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Abstract
A discrete multidimensional system is the set of solutions to a system of linear partial
difference equations defined on the lattice Z

n . This paper shows that it is determined
by a unique coarsest sublattice, in the sense that the solutions of the system on this
sublattice determine the solutions onZ

n ; it is therefore the correct domain of definition
of the discrete system. In turn, the defining sublattice is determined by a Galois group
of symmetries that leave invariant the equations defining the system. These results
find application in understanding properties of the system such as controllability and
autonomy, and in its order reduction.

Keywords Partial difference equations · Autonomy · Controllability · Sublattice of
Z
n · Symmetry group · Order reduction

1 Introduction

In this paper we study the process of contracting the trajectories of a discrete mul-
tidimensional system—in short, an n-D system—on the lattice Z

n to a sublattice S,
the reverse process of extending the trajectories of a system on S to the entire lattice,
as well as the composite process of contraction followed by extension. Of special
interest are systems which are invariant under this cycle of contraction and extension.
Contracting such an invariant system to S is analogous to the process of restricting
the solutions of a partial differential equation to an invariant subset, or the flow of a
vector field to an invariant manifold. Furthermore, being an extension, its trajectories
on Z

n are constructed from those on S without the imposition of any further laws,
or restrictions. The study of the properties of the extended system is thus reduced to
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its study on the sublattice S; its domain of definition should be considered to be S

rather than Z
n . We show that an n-D system is defined by its trajectories on a unique

coarsest sublattice, which then should be considered its correct domain of definition.
Furthermore, we show that this sublattice is characterized by a group of symmetries
that leave invariant the equations defining the system.

We now expand on the above points. An n-D system is a collection of trajectories,
i.e. functions on Z

n , each one of which obeys the laws of the system (the next section
contains precise definitions). A law is a difference equation, an element in the Laurent
polynomial ring A = C[σ1, σ−1

1 , . . . , σn, σ
−1
n ]of difference operators onZ

n , whereσi
denotes shift in the i th direction. Such a law relates the value of a function at a point of
Z
n to its values at other points ofZn , andonly those functions that satisfy the lawqualify

to be trajectories. For example, the law 1+ σ − σ 2 describes a 1-D system on Z, each
of whose trajectories f satisfies the equation f (x)+ f (x +1)− f (x +2) = 0. When
the trajectory is defined by some k attributes of the system, then a law is an element
of Ak . For instance, the law (1+σ −σ 2, σ ) on Z relates the attributes ( f1, f2) of the
system that it defines by the equation f1(x)+ f1(x +1)− f1(x +2)+ f2(x +1) = 0.
For this reason, we use the term solution interchangeably with trajectory.

In these terms, the phenomenonwe investigate in this paper can be stated as follows:
it might be that the value of a trajectory at some point is related to its values at points
only in some subset of the lattice. Specifically, let S be a sublattice of Z

n as above, and
suppose that the value of a trajectory at a point is related only to its values at other points
in the coset of S in Z

n that it belongs to. For instance, consider the system defined by
1+σ 2 −σ 4 on Z. Then, a trajectory f satisfies f (x)+ f (x +2)− f (x +4) = 0, and
the value of f at a point ofZ depends only on its values at points in the coset of 2Z inZ

that it lies in.What can we say about such a system?How is its behaviour onZ
n related

to its behaviour on S? How do we detect the presence of such sublattices? In this paper
we provide answers through an analysis of the symmetries of the system. Thus, let AS

be the ring of difference operators on S. If S is a sublattice of full rank, then the group
G of automorphisms of A which leave AS fixed is a finite group, and a system can be
reconstructed from its contraction to S if and only if the equations defining the system
are left invariant by G. We also study the case of degenerate sublattices by reducing
it to the full rank case. These answers provide a complete solution to our problem,
which also highlights the fundamental role of symmetries in the study of n-D systems.

