Matrix Computations
 EE636
 Assignment 1

Q 1 Given an $\mathrm{n} \times \mathrm{n}$ symmetric matrix A, calculate the number of flops required for finding:
(a) $L U$ factorization of A,
(b) Cholesky decomposition.

Q 2 Calculate the flop count for forward substitution and backward substitution.
Q 3 Let $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ be a (nonsingular) matrix whose leading principal submatrices are all nonsingular. Partition A as:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \text {, where } \quad A_{11} \in \mathbb{R}^{\mathrm{k} \times \mathrm{k}}, A_{12} \in \mathbb{R}^{\mathrm{k} \times(\mathrm{n}-\mathrm{k})}, A_{21} \in \mathbb{R}^{(\mathrm{n}-\mathrm{k}) \times \mathrm{k}}, A_{22} \in \mathbb{R}^{(\mathrm{n}-\mathrm{k}) \times(\mathrm{n}-\mathrm{k})} .
$$

Show that there is exactly one matrix $M \in \mathbb{R}^{(\mathrm{n}-\mathrm{k}) \times \mathrm{k}}$ such that:

$$
\left[\begin{array}{cc}
I_{\mathrm{k}} & 0 \tag{1}\\
-M & I_{\mathrm{n}-\mathrm{k}}
\end{array}\right]\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & \tilde{A}_{22}
\end{array}\right]
$$

Also calculate \tilde{A}_{22}.
Q 4 Let

$$
A=\left[\begin{array}{ccc}
2 & 2 & -4 \tag{2}\\
1 & 1 & 5 \\
1 & 3 & 6
\end{array}\right] \text { and } b=\left[\begin{array}{c}
10 \\
-2 \\
-5
\end{array}\right]
$$

Use Gaussian elimination with partial pivoting to find matrices L and U such that U is upper triangular, L is unit lower triangular with $\left|l_{i j}\right| \leq 1$ for all $i>j$, and $L U=\widehat{A}$, where \widehat{A} can be obtained from A by making row interchanges. Use $L U$ decomposition to solve the system $A x=b$.

Q 5 Let A be positive definite. Then prove that A can be expressed in exactly one way as a product $A=L D L^{T}$, such that L is unit lower triangular, and D is a diagonal matrix whose main-diagonal entries are positive.

Q 6 For a symmetric matrix A, show that the following conditions are equivalent:
(a) $A \succeq 0$.
(b) $A=U^{T} U$ for some matrix U.
(c) All principal minors of A are nonnegative.

Note: A minor of of order k is principal if it is obtained by deleting ($n-k$) rows and the $(\mathrm{n}-\mathrm{k})$ columns with the same index numbers. For example: if one deletes the 3rd row and 4th row of a matrix $A \in \mathbb{C}^{6 \times 6}$, then he/she should delete the 3rd and 4th column to get a principal minor of order 4.

Q 7 Consider the circuit in Figure 1.

Figure 1: Electrical circuit with loop currents
(a) Write down a linear system $A x=b$ of four equations for the four unknown loop currents.
(b) Solve the system for x using the MATLAB command linsolve. Calculate the residual $r=b-A \widehat{x}$, where \widehat{x} denotes your computed solution.
(c) Using Ohm's law and the loop currents calculated in (b), find the voltage drops from the node labeled n_{1} to the nodes labeled n_{2} and n_{3}.

Q 8 Suppose $x(0: \mathrm{n}) \in \mathbb{R}^{\mathrm{n}+1}$. A matrix $V \in \mathbb{R}^{(\mathrm{n}+1) \times(\mathrm{n}+1)}$ of the form:

$$
V=V\left(x_{0}, \ldots, x_{\mathrm{n}}\right)=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{3}\\
x_{0} & x_{1} & \ldots & x_{\mathrm{n}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{0}^{\mathrm{n}} & x_{1}^{\mathrm{n}} & \ldots & x_{\mathrm{n}}^{\mathrm{n}}
\end{array}\right]
$$

