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Abstract. Unlike regular linear quadratic regulator (LQR) problems, singular LQR problems,4
in general, cannot be solved using a static state-feedback controller. This work is primarily focused on5
the design of feedback controllers which solve the singular LQR problem. We show that such problems6
can be solved using proportional-derivative (PD) state-feedback controllers. It is well known in the7
literature that the maximal rank-minimizing solution of the singular LQR linear matrix inequality8
(LMI) is pivotal in solving the singular LQR problem. In this paper, we first make use of this9
maximal rank-minimizing solution to compute the optimal trajectories. Then, we provide a PD10
feedback controller that restricts the trajectories of the closed-loop system to these optimal ones,11
and thus solves the singular LQR problem. While numerous solutions to this problem have been12
proposed over the course of the extensive research efforts in this field, a controller in the form of13
a PD state-feedback has been long sought after. Our approach is based on the notion of weakly14
unobservable (slow) and strongly reachable (fast) subspaces developed in [3]. But unlike [3], we15
employ these notions to the corresponding Hamiltonian system and not to the plant. This crucial16
extension of these well-known subspaces to the corresponding Hamiltonian system is key to the17
optimal PD feedback design that we propose in this paper. It is well-known that an optimal state18
feedback for the singular LQR problem does not exist; the limiting state feedback controller of the19
sub-optimal ones (high gain controllers) has unbounded coefficients as optimality is approached. We20
show in this paper that the limiting high gain controller is in fact a PD controller.21

1. Introduction. In this paper, we provide a closed-loop solution for the singu-22

lar case of the well-known infinite-horizon linear quadratic regulator (LQR) problem.23

Problem 1.1. (Infinite-horizon LQR problem) Consider a stabilizable sys-24

tem with the state-space dynamics d
dtx = Ax+Bu, where A ∈ Rn×n, B ∈ Rn×m. Then,25

for every initial condition x0, find an input u that minimizes the functional26

J(x0, u) :=

∫ ∞

0

[
x(t)
u(t)

]T [
Q S

ST R

] [
x(t)
u(t)

]
dt, with lim

t→∞
x(t) = 0,(1.1)27

28

where
[

Q S

ST R

]
⩾ 0, Q ∈ Rn×n, and R ∈ Rm×m.29

For regular LQR problems, i.e., LQR problems with R > 0, the input u that minimizes30

J(x0, u) in equation (1.1) can be obtained using a static state-feedback constructed31

using the maximal solution of the algebraic Riccati equation (ARE):32

ATK +KA+Q− (KB + S)R−1(BTK + ST ) = 0.(1.2)3334

Here, by a maximal solution Kmax, we mean that Kmax−K ⩾ 0 for any other arbitrary35

solution K of the ARE. If Kmax is the maximal solution of the ARE, then the LQR36

problem can be solved using the feedback law u = Fx, where F := −R−1(ST +37

BTKmax). Naturally, a singular LQR problem (R ⩾ 0 with detR = 0) does not admit38

an ARE and cannot be solved using this feedback law due to singularity of R.39

Singular LQR problem has been extensively studied over the past few decades40

(see, for example, the seminal paper [3]); but, a feedback solution that restricts the41

system to the optimal trajectories has remained largely elusive. Interestingly, [3] shows42

existence of a state-feedback controller for every regular relaxation of the problem,43

but, the limiting controller that is naively expected to work for the singular case fails44

to exist. Such controllers are known as high gain controllers, for their coefficients45

grow unbounded in the limit. A polynomial matrix based method for designing a46

∗Preliminary versions of parts of this manuscript have appeared/will appear in [1] and [2].
†The authors are with the Department of Electrical Engineering, Indian Institute of Technology

Bombay, Mumbai, India (e-mail: imrul@ee.iitb.ac.in, debasattam@ee.iitb.ac.in).
‡The author is with the Department of Electronics and Electrical Engineering, Indian Institute

of Technology Guwahati, Guwahati, India (e-mail: bhawal@iitg.ac.in).

1

This manuscript is for review purposes only.



PD feedback controller has been put forth in [4], but applicability of this result does47

not allow the initial condition to be free. It is also built on certain assumptions like48

controllability of (A,B) and observability of (Q,A). In [5], the notion of deflating49

subspaces has been used to provide a linear implicit control law of the form Px +50

Tu = 0. But, most often this form does not lead to a feedback law, essentially due51

to non-invertibility of T (See [6] for the importance of feedback control). Another52

major drawback of this result is that it assumes the function space to be locally53

square-integrable. It is well known in the literature that the optimal trajectories54

for a singular LQR problem, in general, are impulsive in nature. Therefore, the55

local square-integrability of the signals is an extremely restrictive assumption, for the56

locally square-integrable functions cannot account for these impulses. Consideration57

of only square-integrable functions imposes a restriction on the initial condition of the58

system.59
Yet another method of solving the singular LQR problem is via the solution of60

the constrained generalized continuous algebraic Riccati equations (CGCAREs) (see61

the recent papers [7], [8], [9]):62

ATK +KA+Q− (KB + S)R†(BTK + ST ) = 0 and ker(R) ⊆ ker(S +KB),(1.3)63

where R† is the Moore-Penrose pseudo-inverse of R. However, it has been shown64

in [10] that solvability of CGCARE is equivalent to the corresponding Hamiltonian65

pencil satisfying a certain rank condition. Hence, CGCARE is generically unsolvable.66

Thus, in almost all cases of singular LQR problem, this method fails to provide a67

solution.68

In this paper, we provide a method to design a proportional-derivative (PD) state-69

feedback controller that solves the singular LQR problem. While doing so, we do not70

put any restriction on the initial condition. Since the initial condition is arbitrary, the71

optimal trajectories, in general, are impulsive in nature. Hence, the function space72

assumed in this paper allows impulses.73

The first step in computing the optimal solution is to compute the maximal rank-74

minimizing solution of the following LMI:75

L(K) :=
[
ATK+KA+Q KB+S

BTK+ST R

]
⩾ 0.(1.4)76

77

We call inequality (1.4) the LQR LMI. Interestingly, for every LQR problem, the op-78

timal cost is given by xT
0 Kmaxx0, where Kmax is the maximal rank-minimizing solution79

of the LQR LMI (1.4), that is, Kmax −K ⩾ 0 and rankL(Kmax) ⩽ rankL(K) for all80

K that satisfies L(K) ⩾ 0 (see [11]). Hence, in order to compute the optimal cost of81

a general LQR problem, it is imperative that the maximal rank-minimizing solution82

of the LQR LMI (1.4) be computed. For regular LQR problems the maximal solution83

of the ARE given by equation (1.2) is, indeed, the maximal rank-minimizing solution84

(Kmax) of the LMI (1.4). For singular LQR problems, if the CGCARE is solvable then85

Kmax can be found by obtaining the maximal solution of the CGCARE (1.3); but, as86

has been mentioned before, CGCARE is generically unsolvable. There are numerous87

methods to compute the maximal solution of an ARE: see [12] for different methods.88

However, these methods cannot be used in the singular case due to nonexistence of89

an ARE. In [2] we showed that one of the methods to compute Kmax for an LQR90

LMI of the regular case can be extended to the singular case (see [13, Chapter 5] for91

the regular case). This method, for the regular case, is based on computing a suit-92

able eigenspace of the corresponding Hamiltonian system. A direct extension of this93

method to the singular case fails, since the dimension of the suitable eigenspace of94

the Hamiltonian system in such a case is less than what is required to compute Kmax.95

It has been shown [2] that the Hamiltonian system based method for the regular case96

can indeed be extended to the singular case by substituting the role of the eigenspace97

of the Hamiltonian system in the regular case by the subspaces namely the weakly98
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unobservable subspace (slow space) and the strongly reachable subspace (fast space) of99

the Hamiltonian system. This observation is crucially used for the development of100

our results. It is worthwhile to mention here that the idea of employing the notion of101

slow space of the Hamiltonian in the context of the singular LQR problem has also102

been used in [14], where the authors consider a special case of the problem, namely103

the cheap LQR problem (where R = 0).104

The paper is structured as follows: Section 2 consists of the notation and a105

few preliminary results. The idea of weakly unobservable and strongly reachable106

subspaces have been known to be crucial in singular LQR problems (see [3], [15], [16],107

[17]). Matrix theoretic characterizations of the weakly unobservable and the strongly108

reachable subspaces have been provided in [1] and [18], respectively. These works also109

provide a method to compute the dimensions of these subspaces from the transfer110

function matrix of the primal. For the sake of completeness we present the results111

of [2], [1], and [18] in Section 3. In Section 4 we compute the optimal trajectories,112

while Section 5 provides a PD state-feedback controller that restricts the system to113

exhibit the optimal trajectories only. We provide an illustrative example in Section114

7 to demonstrate the theory presented in this paper. A comparative analysis of this115

result with the existing results in the literature has been carried out in Section 8.116

Finally, Section 9 provides a few concluding remarks.117

2. Notation and Preliminaries.118

2.1. Notation. The symbols R, C, and N are used for the sets of real numbers,119

complex numbers, and natural numbers, respectively. We use the symbols R+ and120

C− for the sets of non-negative real numbers and complex numbers with negative real121

parts, respectively. The symbol Rn×p denotes the set of n× p matrices with elements122

from R. We use the symbol In for an n× n identity matrix and the symbol 0n,m for an123

n× m matrix with all entries zero. Symbol col(B1, B2,. . . ,Bn) represents a matrix of124

the form [BT
1 BT

2 · · · BT
n ]

T
. By imA and kerA we denote the image and nullspace125

of a matrix A, respectively. The symbols rankA and nullityA denote the rank and126

the dimension of the nullspace of a matrix A, respectively. det(A) represents the127

determinant of a square matrix A. We use the symbols deg(p(s)) and roots(p(s)) to128

denote the degree and the set of roots (over complex numbers) of a polynomial p(s)129

with real or complex coefficients (with a root λ included in the set as many times as130

its multiplicity), respectively. The symbol num(p(s)) is used to denote the numerator131

of a rational function p(s). By degdet(A(s)) we denote the degree of the determinant132

of a polynomial matrix A(s) and by numdet(A(s)) we denote the numerator of the133

determinant of a rational function matrix A(s). The symbol σ(A) denotes the set of134

eigenvalues of a square matrix A (with an eigenvalue λ included in the set as many135

times as its algebraic multiplicity). We use the symbol σ(E,H) to denote the set136

of eigenvalues of the matrix pencil (E,H) (with λ ∈ σ(E,H) included in the set as137

many times as its algebraic multiplicity). The symbol |Γ| denotes the cardinality of a138

set Γ (counted with multiplicity). We use the symbol σ(A|S) to represent the set of139

eigenvalues of A restricted to an A-invariant subspace S. We use the symbol dim (S)140

to denote the dimension of a space S. The space of all infinitely often differentiable141

functions and locally square-integrable functions from R to Rn are represented by the142

symbol C∞(R,Rn) and L2
loc(R,Rn), respectively. We use the symbol C∞(R,Rn)|R+

143

to represent the set of all functions from R+ to Rn that are restrictions of C∞(R,Rn)144

functions to R+. The symbol δ represents the Dirac delta impulse distribution and145

