Appendix to the paper titled "Dissipativity analysis of SISO systems using Nyquist-Plot-Compatible (NPC) supply rates"

N. Santosh Kumar

Lemma 3.3: Let $T = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2}$ be a non-singular matrix and $\sum_{br} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ be the small-gain supply rate. Then the new supply rate $\Phi = T^T \sum_{br} T$ is an NPC supply rate, and its corresponding \mathcal{A}_{Φ}^+ is one of the following:

- 1) If b = d, then the the boundary, \mathcal{A}_{Φ}^{0} , is a line parallel to the imaginary axis. Further, if ab cd > 0 (or, if ab cd < 0) then \mathcal{A}_{Φ}^{+} is the RHS (LHS) of the line \mathcal{A}_{Φ}^{0} .
- If b ≠ d then the boundary, A⁰_Φ, is a circle with center on the real axis. Further, the corresponding A⁺_Φ is the interior (or the exterior) of the circle if b² − d² < 0 (b² − d² > 0).

Proof. First, note that Φ can be written explicitly as

$$\Phi = \left[\begin{array}{cc} a^2 - c^2 & ab - cd \\ ab - cd & b^2 - d^2 \end{array} \right].$$

Now, for a transfer function G(s) = N(s)/D(s), let us denote $x := \operatorname{Re} G(j\omega)$ and $y := \operatorname{Imag} G(j\omega)$. It then follows from the definition of NPC supply rates (Definition 3.1) that the Nyquist plot of G being contained in \mathcal{A}^0_{Φ} for some non-negative frequency is equivalent to

$$(x^{2} + y^{2})(b^{2} - d^{2}) + 2x(ab - cd) + (a^{2} - c^{2}) = 0$$

Thus, $\mathcal{A}^0_{\Phi} =$

Fig. 1. Associated region of shifted passivity supply rate (b = d in T).

$$\{x + iy \mid (x^2 + y^2)(b^2 - d^2) + 2x(ab - cd) + (a^2 - c^2) = 0\}.$$
 Likewise, $\mathcal{A}_{\Phi}^+ =$

$$\{x + iy \mid (x^2 + y^2)(b^2 - d^2) + 2x(ab - cd) + (a^2 - c^2) > 0\}.$$
(1)

The authors are with the Department of EEE, IIT Guwahati, India - 781039. email: ns.kumar@iitg.ernet.in, debasattam@iitg.ernet.in.

Debasattam Pal

Fig. 2. Associated region of shifted small-gain supply rate ($b \neq d$ in T).

Using this we now prove statements 1) and 2). If b = d, then (1) can be simplified as:

$$\mathcal{A}_{\Phi}^{+} = \{ x + iy \mid (a - c)(2bx + (a + c)) > 0 \}.$$

It then follows that \mathcal{A}_{Φ}^{0} is given by the vertical line $x = -\frac{a+c}{2b}$. Further, when ab - cd > 0, \mathcal{A}_{Φ}^{+} turns out to be the RHS of this line, and, when ab - cd < 0, \mathcal{A}_{Φ}^{+} is the LHS of this line. Note that here $ab - cd = ad - bc = \det T \neq 0$ because T must be non-singular. This proves statement 1). An example of such an NPC-region is shown in Figure 4.

For statement 2), that is, when $b \neq d$, observe that the equation for the NPC-boundary \mathcal{A}_{Φ}^{0} matches with the generic equation of a circle with finite radius and center on the *x*-axis (because there is no *y*, or *xy* terms in the equation for \mathcal{A}_{Φ}^{0}). Note also that the signs of the quadratic terms x^{2} and y^{2} are given by the sign of $b^{2} - d^{2}$. Therefore, the corresponding \mathcal{A}_{Φ}^{+} is the interior or the exterior of the circle depending on whether $b^{2} - d^{2} < 0$ or $b^{2} - d^{2} > 0$, respectively. Figure 5 shows such an NPC-region.

Theorem 4.1: Consider a SISO LTI system given by the transfer function G(s) and let $\mathfrak{B}_G = \operatorname{im} M(\frac{d}{dt})$ be its image representation. Let Φ_1 and Φ_2 be NPC supply rates. Then the following two statements are equivalent:

- G has Nyquist plot contained in A⁺_{Φ1} ∪ A⁺_{Φ2} for almost all ω ≥ 0.
- 2) There exist $p, q \in \mathbb{R}[\xi]$ such that \mathfrak{B}_G is strictly dissipative with respect to

$$\Phi(\zeta,\eta) := p(\zeta)\Phi_1(\zeta,\eta)p(\eta) + q(\zeta)\Phi_2(\zeta,\eta)q(\eta)$$
(2)

