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What are discrete 2D systems?

2D systems ⇒ the trajectories evolve over two independent variables.

Discrete ⇒ the independent variables take only integral values (not continuous real

values). The indexing set is the 2D integer grid, Z2.

Example: image/video processing; spatio-temporal signal processing that arises in

seismology, radio telescopy, etc; spectrum sensing in cognitive radio systems, and many

more.

Figure : Figure courtesy:

www.research.stevens.edu

Figure : Figure courtesy:

www.skatelescope.org

2D systems also appear, in a slightly changed form, in repetitive systems, multi-agent

systems (platoon of cars).
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What are discrete 2D systems? 2
Our concern: linear 2D difference equations

We shall consider: Discrete 2D systems that are described by linear 2D partial difference

equations with real constant coefficients.

Notation

Trajectories are doubly indexed, scalar (R) or vector (Rn) valued sequences.

We shall consider only scalar-valued sequences; the general vector has been dealt with in

the paper.

RZ2
:= {w : Z2 → R}

Difference equations are succinctly written using shift operators, σ1, σ2. For w ∈ RZ2
,

then σ1, σ2 act on w as

σ1w(ν1, ν2) = w(ν1 + 1, ν2) σ2w(ν1, ν2) = w(ν1, ν2 + 1)

We denote by A := R[σ1, σ
−1
1 , σ2, σ

−1
2 ], the 2-variable Laurent polynomial ring.

A Laurent polynomial f(σ) =
∑
ν∈Z2 ανσν acts as

f(σ)w =
∑
ν∈Z2 ανσνw,

this is a finite sum.
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What are discrete 2D systems? 3
Our concern: linear 2D difference equations

Notation (contd.)

A typical 2D difference equation is of the form f(σ)w = 0 for some f(σ) ∈ A.

Example

w(h+ 2, k + 1) + 10w(h+ 1, k + 2) + 23w(h+ 1, k + 1)− 5w(h, k) = 0

(σ2
1σ2 + 10σ1σ2

2 + 23σ1σ2 − 5)w = 0.

Following Willems, we call the solution set of a given system of 2D difference equations

the behavior, B.

Discrete 2D scalar behaviors have the following description

B(f1, f2, . . . , fr) := {w ∈ RZ2 | f1(σ)w = f2(σ)w = · · · = fr(σ)w = 0}.
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What is a representation formula, and why is it needed?

A representation formula spells out solutions to differential/difference equations in terms

of initial/boundary conditions and free variables (inputs).

Example: 1D discrete systems

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k).

y(k) = CAkx(0)+
∑k−1
i=0 CA

iBu(k−1−i)+Du(k).

A wealth of benefits entail such a formula:

Systems theoretic questions like stability, characteristic sets can be resolved.

Energy-like storage functions/Lyapunov functions may be constructed.

In 1D systems, ideas like controllability, observability crucially hinges on the above

representation formula.

Unfortunately, such a representation formula for 2D systems has been largely missing!
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What is a representation formula, and why is it needed? 2
First order or state space representation analogous to 1D systems

The representation formula for 1D systems stems from the first order state-space

equation.

Every 1D system, possibly higher order, can be brought into a first order form1.

Such a state-space for 2D systems that is analogous to 1D systems is not yet present!

Fornasini and Marchesini2 showed in 1976

for n = 2,

single input, single output,

and systems having a transfer function, which is an

input/output map,

south-west causal,

x(h+1, k+1) = A0x(h, k)+A1x(h+1, k)+A2x(h, k+1)+Bu(h, k),

y(h, k) = Cx(h, k).

1P. Rapisarda and J. C. Willems, “State maps for linear systems”, SIAM Journal on Control and

Optimization, 35(3), pp 10531091, 1997.
2“State-space realization theory of two-dimensional filters”, IEEE Transactions on Automatic Control,

AC-21(4), pp 484-492, 1976
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What is a representation formula, and why is it needed? 3
First order or state space representation analogous to 1D systems

Several shortcomings of this method.

Doesn’t work for scalar systems with more than one independent equations.

Consider the equation

w(h+ 1, k+ 1)−w(h+ 1, k)−w(h, k+ 1) +w(h, k) = 0.

Knowing w(h, k), w(h+ 1, k), w(h, k + 1) we can determine w uniquely.