δ(i) represents the i-th distributional derivative of δ with respect to t.146

2.2. Weakly unobservable and strongly reachable subspaces. Consider a147

system described by d
dtx = Ax + Bu and y = Cx +Du, where A ∈ Rn×n, B ∈ Rn×m,148

C ∈ Rp×n and D ∈ Rp×m. Associated with such a system are two important subspaces149

called the weakly unobservable subspace and the strongly reachable subspace (see [3]150
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for more on these spaces). Before we delve into the definitions of these subspaces, we151

need to define the space of impulsive-smooth distributions (see [3], [17]).152

Definition 2.1. The set of impulsive-smooth distributions Cw
imp is defined as:153

Cw
imp :=

{
f=freg+fimp | freg∈C∞(R,Rw)|R+ and fimp=

k∑
i=0

aiδ
(i), with ai ∈ Rw, k ∈ N

}
.154

155

In what follows, we denote the state-trajectory x and output-trajectory y of the156

system, that result from initial condition x0 and input u, using the symbols x(t;x0, u)157

and y(t;x0, u), respectively. x(0
+;x0, u) denotes the value of the state-trajectory that158

can be reached from x0 instantaneously on application of the input u at t = 0.159

Definition 2.2. A state x0 ∈ Rn is called weakly unobservable if there exists160

an input u ∈ C∞(R,Rm)|R+
such that y(t;x0, u) ≡ 0 for all t ⩾ 0. The collection of161

all such weakly unobservable states is called the weakly unobservable subspace of the162

system and is denoted by Ow.163

The other space of interest is the space of strongly reachable states (see [3]).164

Definition 2.3. A state x1 ∈ Rn is called strongly reachable (from the origin) if165

there exists an input u ∈ Cm
imp such that x(0+; 0, u) = x1 and y(t; 0, u) ∈ C∞(R,Rp)|R+

166

(that is, the output is regular). The collection of all such strongly reachable states is167

called the strongly reachable subspace of the state-space and is denoted by Rs.168

Since Ow deals with inputs from the space of infinitely differentiable functions, we169

call Ow the slow space of the system. On the other hand, since the space Rs admits170

impulsive inputs, we call Rs the fast space of the system. Further, by [3, Theorem171

3.10] we know that Ow is the largest among the subspaces V for which there exists172

an FV ∈ Rm×n such that173

(A+BFV)V ⊆ V and (C +DFV)V = {0}.(2.1)174175

In other words, there exists FOw ∈ Rm×n such that Ow satisfies the above equation;176

and for any arbitrary subspace V that satisfies the above equation, we must have177

that V ⊆ Ow. Note that, the class of subspaces that satisfy equation (2.1) also178

admits a subspace Owg such that σ((A+BFOwg
)|Owg

) ⊆ C−; and V ⊆ Owg whenever179

σ((A + BFV)|V) ⊆ C−. (see [19, Chapter 4, Chapter 5] for more on this). We call180

such a space the good slow space of the system as defined below (see [20, Chapter 3]).181

Definition 2.4. The good slow space Owg is the largest subspace V of the state-182

space for which there exists a feedback FV ∈ Rm×n such that183

(A+BFV)V ⊆ V, (C +DFV)V = {0}, and σ((A+BFV)|V) ⊆ C−.184

2.3. Alternative formulation of the singular LQR problem. Recall from185

Problem 1.1 that R ⩾ 0. Therefore, there exists an orthogonal matrix U ∈ Rm×m such186

that UTRU = diag(0, R̂), where R̂ ∈ Rr×r and r := rankR. Notice that R̂ > 0. This187

transformation enables us to provide an alternative formulation of the singular LQR188

Problem 1.1, which separates the regular part from the singular part of the problem.189

The following lemma is crucial for this purpose.190

Lemma 2.5. Consider the singular LQR Problem 1.1, where rankR = r. Let191

U ∈ Rm×m be an orthogonal matrix such that UTRU = diag(0, R̂), where R̂ ∈ Rr×r192

and R̂ > 0. Define BU =:
[
B1 B2

]
and SU =:

[
S1 S2

]
, where B2, S2 ∈ Rn×r.193

Then, the following statements hold:194

1.
[

Q S

ST R

]
⩾ 0 if and only if S1 = 0, Q− S2R̂

−1ST
2 ⩾ 0.195
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2. u∗ is a solution to the singular LQR Problem 1.1 if and only if UTu∗ :=196

col(u∗
1, u

∗
2) minimizes197

J(x0, u) :=

∫ ∞

0

[
x
u1
u2

]T [
Q 0 S2

0 0 0
ST
2 0 R̂

] [
x
u1
u2

]
dt.(2.2)198

199

3. K = KT satisfies L(K) ⩾ 0 (equation 1.4) if and only if K satisfies the LMI:200

Lt(K) :=

[
ATK+KA+Q KB1 KB2+S2

BT
1 K 0 0

BT
2 K+ST

2 0 R̂

]
⩾ 0.(2.3)201

202

4. Kmax is the maximal rank-minimizing solution of the LQR LMI (1.4) if and203

only if Kmax is the maximal rank-minimizing solution of the LMI (2.3).204

Proof Statement 1 and Statement 2 follow directly from [10, Lemma 2.1].205

3. Define the orthogonal matrix Û := diag(In, U). From the assumptions and State-206

ment 1 of this lemma, it can be verified that ÛTL(K)Û = Lt(K). Thus L(K) ⩾ 0 if207

and only if Lt(K) ⩾ 0. This proves Statement 3.208

4. ÛTL(K)Û = Lt(K) ⇒ rankL(K) = rankLt(K). Also, from Statement 3 of this209

lemma we know that the solution sets of the LMIs L(K) ⩾ 0 and Lt(K) ⩾ 0 are210

equal. Thus, Kmax is the maximal rank-minimizing solution of the LQR LMI (1.4) if211

and only if Kmax is the maximal rank-minimizing solution of the LMI (2.3). □212

Notice that the LMI (2.3) is the LQR LMI corresponding to the singular LQR prob-213

lem that minimizes the objective function given by equation (2.2). Therefore, Lemma214

2.5 allows us to write any singular LQR problem as follows:215

Problem 2.6. Let Q ∈ Rn×n, S2 ∈ Rn×r, and R̂ ∈ Rr×r be such that R̂ > 0216

and

[
Q 0 S2

0 0d,d 0

ST
2 0 R̂

]
⩾ 0, where d := m − r. Consider a stabilizable system with state-217

space dynamics d
dtx = Ax + B1u1 + B2u2, where A ∈ Rn×n, B1 ∈ Rn×d, and B2 ∈218

Rn×r. Then, for every initial condition x0, find an input u := col(u1, u2) such that219

limt→∞ x(t) = 0 and u minimizes the functional (2.2).220

This reduction of the original singular LQR problem (Problem 1.1) to its equivalent221

Problem 2.6 plays a crucial role in the sequel, where we exploit the special structure222

of the matrices involved in Problem 2.6 to obtain the main results.223

2.4. The primal and the Hamiltonian. Suppose p := rank

[
Q 0 S2

0 0 0
ST
2 0 R̂

]
. This224

matrix being positive semi-definite, admits a factorization given by

[
Q 0 S2

0 0 0
ST
2 0 R̂

]
=225

[C 0 D2 ]
T
[C 0 D2 ], where C ∈ Rp×n, and D2 ∈ Rp×r. Using this factorization in226

equation (2.2), it can be easily seen that the singular LQR Problem 2.6 can be viewed227

as an output energy minimization problem of the system Σ defined as follows:228

Σ :
d

dt
x = Ax+B1u1 +B2u2 and y = Cx+D2u2.(2.4)229

We call the system Σ the primal for the given singular LQR Problem 2.6.230

Remark 2.7. The optimal trajectories for the singular LQR problem are impul-231

sive. Therefore, in this paper we consider the trajectory space Cm
imp (see Definition232

2.1) which allows impulses in trajectories. By equation (2.2) it can be inferred that233

in order for the objective function to be well-defined, the output y(t) of the primal234

must be regular. Hence, while searching for an optimal input from the space Cm
imp, it235

suffices to restrict our search to the inputs which cause the output y(t) to be regular.236

We call such inputs the admissible inputs. □237

5

This manuscript is for review purposes only.



By Pontryagin’s maximum principle, all the smooth optimal trajectories of Prob-238
lem 2.6 must necessarily be a trajectory of the following singular descriptor system:239

240 [
In 0 0 0
0 In 0 0
0 0 0 0
0 0 0 0

]
︸ ︷︷ ︸

E

d

dt

[ x
z
u1
u2

]
=

 A 0 B1 B2

−Q −AT 0 −S2

0 BT
1 0 0

ST
2 BT

2 0 R̂


︸ ︷︷ ︸

H

[ x
z
u1
u2

]
,(2.5)241

242

where col(x, z) is the state-costate pair. The system described by equation (2.5) is243

known in the literature as the Hamiltonian system corresponding to the LQR Prob-244

lem 2.6 and the matrix pair (E,H) is known as the Hamiltonian matrix pair. The245

Hamiltonian system admits an output-nulling representation given by246

d
dt [

x
z ] = Â [ xz ] + B̂ [ u1

u2
] and 0 = Ĉ [ xz ] + D̂ [ u1

u2
] ,(2.6)247

where Â :=
[

A 0
−Q −AT

]
, B̂ :=

[
B1 B2

0 −S2

]
, Ĉ :=

[
0 BT

1

ST
2 BT

2

]
, and D̂ :=

[
0 0
0 R̂

]
.248

In this paper we show that not only the smooth optimal trajectories, but also the249

distributional ones must necessarily satisfy the Hamiltonian system’s equation.250

Due to non-singularity of R̂, we can further reduce the Hamiltonian system to251

obtain an equivalent system described by the following differential algebraic equations:252

[
In 0 0
0 In 0
0 0 0

]
︸ ︷︷ ︸

Er

d

dt

[
x
z
u1

]
=

[
A−B2R̂

−1ST
2 −B2R̂

−1BT
2 B1

−Q+S2R̂
−1ST

2 −(A−B2R̂
−1ST

2 )T 0

0 BT
1 0

]
︸ ︷︷ ︸

Hr

[
x
z
u1

]
.(2.7)253

254

We call the system described by equation (2.7), the reduced Hamiltonian system, and255

the pair (Er, Hr) the reduced Hamiltonian matrix pair. The reduced Hamiltonian256

system admits an output-nulling representation ΣHam as follows:257

d

dt
[ xz ] =

[
Ar −L

−Qr −AT
r

]
[ xz ] +

[
Br
0

]
u1 and 0 = [ 0 BT

r ] [ xz ] ,(2.8)258
259

where Ar := A − B2R̂
−1ST

2 , Qr := Q − S2R̂
−1ST

2 , L := B2R̂
−1BT

2 , and Br := B1.260

The reduced Hamiltonian system and the Hamiltonian system are equivalent in the261

sense that col(x, z, u1) is a trajectory of the reduced Hamiltonian system if and only262

if col(x, z, u1,−R̂−1(ST
2 x + BT

2 z)) is a trajectory of the Hamiltonian system. But,263

it is easier to carry out the analysis using the reduced Hamiltonian system. We264

characterize the slow space and the fast space in terms of the reduced Hamiltonian265

system, which finally leads to the maximal rank-minimizing solution of the LQR LMI.266