Proof. 1) \Rightarrow 2): We assume that G has Nyquist plot contained in $\mathcal{A}_{\Phi_1}^+ \cup \mathcal{A}_{\Phi_2}^+$ for almost all $\omega \ge 0$, we have to prove the existence of polynomials $p, q \in \mathbb{R}[\xi]$ such

that \mathfrak{B}_G is strictly dissipative with respect to $\Phi(\zeta, \eta) := p(\zeta)\Phi_1(\zeta, \eta)p(\eta) + q(\zeta)\Phi_2(\zeta, \eta)q(\eta)$. This, by Proposition 2.1, is equivalent to

$$M^{T}(-j\omega)\partial\Phi(j\omega)M(j\omega) > 0$$
 for almost all $\omega \in \mathbb{R}$. (3)

$$\iff M^{T}(-j\omega)[p(-j\omega)\partial\Phi_{1}(j\omega)p(j\omega) + q(-j\omega)\partial\Phi_{2}(j\omega)q(j\omega)]M(j\omega) > 0 \quad \text{for almost all } \omega \in \mathbb{R}.$$

We define the following two functions of ω :

$$\Gamma(\omega) := M^{T}(-j\omega)\partial\Phi_{1}(j\omega)M(j\omega) \Pi(\omega) := M^{T}(-j\omega)\partial\Phi_{2}(j\omega)M(j\omega)$$
(5)

Using equation (5) equation (4) can be rewritten as

$$p(-j\omega)\Gamma(\omega)p(j\omega) + q(-j\omega)\Pi(\omega)q(j\omega) > 0$$

for almost all $\omega \in \mathbb{R}$. This can be written in a matrix-vector form as

$$\begin{bmatrix} p(-j\omega) \\ q(-j\omega) \end{bmatrix}^T \begin{bmatrix} \Gamma(\omega) & 0 \\ 0 & \Pi(\omega) \end{bmatrix} \begin{bmatrix} p(j\omega) \\ q(j\omega) \end{bmatrix} > 0 \quad (6)$$

for almost all $\omega \in \mathbb{R}$. At this point we claim that for any $\omega \ge 0$, the two functions $\Gamma(\omega)$ and $\Pi(\omega)$ cannot both be negative simultaneously. Indeed, if for some $\omega \ge 0$, $\Gamma(\omega) < 0$ then, since Φ_1 is an NPC supply rate, by Definition 3.1, it means that the Nyquist plot of G at that ω is contained in $\mathcal{A}_{\Phi_1}^-$. If $\Pi(\omega)$, too, is less than zero at that frequency ω , then the Nyquist plot of G at ω is contained in $\mathcal{A}_{\Phi_2}^$ because Φ_2 also is an NPC supply rate. These two facts together means that at the frequency ω the Nyquist plot of G is contained in $\mathcal{A}_{\Phi_1}^- \cap \mathcal{A}_{\Phi_2}^-$. Since, $\Gamma(\omega)$ and $\Pi(\omega)$ are continuous functions of ω , if they are negative at some frequency ω then there exists an open interval containing ω over which they continue to be simultaneously negative. This means that over a continuous band of frequencies the Nyquist plot is contained in $\mathcal{A}_{\Phi_1}^- \cap \mathcal{A}_{\Phi_2}^-$. Since $\mathcal{A}_{\Phi_1}^- \cap \mathcal{A}_{\Phi_2}^- \subseteq$ $\mathbb{C} \setminus (\mathcal{A}_{\Phi_1}^+ \cup \mathcal{A}_{\Phi_2}^+)$, the last statement clearly contradicts the assumption of statement 1).

Now consider the matrix

$$S(\xi) = \begin{bmatrix} \Gamma(-j\xi) & 0\\ 0 & \Pi(-j\xi) \end{bmatrix}.$$
 (7)

Note that from equation (5) it follows that both $\Gamma(-j\xi)$ an $\Pi(-j\xi)$ are polynomials in ξ with real constant coefficients. Therefore, $S(\xi) \in \mathbb{R}^{2\times 2}[\xi]$. Moreover, it can be easily checked that $S(\xi)$ is para-Hermitian. Recalling the definition of worst inertia of a para-Hermitian polynomial matrix (Definition 2.2) it follows that $S(\xi)$ has worst inertia either (0, 2), or (1, 1). This is because, in order for the worst inertia to be anything other than (0, 2), or (1, 1), $S(j\omega)$ must be negative definite at some frequency $\omega \ge 0$. This is equivalent to $\Gamma(\omega) < 0$ and $\Pi(\omega) < 0$ at the frequency ω , which is not possible as argued in the last paragraph.

