
Behavioral Theory of Systems (EE 714)

Problem Set 2

1. Determine the behavior B associated with the differential equation

−32w + 22
d2

dt2
w + 9

d3

dt3
w +

d4

dt4
w = 0.

2. Let Pi(ξ) ∈ R[ξ], (i = 1, 2). Denote the corresponding behaviors by Bi. Assume that
B1 ⊆ B2. Prove that the polynomial P1(ξ) divides P2(ξ).

3. Many differential equations occurring in physical applications, e.g., in mechanics, con-
tain even derivatives only. Consider the behavioral equation

P

(
d2

dt2

)
w = 0,

with P (ξ) ∈ Rq×q[ξ], detP (ξ) 6= 0. Assume that the roots of detP (ξ) are real and
simple (multiplicity one). Describe the real behavior of this system in terms of the
roots λk of detP (ξ) and the kernel of P (λk).

4. Consider the set of differential equations

w1 +
d2

dt2
w1 − 3w2 −

d

dt
w2 +

d2

dt2
w2 +

d3

dt3
w2 = 0.

w1 −
d

dt
w1 − w2 +

d

dt
w2 = 0. (1)

(a) Determine the matrix P (ξ) ∈ R2×2[ξ] such that equations (1) is equivalent to
P ( ddt)w = 0.

(b) Determine the roots of detP (ξ).

(c) Prove that every (strong) solution of (1) can be written as

w(t) =

[
α1 − 3α2

α1

]
et +

[
α2

α2

]
tet +

[
β
β

]
e−2t +

[
γ
γ

]
e−t.

5. (a) Show that the polynomial matrix U(ξ) ∈ R2×2[ξ] given by

U(ξ) :=

[
1 + 3ξ + ξ2 −2ξ − ξ2
−2− ξ 1 + ξ

]
is unimodular, and determine (U(ξ))−1.

(b) Write U(ξ) as a product of elementary unimodular matrices.
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(c) Determine the behavior of U( ddt)w = 0. What general principle lies behind your
answer?

6. Determine the behavior B associated with P ( ddt)w = 0, where

P (ξ) =

[
2 + ξ2 1

2− 2ξ − 4ξ2 1 + ξ

]
.

7. Different polynomial matrices may have the same determinant. Let P (ξ) ∈ R2×2[ξ] be
a diagonal matrix. Given detP (ξ) = −2− ξ + 2ξ2 + ξ3, how many different behaviors
correspond to this determinant?

8. Let P (ξ) be given by

P (ξ) :=

[
P11(ξ) 0
P21(ξ) P22(ξ)

]
Consider the behavior associated with P ( ddt)w = 0.

(a) Take P11(ξ) = 1− 2ξ+ ξ2, P21(ξ) = −3 + ξ, and P22(ξ) = 1 + ξ. Determine a basis
of the corresponding behavior Ba and conclude that Ba is a linear subspace of
dimension three.

(b) Take P11(ξ) and P22(ξ) as in the previous part and P21(ξ) = −3 + 2ξ − 2ξ2 + ξ3.
Prove that the corresponding behavior, Bb, equals Ba.

(c) Now let P11(ξ) 6= 0, P22(ξ) 6= 0, and P22(ξ) arbitrary. Prove that the corresponding
behavior is a linear subspace of dimension equal to the degree of P11(ξ)P22(ξ).

(d) Consider the more general case

P (ξ) :=

[
P11(ξ) P12(ξ)
P21(ξ) P22(ξ)

]
.

Prove that P can be brought into lower triangular form by elementary row opera-
tions. Use this to prove that the dimension of the corresponding behavior is equal
to the degree of the determinant of P (ξ).

(e) Use induction on q to prove the following theorem.

Theorem 0.1. Let P (ξ) ∈ Rq×q[ξ] and let λi ∈ C, i = 1, . . . , N , be the distinct
roots of detP (ξ) of multiplicity ni : detP (ξ) = c

∏
(ξ−λk)nk for some nonzero con-

stant c. The corresponding behavior B is autonomous and is a finite-dimensional
subspace of C∞(C,Cq) of dimension n = deg detP (ξ). Moreover, w ∈ B if and
only if it is of the form

w(t) =

N∑
i=1

ni−1∑
j=0

Bijt
jeλit (2)

where the vectors Bij ∈ Cq satisfy the relations

ni−1∑
j=l

(
j
l

)
P (j−l)(λj)Bij = 0, i = 1, . . . , N ; l = 0, . . . , ni − 1
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Figure 1: Mass-spring system

9. Consider the mechanical system shown in Figure 1. Assume that q1 = 0 corresponds to
the equilibrium position of the mass on the left-hand side and that q2 = 0 corresponds
to that of the other mass.

(a) Determine for each of the cases below the differential equations describing

i. col(q1, q2),

ii. q1,

iii. q2.

(b) Use Theorem 0.1 to determine the behavior for the three cases above.

