OPTIMAL SINGULAR LQR PROBLEM: A PD FEEDBACK
SOLUTION*
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Abstract. Unlike regular linear quadratic regulator (LQR) problems, singular LQR problems,
in general, cannot be solved using a static state-feedback controller. This work is primarily focused on
the design of feedback controllers which solve the singular LQR problem. We show that such problems
can be solved using proportional-derivative (PD) state-feedback controllers. It is well known in the
literature that the mazimal rank-minimizing solution of the singular LQR linear matrix inequality
(LMI) is pivotal in solving the singular LQR problem. In this paper, we first make use of this
maximal rank-minimizing solution to compute the optimal trajectories. Then, we provide a PD
feedback controller that restricts the trajectories of the closed-loop system to these optimal ones,
and thus solves the singular LQR problem. While numerous solutions to this problem have been
proposed over the course of the extensive research efforts in this field, a controller in the form of
a PD state-feedback has been long sought after. Our approach is based on the notion of weakly
unobservable (slow) and strongly reachable (fast) subspaces developed in [3]. But unlike [3], we
employ these notions to the corresponding Hamiltonian system and not to the plant. This crucial
extension of these well-known subspaces to the corresponding Hamiltonian system is key to the
optimal PD feedback design that we propose in this paper. It is well-known that an optimal state
feedback for the singular LQR problem does not exist; the limiting state feedback controller of the
sub-optimal ones (high gain controllers) has unbounded coefficients as optimality is approached. We
show in this paper that the limiting high gain controller is in fact a PD controller.

1. Introduction. In this paper, we provide a closed-loop solution for the singu-
lar case of the well-known infinite-horizon linear quadratic regulator (LQR) problem.

Problem 1.1. (Infinite-horizon LQR problem) Consider a stabilizable sys-
tem with the state-space dynamics %:17 = Az + Bu, where A € R**®, B € R**™, Then,
for every initial condition xg, find an input u that minimizes the functional

(1.1) J(z0,u) == /OOo [jjgg]T [SQT ;] [ugg] dt, with lim a(t) = 0,

where {SQT ;} >0, Q € R**®, and R € R®*™,
For regular LQR problems, i.e., LQR problems with R > 0, the input v that minimizes
J(xg,u) in equation (1.1) can be obtained using a static state-feedback constructed
using the mazimal solution of the algebraic Riccati equation (ARE):

(1.2) ATK+KA+Q— (KB+S)R'(B"K +5") =0.

Here, by a maximal solution K.y, we mean that K., — K > 0 for any other arbitrary
solution K of the ARE. If K., is the maximal solution of the ARE, then the LQR
problem can be solved using the feedback law u = Fx, where F := —R™Y(ST +
BT Kpax). Naturally, a singular LQR problem (R > 0 with det R = 0) does not admit
an ARE and cannot be solved using this feedback law due to singularity of R.
Singular LQR problem has been extensively studied over the past few decades
(see, for example, the seminal paper [3]); but, a feedback solution that restricts the
system to the optimal trajectories has remained largely elusive. Interestingly, [3] shows
existence of a state-feedback controller for every regular relaxation of the problem,
but, the limiting controller that is naively expected to work for the singular case fails
to exist. Such controllers are known as high gain controllers, for their coefficients
grow unbounded in the limit. A polynomial matrix based method for designing a
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PD feedback controller has been put forth in [4], but applicability of this result does
not allow the initial condition to be free. It is also built on certain assumptions like
controllability of (A, B) and observability of (Q,A). In [5], the notion of deflating
subspaces has been used to provide a linear implicit control law of the form Px +
Tu = 0. But, most often this form does not lead to a feedback law, essentially due
to non-invertibility of T (See [6] for the importance of feedback control). Another
major drawback of this result is that it assumes the function space to be locally
square-integrable. It is well known in the literature that the optimal trajectories
for a singular LQR problem, in general, are impulsive in nature. Therefore, the
local square-integrability of the signals is an extremely restrictive assumption, for the
locally square-integrable functions cannot account for these impulses. Consideration
of only square-integrable functions imposes a restriction on the initial condition of the

system.
Yet another method of solving the singular LQR problem is via the solution of

the constrained generalized continuous algebraic Riccati equations (CGCARESs) (see
the recent papers [7], [8], [9]):

(1.3) ATK + KA+ Q — (KB + S)R'(B"K + S7) = 0 and ker(R) C ker(S + K B),

where R is the Moore-Penrose pseudo-inverse of R. However, it has been shown
in [10] that solvability of CGCARE is equivalent to the corresponding Hamiltonian
pencil satisfying a certain rank condition. Hence, CGCARE is generically unsolvable.
Thus, in almost all cases of singular LQR problem, this method fails to provide a
solution.

In this paper, we provide a method to design a proportional-derivative (PD) state-
feedback controller that solves the singular LQR problem. While doing so, we do not
put any restriction on the initial condition. Since the initial condition is arbitrary, the
optimal trajectories, in general, are impulsive in nature. Hence, the function space
assumed in this paper allows impulses.

The first step in computing the optimal solution is to compute the maximal rank-
minimizing solution of the following LMI:

._ | ATK+KA+Q KB+S

(1.4) L(K) = [V fae Koes] >,

We call inequality (1.4) the LQR LMI. Interestingly, for every LQR problem, the op-
timal cost is given by 22 Kpax®o, where Ky, is the maximal rank-minimizing solution
of the LQR LMI (1.4), that is, Kpay — K > 0 and rank £(Kpax) < rank L(K) for all
K that satisfies £(K) > 0 (see [11]). Hence, in order to compute the optimal cost of
a general LQR problem, it is imperative that the maximal rank-minimizing solution
of the LQR LMI (1.4) be computed. For regular LQR problems the maximal solution
of the ARE given by equation (1.2) is, indeed, the maximal rank-minimizing solution
(Knax) of the LMI (1.4). For singular LQR problems, if the CGCARE is solvable then
Kpay can be found by obtaining the maximal solution of the CGCARE (1.3); but, as
has been mentioned before, CGCARE is generically unsolvable. There are numerous
methods to compute the maximal solution of an ARE: see [12] for different methods.
However, these methods cannot be used in the singular case due to nonexistence of
an ARE. In [2] we showed that one of the methods to compute K., for an LQR
LMI of the regular case can be extended to the singular case (see [13, Chapter 5] for
the regular case). This method, for the regular case, is based on computing a suit-
able eigenspace of the corresponding Hamiltonian system. A direct extension of this
method to the singular case fails, since the dimension of the suitable eigenspace of
the Hamiltonian system in such a case is less than what is required to compute Kpax.-
It has been shown [2] that the Hamiltonian system based method for the regular case
can indeed be extended to the singular case by substituting the role of the eigenspace
of the Hamiltonian system in the regular case by the subspaces namely the weakly
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unobservable subspace (slow space) and the strongly reachable subspace (fast space) of
the Hamiltonian system. This observation is crucially used for the development of
our results. It is worthwhile to mention here that the idea of employing the notion of
slow space of the Hamiltonian in the context of the singular LQR problem has also
been used in [14], where the authors consider a special case of the problem, namely
the cheap LQR problem (where R = 0).

The paper is structured as follows: Section 2 consists of the notation and a
few preliminary results. The idea of weakly unobservable and strongly reachable
subspaces have been known to be crucial in singular LQR problems (see [3], [15], [16],
[17]). Matrix theoretic characterizations of the weakly unobservable and the strongly
reachable subspaces have been provided in [1] and [18], respectively. These works also
provide a method to compute the dimensions of these subspaces from the transfer
function matrix of the primal. For the sake of completeness we present the results
of [2], [1], and [18] in Section 3. In Section 4 we compute the optimal trajectories,
while Section 5 provides a PD state-feedback controller that restricts the system to
exhibit the optimal trajectories only. We provide an illustrative example in Section
7 to demonstrate the theory presented in this paper. A comparative analysis of this
result with the existing results in the literature has been carried out in Section 8.
Finally, Section 9 provides a few concluding remarks.

2. Notation and Preliminaries.

2.1. Notation. The symbols R, C, and N are used for the sets of real numbers,
complex numbers, and natural numbers, respectively. We use the symbols Ry and
C_ for the sets of non-negative real numbers and complex numbers with negative real
parts, respectively. The symbol R**P denotes the set of n X p matrices with elements
from R. We use the symbol I, for an n X n identity matrix and the symbol 0, , for an
n X m matrix with all entries zero. Symbol col(By, Ba,...,By,) represents a matrix of

the form [Bf BI .- BnT]T. By im A and ker A we denote the image and nullspace
of a matrix A, respectively. The symbols rank A and nullity A denote the rank and
the dimension of the nullspace of a matrix A, respectively. det(A) represents the
determinant of a square matrix A. We use the symbols deg(p(s)) and roots(p(s)) to
denote the degree and the set of roots (over complex numbers) of a polynomial p(s)
with real or complex coefficients (with a root A included in the set as many times as
its multiplicity), respectively. The symbol num(p(s)) is used to denote the numerator
of a rational function p(s). By degdet(A(s)) we denote the degree of the determinant
of a polynomial matrix A(s) and by numdet(A(s)) we denote the numerator of the
determinant of a rational function matrix A(s). The symbol o(A) denotes the set of
eigenvalues of a square matrix A (with an eigenvalue A included in the set as many
times as its algebraic multiplicity). We use the symbol o(E, H) to denote the set
of eigenvalues of the matrix pencil (E, H) (with A € o(E, H) included in the set as
many times as its algebraic multiplicity). The symbol |T'| denotes the cardinality of a
set T' (counted with multiplicity). We use the symbol o(A|s) to represent the set of
eigenvalues of A restricted to an A-invariant subspace S. We use the symbol dim (S)
to denote the dimension of a space S. The space of all infinitely often differentiable
functions and locally square-integrable functions from R to R™ are represented by the
symbol €>°(R,R?) and L%, (R,R?), respectively. We use the symbol €*(R, R?)|r,
to represent the set of all functions from R to R that are restrictions of €>°(R,R®)
functions to Ry. The symbol & represents the Dirac delta impulse distribution and

6() represents the i-th distributional derivative of § with respect to ¢.