For the case when $S(\xi)$ has worst inertia (0,2) it follows that $S(j\omega)$ then is positive definite for almost all $\omega \in \mathbb{R}$. This means for *any* coprime pair of polynomials (p,q) inequality (6) holds. For the latter case, i.e., when $S(\xi)$ is having worst inertia (1,1), it follows from Proposition 2.3 that $S(j\omega)$ can be written as

$$S(j\omega) = K^T(-j\omega)J_{worst}K(j\omega) + L^T(-j\omega)L(j\omega)$$
(8)

where $J_{worst} = \text{diag}(1, -1)$ and matrices $K(\xi) \in \mathbb{R}^{2 \times 2}[\xi]$, $L(\xi) \in \mathbb{R}^{\bullet \times 2}[\xi]$, with det $K(\xi) \neq 0$.

At this point we follow a construction similar to proof of Theorem 6.6 in [1]. There, the above equation is used to find the polynomials p, q that meet the requirements of inequality (6) as follows:

1) Choose
$$p_1(\xi), q_1(\xi) \in \mathbb{R}[\xi]$$
 coprime such that

$$p_1(-j\omega)p_1(j\omega) - q_1(-j\omega)q_1(j\omega) > 0 \ \forall \omega \in \mathbb{R}.$$
(9)

Next, construct adj K(ξ) ∈ ℝ^{2×2}[ξ] the adjugate of K(ξ). The required p, q are given by

$$\begin{bmatrix} p(\xi) \\ q(\xi) \end{bmatrix} := \operatorname{adj} K(\xi) \begin{bmatrix} p_1(\xi) \\ q_1(\xi) \end{bmatrix}$$

Indeed, putting this p, q in the LHS of inequality (6) and utilizing the factorization of $S(j\omega)$ given by equation (8) we get

$$\begin{bmatrix} p(-j\omega) \\ q(-j\omega) \end{bmatrix}^T S(j\omega) \begin{bmatrix} p(j\omega) \\ q(j\omega) \end{bmatrix} \ge$$

$$\begin{bmatrix} p(-j\omega) \\ q(-j\omega) \end{bmatrix}^T \left(K^T(-j\omega) J_{worst} K(j\omega) \right) \begin{bmatrix} p(j\omega) \\ q(j\omega) \end{bmatrix} =$$

$$\delta(-j\omega) \delta(j\omega) \begin{bmatrix} p_1(-j\omega) \\ q_1(-j\omega) \end{bmatrix}^T J_{worst} \begin{bmatrix} p_1(j\omega) \\ q_1(j\omega) \end{bmatrix} > 0$$

for almost all $\omega \in \mathbb{R}$, where $\delta(\xi) = \det K(\xi)$. The last inequality follows from equation (9). Thus, the p, q chosen above satisfy inequality (6). This completes the proof of $1) \Rightarrow 2$).

2) \Rightarrow 1): Statement 2) says that there exist $p, q \in \mathbb{R}[\xi]$ such that \mathfrak{B}_G is strictly dissipative with respect to $\Phi(\zeta, \eta) = p(\zeta)\Phi_1(\zeta,\eta)p(\eta) + q(\zeta)\Phi_2(\zeta,\eta)q(\eta)$. From this we have to prove that *G* has Nyquist plot contained in $\mathcal{A}_{\Phi_1}^+ \cup \mathcal{A}_{\Phi_2}^+$ for all $\omega \ge 0$. From Proposition 2.1, statement 2) is equivalent to $M^T(-j\omega)\partial\Phi(j\omega)M(j\omega) > 0$ for almost all $\omega \in \mathbb{R}$. Now note that using equation (5), and the definition of Φ , the last inequality reduces to

$$p(-j\omega)\Gamma(\omega)p(j\omega) + q(-j\omega)\Pi(\omega)q(j\omega) > 0$$
(10)

for almost all $\omega \in \mathbb{R}$. This means there cannot exist any $\omega \ge 0$ for which $\Gamma(\omega) < 0$ and $\Pi(\omega) < 0$ simultaneously. For if there is some ω , then by continuity of Γ and Π , there is an interval around ω over which Γ and Π would be negative. Because $p(-j\omega)p(-j\omega)$ and $q(-j\omega)q(j\omega)$ are non-negative for each $\omega \in \mathbb{R}$, the last statement implies inequality (10) is violated over a continuous band of frequencies. Hence we infer that for all $\omega \ge 0$, either $\Gamma(\omega) \ge 0$ or $\Pi(\omega) \ge 0$ (or both). Since, Γ and Π both cannot be identically zero polynomials, we conclude that for almost all $\omega \ge 0$ either $\Gamma(\omega) > 0$ or $\Pi(\omega) > 0$ (or both). By using Definition 3.1 and the fact that Φ_1 and Φ_2 are NPC supply rates, it follows that for almost all $\omega \ge 0$, the Nyquist plot of G is contained in $\mathcal{A}^+_{\Phi_1} \cup \mathcal{A}^+_{\Phi_2}$. This completes the proof of $2) \Rightarrow 1$). \Box

References

 I. Pendharkar, H. K. Pillai, A parametrization for dissipative behaviors, Systems and Control Letters, Vol. 51, pp.123-132, 2004.