Matrix Computations EE636 Assignment 2

Q 1 Given a positive definite matrix $A \in \mathbb{R}^{n \times n}$, define

$$||x||_A := (x^T A x)^{1/2}.$$

- (a) Let R be the Cholesky factor of A, so that $A = R^T R$. Verify that for all $x \in \mathbb{R}^n$, $||x||_A = ||Rx||_2$.
- (b) Using the fact that the 2-norm is indeed a norm on \mathbb{R}^n , prove that $||x||_A$ is a norm on \mathbb{R}^n .
- **Q 2** The *Frobenius norm* is defined by:

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}.$$

Show that the Frobenius norm is a matrix norm (i.e., it is a norm on the vector-space of $n \times n$ matrices, which also satisfies the sub-multiplicative property).

Give an example of a norm on the space of real $n \times n$ matrices that is not a matrix norm.

Q 3 (a) Show that for all $x \in \mathbb{R}^n$

$$||x||_{\infty} < ||x||_{2} < ||x||_{1} < \sqrt{\mathbf{n}} ||x||_{2} < \mathbf{n} ||x||_{\infty}.$$

(b) Make systematic use of the inequalities from (a) to prove that for all $A \in \mathbb{R}^{n \times n}$:

$$||A||_1 \le \sqrt{\mathbf{n}} ||A||_2 \le \mathbf{n} ||A||_1$$

and

$$||A||_{\infty} \leq \sqrt{\mathbf{n}} ||A||_2 \leq \mathbf{n} ||A||_{\infty}.$$

Q 4 Let A be nonsingular, and let x and $\hat{x} = x + \delta x$ be the solutions of Ax = b and $A\hat{x} = b + \delta b$, respectively. Then show that:

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|},$$

where $\kappa(A)$ denotes the condition number of A. Show that this inequality is tight.

Q 5 Let
$$A = \begin{bmatrix} 375 & 374 \\ 752 & 750 \end{bmatrix}$$
.

- (a) Calculate A^{-1} and $\kappa_{\infty}(A)$.
- (b) Find b, δb , x and δx such that Ax = b, $A(x + \delta x) = b + \delta b$, $\|\delta b\|_{\infty} / \|b\|_{\infty}$ is small, and $\|\delta x\|_{\infty} / \|x\|_{\infty}$ is large.
- (c) Find b, δb , x and δx such that Ax = b, $A(x + \delta x) = b + \delta b$, $\|\delta x\|_{\infty} / \|x\|_{\infty}$ is small, and $\|\delta b\|_{\infty} / \|b\|_{\infty}$ is large.

1

Q 6 In MATLAB we can type A = hilb(3) to get the 3×3 Hilbert matrix H_3 , for example. Use MATLAB's condition number estimator condest to estimate $\kappa_1(H_n)$ for n = 3, 6, 9, and 12. Compare it with the true condition number, as computed by cond(A,1).

Q 7 Let A be nonsingular, and suppose x and \hat{x} satisfy Ax = b and $\widehat{A}\hat{x} = \hat{b}$, respectively, where $\widehat{A} = A + \delta A$, $\hat{x} = x + \delta x \neq 0$, and $\hat{b} = b + \delta b \neq 0$. Then prove that

$$\frac{\|\delta x\|}{\|\hat{x}\|} \le \kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|\hat{b}\|} + \frac{\|\delta A\|}{\|A\|} \frac{\|\delta b\|}{\|\hat{b}\|} \right). \tag{1}$$

Q 8 If A is nonsingular, $\|\delta A\| / \|A\| < l/\kappa(A)$, $b \neq 0$, Ax = b, and $(A+\delta A)(x+\delta x) = b+\delta b$, using inequality (1) prove that

$$\frac{\|\delta x\|}{\|x\|} \le \frac{\kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|}\right)}{1 - \kappa(A) \frac{\|\delta A\|}{\|A\|}}.$$

Q 9 A metric space is a set X together with a function $d: X \times X \to \mathbb{R}$ (called a *metric* or *distance function*) satisfying the axioms:

- i. $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y,
- ii. d(x, y) = d(y, x),
- iii. $d(x, y) + d(y, z) \ge d(x, z)$.

Show that a vector space with a well defined norm is a metric space.

Q 10 Define $||A||_{p,q} := \max_{x \neq 0} \frac{||Ax||_q}{||x||_p}$, where $A \in \mathbb{R}^{n \times n}$. Show that $||A||_{p,q}$ satisfies the axioms of norm. Derive formulae for $||A||_{1,2}$, $||A||_{2,1}$, and $||A||_{1,\infty}$.

Q 11 A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be continuous at $x_0 \in \mathbb{R}^n$ if for all $\epsilon > 0, \epsilon \in \mathbb{R}$ there exists $\delta(\epsilon, x_0)$ such that

$$||x - x_0|| < \delta(\epsilon, x_0)$$
 implies $|f(x) - f(x_0)| < \epsilon$.

f is said to be continuous if the above statement holds for all $x_0 \in \mathbb{R}^n$. Show that the vector norms $\|\cdot\|_1, \|\cdot\|_2$, and $\|\cdot\|_{\infty}$ are continuous functions.

- **Q 12** Show that the condition number of an orthogonal matrix is 1.
- **Q 13** Consider the circuit in Figure 1.
- (a) Write down a linear system Ax = b with seven equations for the seven unknown nodal voltages and solve the system for x using the MATLAB command linsolve. Also compute the 1-norm of the residual and condition number $\kappa_1(A)$.
- (b) The following MATLAB code solves a system Ax = b, where A is a large discrete Laplacian operator:

```
m=50;
A=delsq(numgrid('N',m));
n=size(A,1);
b=ones(n,1);
xhat=A\b;
```

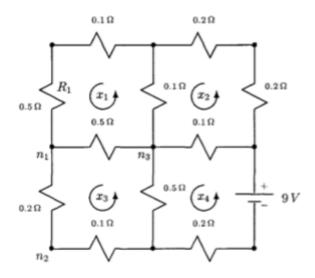


Figure 1: Electrical circuit with loop currents

Compute the norm of the residual \hat{r} . Use the MATLAB command condest and the inequality

$$\frac{\|x - \hat{x}\|_1}{\|x\|_1} \leqslant \kappa_1(A) \frac{\|\hat{r}\|_1}{\|b\|_1}$$

to estimate the error.

(c) What do you conclude by comparing the results found in part (a) and part (b)? Give your answer in one or two sentences.