2.2. Weakly unobservable and strongly reachable subspaces. Consider a
system described by %m = Ax + Bu and y = Cz + Du, where A € R**®* B € R**™

C € RP*™ and D € RP*™. Associated with such a system are two important subspaces
called the weakly unobservable subspace and the strongly reachable subspace (see [3]
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for more on these spaces). Before we delve into the definitions of these subspaces, we
need to define the space of impulsive-smooth distributions (see [3], [17]).

DEFINITION 2.1. The set of impulsive-smooth distributions €F__ is defined as:

imp

k
= { F=fregt finp | freg €C°(R,RY) [, and fimp=Y a;6'"), witha; € R¥, k € N}.
=0

In what follows, we denote the state-trajectory x and output-trajectory y of the
system, that result from initial condition ¢ and input u, using the symbols z(¢; o, u)
and y(t; xo, u), respectively. z(07; zg,u) denotes the value of the state-trajectory that
can be reached from x( instantaneously on application of the input u at t = 0.

DEFINITION 2.2. A state xg € R™ is called weakly unobservable if there exists
an input v € C°(R,R")|r, such that y(t;xo,u) = 0 for all t > 0. The collection of
all such weakly unobservable states is called the weakly unobservable subspace of the
system and is denoted by O,.

The other space of interest is the space of strongly reachable states (see [3]).

DEFINITION 2.3. A state 1 € R is called strongly reachable (from the origin) if
there exists an input u € €, such that 2(0%;0,u) = 1 and y(t;0,u) € €°(R, RP)|g,
(that is, the output is regular). The collection of all such strongly reachable states is

called the strongly reachable subspace of the state-space and is denoted by Rs.

Since O,, deals with inputs from the space of infinitely differentiable functions, we
call O,, the slow space of the system. On the other hand, since the space Rs admits
impulsive inputs, we call Ry the fast space of the system. Further, by [3, Theorem
3.10] we know that O,, is the largest among the subspaces V for which there exists
an Fy € R™® such that

(2.1) (A+ BF,)V CV and (C + DFy)V = {0}.

In other words, there exists Fp, € R™*® such that O,, satisfies the above equation;
and for any arbitrary subspace V that satisfies the above equation, we must have
that ¥V C O,. Note that, the class of subspaces that satisfy equation (2.1) also
admits a subspace Oy such that o((A+ BFo,,)|o,,) € C_;and V C O,, whenever
o((A+ BFy)|ly) C C_. (see [19, Chapter 4, Chapter 5] for more on this). We call
such a space the good slow space of the system as defined below (see [20, Chapter 3]).

DEFINITION 2.4. The good slow space O.4 s the largest subspace V of the state-
space for which there ezists a feedback Fy, € R™™ such that

(A + BFv)V cV, (C+ DF\;)V = {0}, and O'((A + BFv)‘V) cC._.

2.3. Alternative formulation of the singular LQR problem. Recall from
Problem 1.1 that R > Q\ ThereforAe, there exists an orthogonal matrix U € R®*™ guch
that UT RU = diag(0, R), where R € R*™** and r := rank R. Notice that R > 0. This
transformation enables us to provide an alternative formulation of the singular LQR
Problem 1.1, which separates the regular part from the singular part of the problem.
The following lemma is crucial for this purpose.

LEmMA 2.5. Consider the singular LQR Problem 1.1, where rank R = r. Let
U € R™™® be an orthogonal matriz such that UT RU = diag((),ﬁ), where R € R¥**
and R > 0. Define BU =: [B; B,] and SU =: [S1 S|, where Ba,S» € R™.
Then, the following statements hold:

L. [SQT;] >0 if and only if S; =0, Q — SaR~1ST > 0.

4
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2. u* is a solution to the singular LQR Problem 1.1 if and only if UTu* =
col(uf,us) minimizes

(2.2) J (2o, u) = /f[éf[ég%;] [Zmé]dt'

3. K = K7 satisfies L(K) > 0 (equation 1.}) if and only if K satisfies the LMI:

(2.3) LoK):=| Bk o o0

ATK+KA+Q KBy KBay+Ss
>0
BIK+ST 0 R

4. Kyax is the mazimal rank-minimizing solution of the LQR LMI (1.4) if and
only if Kuax s the mazimal rank-minimizing solution of the LMI (2.3).

Proof Statement 1 and Statement 2 follow directly from [10, Lemma 2.1].
3. Define the orthogonal matrix U := diag(l,, U). From the assumptions and State-
ment 1 of this lemma, it can be verified that UTL(K)U = L(K). Thus £(K) > 0 if
and only if £;(K) > 0. This proves Statement 3.
4. UTL(K)U = L4(K) = rank £(K) = rank £ (K). Also, from Statement 3 of this
lemma we know that the solution sets of the LMIs £(K) > 0 and L(K) > 0 are
equal. Thus, K,y is the maximal rank-minimizing solution of the LQR LMI (1.4) if
and only if K.y is the maximal rank-minimizing solution of the LMI (2.3). O

Notice that the LMI (2.3) is the LQR LMI corresponding to the singular LQR prob-
lem that minimizes the objective function given by equation (2.2). Therefore, Lemma
2.5 allows us to write any singular LQR problem as follows:

Problem 2.6. Let Q € R*** Sy € R*** and R € R¥** be such that B > 0

Q 0 S

and [ OT 0d,a 9} > 0, where d :=m — r. Consider a stabilizable system with state-
sT o R

space dynamics %x = Az + Byiuy + Bouo, where A € R, B, € R**4, and By €

R***. Then, for every initial condition xq, find an input u := col(uy,us) such that
lim;—, 00 2(t) = 0 and u minimizes the functional (2.2).

This reduction of the original singular LQR problem (Problem 1.1) to its equivalent
Problem 2.6 plays a crucial role in the sequel, where we exploit the special structure
of the matrices involved in Problem 2.6 to obtain the main results.

Q 08>
2.4. The primal and the Hamiltonian. Suppose p := rank L'OT 0 1%, . This
0
’ Q 082
matrix being positive semi-definite, admits a factorization given by SOT 8 1% =
2

[cop.]" [coD,], where C € RP*® and D, € RP**. Using this factorization in
equation (2.2), it can be easily seen that the singular LQR Problem 2.6 can be viewed
as an output energy minimization problem of the system ¥ defined as follows:

d
(2.4) 3 7= Ax + Biui + Bougz and y = Cx 4+ Daus.

We call the system X the primal for the given singular LQR Problem 2.6.

REMARK 2.7. The optimal trajectories for the singular LQR problem are impul-
sive. Therefore, in this paper we consider the trajectory space €f, (see Definition
2.1) which allows impulses in trajectories. By equation (2.2) it can be inferred that
in order for the objective function to be well-defined, the output y(t) of the primal
must be regular. Hence, while searching for an optimal input from the space &, it
suffices to restrict our search to the inputs which cause the output y(¢) to be regular.
We call such inputs the admissible inputs.
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By Pontryagin’s maximum principle, all the smooth optimal trajectories of Prob-
lem 2.6 must necessarily be a trajectory of the following singular descriptor system:

I 000 A 0 Bj Bsa

T T
017.00 d z | _ -Q -AT 0 -5, z

(2.5) n — = T

: 0000 g¢ |22 0 B 0 O uy |

0000 w2 sT BT o R u2

—_—— 2 2

E

H

where col(z, z) is the state-costate pair. The system described by equation (2.5) is

known in the literature as the Hamiltonian system corresponding to the LQR Prob-
lem 2.6 and the matrix pair (E, H) is known as the Hamiltonian matrix pair. The
Hamiltonian system admits an output-nulling representation given by

(2.6) S1Z)=A[Z]+ B[] and 0= C[Z]+ D[1],
~ A 0 5. [B B ~._ [ o BY N._ 700
where A::{7Q7AT},B.—[017522},C.—{5533},andD.—[Oﬁ].

In this paper we show that not only the smooth optimal trajectories, but also the
distributional ones must necessirily satisfy the Hamiltonian system’s equation.

