
ξ2 + · · ·+

(
n−1∑
i=0

hiai,(n−1)

)
ξn−1.

This expression becomes immediately more sensible by noting that if µf ([h]) is written in the
form of a remainder as b0 + b1ξ + b2ξ

2 + · · · + bn−1ξ
n−1 then the row-vector of coefficients

[b0 b1 b2 · · · bn−1] satisfies

[b0 b1 b2 · · · bn−1] = [h0 h1 h2 · · · hn−1]Af ,

where [h0 h1 h2 · · · hn−1] is the row-vector of coefficients corresponding to [h] repre-
sented as a remainder. In other words, if we decide to represent the elements of M by their
corresponding row-vectors, say

vh = [h0 h1 h2 · · · hn−1] for [h] = h0 + h1ξ + h2ξ
2 + · · ·+ hn−1ξ

n−1, (9)

then we have
vµf ([h]) = v[fh] = vhAf . (10)

To express this in one phrase: multiplication by [f ] is represented by post-multiplication by
Af .

This observation has far reaching consequences. For example the following proposition.

Proposition 18. Given a monic polynomial g(ξ) ∈ R[ξ] with deg(g) = n, let M be the
corresponding commutative ring formed by the remainders upon division by g(ξ) (the quotient
ring in short). Further, let f(ξ), h(ξ) ∈ R[ξ] be arbitrary, and let Af , Ah ∈ Rn×n be the
corresponding matrices as defined by equations (7) and (8). Moreover, let vf , vh ∈ R1×n be the
row-vectors corresponding to representations of [f ], [h] ∈M as remainders, respectively. Then
the following hold:

1. µf+h = µf + µh and Af+h = Af +Ah.

11



2. µfh = µfµh and Afh = AfAh.

3. vfh = vhAf = vfAh =
[
1 0 0 · · · 0

]
Afh.

Proof : Straight-forward verification. �

For the special case of f(ξ) = ξ, let us use the symbol A to denote the corresponding
Af ∈ Rn×n. We can actually write down this matrix A explicitly. Suppose g(ξ) = a0 + a1ξ +
a2ξ

2 + · · ·+ an−1ξ
n−1 + ξn. It is easy to verify that A ∈ Rn×n has the following form:

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 . (11)

This matrix is called the companion matrix.

Lemma 19. Let g(ξ) ∈ R[ξ] be given by g(ξ) = a0 + a1ξ + a2ξ
2 + · · · + an−1ξ

n−1 + ξn,
and A ∈ Rn×n be as defined by equation (11). Suppose f(ξ) ∈ R[ξ] is given by f(ξ) =
b0 + b1ξ+ b2ξ

2 + · · ·+ bmξ
m. Suppose vf ∈ R1×n is the row-vector of the coefficients of [f ] ∈M

represented as a remainder (see equation (9)). Then we must have

vf =
[
1 0 0 · · · 0

]
f(A),

where
f(A) = b0I + b1A+ b2A

2 + · · ·+ bmA
m.

Further, the following are equivalent:

1. g(ξ)|f(ξ).

2. f(A) = 0 ∈ Rn×n.

Proof : It follows from Parts 1 and 2 of Proposition 18 that

Af = b0I + b1A+ b2A
2 + · · ·+ bmA

m = f(A).

Since vf ∈ R1×n is the row-vector of the coefficients of [f ] ∈M represented as a remainder, it
follows from Statement 3 of Proposition 18 that

vf =
[
1 0 0 · · · 0

]
Af

because [f ] = [f ][1] = µf ([1]). This fact together with the fact that Af = f(A) we get that

vf =
[
1 0 0 · · · 0

]
f(A). (12)

We now prove the equivalence claimed in the lemma.
(1⇒2) We assume that g(ξ)|f(ξ), and we want to prove that f(A) = 0. First note that
g(ξ)|f(ξ) implies that [f ] = 0, that is, vf = 0 ∈ R1×n. It then follows from equation (12) that

vf =
[
1 0 0 · · · 0

]
f(A) = 0.

