Appendix to the paper titled "Dissipativity analysis of SISO systems using Nyquist-Plot-Compatible (NPC) supply rates"

N. Santosh Kumar

Lemma 3.3: Let $T=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$ be a non-singular matrix and $\sum_{b r}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ be the small-gain supply rate. Then the new supply rate $\Phi=T^{T} \sum_{b r} T$ is an NPC supply rate, and its corresponding \mathcal{A}_{Φ}^{+}is one of the following:

1) If $b=d$, then the the boundary, \mathcal{A}_{Φ}^{0}, is a line parallel to the imaginary axis. Further, if $a b-c d>0$ (or, if $a b-c d<0$) then \mathcal{A}_{Φ}^{+}is the RHS (LHS) of the line \mathcal{A}_{Φ}^{0}.
2) If $b \neq d$ then the boundary, \mathcal{A}_{Φ}^{0}, is a circle with center on the real axis. Further, the corresponding \mathcal{A}_{Φ}^{+}is the interior (or the exterior) of the circle if $b^{2}-d^{2}<0$ ($b^{2}-d^{2}>0$).
Proof. First, note that Φ can be written explicitly as

$$
\Phi=\left[\begin{array}{ll}
a^{2}-c^{2} & a b-c d \\
a b-c d & b^{2}-d^{2}
\end{array}\right] .
$$

Now, for a transfer function $G(s)=N(s) / D(s)$, let us denote $x:=\operatorname{Re} G(j \omega)$ and $y:=\operatorname{Imag} G(j \omega)$. It then follows from the definition of NPC supply rates (Definition 3.1) that the Nyquist plot of G being contained in \mathcal{A}_{Φ}^{0} for some non-negative frequency is equivalent to

$$
\left(x^{2}+y^{2}\right)\left(b^{2}-d^{2}\right)+2 x(a b-c d)+\left(a^{2}-c^{2}\right)=0 .
$$

Thus, $\mathcal{A}_{\Phi}^{0}=$

Fig. 1. Associated region of shifted passivity supply rate $(b=d$ in $T)$.
$\left\{x+i y \mid\left(x^{2}+y^{2}\right)\left(b^{2}-d^{2}\right)+2 x(a b-c d)+\left(a^{2}-c^{2}\right)=0\right\}$.
Likewise, $\mathcal{A}_{\Phi}^{+}=$
$\left\{x+i y \mid\left(x^{2}+y^{2}\right)\left(b^{2}-d^{2}\right)+2 x(a b-c d)+\left(a^{2}-c^{2}\right)>0\right\}$.

[^0]Debasattam Pal

Fig. 2. Associated region of shifted small-gain supply rate $(b \neq d$ in $T)$.

Using this we now prove statements 1) and 2). If $b=d$, then (1) can be simplified as:

$$
\mathcal{A}_{\Phi}^{+}=\{x+i y \mid(a-c)(2 b x+(a+c))>0\} .
$$

It then follows that \mathcal{A}_{Φ}^{0} is given by the vertical line $x=$ $-\frac{a+c}{2 b}$. Further, when $a b-c d>0, \mathcal{A}_{\Phi}^{+}$turns out to be the RHS of this line, and, when $a b-c d<0, \mathcal{A}_{\Phi}^{+}$is the LHS of this line. Note that here $a b-c d=a d-b c=\operatorname{det} T \neq 0$ because T must be non-singular. This proves statement 1). An example of such an NPC-region is shown in Figure 4.
For statement 2), that is, when $b \neq d$, observe that the equation for the NPC-boundary \mathcal{A}_{Φ}^{0} matches with the generic equation of a circle with finite radius and center on the x-axis (because there is no y, or $x y$ terms in the equation for \mathcal{A}_{Φ}^{0}). Note also that the signs of the quadratic terms x^{2} and y^{2} are given by the sign of $b^{2}-d^{2}$. Therefore, the corresponding \mathcal{A}_{Φ}^{+}is the interior or the exterior of the circle depending on whether $b^{2}-d^{2}<0$ or $b^{2}-d^{2}>0$, respectively. Figure 5 shows such an NPC-region.