Due to non-singularity of R, we can further reduce the Hamiltonian system to
obtain an equivalent system described by the following differential algebraic equations:

Looyd A-ByR™'SY  —BoR'Bf B,
(2.7) {o I 0] — [ z } = | —Q+S:R 18T —(A—B,R'S)T 0 [ z } .
000ldtlm T u1
NG AL 0 B! 0
E,
H,

We call the system described by equation (2.7), the reduced Hamiltonian system, and
the pair (E,, H,) the reduced Hamiltonian matriz pair. The reduced Hamiltonian
system admits an output-nulling representation Xy, as follows:

(2.8) %[;ﬂ] =75, ae | 1E1+ [ w and 0 = [0 7] [2],

where A, == A — ByR™'ST, Q, := Q — S2R'ST, L := B,R"'BY, and B, := B.
The reduced Hamiltonian system and the Hamiltonian system are equivalent in the
sense that col(x, z,uy) is a trajectory of the reduced Hamiltonian system if and only
if col(x, z,uy, —E‘l(ng + BT2)) is a trajectory of the Hamiltonian system. But,
it is easier to carry out the analysis using the reduced Hamiltonian system. We
characterize the slow space and the fast space in terms of the reduced Hamiltonian
system, which finally leads to the maximal rank-minimizing solution of the LQR LMI.

The following lemma establishes a few important relations between the primal
and the Hamiltonian (see [21, Lemma 4.4]).

LEMMA 2.8. Consider the primal X, the Hamiltonian matriz pair (E,H), the
reduced Hamiltonian matriz pair (E,., H,), and the matrices fl,é,é,f) defined in
equation (2.4), equation (2.5), equation (2.7), and equation (2.6), respectively. Define
G(s) :=C(sl, — A)~! [Bl BQ] + [0 Dg}. Then the following statements hold:

1. G(=s)TG(s) = C(sloy — A)1B+ D.
2. numdet (G(—s)7G(s))'=det(sE — H) = (—1)*det R x det(sE, — H,).

!Here by numdet (G(—s)TG(s)), we mean the numerator of det (G(—s)T G(s)) before any possible

pole-zero cancellations.
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REMARK 2.9. Throughout this paper, we assume that (i) (sE, — H,.) is a regular
matrix pencil, that is, det(sF,.—H,.) # 0; and (ii) o(E,, H.)NjR = ¢. The assumption
that det (sE, — H,) # 0 is a standard assumption in the literature. It means that
the Hamiltonian system is autonomous and ensures that, for a given initial condition,
the optimal trajectory is unique. It has been shown in [10] that for singular LQR
problems, the condition det (sE, — H,.) #Z 0 is generically satisfied. Therefore, this
assumption is not restrictive. From Statement 2 of Lemma 2.8, it follows that the
condition det (sE, — H,) # 0 is equivalent to the transfer function matrix G(s) of the
primal ¥ being left-invertible. So, in terms of the primal X, this assumption translates
to the primal ¥ being a left-invertible system (see [3, Theorem 3.26]). See [22] for the
case when the primal is not a left-invertible system.

Since the primal ¥ is assumed to be stabilizable, from Statement 2 of Lemma
2.8, it follows that the assumption o(E,, H,) N jR = ¢ is equivalent to saying that:
(a) the primal ¥ does not have any unobservable eigenvalue on the imaginary axis,
and (b) the primal has no transmission zeros on the imaginary axis. Note that, this
assumption, too, is not restrictive, because the property that a polynomial has no
root on the imaginary axis is generically satisfied. This assumption also is a standard
assumption in the literature (see [14], [17]).

Due to Statement 2 of Lemma 2.8 we further infer that if A is a root of det(sE, —
H,) (that is, A € o(E,, H,)), then —A\, too, is a root of the same. Of course, the
roots also appear in complex conjugate pairs. Therefore, the roots are symmetric
about the origin. Consequently, det(sE, — H,.) is an even-degree polynomial. Hence,

for a singular LQR problem degdet(sFE, — H,) =: 2ng, where ny < n (because D
is singular). Hence, the assumption that o(E,, H,) N jR = ¢ further implies that
lo(E, H) NC_| = ns. O
For a quick reference, in Table 1 we have listed some matrices and numbers that have
been frequently used throughout this paper.

Matrix/Number Definition Remark
A, A, :=A— ByR™1ST
B, B, := B; Defined in equation
L L:= By,R'BT (2.8).
Q- Qr:=Q — SQR_lsg
C, C,:=C — DyR™'ST Defined in Lemma 3.2.
Notice that CTTCT =Q,.
r and d r:=rank R and d := nullity R | Notice that d =m —r.
', 0 0 |
E, E..=|01 0 (E,, H,) is the
0 0 044 reduced Hamiltonian
A —L B, matrix pair defined in
H, H = |-Q, —AT 0 equation (2.7).
o Bl o
ne and ng 2ng := degdet(sFE,. — H,.) See Remark 2.9
and n; :=n —ng and Lemma 3.2.
TABLE 1

Definitions of some matrices and numbers for a quick reference

3. Constructive solution of the singular LQR LMI. In this section we first
provide a characterization of the good slow space of the Hamiltonian system. Then,
we present a characterization of the fast space of the primal. We also depict how to
get the dimensions of these spaces from the transfer function matrix of the primal.

7
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Finally, we construct the maximal rank-minimizing solution of the LQR LMI 2.3 using
these subspaces. These results have already appeared in [2], [1], and [18]. They are
being presented here for completeness and ease of referencing in the main results.

3.1. Characterization of the good slow space of the Hamiltonian sys-
tem. The good slow space (Oy4) of the Hamiltonian system provides us with the
subspace of the state-space, which contains all the initial conditions that result in
smooth optimal trajectories for the given singular LQR problem (see Lemma 4.1). In
the following lemma we present a characterization of O, (see [1, Section 3]).

LEMMA 3.1. Consider the reduced Hamiltonian matriz pair (E,., H,) correspond-
ing to the singular LQR Problem 2.6 as defined in equation (2.7). Assume that
o(E, H.) NjR = 0. Define degdet(sE, — H,) =: 2ns and A := o(F,,H,) N C_
(recall from Remark 2.9 that |A| = ns). Let Vip, Vap € R®*® and V3 € RI*®= pe
such that the matriz col(Vip, Van, Vaa) is full column-rank and the following holds?®:

A, —L B/[Via L 0 0|[via
(3.1) —Q, —AT 0 ||Vaal=1|0 L Of|Vasl|T,
0 BT 0]|Va 0 0 O0f|Va

where o(I") = A. Then, the following are true:
1. The good slow space of Exam =: Owg = im [%ﬁ ]
2. [5;2] is full column-rank; that is, dim (O,4) =n
3. Vip s full column-rank.

Statement 3 of Lemma 3.1 gives us an important structural property of the good
slow space of the Hamiltonian system. This property is known as disconjugacy of the
eigenspace of the matrix pair (F,, H,) (see [13, Definition 6.1.5]). Columns of the
matrix Via constitute a basis of a special subspace of the state space. Any initial
condition from this subspace results in a smooth optimal trajectory. Moreover, left-
invertibility of Vo plays a crucial role in providing a closed-form expression of the
maximal rank-minimizing solution of the singular LQR LMI; it is also pivotal to the
design of a PD state-feedback controller.

3.2. Characterization of the fast space of the primal. The following lemma
presents a closed-form expression for the fast space of the primal ([2, Proposition 3.2],
also see [18] for more details). It also enables us to read off the dimension of the fast
space from the transfer function matrix of the system.

LEMMA 3.2. Consider the primal 3 and the matrices A, B, as defined in equation
(2.4) and equation (2.8), respectively. Define Cy := C — DyR™'ST.  Recall that
2n, = deg{numdet G(—s)TG(s)}, where G(s) is the transfer function matriz of ¥ and
d =nullity R. Let Ry denote the fast space of .. Define

Op,d ifnf =
Op.a 0 0 0
0 0 . 0 Cr-By
M = 0 0 . C’V‘BT CTATBT ifnf >d+ 1.
0 CvBr ... CLA¥?B. C.A¥X'B,

Then, the following are true:
1. dim(ker M) = n¢, where ng :==n — n,.
2. dimR, = ng.

2Such matrices Via, Vaa, and V3 always exist. See [1, Section 3.2] for more on this.

8
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3. Let N € Rme—d+D)xne po o matriz such that its columns form a basis for
ker M. Define

(3.2) W:=[B, A.B, ... A% B]JN.

Then, R = im W.
4. W is full column-rank, that is, the columns of W form a basis for Rs.

We call M the Markov parameter matriz. It is evident from Lemma 3.2 that M plays
a vital role in providing a closed-form expression of the fast space of the primal. It
also plays a crucial role in computation of the optimal trajectories and also in the
design of the PD feedback controller.

3.3. The maximal rank-minimizing solution of the singular LQR LMI.
The slow space of the Hamiltonian system and the fast space of the primal are inti-
mately related to the maximal rank-minimizing solution Ky, of the LQR LMI. The
following theorem provides a closed-form expression for K., by making use of these
spaces. See [2, Section IV] for more details.

