
Lecture 5: Minimality of Representation

Given a kernel representation matrix R(ξ) ∈ Rg×q[ξ] we try to reduce the number of equations
by creating zero-rows by means of left unimodular transformations (premultiplying R(ξ) by uni-
modular matrices). This leads to the notion of full row rank representation.
A representation is called minimal if the number of rows is minimal among all possible equivalent
representations i.e. the number of rows cannot be reduced any further.

We have already seen that various different kernel representation matrices can give rise to
the same behavior. Recall that we have seen in the last lecture that if two kernel representation
matrices, say R1(ξ) and R2(ξ) are related by R2(ξ) = U(ξ)R1(ξ), where U(ξ) is unimodular,
then the two behaviors, B1 = ker R1(

d
dt) and B2 = ker R2(

d
dt) are equal. Now, notice that if

R2(ξ) = U(ξ)R1(ξ) then the rows of the two matrices span the same spce over R[ξ]! Let us
make this idea precise. We first define the row-span of a polynomial matrix. The row-span of a
polynomial matrix R(ξ) is the collestion of all polynomial row vectors that can be obtained as
polynomial linear combinations of the rows of R(ξ). This set is denoted by R. The set R has
the structure of a module over the ring R[ξ].

Definition 1. Module: Let A be a ring. An A-module (or a module over A ) is a non-empty
setM with the operations + and . such that

1. M is an abelian group with respect to (+) addition.

2. For m ∈M and a ∈ A, a.m ∈M.

3. For x, y ∈M and a, b ∈ A the following relations hold,

(a) . distributes over + i.e. a.(x+ y) = a.x+ a.y

(b) + distributes over . i.e. (a+ b).x = a.x+ b.x

(c) (a.b).x = a.(b.x)

(d) If there exists an identity element 1, such that 1.x = x for all x ∈M, thenM is said
to be a unitary module.

Note that the row-span of R(ξ) ∈ Rg×q[ξ] is a subset of R1×q[ξ]. It can be easily checked that
R1×q[ξ], too, is a module over R[ξ]. Thus, R, the row-span of R(ξ), is actually a sub-module of
the bigger module R1×q[ξ]. (A submodule is a subset of a module that is a module in its own
right.) Since the submodule R comes from a set of differential equations it is called an equation
module.

Example 1: Consider the kernel representation matrix given by

R(ξ) =

p11(ξ) p12(ξ) p13(ξ) p14(ξ)
p21(ξ) p22(ξ) p23(ξ) p24(ξ)
p31(ξ) p32(ξ) p33(ξ) p34(ξ)

 =

r1(ξ)r2(ξ)
r3(ξ)


The equation module for this situation is

R =

{
r(ξ) ∈ R1×q[ξ] | r(ξ) =

q∑
i=1

ai(ξ)ri(ξ), where ai(ξ) ∈ R[ξ] for all i = 1, 2, . . . , q

}
.
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Example 2: Consider the kernel representation of a scalar behavior given by the differential
equations

dw

dt
+ w = 0 (1)

d2w

dt2
+ w = 0

⇒ R(ξ) =

[
ξ + 1
ξ2 + 1

]
The rowspan of R(ξ) is a module over R[ξ]. The equation module R is given by the polynomial
combination of the rows as

R =
{
a(ξ)(ξ + 1) + b(ξ)(ξ2 + 1)|a(ξ), b(ξ) ∈ R[ξ]

}
⊆ R[ξ]

Note that this is the ideal generated by (ξ + 1) and (ξ2 + 1). This ideal is often represented as
〈(ξ + 1) , (ξ2 + 1)〉.

Definition 2. Ideal: Let A be a ring. An ideal in A is a non-empty subset a of A with the
operations + and . such that

1. If a1, a2 ∈ a then, a1 + a2 ∈ a

2. If a ∈ a and c ∈ A then, c.a ∈ a

An ideal in A is clearly an A-module.
Knowing the concept of modules enables us to restate Theorem 1 of Lecture 4 in the language

of modules.

Theorem 3. Consider two behaviors given in kernel representations as

B1 = ker R1(
d

dt
), B2 = ker R2(

d

dt
).

Suppose the two equation modules R1 and R2 are equal, that is, R1 = R2. Then B1 = B2.

