Behavioral Theory of Systems (EE 714)

Problem Set 2

1. Determine the behavior 8 associated with the differential equation
2 3 4

d

2. Let P;(§) € R[¢], (i = 1,2). Denote the corresponding behaviors by 9B,. Assume that
B1 C By. Prove that the polynomial P;(§) divides P (§).

3. Many differential equations occurring in physical applications, e.g., in mechanics, con-
tain even derivatives only. Consider the behavioral equation

d2

with P(§) € R?*9[¢],det P(§) # 0. Assume that the roots of det P({) are real and
simple (multiplicity one). Describe the real behavior of this system in terms of the
roots Ag of det P(&) and the kernel of P(\g).

4. Consider the set of differential equations

2 d d2 d3
Wi gt 3w = g g+ g =0
w1 — awl — Wy + &wQ = 0. (1)

(a) Determine the matrix P(£) € R?*2[¢] such that equations (1) is equivalent to
P(4)w = 0.

dt
(b) Determine the roots of det P(&).
(c) Prove that every (strong) solution of (1) can be written as

w(t) = {al - 30‘2] et + {QQ] te! + [g} e 2+ m et

a1 aQ Y
5. (a) Show that the polynomial matrix U(¢) € R2*2[¢] given by

143+ 262
U(g)'_[ -2-¢ 1+¢ }

is unimodular, and determine (U(£))~!.

(b) Write U() as a product of elementary unimodular matrices.



(c) Determine the behavior of U (%)w = 0. What general principle lies behind your

answer?

6. Determine the behavior 98 associated with P(%)w = 0, where

24 ¢2 1

P(&) = 226 —4€2 1+4¢|°

7. Different polynomial matrices may have the same determinant. Let P(¢) € R2*2[¢] be
a diagonal matrix. Given det P(£) = —2 — & + 2¢2 + £3, how many different behaviors
correspond to this determinant?

8. Let P(§) be given by

_[Pu€ 0O
Pg) = [P;(f) P22(f)}

Consider the behavior associated with P(%)fw =0.

(a)

Take P11(€) =126 +€2 Py (&) = —3+¢&, and Pao(€) = 1+ €. Determine a basis
of the corresponding behavior B, and conclude that B, is a linear subspace of
dimension three.

Take Py1(€) and Py2(€) as in the previous part and Py (€) = —3 + 26 — 22 4 €3,
Prove that the corresponding behavior, 98j, equals B,.

Now let P11(§) # 0, Pa2(€) # 0, and Pay(&) arbitrary. Prove that the corresponding
behavior is a linear subspace of dimension equal to the degree of Pi1(&)Pea(§).

Consider the more general case

CPu(©) Pl
P(§) = [Pi@) Pli(f)]'

Prove that P can be brought into lower triangular form by elementary row opera-
tions. Use this to prove that the dimension of the corresponding behavior is equal
to the degree of the determinant of P(§).

Use induction on ¢ to prove the following theorem.

Theorem 0.1. Let P(§) € R1*[¢] and let \; € C,i = 1,..., N, be the distinct
roots of det P (&) of multiplicity n; : det P(§) = c[[(§—Ag)™ for some nonzero con-
stant c. The corresponding behavior B is autonomous and is a finite-dimensional
subspace of C*°(C,CY) of dimension n = degdet P(§). Moreover, w € B if and

only if it is of the form
N n;—1

w(t) = Z Z BijtjeAit (2)

i=1 j=0
where the vectors B;; € C? satisfy the relations
’I’Li—l

S () PUHN)By =0,i=1,...,N;1=0,...,n; — 1
j=l
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Figure 1: Mass-spring system

9. Consider the mechanical system shown in Figure 1. Assume that ¢; = 0 corresponds to
the equilibrium position of the mass on the left-hand side and that go = 0 corresponds
to that of the other mass.