Also note that g(ξ)|f(ξ) means that g(ξ)|ξif(ξ) for all i ∈ {1, 2, . . . , n − 1}. It then follows
that

vξif =
[
1 0 0 · · · 0

]
Aif(A) = 0 for all i ∈ {1, 2, . . . , n− 1}

=
[
0 0 · · · 1 · · · 0

]
f(A) = 0,

where the 1 in the row-vector is at the ith position. Taking i = 1, 2, . . . , n − 1 one by one it
follows that every row of f(A) is the zero row. Thus, f(A) is the zero matrix.
(1⇐2) We assume that f(A) = 0. It then follows once again from equation (12) that

vf =
[
1 0 0 · · · 0

]
f(A) = 0.

Now vf = 0 means the remainder [f ] of f(ξ) upon division by g(ξ) is zero, which in turn means
that g(ξ)|f(ξ). �

12



6 Solving linear constant coefficient ODEs using the compan-
ion matrix

Once again we come back to linear ODEs with constant real coefficients. As we have seen
earlier, every system of equations can be brought down to an equivalent single equation. So,
we consider, without loss of generality, that we are given with the following differential equation:

g(
d

dt
)y = 0

where g(ξ) ∈ R[ξ] is a monic polynomial of degree n. We notice the following curious fact.
Let y ∈ C∞ (R,R) be a solution to the equation g( d

dt )y = 0. Now, suppose we are given

f(ξ) ∈ R[ξ], and we are asked to find out f( d
dt )y. It turns out that y being a solution of the

given differential equation enables us to reduce this question to the following situation. Let
r(ξ) be the remainder of f(ξ) upon division by g(ξ). Then we must have

f(
d

dt
)y = r(

d

dt
)y.

In order to see why this is true, recall the identity f(ξ) = q(ξ)g(ξ) + r(ξ). It then follows that

f(
d

dt
)y = q(

d

dt
)g(

d

dt
)y + r(

d

dt
)y.

But, g( d
dt )y = 0 because y is a solution. Hence f( d

dt )y = r( d
dt )y.

This apparently innocuous reduction actually provides us with huge computational saving.
Indeed, notice that a general polynomial f(ξ) does not have any restriction on its degree, while
the remainder r(ξ) can have degree at most n−1. Therefore, if one wants to keep record of the
actions of all the polynomial differential operators f( d

dt ), it is not required that she takes all
f(ξ) ∈ R[ξ], it is sufficient that she does so only for the remainders r(ξ). Quite interestingly,
not only does this reduce the effort of evaluating f( d

dt )y for solutions y, this also provides a
way to solve a given differential equation.

Suppose, like before, we have a differential equation g( d
dt )y = 0, where g(ξ) ∈ R[ξ] is a

monic polynomial of degree n. Let us assume that y ∈ C∞ (R,R) is an exponential solution1

of the equation g( d
dt )y = 0, that is, y is of the form

y(t) := y0 + y1t+ y2
t2

2!
+ · · ·+ yk

tk

k!
+ · · · ,

where yk ∈ R for all k = 1, 2, 3, . . . are such that y(t) ∈ R for all t ∈ R. It then follows that(
dky
dtk

)
(0) = yk. Now note that it follows from our discussion above that

dky

dtk
=

[
dk

dtk

]
y,

where
[
ξk
]

is the remainder of ξk upon division by g(ξ). This remainder is a polynomial of
degree at most n− 1. That is,

[
ξk
]

can be written as a linear combination of 1, ξ, ξ2, . . . , ξn−1

with real coefficients. Suppose[
ξk
]

= α0 + α1ξ + · · ·+ αn−1ξ
n−1,

then it follows that

dky

dtk
=

[
dk

dtk

]
y = α0y + α1

dy

dt
+ · · ·+ αn−1

dn−1y

dtn−1
.

1This is not a restrictive assumption at all. In fact, it can be shown that every solution of the given type of
differential equations is exponential. However, showing this is beyond the scope of this course.
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However, we have already noticed that(
dky

dtk

)
(0) = yk.

Combining these two observations we get that

yk =

(
dky

dtk

)
(0) =

([
dk

dtk

]
y

)
(0)

= α0y(0) + α1

(
dy

dt

)
(0) + · · ·+ αn−1

(
dn−1y

dtn−1

)
(0)

= α0y0 + α1y1 + · · ·+ αn−1yn−1.

Thus, if we know y0, y1, . . . , yn−1, we can derive yk for all k > n. Note that knowing this, we
also know the entire solution y(t).