Theorem 4.1: Consider a SISO LTI system given by the transfer function $G(s)$ and let $\mathfrak{B}_{G}=\operatorname{im} M\left(\frac{d}{d t}\right)$ be its image representation. Let Φ_{1} and Φ_{2} be NPC supply rates. Then the following two statements are equivalent:

1) G has Nyquist plot contained in $\mathcal{A}_{\Phi_{1}}^{+} \cup \mathcal{A}_{\Phi_{2}}^{+}$for almost all $\omega \geqslant 0$.
2) There exist $p, q \in \mathbb{R}[\xi]$ such that \mathfrak{B}_{G} is strictly dissipative with respect to

$$
\begin{equation*}
\Phi(\zeta, \eta):=p(\zeta) \Phi_{1}(\zeta, \eta) p(\eta)+q(\zeta) \Phi_{2}(\zeta, \eta) q(\eta) \tag{2}
\end{equation*}
$$

Proof. 1) $\Rightarrow 2$): We assume that G has Nyquist plot contained in $\mathcal{A}_{\Phi_{1}}^{+} \cup \mathcal{A}_{\Phi_{2}}^{+}$for almost all $\omega \geqslant 0$, we have to prove the existence of polynomials $p, q \in \mathbb{R}[\xi]$ such
that \mathfrak{B}_{G} is strictly dissipative with respect to $\Phi(\zeta, \eta):=$ $p(\zeta) \Phi_{1}(\zeta, \eta) p(\eta)+q(\zeta) \Phi_{2}(\zeta, \eta) q(\eta)$. This, by Proposition 2.1, is equivalent to

$$
\begin{equation*}
M^{T}(-j \omega) \partial \Phi(j \omega) M(j \omega)>0 \quad \text { for almost all } \omega \in \mathbb{R} \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
\Longleftrightarrow M^{T}(-j \omega)\left[p(-j \omega) \partial \Phi_{1}(j \omega) p(j \omega)+\right. \\
\left.q(-j \omega) \partial \Phi_{2}(j \omega) q(j \omega)\right] M(j \omega)>0 \quad \text { for almost all } \omega \in \mathbb{R} . \tag{4}
\end{gather*}
$$

We define the following two functions of ω :

$$
\left.\begin{array}{l}
\Gamma(\omega):=M^{T}(-j \omega) \partial \Phi_{1}(j \omega) M(j \omega) \\
\Pi(\omega):=M^{T}(-j \omega) \partial \Phi_{2}(j \omega) M(j \omega) \tag{5}
\end{array}\right\}
$$

Using equation (5) equation (4) can be rewritten as

$$
p(-j \omega) \Gamma(\omega) p(j \omega)+q(-j \omega) \Pi(\omega) q(j \omega)>0
$$

for almost all $\omega \in \mathbb{R}$. This can be written in a matrix-vector form as

$$
\left[\begin{array}{c}
p(-j \omega) \tag{6}\\
q(-j \omega)
\end{array}\right]^{T}\left[\begin{array}{cc}
\Gamma(\omega) & 0 \\
0 & \Pi(\omega)
\end{array}\right]\left[\begin{array}{l}
p(j \omega) \\
q(j \omega)
\end{array}\right]>0
$$

