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Lemma 3.3: Let T =
[
a b
c d

]
∈ R2×2 be a non-singular

matrix and
∑

br =
[

1 0
0 −1

]
be the small-gain supply rate.

Then the new supply rate Φ = TT
∑

br T is an NPC supply
rate, and its corresponding A+

Φ is one of the following:
1) If b = d, then the the boundary, A0

Φ, is a line parallel
to the imaginary axis. Further, if ab − cd > 0 (or, if
ab − cd < 0) then A+

Φ is the RHS (LHS) of the line
A0

Φ.
2) If b 6= d then the boundary, A0

Φ, is a circle with center
on the real axis. Further, the corresponding A+

Φ is the
interior (or the exterior) of the circle if b2 − d2 < 0
(b2 − d2 > 0).

Proof. First, note that Φ can be written explicitly as

Φ =

[
a2 − c2 ab− cd
ab− cd b2 − d2

]
.

Now, for a transfer function G(s) = N(s)/D(s), let us
denote x := Re G(jω) and y := Imag G(jω). It then
follows from the definition of NPC supply rates (Definition
3.1) that the Nyquist plot of G being contained in A0

Φ for
some non-negative frequency is equivalent to

(x2 + y2)(b2 − d2) + 2x(ab− cd) + (a2 − c2) = 0.

Thus, A0
Φ =

Fig. 1. Associated region of shifted passivity supply rate (b = d in T ).

{x+ iy | (x2 +y2)(b2−d2)+2x(ab− cd)+(a2− c2) = 0}.

Likewise, A+
Φ =

{x+ iy | (x2 +y2)(b2−d2)+2x(ab− cd)+(a2− c2) > 0}.
(1)
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Fig. 2. Associated region of shifted small-gain supply rate (b 6= d in T ).

Using this we now prove statements 1) and 2).
If b = d, then (1) can be simplified as:

A+
Φ = {x+ iy | (a− c)(2bx+ (a+ c)) > 0}.

It then follows that A0
Φ is given by the vertical line x =

−a+c
2b . Further, when ab − cd > 0, A+

Φ turns out to be the
RHS of this line, and, when ab − cd < 0, A+

Φ is the LHS
of this line. Note that here ab− cd = ad− bc = det T 6= 0
because T must be non-singular. This proves statement 1).
An example of such an NPC-region is shown in Figure 4.

For statement 2), that is, when b 6= d, observe that the
equation for the NPC-boundary A0

Φ matches with the generic
equation of a circle with finite radius and center on the x-axis
(because there is no y, or xy terms in the equation for A0

Φ).
Note also that the signs of the quadratic terms x2 and y2 are
given by the sign of b2 − d2. Therefore, the corresponding
A+

Φ is the interior or the exterior of the circle depending on
whether b2 − d2 < 0 or b2 − d2 > 0, respectively. Figure 5
shows such an NPC-region. �

Theorem 4.1: Consider a SISO LTI system given by the
transfer function G(s) and let BG = imM( d

dt ) be its image
representation. Let Φ1 and Φ2 be NPC supply rates. Then
the following two statements are equivalent:

1) G has Nyquist plot contained in A+
Φ1
∪A+

Φ2
for almost

all ω > 0.
2) There exist p, q ∈ R[ξ] such that BG is strictly

dissipative with respect to

Φ(ζ, η) := p(ζ)Φ1(ζ, η)p(η) + q(ζ)Φ2(ζ, η)q(η) (2)

Proof. 1) ⇒ 2): We assume that G has Nyquist plot
contained in A+

Φ1
∪ A+

Φ2
for almost all ω > 0, we have

to prove the existence of polynomials p, q ∈ R[ξ] such



that BG is strictly dissipative with respect to Φ(ζ, η) :=
p(ζ)Φ1(ζ, η)p(η) + q(ζ)Φ2(ζ, η)q(η). This, by Proposition
2.1, is equivalent to

MT (−jω)∂Φ(jω)M(jω) > 0 for almost all ω ∈ R. (3)

⇐⇒ MT (−jω)[p(−jω)∂Φ1(jω)p(jω)+

q(−jω)∂Φ2(jω)q(jω)]M(jω) > 0 for almost all ω ∈ R.
(4)

We define the following two functions of ω:

Γ(ω) := MT (−jω)∂Φ1(jω)M(jω)
Π(ω) := MT (−jω)∂Φ2(jω)M(jω)

}
(5)

Using equation (5) equation (4) can be rewritten as

p(−jω)Γ(ω)p(jω) + q(−jω)Π(ω)q(jω) > 0

for almost all ω ∈ R. This can be written in a matrix-vector
form as[

p(−jω)
q(−jω)

]T [
Γ(ω) 0

0 Π(ω)

] [
p(jω)
q(jω)

]
> 0 (6)

for almost all ω ∈ R. At this point we claim that for any
ω > 0, the two functions Γ(ω) and Π(ω) cannot both
be negative simultaneously. Indeed, if for some ω > 0,
Γ(ω) < 0 then, since Φ1 is an NPC supply rate, by Definition
3.1, it means that the Nyquist plot of G at that ω is contained
in A−