THEOREM 3.3. Consider the LQR Problem 2.6 with the corresponding LMI given
by equation (2.3). Recall from Lemma 3.1 that the good slow space of the Hamiltonian
system Yam 5 given by Oy = im [“22] Further recall from Lemma 3.2 that the
fast space of the primal ¥ is given by Ry = imW. Define [%2 V(‘)/] =: [¥£], where
X, Y € R**2, Then, the following statements hold:

1. X is invertible.

2. Kpax =Y X1 is symmetric.

3. Kpay is a rank-minimizing solution of LMI (2.3).
4. For any other solution K of LMI (2.3), K < Kpay.
5. Kpayx = 0.

REMARK 3.4. For the regular LQR problem, the relation between a rank min-
imizing solution of the LQR LMI and its corresponding ARE is a well-known fact
[23, Theorem 4.3.1]. For a regular problem, the maximal rank-minimizing solution
of the corresponding LMI can be found using the algorithm provided in the seminal
paper [24]. Note that, for a regular LQR problem, ng = n; and hence by Lemma 3.1,
it follows that Viy € R®*® is invertible. Further, for such a problem the fast space
of the primal, Ry = {0}. Thus, by Theorem 3.3, it follows that Ky, = VgAVlj\l;
which is in agreement with [24]. So, the algorithm for computation of the maximal
rank-minimizing solution of the regular LQR LMI as given in [24] is a special case
of Theorem 3.3. However, in this paper Theorem 3.3 provides a recipe to compute
the maximal rank minimizing solution of the LQR LMI, both for the regular and
the singular case. This eventually leads to a solution of the singular LQR problem.
Interestingly, [23] uses special co-ordinate basis (SCB) to show that for the singular
LQR case, the rank minimizing solution of the LQR LMI admits a special structure
[23, Equation 4.3.20]. Hence, a natural question would be to investigate if the bases
of the fast and the slow spaces admit some structure when the primal system is in
SCB to start with. Thus, a study on the relation between fast/slow spaces and the
SCB might provide valuable insights into the singular LQR problem and its solutions.
We do not delve into such a study in this paper, as our primary focus in this paper
is the design of a PD state-feedback controller, using the maximal rank minimizing
solution of the singular LQR LMI, that solves the singular LQR problem. O

In the following remark we discuss about a certain observation regarding the kernel
of Kyay and its implication.

REMARK 3.5. In [23, Lemma 4.3.4] it has been shown that an arbitrary solution
K of the LQR LMI contains a certain subspace of the state space of the primal inside

9
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its kernel (which the authors in [23] call the detectable strongly controllable subspace).
From Theorem 3.3, we know that Kpay = [Vea 0][Via W]_l. From [2, Remark 2.11
and Lemma 2.12], it follows that, without loss of generality, [ 12} can be written as

[Vu\] _ {Vg Vie

Van 0 Vi ] where the columns of the matrix V; form a basis for the good slow

space of the primal and V5, is full column-rank. Hence, Kpay = [0 V2o 0] [ Vi Vi Wr1

S0, KpaxVe = 0 and KpaxW = 0. Also, since Vo, is full column-rank, the kernel of
Kmax is exactly equal to the direct-sum of the good slow space and the fast space of
the primal. This observation gives rise to an interesting conclusion: since, for a given
initial condition, the optimal cost of the singular LQR problem is given by 27 Kuay7o
(see [11, Theorem 2]), any initial condition belonging to the direct-sum of the good
slow space and the fast space of the primal incurs zero optimal cost. O

An auxiliary result pertaining to any arbitrary solution K of the LQR LMI (2.3) is
required in the sequel. We present this result as a lemma next (see [2, Lemma 4.1]).

LEMMA 3.6. Let K € R™*® be an arbitrary solution of the LQR LMI (2.3). Then,
KW =0, where W is as defined in equation (3.2).

REMARK 3.7. Lemma 3.6 shows that the fast space (Ry) of the primal is a sub-
space of the kernel of any solution K of the LQR LMI (2.3). So, in particular, R is
a subspace of ker K .,. Hence, for an initial condition from im W, the optimal cost
must be zero. This conclusion has also been drawn in Remark 3.5. O

3.4. A few auxiliary results. The structure of the matrix M leads to sub-
spaces that follow a chain of inclusions elaborated in the following lemma.

LEMMA 3.8. Consider the matric M as defined in Lemma 3.2 and let N €

R —d+D)x0e po o matriz such that its columns form a basis for ker M. Parti-
tion N as N = col(Nog, Ni,..., Nn,—a) with No,Ni,...,Nn,—a € RX®  For all
i€{1,2,...,(ns —d)} define N; := col(N;, Nit1,...,Np,—qa). Then,

im [ﬁné—d] Cim [ﬁnfo—d—i] C.--Cim [WOZ] Cim [1\61] CimN.

Here the sizes of the zero matrices are such that [ﬁo] € Rdme—d+)xne £ ] 4 €
{1723"'7(nf _d)}

Proof Let M be the matrix obtained by removing the first d columns and the

last p rows of M, that is, M = [Ogdg] with m = [, B, C.A,B, ... C,A%M"'B,].
Then, due to the structure of M it also follows that M = {/\04 O%d}, where T =

col(C,B,,Cr Ay By, ...,C. A4t B ). We use this observation to first show that
im {Nol} C im N. Since im N = ker M, it follows that

_ 0o M No | _ A4 N 0 Op,a N, | N |
MN=0% [Op,dm] [ﬁl] —0=> M N, =0= [H P, ] [1%1] —0=M [1%1] -0
Ny No
No N1
(3.3) = im [ﬁol} CimN & im : Cim :
anlfd Nng—a—1
Od,ng Nng —a

Let ¢ € {2,3,...,(ns —d)} be arbitrary. Then, we have to show that im [ﬁoz} C

im [ﬁgl , which is equivalent to showing that im [07" } C im N;_;. This directly
»Df
follows from equation (3.3), because im col(N;, Nit1,..., Nn,—d,04n,) C

10
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imcol(N;—1, N, ..., Np,—q). This completes the proof. d

REMARK 3.9. Define the system given by %£x(t) = A,x(t) + Brui(t), y(t) =
Crx(t). Let the initial condition of the system be xg = 0. Then, it turns out that,
the input ui(t) := 3.7 % a;0() with a; € R? results in a regular output, that is,

y(t;0,u1) € €°(R,RP) if and only if col(ag, a1, .. ., an,—a) = col(No, N1, ..., No,_q)f
for some 3 € R™ (see [18, Lemma 4.1]). In [18], such an input has been termed as an

admissible impulsive input. From Lemma 3.8, it can be concluded that if -7 a;6()
is an admissible impulsive input, then Z?;d a;00=%) too, is an admissible impulsive

input for all k € {1,2,...,n; —d}. O

Using the subspaces in Lemma 3.8, we can form another class of subspaces that follow
an inclusion chain as in Lemma 3.8. We present this next.
LEMMA 3.10. Forallie{1,2,...,(ns—d)} define W;:=[B, A, B, ... Aif*dBT][()ﬁi } ,
ing

where N; is as defined in Lemma 3.8. Then, the following filtration follows:
imWh,qa CimWy, g1 C--- CimWy CimW; C imW.

The next lemma shows that the subspaces imWi,imWs, ..., im Wy, _4 are contained
in the kernel of C,.

LEMMA 3.11. Recall the matrices C, and W1, Wa, ..., Wy, _4 as defined in Lemma
3.2 and Lemma 5.10, respectively. Then, C,W; =0 for all i € {1,2,...,n; — d}.

Proof By definition, M N =0. Notice from the definitions of Wy, Wy, ..., Wy, _4 that
MN = col(0,C, Wy, _q,...,C. W5, C,.W7). Hence the result follows. O

REMARK 3.12. Lemma 3.10 implies that if 6 does not appear in the optimal
state trajectory, then 6(+1) cannot appear in the optimal state trajectory. Lemma
3.11 implies that the optimal output trajectory of the primal due to an initial condition
from im W is identically zero. This, further implies that the optimal cost due to an
initial condition from the fast space of the primal is zero. Justification of these
statements needs a few result, which we present in the sequel. Hence, we justify these
statements in Section 5. O

4. Optimal trajectories. In this section we evaluate the trajectories of the
primal ¥ (see equation (2.4)) for an arbitrary initial condition, which minimize the cost
function given by equation (2.2). Due to Statement 1 of Theorem 3.3, it is evident that
the state space R* admits a direct-sum decomposition given by R* = im Vi, @ im W.
This enables us to compute the optimal trajectories in two steps. First, we compute
the optimal trajectories when the initial condition is restricted to the slow part, i.e.,
im Vip. Then, we compute the optimal trajectories for an initial condition in the fast
part, i.e., imW. We achieve these tasks in the following two lemmas.

LEMMA 4.1. Consider the LQR Problem 2.6 and the matrices Vip, Voa, Vaa, and
T as defined in equation (3.1). Define xgs := Vipq, zps := Vap, x5 1= Vine'ta, zg :=
Vorelta,us, = Vapela, and u,, = —}A%_l(S’g + BT Kpox)xs, where a € R® s
arbitrary. Then,

1. col(zs, zs, us, , Us,) @ a trajectory of the Hamiltonian system defined in equa-
tion (2.5) corresponding to the initial condition col(zgs, 20s)-
2. col(xs, us, , Us,) 1S a trajectory of the primal ¥ defined in equation (2.4) cor-
responding to the initial condition Tgs.
3 fm[’ff }T 60 [ff}dt— TK
Proof 1. Notice from the definition of K.y that KpaxVipa = Voa. Using this identity
along with equation (3.1) , it can be easily seen that the trajectory col(zs, zs, Us, , Us, )

11
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satisfies the Hamiltonian system’s equation (2.5). Hence, col(zs, zs, Us, , Us, ) 1S a tra-
jectory of the Hamiltonian system corresponding to the initial condition col(zgs, 2os)-
2. It is a matter of simple verification that if col(xzs, zs, us, , us, ) is a trajectory of the
Hamiltonian, then the projection col(zs,us,,us,) is a trajectory of the primal.