(a) Determine for each of the cases below the differential equations describing

i. col(q1,q2),
. q1,
iii. ¢o.
(b) Use Theorem 0.1 to determine the behavior for the three cases above.
(¢) Consider the behavior 9B of col(qi, g2). It is of interest to see how the time behavior
of ¢1 relates to that of ¢3. Show that the behavior B may be written as B =
B + B, (subscript s for symmetric, a for antisymmetric), with B consisting of
elements of B of the form (¢1,92) = (¢,q) and B, consisting of elements of the
form (g, —q). Derive differential equations describing B4 and B,.
(d) Prove that also B¢ and 9B, consist of pure sinusoids. Denote the respective fre-
quencies by ws and w,. Discuss these frequencies for the cases
Lo <L
i > 1
10. Consider the one-dimensional horizontal motion of the mechanical system depicted in
Figure 2. Let g1 denote the displacement of M; from some reference point, and g» the

displacement of My from its equilibrium when M is in the position corresponding to
q1 = 0. Assume that external forces Fi, F5 act on the masses M; and Ms respectively.

(a) Derive differential equations relating ¢, g2, F1, Fs.

(b) Derive all possible input/output partitions of g1, g2, F1, Fb.
)
)

(c¢) Derive an integral expression relating the input col(Fi, F») to col(q1, q2).
11. (a) Let A1,..., A, € C. The Vandermonde matrix M is given by
1 .. 1
Al .. An
M = . .
Xf"l . )\Q.—l



Figure 2: Mass-spring system

Prove that M is nonsingular if and only if the A;s are mutually distinct.
.,ny € N and define n := Ef\il n;. Suppose we

(b) Let A\,..., Ay € C. Let nq,..
have a polynomial P(§) € C[¢] given by
N

PE) =]JE=r)m.

i=1

Recall that we have proved in class that the trajectories in the behavior B =

ker P (%) are given by
N n;—1

w(t) = Z Z ki7jtj6)‘it, k@j € R.

i=1 j=0

Find out the matrix M that relates the vector
.y kl,”lflv k‘270, k271, ey kanN) with the vector

COl(k‘Lo, kl,lv ..
col(w(0), 22(0),..., L2 (0)) as
k1,0 w(0)
k11 B %(0)
kN ny 4w (0))

Prove that the matrix M is invertible if and only if the A;s are mutually distinct
1-66+£2

12. Determine the partial fraction expansion of T361neT e
13. Consider the i/o system defined by
Py = oy Q
with p(&) = & — 2¢2 + &3 and g(¢) = —1 + €2

(a) Determine the partial fraction expansion of



14.

15.

16.

17.

(b) Give an explicit characterization of the behavior B of (3).

(c) Consider now

. d . d

p(a)y = CJ(%)U (4)

with p(&) = —& + €2 and (&) = 1 + &. Determine the partial fraction expansion

of % . What strikes you?

(d) Give an explicit characterization of the behavior B of (4).
() In what sense are B and B different?

(f) Give convolution representations of 86 and PB.

Let the polynomial matrix R(§) be given by

-5 +¢&2 —5+¢
R(&) =
(5) _f + 52 -1 +§
Show that R(%)w = 0 does not define an autonomous system. Write this system in
input/output form. Indicate clearly which component of w is considered input and
which is the output.

Recall the definition of autonomous systems: B is said to be autonomous if and only if
for all wi,wa € B, the condition wi(t) = wa(t) for t < 0 implies wi(t) = wa(t) for all
t € R. Now prove that if B is linear then B is autonomous if and only if for all w € ‘B,
the condition w(t) = 0 for all ¢ < 0 implies w(t) =0 for all t € R.

Recall the definition of autonomous systems: B is said to be autonomous if and only
if for all wi,we € B, the condition wi(t) = wa(t) for t < 0 implies wi(t) = wa(t) for
all t € R. Now prove that if 9 is time-invariant and 7 € R is arbitrary then B is
autonomous if and only if for all wy,ws € B, the condition wy(t) = way(t) for all ¢t < 7
implies wy () = we(t) for all t € R.

Recall the result proved in class: Suppose B, = ker Rl(%) and By = ker Rg(%), where
R1(&), Ro(&) € RI*Y[E]. Let Ry and Rg be the two equations modules corresponding to
R1(§) and Ry(§), respectively. Then B1 N E>X =By NE® if and only if R1 = Ra.

Now prove that B, N ,81100 =B N Slloc if and only if R; = Ra.