Φ1
. If Π(ω), too, is less than zero at that frequency

ω, then the Nyquist plot of G at ω is contained in A−
Φ2

because Φ2 also is an NPC supply rate. These two facts
together means that at the frequency ω the Nyquist plot
of G is contained in A−

Φ1
∩ A−

Φ2
. Since, Γ(ω) and Π(ω)

are continuous functions of ω, if they are negative at some
frequency ω then there exists an open interval containing
ω over which they continue to be simultaneously negative.
This means that over a continuous band of frequencies the
Nyquist plot is contained in A−

Φ1
∩A−

Φ2
. Since A−

Φ1
∩A−

Φ2
⊆

C \
(
A+

Φ1
∪ A+

Φ2

)
, the last statement clearly contradicts the

assumption of statement 1).
Now consider the matrix

S(ξ) =

[
Γ(−jξ) 0

0 Π(−jξ)

]
. (7)

Note that from equation (5) it follows that both Γ(−jξ)
an Π(−jξ) are polynomials in ξ with real constant coef-
ficients. Therefore, S(ξ) ∈ R2×2[ξ]. Moreover, it can be
easily checked that S(ξ) is para-Hermitian. Recalling the
definition of worst inertia of a para-Hermitian polynomial
matrix (Definition 2.2) it follows that S(ξ) has worst inertia
either (0, 2), or (1, 1). This is because, in order for the worst
inertia to be anything other than (0, 2), or (1, 1), S(jω)
must be negative definite at some frequency ω > 0. This
is equivalent to Γ(ω) < 0 and Π(ω) < 0 at the frequency ω,
which is not possible as argued in the last paragraph.

For the case when S(ξ) has worst inertia (0, 2) it follows
that S(jω) then is positive definite for almost all ω ∈ R. This
means for any coprime pair of polynomials (p, q) inequality
(6) holds.

For the latter case, i.e., when S(ξ) is having worst inertia
(1, 1), it follows from Proposition 2.3 that S(jω) can be
written as

S(jω) = KT (−jω)JworstK(jω) + LT (−jω)L(jω) (8)

where Jworst = diag(1,−1) and matrices K(ξ) ∈ R2×2[ξ],
L(ξ) ∈ R•×2[ξ], with det K(ξ) 6≡ 0.

At this point we follow a construction similar to proof of
Theorem 6.6 in [1]. There, the above equation is used to find
the polynomials p, q that meet the requirements of inequality
(6) as follows:

1) Choose p1(ξ), q1(ξ) ∈ R[ξ] coprime such that

p1(−jω)p1(jω)− q1(−jω)q1(jω) > 0 ∀ω ∈ R. (9)

2) Next, construct adj K(ξ) ∈ R2×2[ξ] the adjugate of
K(ξ). The required p, q are given by[

p(ξ)
q(ξ)

]
:= adj K(ξ)

[
p1(ξ)
q1(ξ)

]
.

Indeed, putting this p, q in the LHS of inequality (6) and
utilizing the factorization of S(jω) given by equation (8)
we get[

p(−jω)
q(−jω)

]T
S(jω)

[
p(jω)
q(jω)

]
>[

p(−jω)
q(−jω)

]T (
KT (−jω)JworstK(jω)

) [p(jω)
q(jω)

]
=

δ(−jω)δ(jω)

[
p1(−jω)
q1(−jω)

]T
Jworst

[
p1(jω)
q1(jω)

]
> 0

for almost all ω ∈ R, where δ(ξ) = det K(ξ). The last
inequality follows from equation (9). Thus, the p, q chosen
above satisfy inequality (6). This completes the proof of
1)⇒ 2).

2) ⇒ 1): Statement 2) says that there exist p, q ∈ R[ξ]
such that BG is strictly dissipative with respect to Φ(ζ, η) =
p(ζ)Φ1(ζ, η)p(η) + q(ζ)Φ2(ζ, η)q(η). From this we have to
prove that G has Nyquist plot contained in A+

Φ1
∪ A+

Φ2
for

all ω > 0. From Proposition 2.1, statement 2) is equivalent
to MT (−jω)∂Φ(jω)M(jω) > 0 for almost all ω ∈ R. Now
note that using equation (5), and the definition of Φ, the last
inequality reduces to

p(−jω)Γ(ω)p(jω) + q(−jω)Π(ω)q(jω) > 0 (10)

for almost all ω ∈ R. This means there cannot exist any
ω > 0 for which Γ(ω) < 0 and Π(ω) < 0 simultaneously.
For if there is some ω, then by continuity of Γ and Π, there is
an interval around ω over which Γ and Π would be negative.
Because p(−jω)p(−jω) and q(−jω)q(jω) are non-negative
for each ω ∈ R, the last statement implies inequality (10) is
violated over a continuous band of frequencies. Hence we
infer that for all ω > 0, either Γ(ω) > 0 or Π(ω) > 0
(or both). Since, Γ and Π both cannot be identically zero
polynomials, we conclude that for almost all ω > 0 either
Γ(ω) > 0 or Π(ω) > 0 (or both). By using Definition 3.1
and the fact that Φ1 and Φ2 are NPC supply rates, it follows



that for almost all ω > 0, the Nyquist plot of G is contained
in A+

Φ1
∪ A+

Φ2
. This completes the proof of 2)⇒ 1). �
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