Proof: First note that R1 ⊆ R2. This means every row of R1(ξ) is a polynomial linear com-
bination of the rows of R2(ξ). Hence, there exists a matrix F (ξ) of proper size such that
R1(ξ) = F (ξ)R2(ξ). It then easily follows that w ∈ ker R2(

d
dt) implies w ∈ ker R1(

d
dt). In other

words, B2 ⊆ B1.
Now noting that R2 ⊆ R1 and running the exactly same chain of arguments with roles of

R1 and R2 reversed, we get that there exists F̃ (ξ) such that R2(ξ) = F̃ (ξ)R1(ξ). It then follows
that B1 ⊆ B2. Hence, B1 = B2. �

To understand the strength of the module theoretic description of equations, consider the
behavior given by equation (1) in Example 2. Here the equation ideal is generated by ξ+ 1 and
ξ2 + 1. Notice that

ξ2 + 1− (ξ − 1)(ξ + 1) = 2.

Now every w ∈ B satisfies ( d
dt + 1)w = 0 and d2

dt2
w+ 1 = 0. Therefore, for every w ∈ B we must

have

(
d2

dt2
+ 1)w − (

d

dt
− 1)(

d

dt
+ 1)w = 2w

⇒ 0.w = 2w

⇒ w = 0.
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Since w ∈ B was arbtrary, it means that B = {0}. The important thing to notice in this
example is that here the equation ideal contains 2 and therefore it contains the ideal generated
by 2. But, 2 generates the whole ring as an ideal. Therefore, the equation ideal here is the whole
ring R[ξ]. Therefore, the behavior must be equal to the behavior corresponding to the whole
ring, which is the zero behavior.

The next theorem is a well-known result from commutative algebra. It shows that if there
is an ideal that is generated by two polynomials then the same ideal is generated by a single
polynomial, namely, the gcd of the two generating polynomials.

Theorem 4. Let p(ξ), q(ξ) ∈ R[ξ]. Then the ideal generated by p(ξ) and q(ξ) is equal to the
ideal generated by g(ξ) where g = g.c.d(p, q)

Proof: To show < g >⊆< p, q >
Since g(ξ) is the g.c.d of p(ξ) and q(ξ) we have by Aryabhatta identity that there exists polyno-
mials a(ξ) and b(ξ) ∈ R[ξ] such that g = a(ξ)p(ξ) + b(ξ)q(ξ). Thus g(ξ) ∈< p(ξ), q(ξ) >. Any
multiple of g(ξ) is also generated by < p(ξ), q(ξ) >. Therefore, < g >⊆< p, q >.
To show < p, q >⊆< g >
Ideals generated by p(ξ) will be of the form c(ξ)p(ξ) where c(ξ) ∈ R[ξ]. Since g is the g.c.d of p,
p is some polynomial multiple of g, i.e. p(ξ) = p1(ξ)g(ξ). Similarly, q(ξ) = q1(ξ)g(ξ). Therefore
a(ξ)p(ξ) + b(ξ)q(ξ) = (a(ξ)p1(ξ) + b(ξ)q1(ξ))g(ξ).
Since both sides inclusion holds, < p(ξ), q(ξ) >=< g(ξ) >. �

Example: Let the describing equations of a dynamical system be

d2w

dt2
+ 3

dw

dt
+ 2w = 0

d3w

dt3
+ 6

d2w

dt2
+ 11

dw

dt
+ 6w = 0

The kernel representation matrix is given by R(ξ) =

[
ξ2 + 3ξ + 2

ξ3 + 6ξ2 + 11ξ + 6

]
w = 0. The rows

r1(ξ) and r2(ξ) are not coprime. They can be factored as r1(ξ) = (ξ + 1)(ξ + 2) and r2(ξ) =
(ξ + 1)(ξ + 2)(ξ + 3). Thus the behavior of this system will be given by (the g.c.d of the two
polynomials) (ξ2 + 3ξ + 2)w = 0.

Thus we have found a systematic procedure of calculating the minimal representation of a system
with one variable.
When the number of variables are q, i.e. the signal space W = Rq, the kernel representation
matrix R(ξ) is a matrix with q columns and the g.c.d condition is not applicable for that case. To
get a zero row we could have used the algorithm for upper-triangularization but that would be
too cumbersome and computationally expensive. The following theorem gives a better approach
for producing a zero row if the matrix has dependent rows.