for almost all $\omega \in \mathbb{R}$. At this point we claim that for any $\omega \geqslant 0$, the two functions $\Gamma(\omega)$ and $\Pi(\omega)$ cannot both be negative simultaneously. Indeed, if for some $\omega \geqslant 0$, $\Gamma(\omega)<0$ then, since Φ_{1} is an NPC supply rate, by Definition 3.1, it means that the Nyquist plot of G at that ω is contained in $\mathcal{A}_{\Phi_{1}}^{-}$. If $\Pi(\omega)$, too, is less than zero at that frequency ω, then the Nyquist plot of G at ω is contained in $\mathcal{A}_{\Phi_{2}}^{-}$ because Φ_{2} also is an NPC supply rate. These two facts together means that at the frequency ω the Nyquist plot of G is contained in $\mathcal{A}_{\Phi_{1}}^{-} \cap \mathcal{A}_{\Phi_{2}}^{-}$. Since, $\Gamma(\omega)$ and $\Pi(\omega)$ are continuous functions of ω, if they are negative at some frequency ω then there exists an open interval containing ω over which they continue to be simultaneously negative. This means that over a continuous band of frequencies the Nyquist plot is contained in $\mathcal{A}_{\Phi_{1}}^{-} \cap \mathcal{A}_{\Phi_{2}}^{-}$. Since $\mathcal{A}_{\Phi_{1}}^{-} \cap \mathcal{A}_{\Phi_{2}}^{-} \subseteq$ $\mathbb{C} \backslash\left(\mathcal{A}_{\Phi_{1}}^{+} \cup \mathcal{A}_{\Phi_{2}}^{+}\right)$, the last statement clearly contradicts the assumption of statement 1).

Now consider the matrix

$$
S(\xi)=\left[\begin{array}{cc}
\Gamma(-j \xi) & 0 \tag{7}\\
0 & \Pi(-j \xi)
\end{array}\right]
$$

Note that from equation (5) it follows that both $\Gamma(-j \xi)$ an $\Pi(-j \xi)$ are polynomials in ξ with real constant coefficients. Therefore, $S(\xi) \in \mathbb{R}^{2 \times 2}[\xi]$. Moreover, it can be easily checked that $S(\xi)$ is para-Hermitian. Recalling the definition of worst inertia of a para-Hermitian polynomial matrix (Definition 2.2) it follows that $S(\xi)$ has worst inertia either $(0,2)$, or $(1,1)$. This is because, in order for the worst inertia to be anything other than $(0,2)$, or $(1,1), S(j \omega)$ must be negative definite at some frequency $\omega \geqslant 0$. This is equivalent to $\Gamma(\omega)<0$ and $\Pi(\omega)<0$ at the frequency ω, which is not possible as argued in the last paragraph.

For the case when $S(\xi)$ has worst inertia $(0,2)$ it follows that $S(j \omega)$ then is positive definite for almost all $\omega \in \mathbb{R}$. This means for any coprime pair of polynomials (p, q) inequality (6) holds.

For the latter case, i.e., when $S(\xi)$ is having worst inertia $(1,1)$, it follows from Proposition 2.3 that $S(j \omega)$ can be written as

$$
\begin{equation*}
S(j \omega)=K^{T}(-j \omega) J_{\text {worst }} K(j \omega)+L^{T}(-j \omega) L(j \omega) \tag{8}
\end{equation*}
$$

where $J_{\text {worst }}=\operatorname{diag}(1,-1)$ and matrices $K(\xi) \in \mathbb{R}^{2 \times 2}[\xi]$, $L(\xi) \in \mathbb{R}^{\bullet \times 2}[\xi]$, with $\operatorname{det} K(\xi) \not \equiv 0$.

At this point we follow a construction similar to proof of Theorem 6.6 in [1]. There, the above equation is used to find the polynomials p, q that meet the requirements of inequality (6) as follows:

1) Choose $p_{1}(\xi), q_{1}(\xi) \in \mathbb{R}[\xi]$ coprime such that

$$
\begin{equation*}
p_{1}(-j \omega) p_{1}(j \omega)-q_{1}(-j \omega) q_{1}(j \omega)>0 \forall \omega \in \mathbb{R} \tag{9}
\end{equation*}
$$

2) Next, construct adj $K(\xi) \in \mathbb{R}^{2 \times 2}[\xi]$ the adjugate of $K(\xi)$. The required p, q are given by

$$
\left[\begin{array}{l}
p(\xi) \\
q(\xi)
\end{array}\right]:=\operatorname{adj} K(\xi)\left[\begin{array}{l}
p_{1}(\xi) \\
q_{1}(\xi)
\end{array}\right]
$$