So, finding out the remainders for ξk is required in order to know the entire signal. This
job of remainder finding can be carried out by making use of the companion matrix. Recall
equation (11), where the companion matrix has been derived. From Lemma 19 it follows that
the coefficient vector of the remainder representation of

[
ξk
]

can be found in the following
manner. Suppose

[
ξk
]

= α0 + α1ξ + · · ·+ αn−1ξ
n−1, then[

α0 α1 · · · αn−1
]

=
[
1 0 · · · 0

]
Ak.

It then follows that

yk =
[
α0 α1 · · · αn−1

]

y0
y1
...

yn−1

 =
[
1 0 · · · 0

]
Ak


y0
y1
...

yn−1

 . (13)

Denoting the column-vector


y0
y1
...

yn−1

 by y we get

yk =
[
1 0 · · · 0

]
Aky, for all k > n. (14)

Using equation (14) we get that the solution can be written as

y(t) =
[
1 0 · · · 0

]( ∞∑
k=0

Aktk

k!

)
y. (15)

So far we have assumed that we know that y(t) is an exponential solution, and then we
derived that y(t) must satisfy equation (15) in that case. Now suppose that we are given an

arbitrary vector x =


x0
x1
...

xn−1

, and we define

x(t) :=
[
1 0 · · · 0

]( ∞∑
k=0

Aktk

k!

)
x. (16)

Then it is easy to verify that: for i ∈ {1, 2, 3, . . .}

dix

dti
=
[
1 0 · · · 0

]( ∞∑
k=0

Aktk−i

(k − i)!

)
x =

[
1 0 · · · 0

]
Ai

( ∞∑
k=0

Aktk

k!

)
x.
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It follows that for a polynomial f(ξ) ∈ R[ξ] we must have

f(
d

dt
)x =

[
1 0 · · · 0

]
f(A)

( ∞∑
k=0

Aktk

k!

)
x.

Recall that for any f(ξ) such that g(ξ)|f(ξ) we must have f(A) = 0. Therefore, x(t) as defined
by equation (16) must satisfy

g(
d

dt
)x =

[
1 0 · · · 0

]
g(A)

( ∞∑
k=0

Aktk

k!

)
x = 0

because g(A) = 0. In other words, x(t) is a solution of the differential equation g( d
dt )y = 0.
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7 Tutorial problems

Question 1. Show that the examples given in Example 2 are indeed commutative rings.

Question 2. Show that the set of all smooth functions C∞ (R,R) is a commutative ring.
What is the multiplicative identity here? Consider the subset S of C∞ (R,R) comprising of all
smooth functions that are zero over the open interval (−1, 1). Show that S is an ideal. Is this
ideal finitely generated?

Question 3. Let a, b, c ∈ Z. Show that

GCD(a, b, c) = GCD (GCD(a, b), c) = GCD (GCD(a, c), b) = GCD (GCD(b, c), a) .

Question 4. Prove that Z is a PID.

Question 5. Consider the following set of polynomials {f(ξ) | f(−1) = f(1) = f(2) = 0}.
Show that the set is an ideal. Find out a generator for this ideal.

Question 6. Compute the GCD of the polynomials ξ3+6ξ2+11ξ+6 and ξ4+8ξ3+21ξ2+22ξ+8
by EDA.

Question 7. Show that the only smooth function y ∈ C∞ (R,R) that satisfies both the
equations

d2y
dt2

+ dy
dt + 2y = 0

d3y
dt3

+ 7y = 0

is the zero function.

Question 8. For the two polynomials in Question 6 find out the two polynomials that will
appear in the corresponding Bezout/Aryabhatta identity.

Question 9. Verify that the addition and multiplication defined in M satisfy all the axioms
of commutative ring.

Question 10. Take g(ξ) = ξ2+ξ+1 and obtain remainders of ξ3+6ξ2+11ξ+6 and ξ4+1 upon
division by g(ξ). Do this once using the companion matrix and then verify it using Euclidean
division.

Question 11. Let g(ξ) ∈ R[ξ] be monic of degree equal to n, and let A ∈ Rn×n be the
corresponding companion matrix. Suppose f(ξ) ∈ R[ξ]. Show that f(ξ) is coprime with g(ξ)
(that is, GCD(f(ξ), g(ξ)) = 1) if and only if f(A) ∈ Rn×n is invertible.
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