The following lemma establishes a few important relations between the primal267

and the Hamiltonian (see [21, Lemma 4.4]).268

Lemma 2.8. Consider the primal Σ, the Hamiltonian matrix pair (E,H), the269

reduced Hamiltonian matrix pair (Er, Hr), and the matrices Â, B̂, Ĉ, D̂ defined in270

equation (2.4), equation (2.5), equation (2.7), and equation (2.6), respectively. Define271

G(s) := C(sIn −A)−1
[
B1 B2

]
+
[
0 D2

]
. Then the following statements hold:272

1. G(−s)TG(s) = Ĉ(sI2n − Â)−1B̂ + D̂.273

2. numdet
(
G(−s)TG(s)

)
1= det(sE −H) = (−1)rdet R̂× det(sEr −Hr).274

1Here by numdet
(
G(−s)TG(s)

)
, we mean the numerator of det

(
G(−s)TG(s)

)
before any possible

pole-zero cancellations.
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Remark 2.9. Throughout this paper, we assume that (i) (sEr −Hr) is a regular275

matrix pencil, that is, det(sEr−Hr) ̸≡ 0; and (ii) σ(Er, Hr)∩jR = ϕ. The assumption276

that det (sEr − Hr) ̸≡ 0 is a standard assumption in the literature. It means that277

the Hamiltonian system is autonomous and ensures that, for a given initial condition,278

the optimal trajectory is unique. It has been shown in [10] that for singular LQR279

problems, the condition det (sEr − Hr) ̸≡ 0 is generically satisfied. Therefore, this280

assumption is not restrictive. From Statement 2 of Lemma 2.8, it follows that the281

condition det (sEr−Hr) ̸≡ 0 is equivalent to the transfer function matrix G(s) of the282

primal Σ being left-invertible. So, in terms of the primal Σ, this assumption translates283

to the primal Σ being a left-invertible system (see [3, Theorem 3.26]). See [22] for the284

case when the primal is not a left-invertible system.285

Since the primal Σ is assumed to be stabilizable, from Statement 2 of Lemma286

2.8, it follows that the assumption σ(Er, Hr) ∩ jR = ϕ is equivalent to saying that:287

(a) the primal Σ does not have any unobservable eigenvalue on the imaginary axis,288

and (b) the primal has no transmission zeros on the imaginary axis. Note that, this289

assumption, too, is not restrictive, because the property that a polynomial has no290

root on the imaginary axis is generically satisfied. This assumption also is a standard291

assumption in the literature (see [14], [17]).292

Due to Statement 2 of Lemma 2.8 we further infer that if λ is a root of det(sEr−293

Hr) (that is, λ ∈ σ(Er, Hr)), then −λ, too, is a root of the same. Of course, the294

roots also appear in complex conjugate pairs. Therefore, the roots are symmetric295

about the origin. Consequently, det(sEr −Hr) is an even-degree polynomial. Hence,296

for a singular LQR problem degdet(sEr − Hr) =: 2ns, where ns < n (because D̂297

is singular). Hence, the assumption that σ(Er, Hr) ∩ jR = ϕ further implies that298

|σ(Er, Hr) ∩ C−| = ns. □299

For a quick reference, in Table 1 we have listed some matrices and numbers that have300

been frequently used throughout this paper.

Matrix/Number Definition Remark

Ar Ar := A−B2R̂
−1ST

2

Defined in equation
(2.8).

Br Br := B1

L L := B2R̂
−1BT

2

Qr Qr := Q− S2R̂
−1ST

2

Cr Cr := C −D2R̂
−1ST

2 Defined in Lemma 3.2.
Notice that CT

r Cr = Qr.

r and d r := rankR and d := nullityR Notice that d = m− r.

Er Er :=

In 0 0
0 In 0
0 0 0d,d

 (Er, Hr) is the
reduced Hamiltonian
matrix pair defined in
equation (2.7).Hr Hr :=

 Ar −L Br

−Qr −AT
r 0

0 BT
r 0


ns and nf 2ns := degdet(sEr −Hr) See Remark 2.9

and nf := n− ns and Lemma 3.2.

Table 1
Definitions of some matrices and numbers for a quick reference

301 3. Constructive solution of the singular LQR LMI. In this section we first302

provide a characterization of the good slow space of the Hamiltonian system. Then,303

we present a characterization of the fast space of the primal. We also depict how to304

get the dimensions of these spaces from the transfer function matrix of the primal.305
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Finally, we construct the maximal rank-minimizing solution of the LQR LMI 2.3 using306

these subspaces. These results have already appeared in [2], [1], and [18]. They are307

being presented here for completeness and ease of referencing in the main results.308

3.1. Characterization of the good slow space of the Hamiltonian sys-309

tem. The good slow space (Owg) of the Hamiltonian system provides us with the310

subspace of the state-space, which contains all the initial conditions that result in311

smooth optimal trajectories for the given singular LQR problem (see Lemma 4.1). In312

the following lemma we present a characterization of Owg (see [1, Section 3]).313

Lemma 3.1. Consider the reduced Hamiltonian matrix pair (Er, Hr) correspond-314

ing to the singular LQR Problem 2.6 as defined in equation (2.7). Assume that315

σ(Er, Hr) ∩ jR = ∅. Define degdet(sEr − Hr) =: 2ns and Λ := σ(Er, Hr) ∩ C−316

(recall from Remark 2.9 that |Λ| = ns). Let V1Λ, V2Λ ∈ Rn×ns and V3Λ ∈ Rd×ns be317

such that the matrix col(V1Λ, V2Λ, V3Λ) is full column-rank and the following holds2:318  Ar −L Br

−Qr −AT
r 0

0 BT
r 0

V1Λ

V2Λ

V3Λ

 =

In 0 0
0 In 0
0 0 0

V1Λ

V2Λ

V3Λ

Γ,(3.1)319

320

where σ(Γ) = Λ. Then, the following are true:321

1. The good slow space of ΣHam =: Owg = im
[
V1Λ

V2Λ

]
.322

2.
[
V1Λ

V2Λ

]
is full column-rank; that is, dim (Owg) = ns.323

3. V1Λ is full column-rank.324

Statement 3 of Lemma 3.1 gives us an important structural property of the good325

slow space of the Hamiltonian system. This property is known as disconjugacy of the326

eigenspace of the matrix pair (Er, Hr) (see [13, Definition 6.1.5]). Columns of the327

matrix V1Λ constitute a basis of a special subspace of the state space. Any initial328

condition from this subspace results in a smooth optimal trajectory. Moreover, left-329

invertibility of V1Λ plays a crucial role in providing a closed-form expression of the330

maximal rank-minimizing solution of the singular LQR LMI; it is also pivotal to the331

design of a PD state-feedback controller.332

3.2. Characterization of the fast space of the primal. The following lemma333

presents a closed-form expression for the fast space of the primal ([2, Proposition 3.2],334

also see [18] for more details). It also enables us to read off the dimension of the fast335

space from the transfer function matrix of the system.336

Lemma 3.2. Consider the primal Σ and the matrices Ar, Br as defined in equation337

(2.4) and equation (2.8), respectively. Define Cr := C − D2R̂
−1ST

2 . Recall that338

2ns = deg{numdetG(−s)TG(s)}, where G(s) is the transfer function matrix of Σ and339

d = nullityR. Let Rs denote the fast space of Σ. Define340

M :=



0p,d if nf =d
0p,d 0 . . . 0 0
0 0 . . . 0 CrBr

0 0 . . . CrBr CrArBr

...
...

. . .
...

...
0 CrBr . . . CrA

nf−d−2
r Br CrA

nf−d−1
r Br

 if nf ⩾ d+ 1.
341

Then, the following are true:342

1. dim(kerM) = nf, where nf := n− ns.343

2. dimRs = nf.344

2Such matrices V1Λ, V2Λ, and V3Λ always exist. See [1, Section 3.2] for more on this.
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3. Let N ∈ Rd(nf−d+1)×nf be a matrix such that its columns form a basis for345

kerM. Define346

(3.2) W :=
[
Br ArBr . . . Anf−d

r Br

]
N.347

Then, Rs = imW .348

4. W is full column-rank, that is, the columns of W form a basis for Rs.349

We call M the Markov parameter matrix. It is evident from Lemma 3.2 that M plays350

a vital role in providing a closed-form expression of the fast space of the primal. It351

also plays a crucial role in computation of the optimal trajectories and also in the352

design of the PD feedback controller.353

3.3. The maximal rank-minimizing solution of the singular LQR LMI.354

The slow space of the Hamiltonian system and the fast space of the primal are inti-355

mately related to the maximal rank-minimizing solution Kmax of the LQR LMI. The356

following theorem provides a closed-form expression for Kmax by making use of these357

spaces. See [2, Section IV] for more details.358

Theorem 3.3. Consider the LQR Problem 2.6 with the corresponding LMI given359

by equation (2.3). Recall from Lemma 3.1 that the good slow space of the Hamiltonian360

system ΣHam is given by Owg = im
[
V1Λ

V2Λ

]
. Further recall from Lemma 3.2 that the361

fast space of the primal Σ is given by Rs = imW . Define
[
V1Λ W
V2Λ 0

]
=: [XY ], where362

X,Y ∈ Rn×n. Then, the following statements hold:363

1. X is invertible.364

2. Kmax := Y X−1 is symmetric.365

3. Kmax is a rank-minimizing solution of LMI (2.3).366

4. For any other solution K of LMI (2.3), K ⩽ Kmax.367

5. Kmax ⩾ 0.368

Remark 3.4. For the regular LQR problem, the relation between a rank min-369

imizing solution of the LQR LMI and its corresponding ARE is a well-known fact370

[23, Theorem 4.3.1]. For a regular problem, the maximal rank-minimizing solution371

of the corresponding LMI can be found using the algorithm provided in the seminal372

paper [24]. Note that, for a regular LQR problem, ns = n; and hence by Lemma 3.1,373

it follows that V1Λ ∈ Rn×n is invertible. Further, for such a problem the fast space374

of the primal, Rs = {0}. Thus, by Theorem 3.3, it follows that Kmax = V2ΛV
−1
1Λ ;375

which is in agreement with [24]. So, the algorithm for computation of the maximal376

rank-minimizing solution of the regular LQR LMI as given in [24] is a special case377

of Theorem 3.3. However, in this paper Theorem 3.3 provides a recipe to compute378

the maximal rank minimizing solution of the LQR LMI, both for the regular and379

the singular case. This eventually leads to a solution of the singular LQR problem.380