What if one more equation

w(h, k + 2)− 2w(h, k + 1) + w(h, k) = 0

is added?

Unlike 1D systems, here multiple equations cannot be reduced to an equivalent single

equation.

Multivariable polynomial rings are not Principal Ideal Domains (PIDs).
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What is a representation formula, and why is it needed? 4
Systems with a special distinguished independent variable: ‘time’

When w is a function of space and time,

σtw(x, t) = Aw(x, t) +Bu(x, t)

w(•, t) ∈ X some suitable Hilbert space, and A : X → X is a linear map.

Often X turns out to be infinite dimensional.

A general higher order system cannot be brought into this form always!

Example: 2D system that cannot be brought into above form

(σtσx − σt − σx + 1)w = 0.

Those which can be brought into the above form has been called time-relevant 2D

systems3.

A more subtle issue: every time-relevant system may not provide a representation

formula because that requires the operator A to be invertible.

3D. Napp, P. Rapisarda, and P. Rocha, “Time-relevant stability of 2D systems”, Automatica, 47(11), pp

2373-2382, 2011.
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What is a representation formula, and why is it needed? 5
The integral representation formula

Given a behavior B(f1, f2, . . . , fr) := {w ∈ RZ2 | f1(σ)w = f2(σ)w = · · · = fr(σ)w = 0}.
Define the following geometric object

Characteristic variety

V := {ξ ∈ C2 \ {(0, 0)} | f1(ξ) = f2(ξ) = · · · = fr(ξ) = 0}.
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w(h, k) = αξh1 ξ
k
2 .
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V

The measure α

w(h, k) =
∫
V ξ

h
1 ξ
k
2 dα.

Known as Ehrenpreis-Palamodov integral representation formula.

Not so straightforward: requires full knowledge of the points of V.

Multiplicity is no longer just a number! It’s a structure. Understood using

Grothendieck’s idea of affine schemes. This leads to Noetherian operators.
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The algebra behind obtaining first order representations of 1D
autonomous systems

Equation ideal

a := {f(σ) ∈ A | f(σ) = q1(σ)f1(σ) + · · ·+ qr(σ)fr(σ)} = 〈f1(σ), . . . , fr(σ)〉.

B(a) := {w ∈ RZn | f(σ)w = 0 for all f ∈ a}.

In a 1D system the equation ideal a is always principal, that is, a = 〈f(σ)〉.
Suppose f(σ) = (σ)n + an−1(σ)n−1 + · · ·+ a1σ + a0.

Let w ∈ B(a). Define:

x :=


w

σw

...

σn−1w

 .

x(k + 1) = Ax(k),

y(k) = Cx(k),

A =


0 1 · · · 0

0 0 · · · 0

...
...

. . .
...

−a0 −a1 · · · −an−1

 , C =
[
1 0 · · · 0

]
.
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The algebra behind obtaining first order representations of 1D
autonomous systems 2

Euclidean division algorithm tells that the quotient ring A/a is a finite dimensional

vector space over R, generated by {1, σ, . . . , σn−1}, where deg(f(σ)) = n.

Multiplication by σ is an R-linear map from A/a to itself. If the elements of A/a are

written as row-vectors then this map is represented by right-multiplication by the

companion matrix A.

In the basis {1, σ, . . . , σn−1} we have

σ


1

σ

...

σn−1

 =

A︷ ︸︸ ︷
0 1 · · · 0

0 0 · · · 0

...
...

. . .
...

−a0 −a1 · · · −an−1




1

σ

...

σn−1

 .
As we have seen earlier, we get the representation formula

w ∈ B(a) ⇔ w(k) = CAkx(0) for all k ∈ Z.
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A special case

For scalar 2D systems having A/a to be a finite dimensional vector space over R it is

known4 5 that there exist A1, A2 ∈ Rn×n and C ∈ R1×n, such that

w ∈ B(a) ⇔ w(h, k) = CAh1A
k
2x(0, 0) for all (h, k) ∈ Z2.

These are called strongly autonomous. Corresponds to the case when V is a finite set.

For the general case this is not true. But we can expect

the quotient ring to be a finitely generated module over a smaller ring.

Modules are like vector spaces, but scalars come from a ring instead of a field.