Theorem 5. Let a1(ξ), a2(ξ), . . . , ak(ξ) ∈ R[ξ] and assume that a1(ξ), a2(ξ), . . . , ak(ξ) are co-
prime (have no common factors). Then there exists a unimodular matrix U(ξ) ∈ Rk×k[ξ] such
that the last row of U(ξ) =

[
a1(ξ) a2(ξ) . . . ak(ξ)

]
If

R(ξ) =


r1(ξ)
r2(ξ)

...
rk(ξ)

 R(ξ) ∈ Rk×q[ξ]
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and the rows are dependent then from the definition of dependence, there exists polynomials
ai(ξ) ∈ R[ξ] not all zero, such that

∑k
i=1 ai(ξ)ri(ξ) = 0. We can safely say that ai(ξ) are coprime

because if they are not then we can pull out the gcd of the ai(ξ) and have

g(ξ)

k∑
i=1

ãi(ξ)ri(ξ) = 0

⇒
k∑

i=1

ãi(ξ)ri(ξ) = 0.

Since g(ξ) was the gcd of ai(ξ), the polynomials ãi(ξ)’s must be coprime.

Therefore, pre-multiplyingR(ξ) with U(ξ) ensures U(ξ)R(ξ) =

[
R̃(ξ)

0

]
where R̃(ξ) ∈ Rk−1×q[ξ].

We have succeeded in creating a zero row in the kernel representation matrix by assuming that
the unimodular matrix has a1(ξ)a2(ξ) . . . ak(ξ) as the last row. Now the aim is to complete the
matrix U(ξ) such that U(ξ) is unimodular. This is known as the Matrix Completion Problem.
Proof: Let a(ξ) =

[
a1(ξ) a2(ξ) . . . ak(ξ)

]
. Take the minimal degree polynomial of a(ξ).

Using this polynomial divide the other polynomials using long division. This is equivalent
to right multiplication by a unimodular matrix V1(ξ). Now take the polynomial of mini-
mal degree from a(ξ)V1(ξ) and repeat the procedure. This is again a postmultiplication by
a unimodular matrix V2(ξ). After repeating this procedure a finite number of times, we get
a(ξ)V1(ξ)V2(ξ) . . . Vn−1(ξ) =

[
m(ξ) 0 . . . 0

]
. By postmultiplying by a permutation matrix

Vn we finally get a(ξ)V1(ξ)V2(ξ) . . . Vn−1(ξ)Vn(ξ) =
[
0 0 . . . m(ξ)

]
. Since all ai(ξ) were co-

primem(ξ) must be a non-zero constant polynomial. Defining V (ξ) = V1(ξ)V2(ξ) . . . Vn−1(ξ)Vn(ξ),
a(ξ)V (ξ) =

[
0 0 . . . m(ξ)

]
. Since the inverse of a unimodular matrix is unimodular, let

V −1(ξ) = U(ξ) therefore r(ξ) =
[
0 0 . . . 1

]
U(ξ). This implies that the last row of U(ξ) is

r(ξ) and all other entries are also calculated using V −1(ξ). �

So far we have seen two methods of converting a row dependent kernel representation matrix
into full row rank matrices by i) upper-triangularization and ii) making zero rows at the bottom
which can easily be discarded. Both the methods involve premultiplication by unimodular
matrices. Combining this with postmultiplication one can reduce a polynomial matrix into a
diagonal matrix. This would be quite helpful in solving polynomial differential equations because
the equations would then be decoupled and easier to solve.

However, since this would involve column operations, such a reduction would change the
solution set, and we cannot say that the behavior of the reduced set of equations would be
the same. This issue will be addressed later. First we give a constructive proof for the diag-
onal representation form which is known as the Smith canonical form (in short, SCF), where
U(ξ)R(ξ)V (ξ) = diag (d1(ξ), d2(ξ), . . . , dr(ξ) where r is the rank of the kernel representation
matrix R(ξ).