The complexity of a dataset is usually defined to be the minimum possible order of
a system that generates it. For 1-D systems, Willems formalizes it by defining a notion
of ‘memory’ of the system [18], but the multidimensional version is more involved
[7, 11, 12]. The results of our paper suggest an alternative, namely the coarser the
sublattice from which a system can be reconstructed, the lower is its complexity. In
the example above, the system 1 + σ 2 − σ 4 is defined by a fourth order operator, but
on 2Z, it is defined by 1+ τ − τ 2, where τ is the shift operator on 2Z. As the system
can be reconstructed from 2Z without the imposition of any further laws, the true
measure of its complexity should be determined by its behaviour on the sublattice.
Thus, our article presents a novel notion of order reduction for n-D systems. This has
immediate implications for computational solutions to partial difference equations
using computer algebra packages that implement Gröbner bases algorithms as in [23].
A detailed study of these implications will be pursued elsewhere.
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We start our paper by studying separately each of the two processes of contraction
and extension, independent of any requirement of invariance. Contracting the trajec-
tories of any n-D system to a sublattice yields a system on the sublattice, and there
are usually many systems on Z

n that contract to a given system on the sublattice.
The invariant system of the above paragraphs is one of this set, its unique maximal
element, but the others are important as well. The group G permutes these systems,
and the invariant one is the unique fixed point of this action. Similarly, the process of
extension is important in its own right and is the algebraic analogue of a fractional
partial differential equation. For example, the extension from the sublattice 2Z to Z is
equivalent to adjoining the square roots of the shift operator.

The paper is organized as follows. We first consider the case of diagonal sublattices
of Z

n , namely sublattices of the type {(x1, . . . , xn) | xi = 0,±di ,±2di , . . .}. This is
because all our calculations are then straightforward and transparent. Besides, a lot
of studies in the subject, including definitions such as ‘degree of autonomy’, confine
themselves to diagonal sublattices [9, 21]. We set up notation in Sect. 2; in Sect. 3 we
introduce the notions of contraction and extension. In Sect. 4, we use the isomorphism
provided by the Smith Canonical Form to move a general sublattice to a diagonal one,
and to carry over all the results for diagonal sublattices to the general case. Indeed, by
our isomorphism trick we are able to extend the definition of the degree of autonomy
of an n-D system to include nondiagonal sublattices as well. We reduce the problem
of the paper to a study of symmetries in Sect. 5. Sect. 6 is the core of the paper, and
we prove the main result on the existence and uniqueness of the coarsest lattice of
definition of an n-D system.

Finally, in Sect. 7 we show the usefulness of the results of preceding sections by
applying them to a study of the classical system theoretic properties of controllability
and autonomy. This application serves to illustrate the main point of the paper, namely
that the reduction of an n-D system from Z

n to a sublattice is a reduction in its
complexity.

We illustrate our results with a series of examples. Some of the phenomena we
describe occur in the case of 1-Dsystems, andwechoose1-Dexamples to explain them.
Other phenomena occur only in several dimensions, and we choose 2-D examples
here, for our intention is to explain them in the simplest, and the most transparent,
case possible.

2 Diagonal sublattices of Z
n

We begin our development by first considering the lattice Z
n = {(x1, . . . xn) | xi ∈

Z,∀i} of all points inR
n with integral coordinates.We denote it byL. For i = 1, . . . , n,

let σi : L → L map x = (x1, . . . , xi , . . . , xn) to (x1, . . . , xi + 1, . . . , xn); it is the

shift operator in the i th direction. A monomial σ x ′ = σ
x ′
1

1 . . . σ
x ′
n

n , x ′
i ∈ Z for all i ,

maps points of L by composition; thus σ x ′
(x) = (x1 + x ′

1, . . . , xn + x ′
n).

Let F be any field. Let A = F[σ1, σ−1
1 , . . . , σn, σ

−1
n ] be the Laurent polynomial

ring generated by these shifts, and their inverses. A is an F-algebra, and it is the ring
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of partial difference operators on L. If a ∈ A equals
∑r

j=1 c jσ
z j , where c j �= 0 and

σ z j is a monomial in A, then its support is defined to be supp(a) = {z1, . . . , zr } ⊂ L.
Let FL denote the set FZ

n
of all F-valued functions on L. The operator σi induces

an action on FL by mapping f ∈ FL to σi f , where σi f (x) = f (σi (x)). A monomial
in A acts by composition, and this action extends to an action of A on FL and gives
it the structure of an A-module. The attributes of systems we study take values in FL,
and we call it the space of signals defined on L.