3. Using the definitions of zg,us,,us,, and Kpax and doing some simple algebraic
manipulations with the help of equation (3.1) (see [2, proof of Theorem 4.5]) we

z, 17T [ Q 0S8 Ts
get that %(:rszaxxS) = — [%1} [ 00 02] [“81] . Integrating both sides of this

Usg sfoR Usy

equation, we further get

Usg sToR Usy

/OOO [5.:1 }T [ g0 So] [zf:l } dt = 24(0)7 Kpaetrs (0) — 25(00)T Knayts (00).

Now, since I' is Hurwitz, from the definition of x it is clear that zs(c0) = 0 and
2(0) = xps. Therefore, we conclude that

0 Tg T Q 0 52 g T
Usy 000 Usy | dt = 25, KnaxTos-
0 {u82:| sToR [usz} 0s max-20s
O

The following lemma deals with the case when the initial condition is in the fast space.

LEMMA 4.2. Consider the LQR Problem 2.6 and the matrices N and W as defined
in equation (3.2). Also recall the matrices Wy, Wa, ..., Wy, _q as defined in Lemma
3.10. Define xo;:=Wp,2zp;:=0 € R*, xp:=—{W1 + Wod@ 4. 4 an_dé(“f_d_l)]ﬁ,
zp =0 € R up = —[o1, 601, ... 6=, | NB, and uy, :== —R™1(ST + B Kyay)zy,
where 8 € R™ is arbitrary. Then,

1. col(xy,zf,uf,uy,) is a distributional trajectory of the Hamiltonian system
defined in equation (2.5) corresponding to the initial condition col(zof, Zoy)-

2. col(zy,uy,uyp,) is a distributional trajectory of the primal ¥ defined in equa-
tion (2.4) corresponding to the initial condition xy.

T 05
3. foo[fffl] 50 [@fl}dtzo.
0 Lug, sTo R | Lus

Proof 1. Partition N as N = col(Ny, N1,..., Ny, _q) with Ng, Ny, ..., Ny, _q € RI¥®e,
Recall from Lemma 3.10 that for all i € {1,2,...,(ns — d)}, W; has been defined as
W; = [Br A/B, ... A% B, | [017\/; }7 where N; = col(N;, Nit1,- .., Na,—a). Also recall
that W = [B, A,B, ... A%B,.| N. Clearly,

(4.1) W; :BTN¢+ATWZ'+1 for all z € {1,27...7(nf —d— 1)},
an—d = Banf_d, and W = BTNO =+ ATWL

We need to show that the trajectory col(xys,zf,uy,,uy,) satisfies equation (2.5) in
distributional sense. Using equation (4.1) we get that

D (zp) = —wopd — [W16M + Wad® 4o+ Wy, _ad® 9]
= —WgB6 — [Wid®W + Wad® + - 4 Wy, _ad® Y3
- [(B,«No AW+ (BN + AWy )60 + BTan_dawf—d)} 3
= A W16+ Wabd D 4. 4 Wa, 6@ V]B— B, [Nod+N16W +. . 4 Ny, _a6®9)3
(4.2) & d(zy) = Avzy + Bruy, .

Now, by Lemma 3.10 we know that imWy,_q¢ C imWy, 41 C -+ C imW; C imW.
Again, by Lemma 3.6, it follows that K,.,W = 0. Consequently,

(4.3) Kuax = 0.
12
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520

Using equation (4.2) and equation (4.3), we deduce that
d
(4.4) Amf + Bl’Uf1 + BQUf2 = Armf — LKmaxxf + Bru]c1 = Arl'f + B"ufl = @(xf)
From Lemma 3.11 it directly follows that
(4.5) Crzy =0.

Next, using the fact that zy = 0 (by definition) along with equation (4.3) and equation
(4.5) we get the following equations

(4.6) — wa +ATZf_SQUf2 = —Q,«CL’f—SgﬁilBgKmuxfI—CTTCrxfIOZ %(Zf)7
Bfo =0, and
(4.8) STx;+ BT zp + Ruy, = STay — RR™(ST + BY Kuax)zs = 0.

Combining equation (4.4), equation (4.6), equation (4.7), and equation (4.8) together
yields equation (2.5). Hence, col(zy, zf,us, ,uys,) is a trajectory of the Hamiltonian
system corresponding to the initial condition col(zgy, zos)-

2. This statement directly follows from equation (4.4).

3. Recall from Section 2.4 that

]

3] [

X f ~
Now, [C 0 D2 [5;1] = Cxs + Douy, = Crxy — DngleTKmax:rf. Therefore, from
2
equation (4.3) and equation (4.5), it is evident that

(4.10) [C0Ds] [uffl] =0.
Uty
xf T Q 0 52 xf
Combining equation (4.9) and equation (4.10), we have |:“f1} { 00 Q] |:“f1:| =0.
Uy sToR | Lup
o xf T Q 0 S2 xf
This further implies that fo [“fl ] { 0 00 ] [“h } dt = 0. g
Ufy ST o R | Lus

Recall from Statement 1 of Theorem 3.3 that X= [Vl A W] is invertible. So, for an
arbitrary initial condition x( there exist a€R™ and S€R™ such that xo = Vipa +
W 3. Therefore, Lemma 4.1 and Lemma 4.2 can be combined to obtain an allowable
trajectory of the given system for an arbitrary initial condition. Here, a trajectory
being allowable means that the trajectory satisfies the system’s equations. In the
following theorem, we show that this trajectory, indeed, is the optimal trajectory.

THEOREM 4.3. Consider the LQR Problem 2.6. Recall the definitions of xos, Tog,
Ty Tf, Usy, Usy, Us,, and uyg, from Lemma 4.1 and Lemma 4.2. Define xg 1= xos +
Tof, T 1= Ts+Tp, Ul 1= Us, +Upy, and U3 1= U, +uy,. Then, the following are true:
1. col(z*,ui,ul) is an allowable trajectory of the primal ¥ defined in equation
(2.4) corresponding to an arbitrary initial condition x.
T
QZ* Q 0 Sz a:*
2. [ | ui 000 | |ui|dt =alKnxzo.
i ] {585 5] o =t
3. col(x*,uf,ul) is the optimal trajectory for the initial condition xg.
Proof 1. This statement follows from application of Lemma 4.1 and Lemma 4.2
together with linearity of the system X.

13
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2. Using equation 4.10, it is clear that

(4.11) [c0Ds] [ﬁl} —[coDy] [uffiiffl] = [cona][in].

U3 Usg FUfy Usg

Combining equation (4.9) and equation (4.11) together, we have

o Trqos, * zs 1T [ Q 08y @s
(4.12) ! 0,020 ui | = |:“51:| 0,020 |:"51:| .
u 5 O R ul Usg S3 0 R Usg

Recall from Theorem 3.3 that K., is symmetric. Due to Lemma 3.6 we also have
K,.xW = 0. Therefore, it follows that

0

ngmaxxo = (%Aa+Wﬁ)TKmax(VlAa+Wﬁ) = (VlAa)TKmaxVIAa :xgsKmaxx05~

Hence, using equation (4.12) in Statement 3 of Lemma 4.1, we conclude that

©rz*177 Q 082" 0L 2o 1T Q 0827 r @ .
Uy 0 00 [|u] |dt= [“51} 0 00 [“81} dtzmo Kaaxxo.
o Lus ST 0 R || ub o LUs2 ST 0 R |[LUs2

3. By Theorem 3.3, we know that K., is the maximal rank-minimizing solution of
the LQR LMI 2.3. Therefore, using [11, Theorem 2] we infer that given an initial con-
dition x¢, the minimal cost attainable for the singular LQR Problem 2.6 is 8 Kpaxzo-
Also, since we have assumed that the primal X is a left-invertible system, the optimal
trajectories must be unique [3]. Hence, from Statement 2 of this theorem, it is evi-
dent that col(a*,u},ul) is the optimal trajectory for the singular LQR problem 2.6
corresponding to the initial condition z. 0

5. PD feedback design. In this section we design a PD-feedback controller
that restricts the system to only the optimal trajectories (Theorem 5.5). Two different
direct-sum decompositions of R4 are crucially used in order to design this feedback.
The following lemma provides these direct-sum decompositions.

LEMMA 5.1. Recall that Rs denotes the fast space of the primal and ng = dim R.
Also recall that d = nullity R. There exists a subspace ﬁs C Rs of dimension equal
to ny — 4 satisfying the following properties:

1. Aﬂis C R, dim (Aﬂ%s) =n;—d, and Ry, = im B, & Arﬁs.
2. There exists W, € R**? full column-rank such that R, = 75,3 @ im We.

Proof By Lemma 3.2, we know that Ry = im [B, A.B, ... A%B, | N, where N €
Rd(me—d+1)xne i 5 matrix such that its columns form a basis for the kernel of M.
Due to the structure of M, it follows that there exists N € Rdme—d)x(@:=d) gych that

the columns of {IS J%} form a basis for ker M. Therefore, R is given by

(6.1) Rs=im[B, A.B, .. A% "B, ] [gﬂ ]%} —im B, ®im [A,B, A2B, .. A% B, | N.

w

Recall from Lemma 3.2 that W is full column-rank, which leads to the direct-sum
decomposition in the above equation.

