Behavioral Theory of Systems (EE 714)

Problem Set 3

1. Consider the electrical circuit consisting of a resistor, a capacitor, an inductor, and an external port shown in Figure 1. Determine the relation between V and I by applying the general elimination procedure.

Figure 1: Electrical circuit
2. Let $R(\xi), M(\xi) \in \mathbb{R}^{2 \times 1}[\xi]$ and consider

$$
\begin{equation*}
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \tag{1}
\end{equation*}
$$

with $R(\xi)=\left[\begin{array}{ll}R_{1}(\xi) & R_{2}(\xi)\end{array}\right]^{T}$ and $M(\xi)=\left[\begin{array}{ll}M_{1}(\xi) & M_{2}(\xi)\end{array}\right]^{T}$. We want to eliminate ℓ.
(a) Assume that $M_{1}(\xi)$ and $M_{2}(\xi)$ have no common factors. Prove that the manifest behavior \mathfrak{B} defined as

$$
\mathfrak{B}:=\left\{w \in \mathfrak{C}^{\infty} \mid \exists \ell \in \mathfrak{C}^{\infty} \text { such that equation (1) is satisfied }\right\}
$$

is described by

$$
\left(M_{2}\left(\frac{d}{d t}\right) R_{1}\left(\frac{d}{d t}\right)-M_{1}\left(\frac{d}{d t}\right) R_{2}\left(\frac{d}{d t}\right)\right) w=0 .
$$

(b) Determine the differential equation for the manifest behavior when $M_{1}(\xi)$ and $M_{2}(\xi)$ may have a common factor.
3. Consider the SISO systems

$$
\begin{equation*}
\Sigma_{1}: p_{1}\left(\frac{d}{d t}\right) y_{1}=q_{1}\left(\frac{d}{d t}\right) u_{1}, \Sigma_{2}: p_{2}\left(\frac{d}{d t}\right) y_{2}=q_{2}\left(\frac{d}{d t}\right) u_{2} . \tag{2}
\end{equation*}
$$

Define the feedback interconnection of Σ_{1} and Σ_{2} by (2) and the interconnection equations $u_{2}=y_{1}, u_{1}=u+y_{2}$, and $y=y_{1}$. Here u is the external input and y is the external output; see Figure 2

Figure 2: Feedback interconnection of Σ_{1} and Σ_{2}
We are interested in the relation between u and y. To that end we have to eliminate $u_{1}, u_{2}, y_{1}, y_{2}$. Elimination of u_{2} and y_{1} is straightforward, since $u_{2}=y_{1}=y$. In order to eliminate u_{1} and y_{2}, define ℓ and w as

$$
\ell:=\left[\begin{array}{l}
u_{1} \\
y_{2}
\end{array}\right], w:=\left[\begin{array}{l}
u \\
y
\end{array}\right] .
$$

(a) Determine matrices $R(\xi), M(\xi)$ of appropriate dimensions such that the behavior with these latent variables is described by $R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell$.
(b) Eliminate ℓ from $R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell$. Conclude that the relation between u and y is given by

$$
\left(p_{1}\left(\frac{d}{d t}\right) \bar{p}_{2}\left(\frac{d}{d t}\right)-\bar{q}_{1}\left(\frac{d}{d t}\right) q_{2}\left(\frac{d}{d t}\right)\right) y=\bar{p}_{2}\left(\frac{d}{d t}\right) q_{1}\left(\frac{d}{d t}\right) u,
$$

with $p_{2}(\xi)=c(\xi) \bar{p}_{2}(\xi)$ and $q_{1}(\xi)=c(\xi) \bar{q}_{1}(\xi)$, such that $\bar{p}_{2}(\xi)$ and $\bar{q}_{1}(\xi)$ have no common factors.

Figure 3: Parallel interconnection of Σ_{1} and Σ_{2}
4. Repeat 3 for the parallel interconnection $p_{1}\left(\frac{d}{d t}\right) y_{1}=q_{1}\left(\frac{d}{d t}\right) u, p_{2}\left(\frac{d}{d t}\right) y_{2}=q_{1}\left(\frac{d}{d t}\right) u, y=$ $y_{1}+y_{2}$. See Figure 3 . The answer in this case is

$$
\left(\bar{p}_{2}\left(\frac{d}{d t}\right) q_{1}\left(\frac{d}{d t}\right)+\bar{p}_{1}\left(\frac{d}{d t}\right) p_{2}\left(\frac{d}{d t}\right)\right) y=\bar{p}_{1}\left(\frac{d}{d t}\right) q_{2}\left(\frac{d}{d t}\right) u
$$

where $p_{1}(\xi)=c(\xi) \bar{p}_{1}(\xi)$ and $p_{2}(\xi)=c(\xi) \bar{p}_{2}(\xi)$, such that $\bar{p}_{1}(\xi)$ and $\bar{p}_{2}(\xi)$ have no common factors.
5. Suppose we have

