
Lecture Notes of EE 714

Lecture 1

Motivation

Systems theory that we have studied so far deals with the notion of specified input and output
spaces. But there are systems which do not have a clear demarcation between the input and
output (e.g. Economists believe that there exists a relation between the production P of a
particular economic resource, the capital K invested and the labor L expended towards its
production. It becomes difficult to differentiate between the input and output for such models.)
or do not have an input or output at all (e.g. solar system, system of linear equations). To
model and analyse such systems existing classical methods in frequency domain or the state
space methods in time domain are not sufficient.

Further, the transfer function, which is a map from input space to output space works well for a
system having only one independent variable. For two variables the transfer function becomes
a ratio of polynomials n and d in two indeterminates s1 and s2 as n(s1,s2)

d(s1,s2)
. If

n(s1, s2)

d(s1, s2)
=
s1
s2

then it can take a 0/0 form which cannot exist and is difficult to handle. These were some of the
causes that lead to the study of systems from another viewpoint - according to their behaviors.

Mathematical Models

A mathematical model is a collection of exclusion laws. Mathematical modeling is usually done
for physical systems which are governed by some physical laws. These laws define which condi-
tions can occur and which are impossible to occur. They are the exclusion laws. We start by
looking at simple examples.

Example 1: Consider the electrical resistor. Before Ohm’ law came into existence it was believed
that any (v, i) ∈ R2 defines the system but Ohm’s law defined a proportional relationship between
v and i. Such physical laws that governs the system are known as exclusion laws. All values
(v, i) ∈ R2 defines the universum U. The property that uniquely defines the system is the
behavior given by

U ⊇ B =
{

(v, i) ∈ R2|v = iR
}

Example 2: Mathematical model of the states of water. If the state is represented by s it belongs
to { ice, water, steam }, the other variable required is temperature t in degree Celsius which
belongs to [-273, ∞ ). All outcomes are U = (s, t) = { ice, water, steam } × [-273, ∞ ). Out of
these the possible outcomes that form the behavior is given by

B =
{

({ice} × [−273, 0]) ∪ ({water} × [0, 100]) ∪ ({steam} × [100,∞))
}

Example 3: For a system of linear equations in Rn, the behavior is given by

B =
{
x ∈ Rn|Ax = b

}
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This forms an affine set in Rn.
Now we formally define what a mathematical model is.

Definition 1. A mathematical model is a pair (U,B) with U as the universum, which is the
set of all outcomes of a given phenomenon (which we want to model) and B a subset of U called
the behavior.

Dynamical Systems

In dynamical systems the system variables evolve with time.
Example: In the most elementary case of a solar system with Sun at the centre and the only
planet as Earth whose distance in three coordinate system is given by the triple x(t) ∈ R3 the
universum and the behavior is defined by the following relations

U = {x : R −→ R3}

B = {x ∈ U| Kepler’s laws hold}

and this defines the dynamical system.

Thus a dynamical system Σ is defined by the triple

Σ = (T,W,B)

where T is the indexing set, W is the signal space and B is the behavior.
Depending on the system description, whether continous time or discrete time, the indexing set
can be R or R+ or Z or Z+ or more generally some interval in R or Z. Here there is only one
independent variable, time. For two independent variables the indexing set becomes T2.
The signal space depends on the number of manifest variables q which evolve with time. Manifest
variables are those whose behavior is described by the model. A single input, single output
system has two variables (input and output) taking real values therefore W = R2. W = R3 for
the solar system. Generally W = Rq. W is a finite dimensional vector space for lumped system
and is infinite dimensional for distributed system. W can take values from finite field also. Such
systems are known as discrete event systems. The collection of maps from the indexing set to
the signal space is represented as WT = {T −→ W} and the behavior B is a subset of WT.
Behaviors are also known as trajectories of the system.

Linearity

A dynamical system Σ = (T,W,B) for T = R or Z is linear if the behavior B is a R-vector
space (linear vector space over the field of real numbers).
The superposition principle is followed, i.e. if w1, w2 ∈ B and α, β ∈ F⇒ αw1 + βw2 ∈ B.
Example 1 :

B =
{
x ∈ RR|ẋ = ax

}
⊆ RR

It is a linear system because the solution set {x(t) = eatk, k ∈ R} forms a linear vector space.

Example 2 :

B =
{
x ∈ RR|ẋ = ax2

}
This is not a linear system because if x1(t) ∈ B, x2(t) ∈ B then ẋ1 = ax21 and ẋ2 = ax22. But
ẋ1 + ẋ2 = a(x21 + x22) 6= a(x1 + x2)

2. Therefore (x1 + x2) /∈ B.
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Time (In)Variance

A dynamical system Σ = (T,W,B) with T = R or Z is said to be time invariant if σTB = B
for all T ∈ T. The shift operator σT is defined as σT (w(t)) = w(t− T ). Physically it means, if
w(t) is a behavior any shifted version of it is also a behavior. If T = Z+ or R+, then for time
invariance σTB ⊆ B.