Interestingly, [23] uses special co-ordinate basis (SCB) to show that for the singular381

LQR case, the rank minimizing solution of the LQR LMI admits a special structure382

[23, Equation 4.3.20]. Hence, a natural question would be to investigate if the bases383

of the fast and the slow spaces admit some structure when the primal system is in384

SCB to start with. Thus, a study on the relation between fast/slow spaces and the385

SCB might provide valuable insights into the singular LQR problem and its solutions.386

We do not delve into such a study in this paper, as our primary focus in this paper387

is the design of a PD state-feedback controller, using the maximal rank minimizing388

solution of the singular LQR LMI, that solves the singular LQR problem. □389

In the following remark we discuss about a certain observation regarding the kernel390

of Kmax and its implication.391

Remark 3.5. In [23, Lemma 4.3.4] it has been shown that an arbitrary solution392

K of the LQR LMI contains a certain subspace of the state space of the primal inside393
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its kernel (which the authors in [23] call the detectable strongly controllable subspace).394

From Theorem 3.3, we know that Kmax = [ V2Λ 0 ] [ V1Λ W ]
−1

. From [2, Remark 2.11395

and Lemma 2.12], it follows that, without loss of generality,
[
V1Λ

V2Λ

]
can be written as396 [

V1Λ

V2Λ

]
=

[
Vg V1e

0 V2e

]
, where the columns of the matrix Vg form a basis for the good slow397

space of the primal and V2e is full column-rank. Hence, Kmax = [ 0 V2e 0 ] [ Vg V1e W ]
−1

.398

So, KmaxVg = 0 and KmaxW = 0. Also, since V2e is full column-rank, the kernel of399

Kmax is exactly equal to the direct-sum of the good slow space and the fast space of400

the primal. This observation gives rise to an interesting conclusion: since, for a given401

initial condition, the optimal cost of the singular LQR problem is given by xT
0 Kmaxx0402

(see [11, Theorem 2]), any initial condition belonging to the direct-sum of the good403

slow space and the fast space of the primal incurs zero optimal cost. □404

An auxiliary result pertaining to any arbitrary solution K of the LQR LMI (2.3) is405

required in the sequel. We present this result as a lemma next (see [2, Lemma 4.1]).406

Lemma 3.6. Let K ∈ Rn×n be an arbitrary solution of the LQR LMI (2.3). Then,407

KW = 0, where W is as defined in equation (3.2).408

Remark 3.7. Lemma 3.6 shows that the fast space (Rs) of the primal is a sub-409

space of the kernel of any solution K of the LQR LMI (2.3). So, in particular, Rs is410

a subspace of kerKmax. Hence, for an initial condition from imW , the optimal cost411

must be zero. This conclusion has also been drawn in Remark 3.5. □412

3.4. A few auxiliary results. The structure of the matrix M leads to sub-413

spaces that follow a chain of inclusions elaborated in the following lemma.414

Lemma 3.8. Consider the matrix M as defined in Lemma 3.2 and let N ∈
Rd(nf−d+1)×nf be a matrix such that its columns form a basis for kerM. Parti-
tion N as N = col(N0, N1, . . . , Nnf−d) with N0, N1, . . . , Nnf−d ∈ Rd×nf . For all
i ∈ {1, 2, . . . , (nf − d)} define N i := col(Ni, Ni+1, . . . , Nnf−d). Then,

im
[
Nnf−d

0

]
⊆ im

[
Nnf−d−1

0

]
⊆ · · · ⊆ im

[
N2
0

]
⊆ im

[
N1
0

]
⊆ imN.

Here the sizes of the zero matrices are such that
[
Ni
0

]
∈ Rd(nf−d+1)×nf for all i ∈415

{1, 2, . . . , (nf − d)}.416

Proof Let M be the matrix obtained by removing the first d columns and the417

last p rows of M, that is, M =
[

0 M
0p,d m

]
with m := [CrBr CrArBr ... CrA

nf−d−1
r Br ].418

Then, due to the structure of M it also follows that M =
[

0 0p,d

M n

]
, where n :=419

col(CrBr, CrArBr, . . . , CrA
nf−d−1
r Br). We use this observation to first show that420

im
[
N1
0

]
⊆ imN . Since imN = kerM, it follows that421

MN= 0 ⇔
[

0 M
0p,d m

] [
N0

N1

]
= 0 ⇒ M N1 = 0 ⇒

[
0 0p,d

M n

] [
N1
0

]
= 0 ⇒ M

[
N1
0

]
= 0422

⇒ im
[
N1
0

]
⊆ imN ⇔ im


N1
N2

...
Nnf−d

0d,nf

 ⊆ im


N0
N1

...
Nnf−d−1

Nnf−d

 .(3.3)423

Let i ∈ {2, 3, . . . , (nf − d)} be arbitrary. Then, we have to show that im
[
Ni
0

]
⊆424

im
[
Ni−1

0

]
, which is equivalent to showing that im

[
Ni
0d,nf

]
⊆ imN i−1. This directly425

follows from equation (3.3), because im col(Ni, Ni+1, . . . , Nnf−d, 0d,nf) ⊆426
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im col(Ni−1, Ni, . . . , Nnf−d). This completes the proof. □427

428
Remark 3.9. Define the system given by d

dtx(t) = Arx(t) + Bru1(t), y(t) =429

Crx(t). Let the initial condition of the system be x0 = 0. Then, it turns out that,430

the input u1(t) :=
∑nf−d

i=0 aiδ
(i) with ai ∈ Rd results in a regular output, that is,431

y(t; 0, u1) ∈ C∞(R,Rp) if and only if col(a0, a1, . . . , anf−d) = col(N0, N1, . . . , Nnf−d)β432

for some β ∈ Rnf (see [18, Lemma 4.1]). In [18], such an input has been termed as an433

admissible impulsive input. From Lemma 3.8, it can be concluded that if
∑nf−d

i=0 aiδ
(i)434

is an admissible impulsive input, then
∑nf−d

i=k aiδ
(i−k), too, is an admissible impulsive435

input for all k ∈ {1, 2, . . . , nf − d}. □436

Using the subspaces in Lemma 3.8, we can form another class of subspaces that follow437

an inclusion chain as in Lemma 3.8. We present this next.438

Lemma 3.10. For all i∈{1, 2, . . . , (nf−d)} define Wi :=[Br ArBr ... Anf−d
r Br ]

[
Ni
0i,nf

]
,

where N i is as defined in Lemma 3.8. Then, the following filtration follows:

imWnf−d ⊆ imWnf−d−1 ⊆ · · · ⊆ imW2 ⊆ imW1 ⊆ imW.

The next lemma shows that the subspaces imW1, imW2, . . . , imWnf−d are contained439

in the kernel of Cr.440

Lemma 3.11. Recall the matrices Cr and W1,W2, . . . ,Wnf−d as defined in Lemma441

3.2 and Lemma 3.10, respectively. Then, CrWi = 0 for all i ∈ {1, 2, . . . , nf − d}.442

Proof By definition, MN=0. Notice from the definitions of W1,W2, . . . ,Wnf−d that443

MN = col(0, CrWnf−d, . . . , CrW2, CrW1). Hence the result follows. □444

445
Remark 3.12. Lemma 3.10 implies that if δ(i) does not appear in the optimal446

state trajectory, then δ(i+1) cannot appear in the optimal state trajectory. Lemma447

3.11 implies that the optimal output trajectory of the primal due to an initial condition448

from imW is identically zero. This, further implies that the optimal cost due to an449

initial condition from the fast space of the primal is zero. Justification of these450

statements needs a few result, which we present in the sequel. Hence, we justify these451

statements in Section 5. □452

4. Optimal trajectories. In this section we evaluate the trajectories of the453

primal Σ (see equation (2.4)) for an arbitrary initial condition, which minimize the cost454

function given by equation (2.2). Due to Statement 1 of Theorem 3.3, it is evident that455

the state space Rn admits a direct-sum decomposition given by Rn = imV1Λ ⊕ imW .456

This enables us to compute the optimal trajectories in two steps. First, we compute457

the optimal trajectories when the initial condition is restricted to the slow part, i.e.,458

imV1Λ. Then, we compute the optimal trajectories for an initial condition in the fast459

part, i.e., imW . We achieve these tasks in the following two lemmas.460

Lemma 4.1. Consider the LQR Problem 2.6 and the matrices V1Λ, V2Λ, V3Λ, and461

Γ as defined in equation (3.1). Define x0s := V1Λα, z0s := V2Λα, xs := V1Λe
Γtα, zs :=462

V2Λe
Γtα, us1 := V3Λe

Γtα, and us2 := −R̂−1(ST
2 + BT

2 Kmax)xs, where α ∈ Rns is463

arbitrary. Then,464

1. col(xs, zs, us1 , us2) is a trajectory of the Hamiltonian system defined in equa-465

tion (2.5) corresponding to the initial condition col(x0s, z0s).466

2. col(xs, us1 , us2) is a trajectory of the primal Σ defined in equation (2.4) cor-467

responding to the initial condition x0s.468

3.
∫∞
0

[ xs
us1
us2

]T [
Q 0 S2

0 0 0
ST
2 0 R̂

] [ xs
us1
us2

]
dt = xT

0sKmaxx0s.469

Proof 1. Notice from the definition of Kmax that KmaxV1Λ = V2Λ. Using this identity470

along with equation (3.1) , it can be easily seen that the trajectory col(xs, zs, us1 , us2)471
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satisfies the Hamiltonian system’s equation (2.5). Hence, col(xs, zs, us1 , us2) is a tra-472

jectory of the Hamiltonian system corresponding to the initial condition col(x0s, z0s).473

2. It is a matter of simple verification that if col(xs, zs, us1 , us2) is a trajectory of the474

Hamiltonian, then the projection col(xs, us1 , us2) is a trajectory of the primal.475

3. Using the definitions of xs, us1 , us2 , and Kmax and doing some simple algebraic
manipulations with the help of equation (3.1) (see [2, proof of Theorem 4.5]) we

get that d
dt (x

T
s Kmaxxs) = −

[ xs
us1
us2

]T [
Q 0 S2

0 0 0
ST
2 0 R̂

] [ xs
us1
us2

]
. Integrating both sides of this

equation, we further get∫ ∞

0

[ xs
us1
us2

]T [
Q 0 S2

0 0 0
ST
2 0 R̂

] [ xs
us1
us2

]
dt = xs(0)

TKmaxxs(0)− xs(∞)TKmaxxs(∞).

Now, since Γ is Hurwitz, from the definition of xs it is clear that xs(∞) = 0 and
xs(0) = x0s. Therefore, we conclude that∫ ∞

0

[ xs
us1
us2

]T [
Q 0 S2

0 0 0
ST
2 0 R̂

] [ xs
us1
us2

]
dt = xT

0sKmaxx0s.