$$
\left[R_{1}\left(\frac{d}{d t}\right) \quad R_{2}\left(\frac{d}{d t}\right)\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=0
$$

where $R_{1}(\xi) \in \mathbb{R}^{g \times q_{1}}[\xi]$ and $R_{2}(\xi) \in \mathbb{R}^{g \times q_{2}}[\xi]$. Further, assume that $\left[R_{1}(\xi) R_{2}(\xi)\right]$ is full row rank. Prove that w_{2} is an input iff $R_{1}(\xi)$ is full row rank. Is the statement necessarily true if we remove the assumption that $\left[R_{1}(\xi) \quad R_{2}(\xi)\right]$ is full row rank?
6. Suppose we have a kernel representation for \mathfrak{B} as

$$
\left[R_{1}\left(\frac{d}{d t}\right) \quad R_{2}\left(\frac{d}{d t}\right)\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=0
$$

where $R_{1}(\xi) \in \mathbb{R}^{g \times q_{1}}[\xi]$ and $R_{2}(\xi) \in \mathbb{R}^{g \times q_{2}}[\xi]$. In class we have looked at projections of \mathfrak{B} onto one or more variables. The dual of this action is nullification. Define the set

$$
\mathfrak{B}_{w_{1}, 0}:=\left\{w_{1} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{q_{1}}\right) \mid\left(w_{1}, 0\right) \in \mathfrak{B}\right\}
$$

(a) Show that $\mathfrak{B}_{w_{1}, 0} \subseteq \mathfrak{B}$.
(b) Show that $\mathfrak{B}_{w_{1}, 0}$ itself is a behavior by obtaining a kernel representation of it.
7. Consider the latent variable representation

$$
\begin{equation*}
R\left(\frac{d}{d t}\right) w+M\left(\frac{d}{d t}\right) \ell=0 \tag{3}
\end{equation*}
$$

Suppose by unimodular row operation $[R(\xi) M(\xi)]$ is brought to the form $\left[\begin{array}{cc}R_{1}(\xi) & \widetilde{M}(\xi) \\ R_{2}(\xi) & 0\end{array}\right]$ where $\widetilde{M}(\xi)$ is full row rank. Prove, WITHOUT USING the fundamental principle, that the manifest behavior

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{q}\right) \mid \exists \ell \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{q^{\prime}}\right) \text { such that equation }(3) \text { is satisfied }\right\}
$$

has kernel representation given by $\mathfrak{B}=\operatorname{ker} R_{2}\left(\frac{d}{d t}\right)$.
8. Consider the polynomial matrix

$$
M(\xi)=\left[\begin{array}{cc}
C \xi & 1 \\
0 & L \xi+R_{L} \\
R_{c} C \xi+1 & 0
\end{array}\right]
$$

which made an appearance in the Wheatstone bridge circuit problem. Recall that an MLA of $M(\xi)$ was calculated as

$$
\widetilde{R}(\xi)=\left[\begin{array}{lll}
\left(L \xi+R_{L}\right)\left(R_{c} C \xi+1\right) & -\left(R_{c} C \xi+1\right) & -\left(L \xi+R_{L}\right) C \xi
\end{array}\right]
$$

Now suppose $\frac{R_{L}}{L}=\frac{1}{R_{c} C}$. Prove that in this case $\widetilde{R}(\xi)$ is NOT an MLA of $M(\xi)$. Find out an MLA for this case.
9. Suppose $M(\xi) \in \mathbb{R}^{g \times q^{\prime}}[\xi]$. Further let $U(\xi) \in \mathbb{R}^{g \times g}[\xi]$ be a unimodular matrix that brings $M(\xi)$ to the form

$$
U(\xi) M(\xi)=\left[\begin{array}{c}
\widetilde{M}(\xi) \\
0
\end{array}\right]
$$

where $\widetilde{M}(\xi)$ is full row rank, and number of rows in it is g^{\prime}. Prove that

$$
\widetilde{R}(\xi):=\left[\begin{array}{ll}
\mathbf{0}_{\left(g-g^{\prime}\right) \times g^{\prime}} & I_{g-g^{\prime}}
\end{array}\right] U(\xi)
$$

is an MLA of $M(\xi)$. Further, prove that if $\widetilde{R}_{1}(\xi)$ is any other MLA of $M(\xi)$ then there exists $U_{1}(\xi) \in \mathbb{R}^{\left(g-g^{\prime}\right) \times\left(g-g^{\prime}\right)}[\xi]$ such that $\widetilde{R}_{1}(\xi)=U_{1}(\xi) \widetilde{R}(\xi)$. Note that this completely characterizes all MLAs of $M(\xi)$. From this deduce that every MLA of $M(\xi)$ has rank $g-g^{\prime}$ where g^{\prime} is the rank of $M(\xi)$.