Example 1 :

B =
{
x ∈ RRn |ẋ = Ax

}
The solution set is {x(t) = eAtx(0), x(0) ∈ Rn} which is linear as already seen. To check if it is
time invariant take a time shift T ∈ R then,

σT (eAtx(0)) = eA(t−T )x(0) = eAte−ATx(0)

e−AT is a nonsingular, invertible map and e−ATx(0) can be viewed as the initial condition at
time t = −T . Thus this shifted trajectory is also a behavior and since x(0) is arbitrary this
applies for all trajectories. Hence the system is time invariant.
By specifying any other initial condition, not necessarily at t = 0, it is also possible to specify
the full trajectory.

Example 2 : Check if the system described by the following behavior is linear and time invariant.

B =
{
x(t)|ẋ = tx

}
If x1(t) ∈ B, x2(t) ∈ B then ẋ1 = tx1 and ẋ2 = tx2. If x3 = (x1 + x2) then ẋ3 = tx3 =
t(x1 + x2) = ẋ1 + ẋ2. Therefore (x1 + x2) ∈ B and the system is linear.
To check time invariance defining the shifted trajectory as x̃(t) := σT (x(t)) = x(t − T ). If it is
a behavior then

dx̃(t)

dt
= ẋ(t− T )

dx̃(t)

dt
= (t− T )x(t− T ) = (t− T )x̃(t)

Since (t− T )x̃(t) 6= tx̃(t), it is not a behavior and the system is time varying.

Lecture 2

Linear Time Invariant Systems

Linear time invariant systems which are described by linear constant coefficient differential
equations are studied because many nonlinear systems can be approximated by linear systems
and linear systems are found in many applications like

1. Newton’s law of motion, mẍ = F , where, m is the mass, ẍ is the acceleration and F is the
applied force.

2. A spring mass damper system described by mẍ+Dẋ+Kx = F where, D is the coefficient
of dynamic friction and K is the spring constant. This can be extended to the case where
multiple blocks are connected with each other.
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3. Hamiltonian systems defined by [
ṗ
q̇

]
=

[
∂H
∂q

−∂H
∂p

]
where p is the momentum, q is the position and H is a scalar function known as the
Hamiltonian of the system.

The behaviour B ⊇ U = WT. When the signal space is one dimensional, let w(t) ∈ R be a
trajectory. Then (p( ddt))w = 0 defines a behavior, where p is a polynomial in d

dt . For a second
order system

d2w

dt2
+ 5

dw

dt
+ 6w = 0

(
d2

dt2
+ 5

d

dt
+ 6)w = 0

Substituting d
dt = ξ gives p(ξ) = ξ2 +5ξ+6 ∈ R[ξ] where R[ξ] represents the ring of polynomials

with real coefficients.

For w(t) ∈ Rn, the corresponding ordinary differential equation (ODE) is

r1(
d

dt
)w1 + r2(

d

dt
)w2 + · · ·+ rq(

d

dt
)wq = 0

[
r1(

d
dt) r2(

d
dt) . . . rq(

d
dt)
] 
w1

w2

. . .
wq

 = 0

Thus a row vector of differential operator acts on the trajectory vector. There can be many
such differential equations which relate the variables wi. Stacking these equations row-wise we
get a polynomial matrix R with q columns and as many rows as the number of equations (say
g). Each term of this matrix is a polynomial in d

dt . Therefore we have

R(
d

dt
)w = 0

By substituting d
dt = ξ,R(ξ) ∈ R[ξ]g×q.

The behavior is the solution set of R( ddt)w = 0. Therefore

B =
{
w ∈WU|R(ξ)w = 0

}
= kerR(

d

dt
)

This is known as the Kernel Representation and R( ddt) is the kernel representation matrix.
Challenging Problem: Find examples for linear time invariant (LTI) systems in continuous
time that are not described by ordinary differential equation (ODE). What are the specifications
(apart from (LTI)) required for the system to be described by an ODE?
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Strong and Weak Solutions of a Differential Equation

Consider the differential equation of a R-C circuit

ẏ + y − u̇ = 0

where y is the output and u is the input. The transfer function of this system is given by

Y (s)

U(s)
=

s

(s+ 1)

If input voltage is a step function then the output current is an exponentially decaying signal
as shown in (1).
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Figure 1: Output signal of the differential equation

Rewriting the differential equations in the behavioral context where the voltage and current
are manifest variables w2 and w1 respectively we have

dw1

dt
+ w1 −

dw2

dt
= 0 (1)

Let the solution of this differential equation be the 2-tuple
[
w1(t) w2(t)

]T
. So it must satisfy

the differential equation. But for the differential equation to be satisfied both w1 and w2 must be
atleast once differentiable with respect to time. However neither the voltage nor the current as
seen previously are smooth (differentiable), but they are indeed the solution to this differential
equation. How do we justify this? For this the notion of weak and strong solution of a differential
equation is used. Before defining these terms we define the following term.