is said to be a Vandermonde matrix. Suppose $x_{i} \neq x_{j}$ for $i \neq j$. This question is an illustration of how systems of the form $V^{T} a=f=f(0: \mathrm{n})$ can be solved using $O\left(\mathrm{n}^{2}\right)$ flops.
(a) Solving $V^{T} a=f$ is equivalent to polynomial interpolation:

$$
\begin{equation*}
p(x)=\sum_{j=0}^{\mathrm{n}} a_{j} x^{j} \tag{4}
\end{equation*}
$$

where $p\left(x_{i}\right)=f_{i}$ for $i=0: \mathrm{n}$. The first step in computing a_{j} of (5) is to calculate the Newton representation of the interpolating polynomial p :

$$
\begin{equation*}
p(x)=\sum_{k=0}^{\mathrm{n}} c_{k}\left(\prod_{i=0}^{k-1}\left(x-x_{i}\right)\right) \tag{5}
\end{equation*}
$$

Devise an algorithm to determine the constants c_{k}.
(b) The next task is to generate the coefficients $a_{0}, \ldots, a_{\mathrm{n}}$ in (6) from the Newton representation coefficients $c_{0}, \ldots, c_{\mathrm{n}}$. Define an iteration for the polynomials $p_{\mathrm{n}}(x), \ldots, p_{0}(x)$ which in turn provides a way to obtain coefficients a_{i} recursively.
(c) Determine the flop count for the algorithm you devised combining (a) and (b).

Q 9 Consider the following system of equations:

$$
\left[\begin{array}{cccc}
4 & 8 & -4 & -4 \\
2 & 4 & 8 & -6 \\
-3 & -3 & 8 & -2 \\
-1 & 1 & 6 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-8 \\
10 \\
7 \\
7
\end{array}\right]
$$

Use partial pivoting technique to solve for x.
Q 10 Use complete pivoting technique to solve the following system of equations:

$$
\left[\begin{array}{ccc}
3 & 4 & 3 \\
1 & 5 & -1 \\
6 & 3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
10 \\
7 \\
15
\end{array}\right] .
$$

Q 11 Consider the matrix $F_{\mathrm{n}} \in \mathbb{C}^{\mathrm{n} \times \mathrm{n}}$ with the entries $f_{\mathrm{jk}}=\omega_{\mathrm{n}}^{\mathrm{jk}}$, where $\mathrm{j}, \mathrm{k} \in\{0,1, \ldots, \mathrm{n}-1\}$ and $\omega_{\mathrm{n}}=e^{-\frac{2 \pi i}{n}}$.
(a) Suppose $\mathrm{n}=2 \mathrm{~m}$, where m is a nutural number. Show that there exists a matrix P such that

$$
\begin{gathered}
F_{\mathrm{n}} P=\left[\begin{array}{cc}
F_{\mathrm{m}} & \Omega_{\mathrm{m}} F_{\mathrm{m}} \\
F_{\mathrm{m}} & -\Omega_{\mathrm{m}} F_{\mathrm{m}}
\end{array}\right] \\
\text { where } \quad \Omega_{\mathrm{m}}=\operatorname{diag}\left(1, \omega_{\mathrm{n}}, \omega_{\mathrm{n}}^{2}, \ldots, \omega_{\mathrm{n}}^{\mathrm{m}-1}\right)
\end{gathered}
$$

(b) Use the result found in part (a) to construct an algorithm to solve the system of equations

$$
\bar{F}_{\mathrm{n}} x=b
$$

where $\mathrm{n}=2^{\mathrm{q}}$ for some $\mathrm{q} \in\{0,1,2, \ldots\}$. \bar{F}_{n} is found by replacing each entry of F_{n} by its complex conjugate.
(c) What will be the flop count for such an algorithm? Justify your answer.

Q 12 For any $v \in \mathbb{R}^{\mathrm{n}}$ define the vectors $v_{+}=\left(v+E_{\mathrm{n}} v\right) / 2$ and $v_{-}=\left(v-E_{\mathrm{n}} v\right) / 2$. Suppose $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ is symmetric and persymmetric. Show that if $A x=b$ then $A x_{+}=b_{+}$and $A x_{-}=b_{-}$.
Note: $E_{\mathrm{n}}:=\left[\begin{array}{ccccc}0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0\end{array}\right] \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$.

