Behavioral Theory of Systems (EE 714)

Problem Set 4

1. Consider the following behaviors in kernel representation $\mathfrak{B}=\left\{w: R\left(\frac{d}{d t}\right) w=0\right\}$ where $R(\xi)$ are given by
(a) $\left[\begin{array}{ll}\xi^{2}+5 \xi+6 & -\xi-1\end{array}\right]$.
(b) $\left[\begin{array}{ccc}\xi^{2}+\xi+1 & \xi^{2}+\xi+1 & \xi^{2}+3 \xi+3 \\ 2 \xi+1 & \xi^{2}+2 \xi & \xi^{2}+4 \xi+2\end{array}\right]$.

Are these systems behavior controllable?
2. Consider the following behaviors in image representation
(a) $\mathfrak{B}_{1}=\left\{\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right]=\left[\begin{array}{cc}1 & \xi \\ \xi+1 & 1 \\ 2 & \xi+1\end{array}\right]\left[\begin{array}{l}\ell_{1} \\ \ell_{2}\end{array}\right]\right\}$, and
(b) $\mathfrak{B}_{2}=\left\{\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right]=\left[\begin{array}{cc}\xi+1 & \xi^{2}+\xi+1 \\ \xi+2 & 2 \xi+2 \\ \xi+3 & \xi^{2}+2 \xi+3\end{array}\right]\left[\begin{array}{c}\ell_{1} \\ \ell_{2}\end{array}\right]\right\}$

In these behaviors, is ℓ observable from w ? In the manifest behaviors, is w_{3} observable from $\left(w_{1}, w_{2}\right)$?
In each case find out kernel representations of the manifest behaviors by eliminating ℓ, and construct uncontrollable behaviors for each case whose controllable part is the manifest behavior you have obtained.
3. (a) Let $r(\xi) \in \mathbb{R}[\xi], w=\operatorname{col}\left(w_{1}, w_{2}\right)$, where w_{1} is q_{1}-dimensional and w_{2} is q_{2}-dimensional, $A \in \mathbb{R}^{q_{1} \times q_{1}}$ and $B \in \mathbb{R}^{q_{1} \times q_{2}}$. Assume that $r(\xi)$ is a polynomial of degree at least one. Prove that $r\left(\frac{d}{d t}\right) w_{1}+A w_{1}=B w_{2}$ is controllable if and only if $\operatorname{rank}\left[\begin{array}{llll}B & A B & \ldots & A^{q_{1}-1} B\end{array}\right]=q_{1}$.
(b) Mechanical systems are often described by second-order differential equations. In the absence of damping, they lead to models of the form

$$
M \frac{d^{2} q}{d t^{2}}+K q=B F
$$

with q the vector of (generalized) positions, assumed n-dimensional; F the external forces; and M, K, and B matrices of suitable dimension; M is the mass matrix and K the matrix of spring constants. Assume that M is square and nonsingular. Prove that with $w=\operatorname{col}(q, F)$, this system is controllable if and only if $\operatorname{rank}\left[\begin{array}{llll}B & K M^{-1} B & \ldots & \left(K M^{-1}\right)^{n-1} B\end{array}\right]=n$.
4. Consider the i / o behavior \mathfrak{B} defined by

$$
-y+\frac{d^{2}}{d t^{2}} y=-u+\frac{d}{d t} u
$$

(a) Is this system controllable?
(b) Show trajectories in \mathfrak{B} that are not patchable with each other.
(c) Write \mathfrak{B} as the direct sum of an autonomous part and a controllable part.
(d) Define $\mathfrak{B}_{\text {aut }}:=\left\{(u, y) \left\lvert\,-y+\frac{d}{d t} y=0\right., u=0\right\}$ and $\mathfrak{B}_{\text {contr }}:=\left\{(u, y) \left\lvert\, y+\frac{d}{d t} y=u\right.\right\}$. Prove that $\mathfrak{B}=\mathfrak{B}_{\text {aut }} \oplus \mathfrak{B}_{\text {contr }}$.
5. (a) Consider the behavior \mathfrak{B} of $R\left(\frac{d}{d t}\right) w=0$ with $R(\xi)=\left[\begin{array}{ll}\xi^{2}-1 & \xi+1\end{array}\right]$. Provide two different decompositions of \mathfrak{B} as a direct sum of a controllable and an autonomous part.
(b) Let $R(\xi) \in \mathbb{R}^{g \times q}[\xi]$ be of full row rank and let \mathfrak{B} be the behavior of $R\left(\frac{d}{d t}\right) w=0$. Let $U(\xi) \in \mathbb{R}^{g \times g}[\xi]$ and $V(\xi) \in \mathbb{R}^{q \times q}[\xi]$ be unimodular matrices that transform $R(\xi)$ into Smith form:

$$
U(\xi) R(\xi) V(\xi)=\left[\begin{array}{ll}
D(\xi) & 0
\end{array}\right]
$$

We know that, a decomposition of the behavior \mathfrak{B} into a controllable and an autonomous part is obtained by defining

$$
R_{\mathrm{contr}}(\xi)=\left[\begin{array}{ll}
I & 0
\end{array}\right] V^{-1}(\xi), R_{\mathrm{aut}}(\xi)=\left[\begin{array}{cc}
D(\xi) & 0 \\
0 & I
\end{array}\right] V^{-1}(\xi)
$$