Now, by Lemma 3.8, it is evident that im [8 Jg] =im [Zg] C ker M. Since [Jg] is full

column-rank, there exists Nip € RA®=DXd 3nd Nyy € RE¥4 guch that the columns of
N Nis

the matrix [
22

} form a basis for ker M. So, R is also given by
14
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(5.2) Rs =im [B, A, B, ... A% B, ] []g %z] =inW o im We,

where W := [B, ArB, ... Ai’f‘d‘lBT]N and We := [B, A.B, ... A% ¢B,] [%2} .
2
Define R, = im W. Then, clearly Rs C Ry and dim (ﬁs) = n¢ — d. Next, we show

that R, satisfies all the required properties.
1. Applying equation (5.2) in equation (5.1) we get that

(5.3) Re=in B, ® in A, W = in B, ® A, R..

Hence, A, Rs C Rs, dim (A, Rs) =ns — d, and Ry = im B, ® A4, R,.

2. This property trivially follows. U
Justification of Remark 3.12: Recall from Lemma 4.2 and Theorem 4.3 that, corre-
sponding to the initial condition o = W, where 5 € R™, the optimal state trajectory
is given by x5 = —[W1 + WadM + - 4 Wy, g6 —3-1]3. Next, using Lemma 3.10
along with equation (4.1) and equation (5.3), it follows that W;5 =0 = W;;18 =0
(note that, columns of W form a basis for imW; and A, W is full column-rank).
Hence, if 69 does nor appear in the optimal state trajectory, then §(*1), too, cannot
appear in the same.

From Theorem 4.3 and equation (2.4), it follows that, corresponding to an initial
condition zg = W[, where A,B € R™ the optimal output trajectory of the primal is
given by y*(t) = Crzf — DaR™'BY Kpayxy. Then, Lemma 3.11 together with Lemma
3.6 implies that y*(t) = 0. O

REMARK 5.2. Recall from Theorem 4.3 that col(z*,u},u}) is the optimal tra-
jectory for an arbitrary initial condition xg. Further recall that u5 = u,, + uy, =
—1/%_1(5; + B Kpax)(zs + 2¢) = —1/%_1(5; + BT Kpay)z*. Thus, the second compo-
nent of the optimal input, i.e., u3, is already given in state-feedback form. Therefore,
it remains to show that the first component, i.e., u], admits a formulation in terms
of a PD state-feedback. To design this feedback, we need the following assumption.

ASSUMPTION 5.3. Zero eigenvalues of (Ar — LKyay), if any, are controllable for
the pair (A, — LKpay, By), where A,., L, and B, are as defined in equation (2.8).°

REMARK 5.4. Recall the matrix W = [B, A.B, ... A= ]N from equation
(5.2). It can be understood from the proof of Lemma 5.1 that the columns of the

matrix N € Ri®:—d)x@:=d) o a basis for ker M, where M, is obtained by remov-

ing the first d columns and first p rows from M, that is, M = [Op(op,:) . Op’f}fﬁft_d) ] It
ng—d),

also follows that there exists W, € R**? such that columns of the matrix [ W w, ] form

a basis for the fast space R of the primal. Furthermore, the columns of the matrix

[B, A, W], too, form a basis for Rs. Therefore, from Statement 1 of Theorem 3.3, it

is evident that X := [vi, W w. | and X5 := [vi, B, A, W | are non-singular. O

We now prove the titular main result of this paper, which provides a PD feedback
controller that solves the singular LQR problem.

31t should be noted here that Assumption 5.3 is not restrictive because of the following reasons:

in the statement of Problem 2.6 we have assumed that the system %m = Axz + Biui + Bous is

stabilizable. The feedback us = —R’l(Sg + BgKmax)x makes sure that ng number of eigenvalues
of A are stabilized (see Lemma 3.1 and Lemma 4.1). With this feedback the closed-loop system
becomes %m = (Ar — LKnax)x + Biui. Assumption 5.3 does not require existence of a feedback
u1 = Fz such that the other nf = n — ng eigenvalues are stabilized. It just requires existence of an
F such that if there are any zero eigenvalues in the remaining ns number of eigenvalues, then those
eigenvalues can be made non-zero via a suitable feedback. Thus, the assumption holds generically.

15
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THEOREM 5.5. Let Assumption 5.3 hold. Recall the matrices X1 := [viy W w. ]
and Xo := [vis B, A, W | from Remark 5.4. Then the following are true:
1. There ezist go € R¥>*®=9 and g; € RI* such that (A, — LKpax + B, F,) is
non-singular, where L is as defined in equation (2.8) and Fy, :=[Vaa go &1 1 X7t
2. Define Fy := [0 L —g0] X5 ' and Frey := —R™Y(ST + BT Kyax). Then, the
feedback laws w1 = Fpx + Fd%m and up = Freqx solve the singular LQR
Problem 2.6.

Proof. 1. We first do a similarity transformation on the matrices (A, — LKpax)
and B, by the matrix Xs. From the definition of X5, it is easy to verify that

Ong —a),a

(5.4) By :=X;'B, = [OE} . where B = [ la ] .

Again, Ay = X5 (A, — LKpax)Xs = X5 (A, — LKpay) [Via W], where W :=
[ B, A,w]. Now, using equation (3.1) and equation (5.4), we deduce that

(5.5) (Ay — LEKaax)Via = A, Via — LVan = ViaT — B, Vaa = Xa [, ],

O(ng —a),ng

where As; := —BVsp = [ ~Vaa } .
Also, using Lemma 3.6 and non-singularity of X5, we have
(5.6) (A, — LKmax)/VV' =AW = X, [‘2;2] , for some Ajp € R™*™ Ayy € R™M*™,
Combining equation (5.5) and equation (5.6), we infer that
(5.7) A= X5 Ay — LGa) Xo = [ 5 422].

We claim that the pair (Ass, E) is such that the zero eigenvalues of Agy, if any, are

controllable. We prove this claim by contradiction. So, to the contrary, we assume that
the claim is false. Thus, by the Popov-Belevitch-Hautus criterion for controllability,

there exists v € R™ \ {0} such that
(5.8) v Ags = 0 and +'B=0.

Due to the structure of B (see equation (5.4)), we must have v = [%a1] for some

vy € R®:=D\ 0}, Further, non-singularity of X, ensures that there exists w € R*\ {0}
such that w? Xy = [01,4, v7 ] = [0, g+ 04 ]. Therefore, from equation (5.7), we have

W (Ay = LRpax) =w" Xo A X5 = (000, o™ ][ 4 42 ] X5 =[07 A0 7420 ] X5 .

But, v Ag; = [01,4 07 ] [0(;Yiins} = 0. Hence, using equation (5.8), we further have

wT (A, — LKpax) = 0. Also, wTB, = wT XoB; = [014, o7 ] [OE} = vTB = 0. This
contradicts Assumption 5.3. Hence, the claim that the zero eigenvalues of Ass, if any,
are controllable by B must be true. This proves the claim.

In view of this claim, it is evident that there exists § € R such that (Ags + Bg) is
non-singular. Next, define F}, := [Vaa 5] X5 '. Then, A, — LKy + B, F, = Xo(A; +
By [Vaa ]) X5 *, where B, and A; are as defined in equation (5.4) and equation (5.7),
respectively. Now,

_ I Ao Ong ,ng Ong ,ng r A1z
V- = ~ 2 = ~ -
As + Bt[ 3A 9] [A21 Azz] + |:BV3A Bg Ag1+BV3p Aga+Bg |-

But, from equation (5.4) and equation (5.5), it is clear that Ay +BVsp = [ —Vaa }—l—

O(nf—d),ns
[ Van } — 0. Therefore, A, +Bt[V3A §] — |:F A1z

Ong ) e 0 Aoot Bg} . Since I' is Hurwitz and
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(Aga + Byg) is non-singular, we must have that (A; + By [Vaa 3]) is non-singular; which
further implies that (A, — LKyax + B, F},) is non-singular.
Since im [B, A, W] = im [W w,], it follows from the structures of X» and X; that

there exists a non-singular matrix 7' € R™*® guch that X = X3 {IBS T(il} . Say,

go € R¥*@:=d) and g; € R¥*4 is defined as [gy ¢1] := gT. Thus, F, = [Vas 9] X5 ' =

[Vaa g] [185 ;] X' = [vaa g7 ] X' = [Var 90 9] X7 ' But, we have already proved

that (A, — LKy + B, F)) is non-singular. Hence, there exist gy € Rdx(@:=d) and
g1 € R4 such that (A, — LKyayx + B, F),) is non-singular, where F}, = [ Vaa go 91 ] Xt

2. Recall from Theorem 4.3 that for an arbitrary initial condition zg, the optimal
trajectory of the primal ¥ is given by col(z*,uf,u}). Our aim is to show that the
feedback laws defined in this theorem restrict the system to exhibit the optimal tra-
jectories only. So, we first show that the optimal trajectories satisfy the system’s
equation under the proposed feedback laws and then we show that, for a given initial
condition, the optimal trajectory is the only trajectory that the system admits.

