Matrix Computations
 EE636
 Assignment 2

Q 1 Given a positive definite matrix $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$, define

$$
\|x\|_{A}:=\left(x^{T} A x\right)^{1 / 2}
$$

(a) Let R be the Cholesky factor of A, so that $A=R^{T} R$. Verify that for all $x \in \mathbb{R}^{\mathrm{n}}$, $\|x\|_{A}=\|R x\|_{2}$.
(b) Using the fact that the 2-norm is indeed a norm on \mathbb{R}^{n}, prove that $\|x\|_{A}$ is a norm on \mathbb{R}^{n}.

Q 2 The Frobenius norm is defined by:

$$
\|A\|_{F}=\left(\sum_{i=1}^{\mathrm{n}} \sum_{j=1}^{\mathrm{n}}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

Show that the Frobenius norm is a matrix norm (i.e., it is a norm on the vector-space of $\mathrm{n} \times \mathrm{n}$ matrices, which also satisfies the sub-multiplicative property).
Give an example of a norm on the space of real $\mathrm{n} \times \mathrm{n}$ matrices that is not a matrix norm.
Q 3 (a) Show that for all $x \in \mathbb{R}^{\text {n }}$

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{\mathrm{n}}\|x\|_{2} \leq \mathrm{n}\|x\|_{\infty} .
$$

(b) Make systematic use of the inequalities from (a) to prove that for all $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$:

$$
\|A\|_{1} \leq \sqrt{\mathrm{n}}\|A\|_{2} \leq \mathrm{n}\|A\|_{1}
$$

and

$$
\|A\|_{\infty} \leq \sqrt{\mathrm{n}}\|A\|_{2} \leq \mathrm{n}\|A\|_{\infty}
$$

Q 4 Let A be nonsingular, and let x and $\hat{x}=x+\delta x$ be the solutions of $A x=b$ and $A \hat{x}=b+\delta b$, respectively. Then show that:

$$
\frac{\|\delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\delta b\|}{\|b\|},
$$

where $\kappa(A)$ denotes the condition number of A. Show that this inequality is tight.
Q 5 Let $A=\left[\begin{array}{ll}375 & 374 \\ 752 & 750\end{array}\right]$.
(a) Calculate A^{-1} and $\kappa_{\infty}(A)$.
(b) Find $b, \delta b, x$ and δx such that $A x=b, A(x+\delta x)=b+\delta b,\|\delta b\|_{\infty} /\|b\|_{\infty}$ is small, and $\|\delta x\|_{\infty} /\|x\|_{\infty}$ is large.
(c) Find $b, \delta b, x$ and δx such that $A x=b, A(x+\delta x)=b+\delta b,\|\delta x\|_{\infty} /\|x\|_{\infty}$ is small, and $\|\delta b\|_{\infty} /\|b\|_{\infty}$ is large.

Q 6 In MATLAB we can type $\mathrm{A}=\mathrm{hilb}(3)$ to get the 3×3 Hilbert matrix H_{3}, for example. Use MATLAB's condition number estimator condest to estimate $\kappa_{1}\left(H_{\mathrm{n}}\right)$ for $\mathrm{n}=3,6,9$, and 12. Compare it with the true condition number, as computed by cond (A,1).
Q 7 Let A be nonsingular, and suppose x and \hat{x} satisfy $A x=b$ and $\hat{A} \hat{x}=\hat{b}$, respectively, where $\widehat{A}=A+\delta A, \hat{x}=x+\delta x \neq 0$, and $\hat{b}=b+\delta b \neq 0$. Then prove that

$$
\begin{equation*}
\frac{\|\delta x\|}{\|\hat{x}\|} \leq \kappa(A)\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|\hat{b}\|}+\frac{\|\delta A\|}{\|A\|} \frac{\|\delta b\|}{\|\hat{b}\|}\right) . \tag{1}
\end{equation*}
$$

Q 8 If A is nonsingular, $\|\delta A\| /\|A\|<l / \kappa(A), b \neq 0, A x=b$, and $(A+\delta A)(x+\delta x)=b+\delta b$, using inequality (1) prove that

$$
\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\| \|}\right)}{1-\kappa(A) \frac{\|\delta A\|}{\|A\|}}
$$

Q 9 A metric space is a set X together with a function $d: X \times X \rightarrow \mathbb{R}$ (called a metric or distance function) satisfying the axioms:
i. $d(x, y) \geq 0$ and $d(x, y)=0$ if and only if $x=y$,
ii. $d(x, y)=d(y, x)$,
iii. $d(x, y)+d(y, z) \geq d(x, z)$.

Show that a vector space with a well defined norm is a metric space.
Q 10 Define $\|A\|_{\mathrm{p}, \mathrm{q}}:=\max _{x \neq 0} \frac{\|A x\|_{\mathrm{q}}}{\|x\|_{\mathrm{p}}}$, where $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$. Show that $\|A\|_{\mathrm{p}, \mathrm{q}}$ satisfies the axioms of norm. Derive formulae for $\|A\|_{1,2},\|A\|_{2,1}$, and $\|A\|_{1, \infty}$.
Q 11 A function $f: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ is said to be continuous at $x_{0} \in \mathbb{R}^{\mathrm{n}}$ if for all $\epsilon>0, \epsilon \in \mathbb{R}$ there exists $\delta\left(\epsilon, x_{0}\right)$ such that

$$
\begin{array}{ll}
& \left\|x-x_{0}\right\|<\delta\left(\epsilon, x_{0}\right) \\
\text { implies } & \left|f(x)-f\left(x_{0}\right)\right|<\epsilon
\end{array}
$$

f is said to be continuous if the above statement holds for all $x_{0} \in \mathbb{R}^{\mathrm{n}}$.
Show that the vector norms $\|\cdot\|_{1},\|\cdot\|_{2}$, and $\|\cdot\|_{\infty}$ are continuous functions.
Q 12 Show that the condition number of an orthogonal matrix is 1 .
Q 13 Consider the circuit in Figure 1.
(a) Write down a linear system $A x=b$ with seven equations for the seven unknown nodal voltages and solve the system for x using the MATLAB command linsolve. Also compute the 1 -norm of the residual and condition number $\kappa_{1}(A)$.
(b) The following MATLAB code solves a system $A x=b$, where A is a large discrete Laplacian operator:
$\mathrm{m}=50$;
A=delsq (numgrid ($\left.{ }^{\prime} \mathrm{N}^{\prime}, \mathrm{m}\right)$);
$\mathrm{n}=\operatorname{size}(\mathrm{A}, 1)$;
$\mathrm{b}=$ ones ($\mathrm{n}, 1$);
xhat $=A \backslash b$;

Figure 1: Electrical circuit with loop currents

Compute the norm of the residual \hat{r}. Use the MATLAB command condest and the inequality

$$
\frac{\|x-\hat{x}\|_{1}}{\|x\|_{1}} \leqslant \kappa_{1}(A) \frac{\|\hat{r}\|_{1}}{\|b\|_{1}}
$$

to estimate the error.
(c) What do you conclude by comparing the results found in part (a) and part (b)? Give your answer in one or two sentences.