Let $W(\xi) \in R^{q \times q}[\xi]$ be a unimodular matrix with the property that

$$
\left[\begin{array}{ll}
D(\xi) & 0
\end{array}\right] W(\xi)=\left[\begin{array}{cc}
D(\xi) & 0
\end{array}\right],
$$

and define $R_{\text {aut }}^{\prime}(\xi)=\left[\begin{array}{cc}D(\xi) & 0 \\ 0 & I\end{array}\right] W^{-1}(\xi) V^{-1}(\xi)$. Prove that $R_{\mathrm{contr}}(\xi), R_{\mathrm{aut}}^{\prime}(\xi)$ also provides a decomposition of \mathfrak{B} into a direct sum of a controllable and an autonomous part.
(c) In order to classify all possible decompositions of \mathfrak{B} into a direct sum of a controllable and an autonomous part, we first classify all such decompositions of $\widetilde{\mathfrak{B}}$, the behavior of $\left[\begin{array}{ll}D(\xi) & 0\end{array}\right]$. Let $\widetilde{R}_{\text {contr }}(\xi), \widetilde{R}_{\text {aut }}(\xi)$ define such a decomposition. Assume that both $\widetilde{R}_{\text {contr }}(\xi)$ and $\widetilde{R}_{\text {aut }}(\xi)$ are of full row rank. Prove that there exist unimodular matrices $U(\xi) \in \mathbb{R}^{g \times g}[\xi]$, and $W(\xi) \in \mathbb{R}^{q \times q}[\xi]$ such that

$$
\begin{aligned}
\widetilde{R}_{\text {contr }}(\xi) & =U(\xi)\left[\begin{array}{cc}
I & 0
\end{array}\right], \quad\left[\begin{array}{ll}
D(\xi) & 0
\end{array}\right] W(\xi)=\left[\begin{array}{ll}
D(\xi) & 0
\end{array}\right], \\
\widetilde{R}_{\text {aut }}(\xi) & =U(\xi)\left[\begin{array}{cc}
D(\xi) & 0 \\
0 & I
\end{array}\right] W(\xi) .
\end{aligned}
$$

(d) Let $\mathfrak{B}=\mathfrak{B}_{\text {contr }} \oplus \mathfrak{B}_{\text {aut }}$ be a decomposition into a controllable part and an autonomous part defined by polynomial matrices $R_{\text {contr }}^{\prime}(\xi)$ and $R_{\text {aut }}^{\prime}(\xi)$. Assume that both $\widetilde{R}_{\text {contr }}(\xi)$ and $\widetilde{R}_{\text {aut }}(\xi)$ are of full row rank. Prove that there exist unimodular matrices $U(\xi) \in R^{g \times g}[\xi]$, and $W(\xi) \in \mathbb{R}^{q \times q}[\xi]$ such that

$$
\begin{aligned}
R_{\mathrm{contr}}^{\prime}(\xi) & =U(\xi) R_{\mathrm{contr}}(\xi), \quad\left[\begin{array}{ll}
D(\xi) & 0
\end{array}\right] W()=\left[\begin{array}{ll}
D(\xi) & 0
\end{array}\right], \\
R_{\mathrm{aut}}^{\prime}(\xi) & =U(\xi) R_{\mathrm{aut}}(\xi) W^{-1}(\xi)
\end{aligned}
$$

(e) Characterize all unimodular matrices $W(\xi) \in \mathbb{R}^{q \times q}[\xi]$ with the property that

$$
\left[\begin{array}{ll}
D(\xi) & 0
\end{array}\right] W(\xi)=\left[\begin{array}{ll}
D(\xi) & 0
\end{array}\right] .
$$

Figure 1: Electrical Circuit
6. Consider the circuit in Figure 1. Let $\left[\begin{array}{l}V \\ I\end{array}\right]$ form trajectories in a behavior.
(a) Using the voltages across the two capacitors as latent variables write down a latent variable representation of the behavior.
(b) Find a syzygy matrix for the operator acting on the latent variables.
(c) Eliminate the latent variables to obtain a kernel representation of this behavior.
(d) For what values of $R_{1}, R_{2}, C_{1}, C_{2}$ is the system behavior controllable.
(e) For what values of $R_{1}, R_{2}, C_{1}, C_{2}$ is the system observable.
(f) Find a controllable-autonomous decomposition for this behavior.