We show that the given feedback laws admit the optimal trajectory in three steps:
first, we show that the trajectory col(xg, us,,us,) (defined in Lemma 4.1) correspond-
ing to the initial condition Vjp« is an allowable trajectory by the feedback law. Then,
we show that the trajectory col(zy,uy,,uy,) (defined in Lemma 4.2) corresponding
to the initial condition W is an allowable trajectory, too. Finally, we show that the
optimal trajectory col(z*,uj,us) is an allowable trajectory.

Recall that z, = Virelta, us, = Vapetta, and u,, = —E‘l(Sg + BT Kpax)zs- So,

d
Fyxs + Fdams = (F,Via + FaVial)e o

But, from the definition of F}, and Fy, F,Via = Vaa and FyVip = 0. Thus,

Fyxs + Fd%ms = VgAeFta = Us, .

Therefore, from Statement 2 of Lemma 4.1, we infer that

d d
Azs + By (prs + Fd*xs) + BQF'r‘egxs = Az, + BIU31 + BQUSQ = -0

dt ™
Hence, the feedback law allows the trajectory col(xs, us, , us,)-
Recall that zf:= —[W1d4+WadW 4 - 4 Way—ad® DB up, = — [61, 601, ... 50291, ] N,
and ug, ;= —R™(S3 + B Knax)xs, where N is as defined in equation (3.2). Also recall

from equation (4.2) that £z, = A,xs + Byuy,. Hence,

Fprgp+ Falop = —F, Y O WiBs0~Y — FyA, S WiBU—Y + FyB,uy, .

K3

(5.9) = - M N EW + Fa A W) B0 oy, (since FuB, = Ia).

Partition N as N = col(Ny, N1) with Ny € R¥*® and N; € R®=d)xn: Recall from

equation (3.2) and equation (5.1) that im [g‘i [%} =kerM = imN = im [%ﬂ =

imN; = im N. Hence, from Lemma 3.10 and Remark 5.4, we infer that im W, = im w.
From Lemma 3.10 we further get that imWy, ¢ CimWy, 41 C--- CimW; = im w.
Therefore, for all i € {1,2,...,(ns —d)} there exists T; € R®=*2¢ guch that W; =
WT;. Thus, from equation (5.9) we further get that

ng—d nf—d

Fpxy “l‘Fd@ﬂ?f =— ;(FpW+FdArW)Ti66( 1)—|—Uf1 =— ;(QO_QO)Tiﬁa( 1)‘|'uf1 =Ufy-
17
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Therefore, from Statement 3 of Lemma 4.2, it is clear that

d d
Al’f + Bl(prf —+ Fdal’f) —+ BQFreg[L’f = Axf —+ 31Uf1 =+ BQlLf2 = @(l’f)

Hence, the feedback laws admit the trajectory (xy,uy,,uy,). Finally, since 2* = x4+
Tf, U = Us, FUf,, and u3 = us, +uy,, using linearity, we conclude that corresponding
to an arbitrary initial condition zy = [via W] [3], the optimal trajectory (z*,u},u3)
is an allowable trajectory by the feedback law.

The only thing that remains to be shown is that given an arbitrary initial condition
xg, the trajectory of the closed-loop system can be uniquely determined. It can be

easily seen that the feedback laws mentioned in Statement 2 of this theorem results
in the closed-loop system

(5.10) (I — BrFa) La(t) = (Ar — LEKuax + BrF) a(t).
— — dt
Ecrp ActL

So, for a given initial condition, the trajectory of the closed-loop system is uniquely
determined if and only if the matrix pencil (sEcr, — Acyr) is regular [25]. In Statement
1 of this theorem, we have already shown that Acy = (A, — LKpax + B, F}) is non-
singular. Note that, non-singularity of Acy, ensures that det(sEcy — Acrn) #Z 0 (see
[25, Theorem 1.2.1]). Hence, the matrix pencil (sEcr,—Acy) is regular. Since, we have
already showed that given an arbitrary initial condition xg, =™ satisfies the equation
(5.10), we conclude that the closed-loop system admits the optimal trajectories only.
Therefore, the feedback laws given in the Statement 2 of this theorem solve the singular
LQR Problem 2.6. O

6. Regularity and internal stability of the closed-loop system. The op-
timal PD feedback law provided in Theorem 5.5 results in the closed-loop system as
given by equation (5.10). Note that, Assumption 5.3, which we have made in order
to design the optimal PD feedback controller, does not necessitate that the partial
closed-loop system (A, — LK pax, B) be stabilizable. Therefore, a natural question
that arises is: does the optimal feedback law guarantee that the closed-loop system
is internally stable? The answer is affirmative. To explain this, we first note that
Assumption 5.3 is made in order to guarantee that there exists a feedback matrix F},
as defined in Theorem 5.5 such that Aoy is non-singular. This enables us to write
the following theorem.

THEOREM 6.1. The matriz pencil (sEcr, — Acr) as defined in equation (5.10) is
a reqular matriz pencil, that is, det(sEcr — Acr) #Z 0.

Proof Recall from Statement 1 of Theorem 5.5 that Agp is non-singular. Hence,
det(sEcy, — Acr) £ 0. O

Since the matrix E¢yp is singular (because FerB, = 0), the closed-loop system is
a singular descriptor system. So, in order to show that the closed-loop system is
internally stable, we need to consider the notion of stability for a singular descrip-
tor system. The following proposition from [25, Theorem 3.1.1] characterizes such
systems, which are asymptotically stable.

PROPOSITION 6.2. Consider the singular descriptor system as given in equation
(5.10). Then, the system is asymptotically stable if and only if o(E¢r, Acr) C C_.

Note that, from Proposition 6.2, it follows that the stability of the closed-loop system
is not governed by the eigenvalues of Acy,, but rather, by the eigenvalues of the matrix
pair (Ecyr, Acr). We now show that the closed-loop system is asymptotically stable.

THEOREM 6.3. The closed-loop system as given in equation (5.10) is asymptoti-
cally stable.

Proof Recall from the definition of F; that FyViy = 0. Hence, Ec,Vipa = Via. So, by
equation (3.1) and the definition of F},, it follows that Acr,Via = EcpVial'. Therefore,
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o) Co(Ecr,Acr). We now show that o(T") is, in fact, equal to o(FE¢cr, Acyr); that
is, all the slow modes of the closed-loop singular descriptor system are given by the
eigenvalues of the matrix I'. We show this indirectly by utilizing the general expression
of an arbitrary trajectory of the closed-loop system.

Recall from Theorem 6.1 that the matrix pencil (sEcyp — A¢yr) is regular. This
further ensures that for an arbitrary initial condition o = [via W][3], the trajectory
of the closed-loop system is uniquely determined. This trajectory has been shown in
Theorem 5.5 to be the optimal trajectory z*(t) = Vipelta — [W16 + Wod @ 4+ .o 4
W, _q6®=4=1]3. Hence, 0(Ecy, Acr) = o(I') € C_. Consequently, the closed-loop
system is asymptotically stable. Alternatively, since o(I') C C_, we must have that
tlggo x*(t) = 0. Thus, the closed-loop system is asymptotically stable. O

7. An illustrative example. Consider the system £z (t) = Az(t) + Biui(t) +
Bous(t), where

3 0-2 2 0 10 -1 0
1-3 2-1 5 0 1 0 1

A=|-2 8 3-1-8| By=|-1-1|,and Bo=]| 0-2|.
-5 3 2-2-4 -2 -1 1-1
1-5 0 0 6 0 1 -1 2

For an arbitrary initial condition xg = col(xo1, o2, T3, To4, Los), Our objective is to
find an optimal input «* = col(uf,u}) that minimizes the functional (2.2), where

r 18 -4 0 9 13 -3 —6
-4 15 8 -6 —5 9 2 =~ 90
Q= 0 8 6-3 1|,5 = 3 2|, and R=[39].
9 —6 -3 6 6 -3 —4
L 13 -5 1 6 13 —6 —2

We also design a PD state-feedback for the optimal input.
Note that d = m—r= 4—2 = 2. We first compute the reduced Hamiltonian matrix pair

[Is 0 0 Ar —L By ~
(E.,H,)as E, = | 0I5 } and H, [Qv- -AT 0 }, where A, ;== A — BoR™1S5T,
0 0 02,2 0 BI 022

Q, = Q — SR1ST, [ .= B,RBY, and B, = By. Tt can be found out that

det (sE, — H,) = 64(s® — %). Therefore, 2ns = degdet (sE, — H,) = 2 = ng = 1.

Also. o(E,,H,)NC_ = —%.

The good slow space of the Hamiltonian system: Solve H,.Vjy = E,.V),T' for
V;

a Vi € RI2XL where T' = —%. It can be verified that Vy = [X\éﬁ] with Vip =
3A

2 2
1

lzéli ,Vopr = —38.4 [(1)] ,and Vap = [ (2)11‘% } satisfies the equation. Hence, the good
3 0

slow space of the Hamiltonian is given by O,y = im [“22] (see Lemma 3.1).