Theorem 6. Let R(ξ) ∈ Rg×q[ξ] be the kernel representation matrix. There exists unimodular
matrices U(ξ) ∈ Rg×g[ξ] and V (ξ) ∈ Rq×q[ξ] such that

U(ξ)R(ξ)V (ξ) =


d1(ξ)

d2(ξ)
. . . 0r×(q−r)

dr(ξ)

0(g−r)×r 0(g−r)×(q−r)
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where r is the number of linearly independent rows of the matrix (which is equal to the rank of
the matrix).

Proof: Choose the element of least degree from R(ξ). Apply row and column permutations to
bring this element at the (1, 1) position. This involves pre and postmultiplication by unimodular
matrices. Use the element of minimal degree to divide the entries along the first column of R(ξ).
This involves premultiplication by unimodular matrices. Similarly carry out divisions of the
elements in the first row (postmultiplying by unimodular matrices). In the first pass the degree
of the elements in the first row and column is reduced by atleast one. Select the element of
least degree among the entries of the first row and column and bring it to the (1,1) position by
column and(or) row permutaions. Divide the remaining entries both column wise and row wise
with this element. Again the degree of the elements is reduced by atleast one. This process
continues when there are two nonzero elements in the first row or column. Since the degrees are
nonnegative after a finite number of steps the first row and the first column becomes zero as

d1(ξ) 0 . . . 0
0 a22(ξ) . . . a2q(ξ)
...

...
. . .

0 ag2(ξ) . . . agq(ξ)


with the (1,1) element being nonzero and minimal.
Apply the procedure iteratively for the (g− 1)× (q− 1) submatrix. By submatrix we mean the
matrix excluding the reduced rows and columns (here only the first row and column is excluded).
The minimal degree is now placed at (2,2) position with the other entries of the second row and
second column brought to zero. Applying the procedure for subsequent submatrices we get a
diagonal form as 

d1(ξ) 0 . . . . . .
0 d2(ξ) 0 . . .
... 0 dr(ξ) 0
...

... 0
. . .

0 0 0 . . . 0


�

As mentioned previously since the reduction of the kernel representation matrix to the Smith
canonical form involves column operations the solution set (behavior) does not remain the same,
unlike upper-triangularization which involved only row operations. The question now is how does
the behavior change? The claim is the behavior is isomorphic which is proved in the following
theorem.

Theorem 7. Given a behavior B represented by R( d
dt)w = 0. The kernel representation

matrix is transformed to the diagonal form D(ξ) by left and right unimodular matrices as
U(ξ)R(ξ)V (ξ) = D(ξ). If the behavior given by D(ξ) is B̃, then the behaviors B and B̃ are
isomorphic.

Proof: Considering the original kernel representation

R(
d

dt
)w = 0
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After transformation the behaviour changes, w̃ represented the new behavior. Therefore,

D(
d

dt
)w̃ = 0

U(ξ)R(ξ)V (ξ)w̃ = 0

Premultiplication doesnot change the behavior, thus

R̄(ξ)V (ξ)w̃ = 0

where R̄(ξ) = U(ξ)R(ξ). By a slight abuse of notation we write R(ξ) = R̄(ξ). By defining
w̃ := V −1(ξ)w we get

R(ξ)V (ξ)V −1(ξ)w = 0

R(ξ)w = 0

Therefore to show that the behaviors are isomorphic we need to show the map

V −1(
d

dt
) : B→ B̃ (2)

is bijective, i.e. both injective (one-to-one) and surjective(onto) where B̃ := ker R( d
dt)V ( d

dt). To

show the map is surjective means for every w̃ ∈ B̃ there exists a w ∈ B.

w := V (
d

dt
)w̃

or

V −1(
d

dt
)w = V −1(

d

dt
)V (

d

dt
)w̃ = w̃

This show the map is surjective.
To show the map is injective we use the method of contradiction.
Suppose the map is not injective, implies there exists w1, w2 ∈ B and w1 6= w2 such that

V −1(
d

dt
)w1 = V −1(

d

dt
)w2

V −1(
d

dt
)(w1 − w2) = 0

Premultiplying by a unimodular matrix V ( d
dt) we get w1 = w2 which is a contradiction to the

assumed fact that w1 6= w2. Thus the assumption is false and the map is indeed injective.
Since both injectivity and surjectivity holds the map is known as a bijective map and hence an
isomorphism. �
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