Definition 2. Locally Integrable Function: A function w : R → Rq is called locally inte-
grable if for all a, b ∈ R, ∫ b

a
‖w(t)‖2dt <∞

where ‖.‖2 denotes the Euclidean norm of the vector. The space of locally integrable functions
w : R→ Rq is denoted by Lloc1 (R,Rq). Functions with finite jumps are locally integrable like step
and sawtooth.

Since both the step function and the function of figure (1) are locally integrable functions

5



we integrate the differential equation (1) for some time interval t,∫ t

0

dw1(τ)

dτ
dt+

∫ t

0
w1(τ)dt−

∫ t

0

dw2(τ)

dτ
dt = C1 (2)

w1(t)− w1(0) +

∫ t

0
w1(τ)dt− w2(t)− w2(0) = C1

w1(t) +

∫ t

0
w1(τ)dt− w2(t) = C

If (w1, w2) is a solution for the differential equation (1) then it should also be a solution for
(2). For the integral equation the restriction of differentiability does not apply. Therefore if w
is sufficiently smooth and satisfies R( ddt)w = 0, w(t) are the strong solutions of the differential
equation. If w is not smooth but satisfies the integral equation (2) then w(t) is a weak solutions
of the differential equation.

Remark 3. When looking for weak solutions of the integral equation (that is, (2)) one must
not look for satisfation of the equation for all time t ∈ R. This is in contrast to the situation of
strong solutions, where the differential equation must be satisfied for all t ∈ R. The reason for
this seeming double standard in dealing with weak and strong solutions lies in the description of
the respective solution spaces. While C∞(R,R) functions are specified point-wise, it is not done
so for Lloc

1 (R,R) functions. More precisely, two C∞(R,R) functions, say w1, w2, are identified to
be the same if w1(t) = w2(t) for all t ∈ R. On the other hand, w1, w2 ∈ Lloc

1 (R,R) are identified
to be the same if they satisfy ∫ b

a
‖w1(t)− w2(t)‖2dt = 0

for all a, b ∈ R. This implies that w1 − w2 is allowed to be non-zero over a set of measure
zero. Therefore, w1 = w2 as Lloc

1 (R,R) functions if w1(t) = w2(t) for all t ∈ R but over a set
of measure zero, in other words, w1(t) = w2(t) for almost all t ∈ R. In the same way, when
w ∈ Lloc

1 (R,Rq) is tested for whether it is a weak solution or not, the LHS of equation (2) needs
be equal to the RHS only for all t ∈ R minus a set of measure zero. That is, a weak solution
satisfies equation (2) for almost all t ∈ R.

Obtaining integral equations from the differential representation

Let R(ξ) ∈ R[(ξ)]g×q, then R can be represented as

R(ξ) =


p11(ξ) p12(ξ) . . . p1q(ξ)
p21(ξ) p22(ξ) . . . p2q(ξ)

...
. . .

pg1(ξ) pg2(ξ) . . . pgq(ξ)


where each pij = a0+a1ξ+a2ξ

2+ · · ·+arξ
r. Choosing the constant terms from each polynomial

and writing them in their respective (i, j) positions we get the constant matrix R0., Similarly
writing the coefficients of ξ in their respective positions we get the matrix R1. Continuing this
in a similar fashion for the highest degree in the polynomial we obtain the matrix Rn 6= 0
corresponding to the n-th degree of ξ. So, R(ξ) can be written as

R(ξ) = R0 +R1ξ +R2ξ
2 + · · ·+Rnξ

n
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Thus a polynomial matrix (matrix with polynomial entries) can be written as a polynomial with
matrix coefficients.

Considering w : R→ Rq, then R(ξ)w = 0 can be written as

R0w +R1ξw +R2ξ
2w + · · ·+Rnξ

nw = 0 (3)

R0w +R1
dw

dt
+R2

d2w

dt2
+ · · ·+Rn

dnw

dtn
= 0

Integrating (3) once we get,

R0

∫ t

0
w(τ)dτ +R1w(t) +R2

dw

dt
+ · · ·+Rn

dn−1w

dtn−1
= C0

Integrating it again

R0

∫ t

0

∫ τ1

0
w(τ)dτds+R1

∫ t

0
w(s)ds+R2w(t) + · · ·+Rn

dn−2w

dtn−2
= C0t+ C1

Integrating it n times

(R0(

∫
)n +R1(

∫
)n−1 +R2(

∫
)n−2 + · · ·+Rn)w = C0t

n−1 + C1t
n−2 + · · ·+ Cn−1

(R∗(

∫
))w(t) = C0t

n−1 + C1t
n−2 + · · ·+ Cn−1

where R∗ refers to the reciprocal polynomial matrix. The reciprocal polynomial matrix
of a polynomial matrix R(ξ) is defined as follows: Given a polynomial p(x) = a0 + a1x +
a2x