□476

The following lemma deals with the case when the initial condition is in the fast space.477

Lemma 4.2. Consider the LQR Problem 2.6 and the matrices N and W as defined478

in equation (3.2). Also recall the matrices W1,W2, . . . ,Wnf−d as defined in Lemma479

3.10. Define x0f :=Wβ, z0f :=0 ∈ Rn, xf :=−[W1δ +W2δ
(1) + · · ·+Wnf−dδ

(nf−d−1)]β,480

zf := 0 ∈ Rn, uf1 := − [ δId δ(1)Id ... δ(nf−d)Id ]Nβ, and uf2 := −R̂−1(ST
2 + BT

2 Kmax)xf ,481

where β ∈ Rnf is arbitrary. Then,482

1. col(xf , zf , uf1 , uf2) is a distributional trajectory of the Hamiltonian system483

defined in equation (2.5) corresponding to the initial condition col(x0f , z0f ).484

2. col(xf , uf1 , uf2) is a distributional trajectory of the primal Σ defined in equa-485

tion (2.4) corresponding to the initial condition xof .486

3.
∫∞
0

[ xf
uf1
uf2

]T [
Q 0 S2

0 0 0
ST
2 0 R̂

] [ xf
uf1
uf2

]
dt = 0.487

Proof 1. Partition N as N = col(N0, N1, . . . , Nnf−d) with N0, N1, . . . , Nnf−d ∈ Rd×nf .488

Recall from Lemma 3.10 that for all i∈ {1, 2, . . . , (nf − d)}, Wi has been defined as489

Wi = [Br ArBr ... Anf−d
r Br ]

[
Ni
0i,nf

]
, where N i = col(Ni, Ni+1, . . . , Nnf−d). Also recall490

that W = [Br ArBr ... Anf−d
r Br ]N . Clearly,491

Wi = BrNi +ArWi+1 for all i ∈ {1, 2, . . . , (nf − d− 1)},(4.1)492

Wnf−d = BrNnf−d, and W = BrN0 +ArW1.493

We need to show that the trajectory col(xf , zf , uf1 , uf2) satisfies equation (2.5) in494

distributional sense. Using equation (4.1) we get that495

d
dt
(xf ) = −x0fδ − [W1δ

(1) +W2δ
(2) + · · ·+Wnf−dδ

(nf−d)]β496

= −Wβδ − [W1δ
(1) +W2δ

(2) + · · ·+Wnf−dδ
(nf−d)]β497

= −
[
(BrN0 +ArW1)δ +

∑nf−d−1

i=1 (BrNi +ArWi+1)δ
(i) +BrNnf−dδ

(nf−d)
]
β498

=−Ar[W1δ+W2δ
(1)+. . .+Wnf−dδ

(nf−d−1)]β−Br[N0δ+N1δ
(1)+. . .+Nnf−dδ

(nf−d)]β499

⇔ d
dt
(xf ) = Arxf +Bruf1 .(4.2)500

Now, by Lemma 3.10 we know that imWnf−d ⊆ imWnf−d−1 ⊆ · · · ⊆ imW1 ⊆ imW.501

Again, by Lemma 3.6, it follows that KmaxW = 0. Consequently,502

(4.3) Kmaxxf = 0.503
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Using equation (4.2) and equation (4.3), we deduce that504

Axf +B1uf1 +B2uf2 = Arxf − LKmaxxf +Bruf1 = Arxf +Bruf1 =
d

dt
(xf ).(4.4)505

From Lemma 3.11 it directly follows that506

(4.5) Crxf = 0.507

Next, using the fact that zf = 0 (by definition) along with equation (4.3) and equation508

(4.5) we get the following equations509

−Qxf +AT zf−S2uf2 = −Qrxf−S2R̂
−1BT

2 Kmaxxf =−CT
r Crxf =0= d

dt
(zf ),(4.6)510

BT
1 zf = 0, and(4.7)511

ST
2 xf +BT

2 zf + R̂uf2 = ST
2 xf − R̂R̂−1(ST

2 +BT
2 Kmax)xf = 0.(4.8)512

Combining equation (4.4), equation (4.6), equation (4.7), and equation (4.8) together513

yields equation (2.5). Hence, col(xf , zf , uf1 , uf2) is a trajectory of the Hamiltonian514

system corresponding to the initial condition col(x0f , z0f ).515

2. This statement directly follows from equation (4.4).516

3. Recall from Section 2.4 that517

(4.9)

[
Q 0 S2

0 0 0
ST
2 0 R̂

]
=

[
CT

0
DT

2

]
[C 0 D2 ] .518

Now, [C 0 D2 ]
[ xf
uf1
uf2

]
= Cxf + D2uf2 = Crxf − D2R̂

−1BT
2 Kmaxxf . Therefore, from519

equation (4.3) and equation (4.5), it is evident that520

(4.10) [C 0 D2 ]
[ xf
uf1
uf2

]
= 0.521

Combining equation (4.9) and equation (4.10), we have
[ xf
uf1
uf2

]T [
Q 0 S2

0 0 0
ST
2 0 R̂

] [ xf
uf1
uf2

]
= 0.522

This further implies that
∫∞
0

[ xf
uf1
uf2

]T [
Q 0 S2

0 0 0
ST
2 0 R̂

] [ xf
uf1
uf2

]
dt = 0. □523

Recall from Statement 1 of Theorem 3.3 that X=
[
V1Λ W

]
is invertible. So, for an524

arbitrary initial condition x0 there exist α∈Rns and β∈Rnf such that x0 = V1Λα +525

Wβ. Therefore, Lemma 4.1 and Lemma 4.2 can be combined to obtain an allowable526

trajectory of the given system for an arbitrary initial condition. Here, a trajectory527

being allowable means that the trajectory satisfies the system’s equations. In the528

following theorem, we show that this trajectory, indeed, is the optimal trajectory.529

Theorem 4.3. Consider the LQR Problem 2.6. Recall the definitions of x0s, x0f ,530

xs, xf , us1 , us2 , uf1 , and uf2 from Lemma 4.1 and Lemma 4.2. Define x0 := x0s +531

x0f , x
∗ := xs +xf , u

∗
1 := us1 +uf1 , and u∗

2 := us2 +uf2 . Then, the following are true:532

1. col(x∗, u∗
1, u

∗
2) is an allowable trajectory of the primal Σ defined in equation533

(2.4) corresponding to an arbitrary initial condition x0.534

2.
∫∞
0

[
x∗

u∗
1

u∗
2

]T [
Q 0 S2

0 0 0
ST
2 0 R̂

] [
x∗

u∗
1

u∗
2

]
dt = xT

0 Kmaxx0.535

3. col(x∗, u∗
1, u

∗
2) is the optimal trajectory for the initial condition x0.536

Proof 1. This statement follows from application of Lemma 4.1 and Lemma 4.2537

together with linearity of the system Σ.538
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2. Using equation 4.10, it is clear that539

(4.11) [C 0 D2 ]

[
x∗

u∗
1

u∗
2

]
= [C 0 D2 ]

[ xs+xf
us1

+uf1
us2+uf2

]
= [C 0 D2 ]

[ xs
us1
us2

]
.540

Combining equation (4.9) and equation (4.11) together, we have541

(4.12)

[
x∗

u∗
1

u∗
2

]T [
Q 0 S2
0 0 0

ST
2 0 R̂

] [
x∗

u∗
1

u∗
2

]
=

[ xs
us1
us2

]T [
Q 0 S2
0 0 0

ST
2 0 R̂

] [ xs
us1
us2

]
.542

Recall from Theorem 3.3 that Kmax is symmetric. Due to Lemma 3.6 we also have543

KmaxW = 0. Therefore, it follows that544

xT
0 Kmaxx0=(V1Λα+Wβ)TKmax(V1Λα+Wβ)=(V1Λα)

TKmaxV1Λα=xT
0sKmaxx0s.545

Hence, using equation (4.12) in Statement 3 of Lemma 4.1, we conclude that546 ∫ ∞

0

[
x∗

u∗
1

u∗
2

]T[ Q 0 S2

0 0 0
ST
2 0 R̂

][
x∗

u∗
1

u∗
2

]
dt=

∫ ∞

0

[ xs
us1
us2

]T[ Q 0 S2

0 0 0
ST
2 0 R̂

][ xs
us1
us2

]
dt = xT

0 Kmaxx0.547

548

3. By Theorem 3.3, we know that Kmax is the maximal rank-minimizing solution of549

the LQR LMI 2.3. Therefore, using [11, Theorem 2] we infer that given an initial con-550

dition x0, the minimal cost attainable for the singular LQR Problem 2.6 is xT
0 Kmaxx0.551

Also, since we have assumed that the primal Σ is a left-invertible system, the optimal552

trajectories must be unique [3]. Hence, from Statement 2 of this theorem, it is evi-553

dent that col(x∗, u∗
1, u

∗
2) is the optimal trajectory for the singular LQR problem 2.6554

corresponding to the initial condition x0. □555

556
5. PD feedback design. In this section we design a PD-feedback controller557

that restricts the system to only the optimal trajectories (Theorem 5.5). Two different558

direct-sum decompositions of Rs are crucially used in order to design this feedback.559

The following lemma provides these direct-sum decompositions.560

Lemma 5.1. Recall that Rs denotes the fast space of the primal and nf = dimRs.561

Also recall that d = nullityR. There exists a subspace R̃s ⊆ Rs of dimension equal562

to nf − d satisfying the following properties:563

1. ArR̃s ⊆ Rs, dim (ArR̃s) = nf − d, and Rs = imBr ⊕ArR̃s.564

2. There exists We ∈ Rn×d full column-rank such that Rs = R̃s ⊕ imWe.565

Proof By Lemma 3.2, we know that Rs = im [Br ArBr ... Anf−d
r Br ]N , where N ∈566

Rd(nf−d+1)×nf is a matrix such that its columns form a basis for the kernel of M.567

Due to the structure of M, it follows that there exists Ñ ∈ Rd(nf−d)×(nf−d) such that568

the columns of
[
Id 0

0 Ñ

]
form a basis for kerM. Therefore, Rs is given by569

Rs = im [Br ArBr ... A
nf−d
r Br ]

[
Id 0

0 Ñ

]
︸ ︷︷ ︸

Ŵ

= imBr ⊕ im [ArBr A2
rBr ... A

nf−d
r Br ] Ñ .(5.1)570

Recall from Lemma 3.2 that Ŵ is full column-rank, which leads to the direct-sum571
decomposition in the above equation.572

Now, by Lemma 3.8, it is evident that im
[
0 Ñ
0 0

]
= im

[
Ñ
0

]
⊆ kerM. Since

[
Ñ
0

]
is full573

column-rank, there exists Ñ12 ∈ Rd(nf−d)×d and Ñ22 ∈ Rd×d such that the columns of574

the matrix
[
Ñ Ñ12

0 Ñ22

]
form a basis for kerM. So, Rs is also given by575
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Rs = im [Br ArBr ... A
nf−d
r Br ]