(c) Consider the behavior B of col(q1, q2). It is of interest to see how the time behavior
of q1 relates to that of q2. Show that the behavior B may be written as B =
Bs + Ba (subscript s for symmetric, a for antisymmetric), with Bs consisting of
elements of B of the form (q1, q2) = (q, q) and Ba consisting of elements of the
form (q,−q). Derive differential equations describing Bs and Ba.

(d) Prove that also Bs and Ba consist of pure sinusoids. Denote the respective fre-
quencies by ωs and ωa. Discuss these frequencies for the cases

i. k1
k2
� 1.

ii. k1
k2
� 1.

10. Consider the one-dimensional horizontal motion of the mechanical system depicted in
Figure 2. Let q1 denote the displacement of M1 from some reference point, and q2 the
displacement of M2 from its equilibrium when M1 is in the position corresponding to
q1 = 0. Assume that external forces F1, F2 act on the masses M1 and M2 respectively.

(a) Derive differential equations relating q1, q2, F1, F2.

(b) Derive all possible input/output partitions of q1, q2, F1, F2.

(c) Derive an integral expression relating the input col(F1, F2) to col(q1, q2).

11. (a) Let λ1, . . . , λn ∈ C. The Vandermonde matrix M is given by

M =


1 . . . 1
λ1 . . . λn
...

...
...

λn−11 . . . λn−1n


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Figure 2: Mass-spring system

Prove that M is nonsingular if and only if the λis are mutually distinct.

(b) Let λ1, . . . , λN ∈ C. Let n1, . . . , nN ∈ N and define n :=
∑N

i=1 ni. Suppose we
have a polynomial P (ξ) ∈ C[ξ] given by

P (ξ) =

N∏
i=1

(ξ − λi)ni .

Recall that we have proved in class that the trajectories in the behavior B =
ker P

(
d
dt

)
are given by

w(t) =

N∑
i=1

ni−1∑
j=0

ki,jt
jeλit, ki,j ∈ R.

Find out the matrix M that relates the vector
col(k1,0, k1,1, . . . , k1,n1−1, k2,0, k2,1, . . . , kN,nN

) with the vector

col(w(0), dwdt (0), . . . , d
n−1w
dtn−1 (0)) as

M


k1,0
k1,1

...
kN,nN

 =


w(0)
dw
dt (0)

...
dn−1w
dtn−1 (0))

 .
Prove that the matrix M is invertible if and only if the λis are mutually distinct.

12. Determine the partial fraction expansion of 1−6ξ+ξ2
−36+5ξ2+ξ4

.

13. Consider the i/o system defined by

p(
d

dt
)y = q(

d

dt
)u (3)

with p(ξ) = ξ − 2ξ2 + ξ3 and q(ξ) = −1 + ξ2.

(a) Determine the partial fraction expansion of q(ξ)
p(ξ) .

4



(b) Give an explicit characterization of the behavior B of (3).

(c) Consider now

p̃(
d

dt
)y = q̃(

d

dt
)u (4)

with p̃(ξ) = −ξ + ξ2 and q̃(ξ) = 1 + ξ. Determine the partial fraction expansion

of q̃(ξ)
p̃(ξ) . What strikes you?

(d) Give an explicit characterization of the behavior B̃ of (4).

(e) In what sense are B and B̃ different?

(f) Give convolution representations of B and B̃.

14. Let the polynomial matrix R(ξ) be given by

R(ξ) :=

[
−5ξ + ξ2 −5 + ξ
−ξ + ξ2 −1 + ξ

]
Show that R( ddt)w = 0 does not define an autonomous system. Write this system in
input/output form. Indicate clearly which component of w is considered input and
which is the output.

15. Recall the definition of autonomous systems: B is said to be autonomous if and only if
for all w1, w2 ∈ B, the condition w1(t) = w2(t) for t 6 0 implies w1(t) = w2(t) for all
t ∈ R. Now prove that if B is linear then B is autonomous if and only if for all w ∈ B,
the condition w(t) = 0 for all t 6 0 implies w(t) = 0 for all t ∈ R.

16. Recall the definition of autonomous systems: B is said to be autonomous if and only
if for all w1, w2 ∈ B, the condition w1(t) = w2(t) for t 6 0 implies w1(t) = w2(t) for
all t ∈ R. Now prove that if B is time-invariant and τ ∈ R is arbitrary then B is
autonomous if and only if for all w1, w2 ∈ B, the condition w1(t) = w2(t) for all t 6 τ
implies w1(t) = w2(t) for all t ∈ R.

17. Recall the result proved in class: Suppose B1 = ker R1(
d
dt) and B2 = ker R2(

d
dt), where

R1(ξ), R2(ξ) ∈ Rg×q[ξ]. Let R1 and R2 be the two equations modules corresponding to
R1(ξ) and R2(ξ), respectively. Then B1 ∩ C∞ = B2 ∩ C∞ if and only if R1 = R2.

Now prove that B1 ∩ Lloc
1 = B2 ∩ Lloc

1 if and only if R1 = R2.
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