2 + · · · + anx
n in the indeterminate x, then the reciprocal polynomial is defined as p∗(x) =

a0x
n+a1x

n−1 + · · ·+an. Thus p∗(x) := xnp(1/x). Similarly, for a polynomial with matrix R(ξ)
written as a polynomial with real constant matrix coefficients

R(ξ) = R0 +R1ξ +R2ξ
2 + · · ·+Rnξ

n

R∗(ξ) := ξnR(1/ξ) = Rn +Rn−1ξ +Rn−2ξ
2 + · · ·+R0ξ

n

Lecture 3

Definition 4. C∞ functions: A function w : R → Rq is called infinitely differentiable if w is
k times differentiable for all k ∈ N. This space of infinitely differentiable functions is denoted
by C∞(R,Rq).

C∞(R,R) functions are good in the sense that they can be directly tested for satisfaction
of differential equations, without us having to worry whether we pick up impulses (which are
not functions!) by blindly differentiating non-smooth functions. Thus, C∞(R,R) solutions of
ker R( ddt) are strong solutions. However, there could be strong solutions in ker R( ddt) which
are not C∞(R,R); these solutions may be sufficiently differentiable allowing us to directly verify
satisfaction of differential equations, but they may not be infinite times differentiable.

Theorem 5. Consider the behavior defined by

R(
d

dt
)w = 0 (4)

1. Every strong solution of (4) is also a weak solution.

2. Every weak solution that is sufficiently smooth (belongs to C∞)is also a strong solution.
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Topological Properties of Behavior

Given a set S then the elements w1, w2, . . . , wk form a sequence represented by {wk} where
k ∈ N. The distance between two elements of the set is |wi − wj |. If ∃w ∈ R such that

lim
k→∞

|wk − w| = 0

then {wk} is called a convergent sequence.

Convergence of functions in the sense of Lloc1 (R,Rq) :

A sequence {wk} in Lloc1 (R,Rq) converges to w ∈ Lloc1 (R,Rq) in the sense of Lloc1 (R,Rq) if for all
a, b ∈ R,

lim
k→∞

∫ b

a
‖w(t)− wk(t)‖2 = 0

Example: Consider the sequence of functions {wk} with wk(t) defined by

wk(t) =

{
0 for |t| > 1/k

1 for |t| ≤ 1/k

The sequence converges to zero in the sense of Lloc1 (R,Rq) because for k = 1 the function is a
positive pulse of height 1 and width 2. As k increases the width of the function decreases and
at k → ∞ it can be thought of as a spike of height 1. Such a function when square integrated
over any finite interval results in the zero function. If the function is changed to

wk(t) =

{
0 for |t| ≥ 1/k

k for |t| < 1/k

the sequence doesnot converge in the sense of Lloc1 (R,Rq) because the magnitude of the sequences
goes on increasing as k increases.

Lemma 6. Suppose B = kerR( ddt). If {wk} ⊆ B such that wk converges to w in the sense of
Lloc1 then w(t) ∈ B

Bump Function :

A function φ defined as

φ(t) =

{
0 for |t| ≥ 1

e
− 1

1−t2 for |t| < 1
(5)

is an infinitely differentiable function.

Lemma 7. Let w ∈ Lloc1 (R,Rq) and let φ be given by (5). Define the function v by

v(t) :=

∫ ∞
−∞

φ(τ)w(t− τ)dτ (6)

Then v is infinitely differentiable.

Lemma 8. For every w ∈ B we have v = φ ∗ w ∈ B.
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Figure 2: Graph of the bump function defined in (5)

Theorem 9. Let w ∈ Lloc1 (R,Rq). There exists a sequence {wk} in C∞(R,Rq) that converges to
w in the sense of Lloc1 (R,Rq)

This theorem shows that for every weak solution there is a sequence of strong solutions or in
other words, the C∞(R,Rq) is dense in Lloc1 (R,Rq) . The strong solutions are dense means every
weak solution can be approximated by a strong solution.

Theorem 10. Let R1(ξ) ∈ Rg1×q[ξ] and R2(ξ) ∈ Rg2×q[ξ]. The corresponding behaviors are
denoted by B1 and B2. If B1 ∩ C∞(R,Rq) = B2 ∩ C∞(R,Rq), then B1 = B2
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