[
Ñ Ñ12

0 Ñ22

]
= im W̃ ⊕ imWe,(5.2)576

where W̃ := [Br ArBr ... A
nf−d−1
r Br ] Ñ and We := [Br ArBr ... A

nf−d
r Br ]

[
Ñ12

Ñ22

]
.577

Define R̃s := im W̃ . Then, clearly R̃s ⊆ Rs and dim (R̃s) = nf − d. Next, we show578

that R̃s satisfies all the required properties.579

1. Applying equation (5.2) in equation (5.1) we get that580

Rs = imBr ⊕ imArW̃ = imBr ⊕ArR̃s.(5.3)581

Hence, ArR̃s ⊆ Rs, dim (ArR̃s) = nf − d, and Rs = imBr ⊕ArR̃s.582

2. This property trivially follows. □583

Justification of Remark 3.12: Recall from Lemma 4.2 and Theorem 4.3 that, corre-584

sponding to the initial condition x0 = Wβ, where β ∈ Rnf , the optimal state trajectory585

is given by xf = −[W1δ +W2δ
(1) + · · ·+Wnf−dδ

(nf−d−1)]β. Next, using Lemma 3.10586

along with equation (4.1) and equation (5.3), it follows that Wiβ = 0 ⇒ Wi+1β = 0587

(note that, columns of W̃ form a basis for imW1 and ArW̃ is full column-rank).588

Hence, if δ(i) does nor appear in the optimal state trajectory, then δ(i+1), too, cannot589

appear in the same.590

From Theorem 4.3 and equation (2.4), it follows that, corresponding to an initial591

condition x0 = Wβ, where β ∈ Rnf , the optimal output trajectory of the primal is592

given by y∗(t) = Crxf −D2R̂
−1BT

2 Kmaxxf . Then, Lemma 3.11 together with Lemma593

3.6 implies that y∗(t) ≡ 0. □594

595
Remark 5.2. Recall from Theorem 4.3 that col(x∗, u∗

1, u
∗
2) is the optimal tra-596

jectory for an arbitrary initial condition x0. Further recall that u∗
2 = us2 + uf2 =597

−R̂−1(ST
2 + BT

2 Kmax)(xs + xf ) = −R̂−1(ST
2 + BT

2 Kmax)x
∗. Thus, the second compo-598

nent of the optimal input, i.e., u∗
2, is already given in state-feedback form. Therefore,599

it remains to show that the first component, i.e., u∗
1, admits a formulation in terms600

of a PD state-feedback. To design this feedback, we need the following assumption.601

Assumption 5.3. Zero eigenvalues of (Ar − LKmax), if any, are controllable for602

the pair (Ar − LKmax, Br), where Ar, L, and Br are as defined in equation (2.8).3603

Remark 5.4. Recall the matrix W̃ = [Br ArBr ... Anf−d−1
r Br ] Ñ from equation604

(5.2). It can be understood from the proof of Lemma 5.1 that the columns of the605

matrix Ñ ∈ Rd(nf−d)×(nf−d) form a basis for kerMt, where Mt is obtained by remov-606

ing the first d columns and first p rows from M, that is, M =
[

0p,d 0p,d(nf−d)

0p(nf−d),d Mt

]
. It607

also follows that there exists We ∈ Rn×d such that columns of the matrix [ W̃ We ] form608

a basis for the fast space Rs of the primal. Furthermore, the columns of the matrix609

[Br ArW̃ ], too, form a basis for Rs. Therefore, from Statement 1 of Theorem 3.3, it610

is evident that X1 := [ V1Λ W̃ We ] and X2 := [ V1Λ Br ArW̃ ] are non-singular. □611

We now prove the titular main result of this paper, which provides a PD feedback612

controller that solves the singular LQR problem.613

3It should be noted here that Assumption 5.3 is not restrictive because of the following reasons:
in the statement of Problem 2.6 we have assumed that the system d

dt
x = Ax + B1u1 + B2u2 is

stabilizable. The feedback u2 = −R̂−1(ST
2 + BT

2 Kmax)x makes sure that ns number of eigenvalues
of A are stabilized (see Lemma 3.1 and Lemma 4.1). With this feedback the closed-loop system

becomes d
dt
x = (Ar − LKmax)x + B1u1. Assumption 5.3 does not require existence of a feedback

u1 = Fx such that the other nf = n − ns eigenvalues are stabilized. It just requires existence of an
F such that if there are any zero eigenvalues in the remaining nf number of eigenvalues, then those
eigenvalues can be made non-zero via a suitable feedback. Thus, the assumption holds generically.
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Theorem 5.5. Let Assumption 5.3 hold. Recall the matrices X1 := [ V1Λ W̃ We ]614

and X2 := [ V1Λ Br ArW̃ ] from Remark 5.4. Then the following are true:615

1. There exist g0 ∈ Rd×(nf−d) and g1 ∈ Rd×d such that (Ar − LKmax + BrFp) is616

non-singular, where L is as defined in equation (2.8) and Fp :=[ V3Λ g0 g1 ]X−1
1 .617

2. Define Fd := [ 0 Id −g0 ]X−1
2 and Freg := −R̂−1(ST

2 + BT
2 Kmax). Then, the618

feedback laws u1 = Fpx + Fd
d
dtx and u2 = Fregx solve the singular LQR619

Problem 2.6.620

Proof. 1. We first do a similarity transformation on the matrices (Ar − LKmax)621

and Br by the matrix X2. From the definition of X2, it is easy to verify that622

Bt := X−1
2 Br =

[
0ns,d

B̃

]
, where B̃ :=

[
Id

0(nf−d),d

]
.(5.4)623

Again, At := X−1
2 (Ar − LKmax)X2 = X−1

2 (Ar − LKmax) [ V1Λ Ŵ ], where Ŵ :=624

[Br ArW̃ ]. Now, using equation (3.1) and equation (5.4), we deduce that625

(Ar − LKmax)V1Λ = ArV1Λ − LV2Λ = V1ΛΓ−BrV3Λ = X2

[
Γ

A21

]
,(5.5)626

where A21 := −B̃V3Λ =
[

−V3Λ
0(nf−d),ns

]
.627

Also, using Lemma 3.6 and non-singularity of X2, we have628

(Ar − LKmax)Ŵ = ArŴ =: X2

[
A12
A22

]
, for some A12 ∈ Rns×nf , A22 ∈ Rnf×nf .(5.6)629

Combining equation (5.5) and equation (5.6), we infer that630

At = X−1
2 (Ar − LKmax)X2 =

[
Γ A12

A21 A22

]
.(5.7)631

We claim that the pair (A22, B̃) is such that the zero eigenvalues of A22, if any, are632

controllable. We prove this claim by contradiction. So, to the contrary, we assume that633
the claim is false. Thus, by the Popov-Belevitch-Hautus criterion for controllability,634

there exists v ∈ Rnf \ {0} such that635

vTA22 = 0 and vT B̃ = 0.(5.8)636

Due to the structure of B̃ (see equation (5.4)), we must have v =
[
0d,1
v2

]
for some637

v2 ∈ R(nf−d)\{0}. Further, non-singularity ofX2 ensures that there exists w ∈ Rn\{0}638

such that wTX2 = [ 01,ns vT ] = [ 01,(ns+d) vT
2 ]. Therefore, from equation (5.7), we have639

wT (Ar − LKmax)=wTX2AtX
−1
2 =[ 01,ns vT ]

[
Γ A12

A21 A22

]
X−1

2 =[ vTA21 vTA22 ]X
−1
2 .640

641

But, vTA21 = [ 01,d vT
2 ]

[
−V3Λ

0(nf−d),ns

]
= 0. Hence, using equation (5.8), we further have642

wT (Ar − LKmax) = 0. Also, wTBr = wTX2Bt = [ 01,ns vT ]
[
0ns,d

B̃

]
= vT B̃ = 0. This643

contradicts Assumption 5.3. Hence, the claim that the zero eigenvalues of A22, if any,644

are controllable by B̃ must be true. This proves the claim.645

In view of this claim, it is evident that there exists ḡ ∈ Rd×nf such that (A22 + B̃ḡ) is646

non-singular. Next, define Fp := [ V3Λ ḡ ]X−1
2 . Then, Ar − LKmax + BrFp = X2(At +647

Bt [ V3Λ ḡ ])X−1
2 , where Bt and At are as defined in equation (5.4) and equation (5.7),648

respectively. Now,649

At +Bt [ V3Λ ḡ ] =
[

Γ A12
A21 A22

]
+

[
0ns,ns 0ns,nf
B̃V3Λ B̃ḡ

]
=

[
Γ A12

A21+B̃V3Λ A22+B̃ḡ

]
.650

But, from equation (5.4) and equation (5.5), it is clear that A21+B̃V3Λ=
[

−V3Λ
0(nf−d),ns

]
+651 [

V3Λ
0(nf−d),ns

]
= 0. Therefore, At + Bt [ V3Λ ḡ ] =

[
Γ A12

0 A22+B̃ḡ

]
. Since Γ is Hurwitz and652
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(A22+ B̃ḡ) is non-singular, we must have that (At+Bt [ V3Λ ḡ ]) is non-singular; which653

further implies that (Ar − LKmax +BrFp) is non-singular.654

Since im [Br ArW̃ ] = im [ W̃ We ], it follows from the structures of X2 and X1 that655

there exists a non-singular matrix T ∈ Rnf×nf such that X2 = X1

[
Ins 0

0 T−1

]
. Say,656

g0 ∈ Rd×(nf−d) and g1 ∈ Rd×d is defined as
[
g0 g1

]
:= ḡT. Thus, Fp = [ V3Λ ḡ ]X−1

2 =657

[ V3Λ ḡ ]
[
Ins 0
0 T

]
X−1

1 = [ V3Λ ḡT ]X−1
1 = [ V3Λ g0 g1 ]X−1

1 . But, we have already proved658

that (Ar − LKmax + BrFp) is non-singular. Hence, there exist g0 ∈ Rd×(nf−d) and659

g1 ∈ Rd×d such that (Ar−LKmax+BrFp) is non-singular, where Fp = [ V3Λ g0 g1 ]X−1
1 .660

661
2. Recall from Theorem 4.3 that for an arbitrary initial condition x0, the optimal
trajectory of the primal Σ is given by col(x∗, u∗

1, u
∗
2). Our aim is to show that the

feedback laws defined in this theorem restrict the system to exhibit the optimal tra-
jectories only. So, we first show that the optimal trajectories satisfy the system’s
equation under the proposed feedback laws and then we show that, for a given initial
condition, the optimal trajectory is the only trajectory that the system admits.
We show that the given feedback laws admit the optimal trajectory in three steps:
first, we show that the trajectory col(xs, us1 , us2) (defined in Lemma 4.1) correspond-
ing to the initial condition V1Λα is an allowable trajectory by the feedback law. Then,
we show that the trajectory col(xf , uf1 , uf2) (defined in Lemma 4.2) corresponding
to the initial condition Wβ is an allowable trajectory, too. Finally, we show that the
optimal trajectory col(x∗, u∗

1, u
∗
2) is an allowable trajectory.