Q 0 S2
The fast space of the primal: Since rank { . 022 0 | = 4, we obtain the ma-
sT o R

Q 0 S cT
trices C € R*® and Dy € R**2 such that [ 0 022 9} = [02,4} [C 042 D2]. C =

-2 1 0-1-2 00
[_f 20 _g] and Doy = [g 8} provides the desired factorization.
-3 1 1-2-1 02
Now, by Lemma 3.2, the dimension of the fast space Ry of the primal is dim R, =

ng =n—ng =5 — 1 =4. By following Lemma 3.2, we compute a matrix N € R6x4

0
which is full column-rank such that M N = 0, where M = [ 4 ’ 0 c, B } and
0 C,B, C.A,B,
~ N
C,. = C — D;R~1ST. Notice that N = [%?] with No = [39879] =1[8949], and
2
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Ny =[9983] gives the desire result. Compute the matrix W as

No o 11 o
W =B, ATBTAaBT]|:N1:| — |1 -1-5 -8 . Then, Rs =imW.
Na —2 -1 -3 -6
o 1 1 2
The maximal rank-minimizing solution K., of the singular LQR LMI: Fol-
lowing Theorem 3.3, we first compute the matrices X = [Via W] and ¥ = [Vea 05,4 ].
42020
Then, Koy =YX~ ! = 9.6 [3 300 8] .
21010
00000
Optimal trajectories: We first compute @ € R! and 8 € R* such that zo =

[via W] [5] = X [3]. It can be verified that

= 4 | —14.4201+0.8x02 —4x03—5.2204 — 10205

B1 1 [ 16.43:01+4.2x02+4x03+4.2x04+4x05:|
2x01—To2+To4+2205

1 \ o :
o= _1(21,01 + To2 + 9304) and 5 — [gi 16.4x01+4.2x02+4x03+6.2204+10x05
Ba

Next, we compute W7 and W5 as defined in Lemma 3.10. They are found out to be
00 1 1 000 1
N 00 0 1 000 O

Wl—[BTATBT}[Nl]—[OO -1 3:| ansz—BN2—|:0001:|.
2 00 -2 -3 000 —2
00 0 1 000 O
Then, by Theorem 4.3, the optimal state trajectory is given by

2 ﬁ3;ﬁ4 ,%4
1
2" (t) = Vine o — Wi B8 — WaBsW) = |:—2.8:| e 3o — [ 3364 ] 0 — |: —Ba j| s,

3

—2B3—3p4 —2B4
Ba 0

The optimal input is given by u*(t) = col(uj(t), u3(t)), where

ui(t)=VaaeTta—[5I, VL 6@ 1) N[S' [z ]eBta— []o- %160 -[%]0,

u3(t) = —R™1(S7 + BI Kuax)z" (1)

10
PD feedback design: Notice that N = {IOQ N], where N = {8 g’} Then, we
00

find out matrices Njp € R4*2 and Noy € R2%2 such that im [1(\; %12} = imN. We

22
- 00 -

find out these matrices to be Nip = [(1) 8} and Nog = [J3]. Then, by following

00

Theorem 5.5 we first get the matrices W= [B, A,B, ] Kr, W, = [B. A.B, A2B, ] [%12 },
22

X1 = [via Ww.], and X9 = [vi, B, 4,W]. Now, we compute the matrices F),, =
[Vsa g0 gl]Xfl and Fy = [0 I» —go]X{1 with go = g1 = 02,2 to get
~0.2 ~0.1 0 ~0.1 0
Fy=| 8% 830 8ir o] and Fu= (41181182,
= st 1 _1

Freg = —R7Y(ST + Bl Kyay) = [115 &R 1i4 .2 5} Then, the feedback law u; =
Fox(t) + Fadx(t), uy = Frequ(t) solves the given singular LQR problem.

The closed-loop system is given by Ecp4%z(t) = Acpa(t), where Ecp, = (Is — B, Fy)
and Acr = (Ar — LKpax + By F},). It can be verified that det(sEcr — Acr) =

— s+ %), that is, the matrix pencil (sEcp — Acr) is regular.

—12
Simulation result: For the given singular LQR problem, we use the feedback law

ur = Fpa(t) + Fax(t), us = Freqz(t) to the primal. Then, for the initial condition
g =[0-112-3 1]T the system exhibits the trajectory as shown in Figure 1. For
20
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x(t)

time

Fia. 1. The state trajectory under the optimal PD feedback law for the illustrative example

the given initial condition, the optimal trajectory is analytically found to be z*(t) =

2
1
[—298] e~ it The trajectory shown in the figure matches with this trajectory.
3

8. Comparison with the existing results in the literature. In this section
we compare our results with the ones presented in [4] and [5]. We show that the result
presented in this paper overcomes the restrictions of the aforementioned works.

8.1. Comparison with the result presented in [4]. In [4], the authors pro-
vide a polynomial matrix based method to design a PD feedback controller that solves
a given singular LQR problem. But, unfortunately, the result presented there has sev-
eral shortcomings which we discuss next.

e The most important shortcoming of [4] is that it cannot account for arbitrary initial
conditions, which is not desirable; because the initial condition of a state space
system should ideally be free. [4] considers only those initial conditions for which
the optimal state does not contain any impulses, while the optimal input may
contain d, but never §V) or any higher derivatives. The authors call such initial
conditions which does not satisfy this condition the inadmissible initial conditions.
Using the results presented in our paper, it can be shown that such a condition is
satisfied if and only if the initial condition belongs to the subspace im [Vl A BT.].
On the other hand, the result presented in this paper does not impose any restriction
on the initial condition of the system.

e The applicability of the result in [4] needs the system to be controllable. However,
the result presented here needs only stabilizability of the system, which is a standard
assumption in the literature.

o Another assumption of [4] that we do not need in this paper is the observability of
the pair (Q, A).

8.2. Comparison with the result presented in [5]. The deflating subspace
based method presented in [5] assumes that the states and the inputs of the system are
from the space of locally square-integrable functions, that is, )31200. This assumption,
in turn, imposes a restriction on the initial condition xg of the system. This is due to
the fact that for an arbitrary zg, the optimal trajectory of a singular LQR problem is
distributional in nature, that is, it contains impulses and its derivatives [3]. Therefore,
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the optimal trajectory does not belong to the space £X¢. Even though the cost
functional can be made arbitrarily close to the optimal cost, it will never achieve the
optimal cost using an input from £i°°. As has been shown in the illustrative example
in Section 7 that corresponding to an arbitrary initial condition zg = Vipa + WS,
both the optimal state 2* and the optimal input u* = col(u}, u}) are distributional
in nature and hence do not belong to £°¢. It can be easily verified that the optimal
state and the optimal input belongs to £5° only if 8 = 0, that is, the initial condition
is restricted to the subspace im Vi,.

The most important advantage of the result presented here is the implementability
of the optimal input as a PD state-feedback over the implicit control law of the form
Pz 4+ Tu =0 as presented in [5]. To demonstrate this, we use the same example that
has been presented in Section 7. Following the method presented in [5], we evaluate
L:(K) defined in equation 2.3 at K.y and then obtain a factorization of Ly (Kyax) as

['t(Kmax) - B?Kmax 0 0

AT Kpax+ Knax A+Q Knax B1 Knax Ba+S2
BT Kpax+57T 0 R

PT
= [Tf} [P T T2]
(4

with P € R*5 and Ty, T» € R**2. Tt can be verified that

—9.732429  —1.4724515 0.059265 —4.895847  —3.3048654

—0.2425838 —3.5039419 —2.4053162 1.0813662 —0.2253242
0.1039512  —0.4134482 0.2850169 —0.0905329 0.8929492 |

—0.1008634 —0.6191429 0.3601488 —0.2305061 1.1089344

0 0 2.323045 0.6121941
|00 4T, — | —0:9972075  —0.8357937
1= 1o o] 24427 | 16152251 —1.4021297
0 0 0.0093261  0.9801527

achieve the desired factorization. Therefore, the control law proposed in [5] is given by
Pz +Tiuy +Tous = 0, that is, Px +Thus = 0. Note that, the optimal trajectory that
has been evaluated in the illustrated example also satisfies this control law. However,
this control law, unfortunately, cannot be implemented as a feedback law, because the
law does not provide any information about the input w;. On the other hand, using
the method presented in this paper, we have provided a PD feedback controller that
solves the singular LQR problem given in Section 7. A feedback controller is always
advantageous from an engineering point of view, which is bolstered by [6].

9. Conclusion. In this paper, we first presented a method to compute the max-
imal rank-minimizing solution of the LMI arising from a singular LQR, problem (The-
orem 3.3). We have developed this method using the notions of slow space (weakly
unobservable subspace) of the Hamiltonian system and the fast space (strongly reach-
able subspace) of the primal. We have shown that augmenting the basis of the good
slow space of the Hamiltonian system Y., with the basis of the fast space of the pri-
mal ¥ is the crucial idea that leads to the method. Using the maximal rank-minimizing
solution, we computed the optimal trajectories for the singular LQR problem. Finally,
we provided a feedback law of the form u = Fpo + Fd%x, i.e., a PD feedback that
solves the singular LQR problem. This work makes use of the ideas introduced in [3],
[16], [17] that used impulsive-smooth distributions as the function-space for the states
and inputs. Such a setting seems particularly advantageous for differential-algebraic
systems, since such systems inherently admit impulsive states. Hence, the approach
adapted in this paper to solve singular LQR problems for state-space systems have
the potential of being generalized to differential-algebraic systems as well. This will
be a matter of our future research.
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