Example

a = 〈σ2
2 − 2σ2 + 1, σ1σ2 − σ1 − σ2 + 1〉

A/a is a finitely generated module over

R[σ1, σ
−1
1 ]

Non-example

a = 〈σ1σ2 − σ1 − σ2 + 1〉

A/a is not a finitely generated module

over R[σ1, σ
−1
1 ] or R[σ2, σ

−1
2 ]

4P. Rocha and J. C. Willems, “State for 2-D systems”, Linear Algebra Appl., 122/123/124, pp 10031038,

1989.
5E. Fornasini, P. Rocha, and S. Zampieri, “State space realization of 2D finite-dimensional behaviours”,

SIAM J. Control Optim., 31, pp 15021517, 1993.
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What is the big deal about finitely generated modules

Let A1 denote the Laurent polynomial ring in just σ1:

A1 := R[σ1, σ
−1
1 ].

Suppose A/a is a finitely generated module over A1.

Fix a generating set, say {g1, g2, . . . , gn} ⊆ A/a as an A1-module. We get a map:

ψ : An1 � A/a.
ei 7→ gi

ker(ψ) is a submodule of the free module An1 .

Since A is Noetherian, ker(ψ) is also finitely generated. Let the rows of X(σ1) ∈ Ag×n1

generate ker(ψ).

An1 /rowspan(X(σ1)) ' A/a.
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What is the big deal about finitely generated modules 2

Consider the following map:

µ : A/a → A/a
m 7→ µ(m) := σ2m.

This is a map of finitely generated A1-modules.

µ(gi) = ai1(σ1)g1 + ai2(σ1)g2 + · · ·+ ain(σ1)gn,

where ai1(σ1), ai2(σ1), . . . , ain(σ1) ∈ A1.
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µ(gi) = ai1(σ1)g1 + ai2(σ1)g2 + · · ·+ ain(σ1)gn,

where ai1(σ1), ai2(σ1), . . . , ain(σ1) ∈ A1.

A(σ1) =


a11(σ1) a12(σ1) · · · a1n(σ1)

a21(σ1) a22(σ1) · · · a2n(σ1)

.

..
.
..

. . .
.
..

an1(σ1) an2(σ1) · · · ann(σ1)


An1

ψ
� A/a

A(σ1) ↓ ↓ µ.

An1
ψ
� A/a

Lemma

There always exists a generating set {g1, g2, . . . , gn} ⊆ A/a as an A1-module such that A(σ1)

is invertible.
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First order representation for the special case

Let {g1(σ), g2(σ), . . . , gn(σ)} ⊆ A is such that
{
g1(σ), g2(σ), . . . , gn(σ)

}
⊆ A/a generate

A/a as an A1-module.

For w ∈ B(a), define

x =


x1

x2

...

xn

 :=


g1(σ)w

g2(σ)w

...

gn(σ)w

 ∈
(
RZ2

)n
.

σ2


g1(σ)

g2(σ)

.

..

gn(σ)

 = A(σ1)


g1(σ)

g2(σ)

.

..

gn(σ)

 .

σ2x = A(σ1)x. X(σ1)x = 0.
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First order representation for the special case 2

X :=
{
x ∈

(
RZ)n | X(σ1)x = 0

}
.

A(σ1) (X ) ⊆ X . X is A(σ1)-invariant.

It makes sense to define

x : Z→ X

An 1D trajectory defined on X .

x can be thought as an element in
(
RZ2

)n
.

Then define

x(k + 1) = A(σ1)x(k),

Suppose 1 = c1(σ1)g1(σ) + c2(σ1)g2(σ) + · · ·+ cn(σ1)gn(σ). Define

C(σ1) :=
[
c1(σ1) c2(σ1) · · · cn(σ1)

]
,

and

w = C(σ1)x

⇓

w ∈ B(a)
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It makes sense to define

x : Z→ X

An 1D trajectory defined on X .

x can be thought as an element in
(
RZ2

)n
.

Then define

x(k + 1) = A(σ1)x(k),

Suppose 1 = c1(σ1)g1(σ) + c2(σ1)g2(σ) + · · ·+ cn(σ1)gn(σ). Define

C(σ1) :=
[
c1(σ1) c2(σ1) · · · cn(σ1)

]
,

and

w = C(σ1)x

⇓

w ∈ B(a)
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Representation formula for the special case

Theorem (special representation formula)

Equation ideal is such that A/a is finitely generated as a module over A1.