Recall that xs = V1Λe
Γtα, us1 = V3Λe

Γtα, and us2 = −R̂−1(ST
2 +BT

2 Kmax)xs. So,

Fpxs + Fd
d

dt
xs = (FpV1Λ + FdV1ΛΓ)e

Γtα.

But, from the definition of Fp and Fd, FpV1Λ = V3Λ and FdV1Λ = 0. Thus,

Fpxs + Fd
d

dt
xs = V3Λe

Γtα = us1 .

Therefore, from Statement 2 of Lemma 4.1, we infer that

Axs +B1(Fpxs + Fd
d

dt
xs) +B2Fregxs = Axs +B1us1 +B2us2 =

d

dt
xs.

Hence, the feedback law allows the trajectory col(xs, us1 , us2).662

Recall that xf := −[W1δ+W2δ
(1)+· · ·+Wnf−dδ

(nf−d−1)]β, uf1 = − [ δId δ(1)Id ... δ(nf−d)Id ]Nβ,663

and uf2 := −R̂−1(ST
2 +BT

2 Kmax)xf , where N is as defined in equation (3.2). Also recall664

from equation (4.2) that d
dt
xf = Arxf +Bruf1 . Hence,665

Fpxf + Fd
d
dt
xf = −Fp

∑nf−d

i=1 Wiβδ
(i−1) − FdAr

∑nf−d

i=1 Wiβδ
(i−1) + FdBruf1 .666

= −
∑nf−d

i=1 (FpWi + FdArWi)βδ
(i−1) + uf1 (since FdBr = Id).(5.9)667

Partition N as N = col(N0, N1) with N0 ∈ Rd×nf and N1 ∈ Rd(nf−d)×nf . Recall from668

equation (3.2) and equation (5.1) that im
[
Id 0

0 Ñ

]
= kerM = imN = im

[
N0

N1

]
⇒669

imN1 = im Ñ . Hence, from Lemma 3.10 and Remark 5.4, we infer that imW1 = im W̃ .670

From Lemma 3.10 we further get that imWnf−d ⊆ imWnf−d−1 ⊆ · · · ⊆ imW1 = im W̃ .671

Therefore, for all i ∈ {1, 2, . . . , (nf − d)} there exists Ti ∈ R(nf−d)×nf such that Wi =672

W̃Ti. Thus, from equation (5.9) we further get that673

Fpxf+Fd
d

dt
xf =−

nf−d∑
i=1

(FpW̃+FdArW̃ )Tiβδ
(i−1)+uf1 =−

nf−d∑
i=1

(g0−g0)Tiβδ
(i−1)+uf1 =uf1 .674
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Therefore, from Statement 3 of Lemma 4.2, it is clear that

Axf +B1(Fpxf + Fd
d

dt
xf ) +B2Fregxf = Axf +B1uf1 +B2uf2 =

d

dt
(xf ).

Hence, the feedback laws admit the trajectory (xf , uf1 , uf2). Finally, since x
∗ = xs+675

xf , u
∗
1 = us1 +uf1 , and u∗

2 = us2 +uf2 , using linearity, we conclude that corresponding676

to an arbitrary initial condition x0 = [ V1Λ W ] [ αβ ], the optimal trajectory (x∗, u∗
1, u

∗
2)677

is an allowable trajectory by the feedback law.678
The only thing that remains to be shown is that given an arbitrary initial condition679
x0, the trajectory of the closed-loop system can be uniquely determined. It can be680
easily seen that the feedback laws mentioned in Statement 2 of this theorem results681
in the closed-loop system682

(In −BrFd)︸ ︷︷ ︸
ECL

d

dt
x(t) = (Ar − LKmax +BrFp)︸ ︷︷ ︸

ACL

x(t).(5.10)683

So, for a given initial condition, the trajectory of the closed-loop system is uniquely684

determined if and only if the matrix pencil (sECL−ACL) is regular [25]. In Statement685

1 of this theorem, we have already shown that ACL = (Ar − LKmax + BrFp) is non-686

singular. Note that, non-singularity of ACL ensures that det(sECL − ACL) ̸≡ 0 (see687

[25, Theorem 1.2.1]). Hence, the matrix pencil (sECL−ACL) is regular. Since, we have688

already showed that given an arbitrary initial condition x0, x
∗ satisfies the equation689

(5.10), we conclude that the closed-loop system admits the optimal trajectories only.690

Therefore, the feedback laws given in the Statement 2 of this theorem solve the singular691

LQR Problem 2.6.692

6. Regularity and internal stability of the closed-loop system. The op-693

timal PD feedback law provided in Theorem 5.5 results in the closed-loop system as694

given by equation (5.10). Note that, Assumption 5.3, which we have made in order695

to design the optimal PD feedback controller, does not necessitate that the partial696

closed-loop system (Ar − LKmax, Br) be stabilizable. Therefore, a natural question697

that arises is: does the optimal feedback law guarantee that the closed-loop system698

is internally stable? The answer is affirmative. To explain this, we first note that699

Assumption 5.3 is made in order to guarantee that there exists a feedback matrix Fp700

as defined in Theorem 5.5 such that ACL is non-singular. This enables us to write701

the following theorem.702

Theorem 6.1. The matrix pencil (sECL −ACL) as defined in equation (5.10) is703

a regular matrix pencil, that is, det(sECL −ACL) ̸≡ 0.704

Proof Recall from Statement 1 of Theorem 5.5 that ACL is non-singular. Hence,705

det(sECL −ACL) ̸≡ 0. □706

Since the matrix ECL is singular (because ECLBr = 0), the closed-loop system is707

a singular descriptor system. So, in order to show that the closed-loop system is708

internally stable, we need to consider the notion of stability for a singular descrip-709

tor system. The following proposition from [25, Theorem 3.1.1] characterizes such710

systems, which are asymptotically stable.711

Proposition 6.2. Consider the singular descriptor system as given in equation712

(5.10). Then, the system is asymptotically stable if and only if σ(ECL, ACL) ⊆ C−.713

Note that, from Proposition 6.2, it follows that the stability of the closed-loop system714

is not governed by the eigenvalues of ACL, but rather, by the eigenvalues of the matrix715

pair (ECL, ACL). We now show that the closed-loop system is asymptotically stable.716

Theorem 6.3. The closed-loop system as given in equation (5.10) is asymptoti-717

cally stable.718

Proof Recall from the definition of Fd that FdV1Λ = 0. Hence, ECLV1Λ = V1Λ. So, by719

equation (3.1) and the definition of Fp, it follows that ACLV1Λ = ECLV1ΛΓ. Therefore,720
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σ(Γ) ⊆ σ(ECL, ACL). We now show that σ(Γ) is, in fact, equal to σ(ECL, ACL); that721

is, all the slow modes of the closed-loop singular descriptor system are given by the722

eigenvalues of the matrix Γ. We show this indirectly by utilizing the general expression723

of an arbitrary trajectory of the closed-loop system.724

Recall from Theorem 6.1 that the matrix pencil (sECL − ACL) is regular. This725

further ensures that for an arbitrary initial condition x0 = [ V1Λ W ] [ αβ ], the trajectory726

of the closed-loop system is uniquely determined. This trajectory has been shown in727

Theorem 5.5 to be the optimal trajectory x∗(t) = V1Λe
Γtα − [W1δ +W2δ

(1) + · · · +728

Wnf−dδ
(nf−d−1)]β. Hence, σ(ECL, ACL) = σ(Γ) ⊆ C−. Consequently, the closed-loop729

system is asymptotically stable. Alternatively, since σ(Γ) ⊆ C−, we must have that730

lim
t→∞

x∗(t) = 0. Thus, the closed-loop system is asymptotically stable. □731

732

7. An illustrative example. Consider the system d
dtx(t) = Ax(t) +B1u1(t) +733

B2u2(t), where734

A =

[ 3 0 −2 2 0
1 −3 2 −1 5

−2 8 3 −1 −8
−5 3 2 −2 −4
1 −5 0 0 6

]
, B1 =

[ 1 0
0 1

−1 −1
−2 −1
0 1

]
, and B2 =

[−1 0
0 1
0 −2
1 −1

−1 2

]
.735

For an arbitrary initial condition x0 = col(x01, x02, x03, x04, x05), our objective is to736

find an optimal input u∗ = col(u∗
1, u

∗
2) that minimizes the functional (2.2), where737

Q =

[ 18 −4 0 9 13
−4 15 8 −6 −5
0 8 6 −3 1
9 −6 −3 6 6
13 −5 1 6 13

]
, S2 =

[−3 −6
9 2
3 2

−3 −4
−6 −2

]
, and R̂ = [ 9 0

0 4 ] .738

We also design a PD state-feedback for the optimal input.
Note that d = m−r= 4−2 = 2. We first compute the reduced Hamiltonian matrix pair

(Er, Hr) as Er =

[
I5 0 0
0 I5 0
0 0 02,2

]
and Hr =

[
Ar −L Br

−Qr −AT
r 0

0 BT
r 02,2

]
, where Ar := A−B2R̂

−1ST
2 ,

Qr := Q − S2R̂
−1ST

2 , L := B2R̂
−1BT

2 , and Br := B1. It can be found out that
det (sEr − Hr) = 64(s2 − 4

9 ). Therefore, 2ns = degdet (sEr − Hr) = 2 ⇒ ns = 1.

Also. σ(Er, Hr) ∩ C− = − 2
3 .

The good slow space of the Hamiltonian system: Solve HrVΛ = ErVΛΓ for

a VΛ ∈ R12×1, where Γ = − 2
3 . It can be verified that VΛ =

[
V1Λ

V2Λ

V3Λ

]
with V1Λ =[ 2

1
−2.8
−9
3

]
, V2Λ = −38.4

[
2
1
0
1
0

]
, and V3Λ =

[
0.4

− 217
15

]
satisfies the equation. Hence, the good

slow space of the Hamiltonian is given by Owg = im
[
V1Λ

V2Λ

]
(see Lemma 3.1).

The fast space of the primal: Since rank

[
Q 0 S2

0 02,2 0

ST
2 0 R̂

]
= 4, we obtain the ma-

trices C ∈ R4×5 and D2 ∈ R4×2 such that

[
Q 0 S2

0 02,2 0

ST
2 0 R̂

]
=

[
CT

02,4

DT
2

]
[C 04,2 D2 ]. C =[−2 1 0 −1 −2

−2 −2 −2 0 −2
−1 3 1 −1 −2
−3 1 1 −2 −1

]
and D2 =

[
0 0
0 0
3 0
0 2

]
provides the desired factorization.