Indeed, putting this p, q in the LHS of inequality (6) and utilizing the factorization of $S(j \omega)$ given by equation (8) we get

$$
\begin{aligned}
& {\left[\begin{array}{l}
p(-j \omega) \\
q(-j \omega)
\end{array}\right]^{T} S(j \omega)\left[\begin{array}{l}
p(j \omega) \\
q(j \omega)
\end{array}\right] \geqslant} \\
& {\left[\begin{array}{l}
p(-j \omega) \\
q(-j \omega)
\end{array}\right]^{T}\left(K^{T}(-j \omega) J_{\text {worst }} K(j \omega)\right)\left[\begin{array}{l}
p(j \omega) \\
q(j \omega)
\end{array}\right]=} \\
& \delta(-j \omega) \delta(j \omega)\left[\begin{array}{l}
p_{1}(-j \omega) \\
q_{1}(-j \omega)
\end{array}\right]^{T} J_{\text {worst }}\left[\begin{array}{l}
p_{1}(j \omega) \\
q_{1}(j \omega)
\end{array}\right]>0
\end{aligned}
$$

for almost all $\omega \in \mathbb{R}$, where $\delta(\xi)=\operatorname{det} K(\xi)$. The last inequality follows from equation (9). Thus, the p, q chosen above satisfy inequality (6). This completes the proof of 1) $\Rightarrow 2$).
2) $\Rightarrow 1$): Statement 2) says that there exist $p, q \in \mathbb{R}[\xi]$ such that \mathfrak{B}_{G} is strictly dissipative with respect to $\Phi(\zeta, \eta)=$ $p(\zeta) \Phi_{1}(\zeta, \eta) p(\eta)+q(\zeta) \Phi_{2}(\zeta, \eta) q(\eta)$. From this we have to prove that G has Nyquist plot contained in $\mathcal{A}_{\Phi_{1}}^{+} \cup \mathcal{A}_{\Phi_{2}}^{+}$for all $\omega \geqslant 0$. From Proposition 2.1, statement 2) is equivalent to $M^{T}(-j \omega) \partial \Phi(j \omega) M(j \omega)>0$ for almost all $\omega \in \mathbb{R}$. Now note that using equation (5), and the definition of Φ, the last inequality reduces to

$$
\begin{equation*}
p(-j \omega) \Gamma(\omega) p(j \omega)+q(-j \omega) \Pi(\omega) q(j \omega)>0 \tag{10}
\end{equation*}
$$

for almost all $\omega \in \mathbb{R}$. This means there cannot exist any $\omega \geqslant 0$ for which $\Gamma(\omega)<0$ and $\Pi(\omega)<0$ simultaneously. For if there is some ω, then by continuity of Γ and Π, there is an interval around ω over which Γ and Π would be negative. Because $p(-j \omega) p(-j \omega)$ and $q(-j \omega) q(j \omega)$ are non-negative for each $\omega \in \mathbb{R}$, the last statement implies inequality (10) is violated over a continuous band of frequencies. Hence we infer that for all $\omega \geqslant 0$, either $\Gamma(\omega) \geqslant 0$ or $\Pi(\omega) \geqslant 0$ (or both). Since, Γ and Π both cannot be identically zero polynomials, we conclude that for almost all $\omega \geqslant 0$ either $\Gamma(\omega)>0$ or $\Pi(\omega)>0$ (or both). By using Definition 3.1 and the fact that Φ_{1} and Φ_{2} are NPC supply rates, it follows
that for almost all $\omega \geqslant 0$, the Nyquist plot of G is contained in $\mathcal{A}_{\Phi_{1}}^{+} \cup \mathcal{A}_{\Phi_{2}}^{+}$. This completes the proof of 2$) \Rightarrow 1$).

REFERENCES

[1] I. Pendharkar, H. K. Pillai, A parametrization for dissipative behaviors, Systems and Control Letters, Vol. 51, pp.123-132, 2004.

[^0]: The authors are with the Department of EEE, IIT Guwahati, India - 781039. email: ns.kumar@iitg.ernet.in, debasattam@iitg.ernet.in.