Define X , A(σ1) and C(σ1) as before.

w ∈ B(a) ⇔
there exists x ∈ X such that for all (h, k) ∈ Z2,

w(h, k) =
(
C(σ1)A(σ1)kx

)
(h).
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Can we do it for a general ideal?

The seed of the solution lies in a ninety years old

work of Emmy Noether (1882-1935). Noether first

presented this result in her 1926 paper, entitled

“Der Endlichkeitsatz der Invarianten endlicher

linearer Gruppen der Charakteristik p”, and used

it for studying invariant theory of finite groups

over fields of arbitrary characteristics.

This result, called Noether’s Normalization Lemma

is considered a touchstone in commutative algebra

and algebraic geometry.

The result says that any quotient ring of a

polynomial ring over a field can be viewed as a

finitely generated module over a polynomial

subring (after a suitable “transformation”).

Unfortunately, the lemma is not directly applicable

to the current situation. A rework was needed.
Figure : Emmy Noether
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Coordinate change

Coordinate change in the domain Z2 is represented by a unimodular matrix T ∈ Z2×2.

T induces the following two maps:

ΦT : RZ2 → RZ2

w 7→ w ◦ T.

Z2 T→ Z2

ΦT (w) ↘ ↓ w
R

commutes.

ϕT : A → A
σi 7→ σTei for 1 6 i 6 2.

Automorphism of A, ideals

are mapped to ideals.

Theorem

a ⊆ A is an ideal and B(a) its behavior.

T ∈ Z2×2 is a coordinate change.

Then we have

B(a) = ΦT (B(ϕT (a))).
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Discrete Noether’s Normalization Lemma

Theorem (Discrete Noether’s Normalization Lemma)

Given an ideal a ⊆ A.

There exists T ∈ Zn×n a coordinate change such that

A/ϕT (a) is a finitely generated module over A1.
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Consequences of Noether’s Normalization Lemma

Theorem (general representation formula)

Given a ⊆ A an ideal and B(a) its behavior.

There exists a coordinate change T ∈ Z2×2 such that

B(a) = ΦT (B(ϕT (a)))

where B(ϕT (a)) admits special representation formula.

In other words, there exist

a positive integer n,

a square (n× n) matrix A(σ1) ∈ An×n1 ,

a (1× n) matrix C(σ1) ∈ A1×n
1 ,

another matrix X(σ1) ∈ A•×n1 ,

such that

w ∈ B(ϕT (a))
⇔

there exists x ∈
(
RZ)n satisfying X(σ1)x = 0, and

w(h, k) =
(
C(σ1)A(σ1)kx

)
(h).
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An example

Consider the system

B = ker(σ1σ2 − σ1 − σ2 + 1).

Take the coordinate transformation T =
[

1 0
2 1

]
. Then the transformed equation turns out to

be (
σ3

2 − σ2
2 − σ

−1
1 σ2 + σ−1

1

)
v = 0.

With this we get

n = 3,

X(σ1) = 0,

A(σ1) =

 0 1 0

0 0 1

−σ−1
1 σ−1

1 1


C(σ1) =

[
1 0 0

]
.

Note that T
[
h
k

]
=
[

h
2h+k

]
. Hence, solutions in B are given by

w(h, k) =

[1 0 0
]  0 1 0

0 0 1

−σ−1
1 σ−1

1 1

2h+k

x

 (h),

where x ∈ (R3)Z is arbitrary.
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Conclusion and future works

In this paper, we looked into novel representation formulae for discrete 2D autonomous

systems.

These representation formulae generalize the solution formula for 1D autonomous

systems given by a flow acting on initial conditions.

The crucial difference in the 2D case is that here the initial conditions are given by 1D

trajectories as opposed to real vectors in the 1D case.

Moreover, instead of a constant matrix, here in the 2D case the flow operator is a

1-variable Laurent polynomial matrix.

The techniques involved: manipulations on finitely generated modules, and discrete

Noether’s normalization lemma.

The question of how to get minimal size of the 1-variable Laurent polynomial matrix

A(∂1), or algorithms for computing the matrix.

The extension of the formulae to non-autonomous systems is also another important

unresolved question.

Déboux & HP (IIT Bombay) Representation formulae: 2D systems CDC 2014 23 / 24



Thank you
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