Now, by Lemma 3.2, the dimension of the fast space Rs of the primal is dimRs =
nf = n − ns = 5 − 1 = 4. By following Lemma 3.2, we compute a matrix N ∈ R6×4

which is full column-rank such that MN = 0, where M =

[
04,2 0 0
0 0 CrBr

0 CrBr CrArBr

]
and

Cr = C −D2R̂
−1ST

2 . Notice that N =

[
N0

N1

N2

]
with N0 = [ 1 0 0 0

0 1 0 0 ] , N1 = [ 0 0 1 0
0 0 0 0 ], and
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N2 = [ 0 0 0 1
0 0 0 0 ] gives the desire result. Compute the matrix W as

W = [Br ArBr A2
rBr ]

[
N0
N1
N2

]
=

[ 1 0 1 3
0 1 1 0

−1 −1 −3 −8
−2 −1 −3 −6
0 1 1 2

]
. Then, Rs = imW .

The maximal rank-minimizing solution Kmax of the singular LQR LMI: Fol-
lowing Theorem 3.3, we first compute the matrices X = [ V1Λ W ] and Y = [ V2Λ 05,4 ].

Then, Kmax = Y X−1 = 9.6

[
4 2 0 2 0
2 1 0 1 0
0 0 0 0 0
2 1 0 1 0
0 0 0 0 0

]
.

Optimal trajectories: We first compute α ∈ R1 and β ∈ R4 such that x0 =
[ V1Λ W ] [ αβ ] = X [ αβ ]. It can be verified that

α = −1

4
(2x01 + x02 + x04) and β =

[
β1

β2

β3

β4

]
=

1

4

[ 16.4x01+4.2x02+4x03+4.2x04+4x05
16.4x01+4.2x02+4x03+6.2x04+10x05

−14.4x01+0.8x02−4x03−5.2x04−10x05
2x01−x02+x04+2x05

]
.

Next, we compute W1 and W2 as defined in Lemma 3.10. They are found out to be

W1 = [Br ArBr ]
[
N1
N2

]
=

[ 0 0 1 1
0 0 0 1
0 0 −1 −3
0 0 −2 −3
0 0 0 1

]
and W2 = BrN2 =

[ 0 0 0 1
0 0 0 0
0 0 0 −1
0 0 0 −2
0 0 0 0

]
.

Then, by Theorem 4.3, the optimal state trajectory is given by

x∗(t) = V1Λe
Γtα−W1βδ −W2βδ

(1) =

[ 2
1

−2.8
−9
3

]
e−

2
3
tα−

 β3+β4
β4

−β3−3β4
−2β3−3β4

β4

 δ −

 β4
0

−β4
−2β4

0

 δ(1).

The optimal input is given by u∗(t) = col(u∗
1(t), u

∗
2(t)), where739

u∗
1(t)=V3Λe

Γtα−
[
δI2 δ(1)I2 δ(2)I2

]
Nβ=

[
0.4

− 217
15

]
e−

2
3
tα−

[
β1
β2

]
δ −

[
β3
0

]
δ(1)−

[
β4
0

]
δ(2),740

u∗
2(t) = −R̂−1(ST

2 +BT
2 Kmax)x

∗(t).741

PD feedback design: Notice that N =
[
I2 0

0 Ñ

]
, where Ñ =

[
1 0
0 0
0 1
0 0

]
. Then, we

find out matrices Ñ12 ∈ R4×2 and Ñ22 ∈ R2×2 such that im
[
Ñ Ñ12

0 Ñ22

]
= imN . We

find out these matrices to be Ñ12 =

[
0 0
1 0
0 0
0 0

]
and Ñ22 = [ 0 1

0 0 ]. Then, by following

Theorem 5.5 we first get the matrices W̃ = [Br ArBr ] Ñ ,We = [Br ArBr A2
rBr ]

[
Ñ12

Ñ22

]
,

X1 = [ V1Λ W̃ We ], and X2 = [ V1Λ Br ArW̃ ]. Now, we compute the matrices Fp =

[ V3Λ g0 g1 ]X−1
1 and Fd = [ 0 I2 −g0 ]X−1

2 with g0 = g1 = 02,2 to get

Fp =
[

−0.2 −0.1 0 −0.1 0
217
30

217
60 0 217

60 0

]
and Fd = [ 4.1 1.05 1 1.05 1

4.1 1.05 1 1.55 2.5 ] .

Freg = −R̂−1(ST
2 + BT

2 Kmax) =
[

37
15

1
15 − 1

3 1.4 2
3

1.5 −0.5 −0.5 1 0.5

]
. Then, the feedback law u1 =742

Fpx(t) + Fd
d
dtx(t), u2 = Fregx(t) solves the given singular LQR problem.743

The closed-loop system is given by ECL
d
dtx(t) = ACLx(t), where ECL = (I5 −BrFd)744

and ACL = (Ar − LKmax + BrFp). It can be verified that det(sECL − ACL) =745

− 71
12 (s+

2
3 ), that is, the matrix pencil (sECL −ACL) is regular.746

Simulation result: For the given singular LQR problem, we use the feedback law747

u1 = Fpx(t) + Fd
d
dtx(t), u2 = Fregx(t) to the primal. Then, for the initial condition748

x0 = [ 0 −1 1.2 −3 1 ]
T

the system exhibits the trajectory as shown in Figure 1. For749
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Fig. 1. The state trajectory under the optimal PD feedback law for the illustrative example

the given initial condition, the optimal trajectory is analytically found to be x∗(t) =750 [ 2
1

−2.8
−9
3

]
e−

2
3 t. The trajectory shown in the figure matches with this trajectory.751

8. Comparison with the existing results in the literature. In this section752

we compare our results with the ones presented in [4] and [5]. We show that the result753

presented in this paper overcomes the restrictions of the aforementioned works.754

8.1. Comparison with the result presented in [4]. In [4], the authors pro-755

vide a polynomial matrix based method to design a PD feedback controller that solves756

a given singular LQR problem. But, unfortunately, the result presented there has sev-757

eral shortcomings which we discuss next.758

• The most important shortcoming of [4] is that it cannot account for arbitrary initial759

conditions, which is not desirable; because the initial condition of a state space760

system should ideally be free. [4] considers only those initial conditions for which761

the optimal state does not contain any impulses, while the optimal input may762

contain δ, but never δ(1) or any higher derivatives. The authors call such initial763

conditions which does not satisfy this condition the inadmissible initial conditions.764

Using the results presented in our paper, it can be shown that such a condition is765

satisfied if and only if the initial condition belongs to the subspace im
[
V1Λ Br

]
.766

On the other hand, the result presented in this paper does not impose any restriction767

on the initial condition of the system.768

• The applicability of the result in [4] needs the system to be controllable. However,769

the result presented here needs only stabilizability of the system, which is a standard770

assumption in the literature.771

• Another assumption of [4] that we do not need in this paper is the observability of772

the pair (Q,A).773

8.2. Comparison with the result presented in [5]. The deflating subspace774

based method presented in [5] assumes that the states and the inputs of the system are775

from the space of locally square-integrable functions, that is, Lloc
2 . This assumption,776

in turn, imposes a restriction on the initial condition x0 of the system. This is due to777

the fact that for an arbitrary x0, the optimal trajectory of a singular LQR problem is778

distributional in nature, that is, it contains impulses and its derivatives [3]. Therefore,779
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the optimal trajectory does not belong to the space Lloc
2 . Even though the cost780

functional can be made arbitrarily close to the optimal cost, it will never achieve the781

optimal cost using an input from Lloc
2 . As has been shown in the illustrative example782

in Section 7 that corresponding to an arbitrary initial condition x0 = V1Λα + Wβ,783

both the optimal state x∗ and the optimal input u∗ = col(u∗
1, u

∗
2) are distributional784

in nature and hence do not belong to Lloc
2 . It can be easily verified that the optimal785

state and the optimal input belongs to Lloc
2 only if β = 0, that is, the initial condition786

is restricted to the subspace imV1Λ.787

The most important advantage of the result presented here is the implementability788

of the optimal input as a PD state-feedback over the implicit control law of the form789

Px+ Tu = 0 as presented in [5]. To demonstrate this, we use the same example that790

has been presented in Section 7. Following the method presented in [5], we evaluate791

Lt(K) defined in equation 2.3 at Kmax and then obtain a factorization of Lt(Kmax) as792

Lt(Kmax) =

[
ATKmax+KmaxA+Q KmaxB1 KmaxB2+S2

BT
1 Kmax 0 0

BT
2 Kmax+ST

2 0 R̂

]
=

[
PT

TT
1

TT
2

]
[ P T1 T2 ]793

with P ∈ R4×5 and T1, T2 ∈ R4×2. It can be verified that794

P =

 −9.732429 −1.4724515 0.059265 −4.895847 −3.3048654
−0.2425838 −3.5039419 −2.4053162 1.0813662 −0.2253242
0.1039512 −0.4134482 0.2850169 −0.0905329 0.8929492

−0.1008634 −0.6191429 0.3601488 −0.2305061 1.1089344

 ,795

T1 =

0 0
0 0
0 0
0 0

 , and T2 =

 2.323045 0.6121941
−0.9972075 −0.8357937
1.6152251 −1.4021297
0.0093261 0.9801527

796

achieve the desired factorization. Therefore, the control law proposed in [5] is given by797

Px+T1u1+T2u2 = 0, that is, Px+T2u2 = 0. Note that, the optimal trajectory that798

has been evaluated in the illustrated example also satisfies this control law. However,799

this control law, unfortunately, cannot be implemented as a feedback law, because the800

law does not provide any information about the input u1. On the other hand, using801

the method presented in this paper, we have provided a PD feedback controller that802

solves the singular LQR problem given in Section 7. A feedback controller is always803

advantageous from an engineering point of view, which is bolstered by [6].804

9. Conclusion. In this paper, we first presented a method to compute the max-805

imal rank-minimizing solution of the LMI arising from a singular LQR problem (The-806

orem 3.3). We have developed this method using the notions of slow space (weakly807

unobservable subspace) of the Hamiltonian system and the fast space (strongly reach-808

able subspace) of the primal. We have shown that augmenting the basis of the good809

slow space of the Hamiltonian system ΣHam with the basis of the fast space of the pri-810

mal Σ is the crucial idea that leads to the method. Using the maximal rank-minimizing811

solution, we computed the optimal trajectories for the singular LQR problem. Finally,812

we provided a feedback law of the form u = Fpx + Fd
d
dtx, i.e., a PD feedback that813

solves the singular LQR problem. This work makes use of the ideas introduced in [3],814

[16], [17] that used impulsive-smooth distributions as the function-space for the states815

and inputs. Such a setting seems particularly advantageous for differential-algebraic816

systems, since such systems inherently admit impulsive states. Hence, the approach817

adapted in this paper to solve singular LQR problems for state-space systems have818

the potential of being generalized to differential-algebraic systems as well. This will819

be a matter of our future research.820
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