A linear n-D system, by definition, is the kernel of a partial difference operator.
Thus, if P(σ, σ−1) is an �× k matrix whose entries pi j are in A, then it defines a map

P(σ, σ−1) : Fk
L

−→ F�
L

f = ( f1, . . . , fk) �→ (p1 f , . . . , p� f ),

where the i th row pi = (pi1, . . . , pik) of P(σ, σ−1) acts on f by pi f = ∑k
j=1 pi j f j ,

i = 1, . . . , �. The n-D system we study is the kernel KerFL
(P(σ, σ−1)) of this oper-

ator. It, however, depends on the A-submodule P of Ak generated by the rows of the
matrix P(σ, σ−1), and not on the matrix itself. Indeed, the above kernel is isomorphic
to HomA(Ak/P, FL), the isomorphism given by the map

KerFL
(P(σ, σ−1)) −→ HomA(Ak/P, FL)

f = ( f1, . . . , fk) �→ φ f ,

where φ f ([ei ]) = fi , 1 ≤ i ≤ k, and where [e1], . . . , [ek] denote the images of the
standard basis e1, . . . , ek of Ak in Ak/P .

Hence, we denote this kernel by KerFL
(P); it is the system defined by P in the

signal spaceFL. An element f ∈ KerFL
(P) is a trajectory of the system. If the rows of

P(σ, σ−1) are considered to be the laws that govern the system, then a trajectory of the
system is a signal that satisfies these laws, namely P(σ, σ−1) f = 0.This interpretation
is foundational in Willems [19]. Clearly, if P is contained in an A-submodule P ′ of
Ak , then KerFL

(P ′) ⊂ KerFL
(P).

Remark 2.1 Wenowgive another description of the system KerFL
(P). If themonomial

σ
x1
1 . . . σ

xn
n in A is identified with (x1, . . . , xn) in L, then the F-algebra A can be

identifiedwith the F-vector space spanned independently by the points ofL. The signal
space FL is then isomorphic to the vector space dual of A, namely HomF (A, F).
Given elements φ ∈ HomF (A, F) and a ∈ A, define aφ ∈ HomF (A, F) by
aφ(a′) = φ(aa′). This gives HomF (A, F) the structure of an A-module, and the
above F-isomorphism is an isomorphism of A-modules. Similarly, HomF (Ak/P, F)

is an A-module, and it follows that

HomA(Ak/P, HomF (A, F)) 
 HomF (Ak/P ⊗A A, F) 
 HomF (Ak/P, F)

by tensor-hom adjunction. The system KerFL
(P) is thus isomorphic to

HomF (Ak/P, F) as A-modules.
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Remark 2.2 As the functor HomF (−, F) is exact, so is the functor HomA(−, FL) on
the category of A-modules. This implies thatFL is an injective A-module. Furthermore
HomA(M, FL) �= 0, if M �= 0, and thus FL is an injective cogenerator.

The injective cogenerator property implies that the assignment P → KerFL
(P)

is an inclusion reversing bijective correspondence between A-submodules of Ak and
n-D systems in Fk

L
, see for instance [10, 13, 16, 22] (references [13, 16] deals with

systems defined by partial differential equations, but the results that we need here for
multidimensional systems are idential in the two cases).

A sublattice is a Z-submodule (i.e subgroup) of L. If sublattices S and S
′ satisfy

S ⊂ S
′, thenwe say that S is coarser than S

′. Given d = (d1, . . . , dn) ∈ Z
n with di ≥ 0

for all i , define Ld to be the sublattice {(x1, . . . , xn) | xi = 0,±di ,±2di , . . . ,∀i}.
We call Ld a diagonal sublattice of L. In this section, as well as in the next Sect. 3, we
consider only diagonal sublattices. This is no loss of generality, because we show in
Sect. 4 that we can reduce the study of systems on general sublattices to the diagonal
case via an isomorphism of Z

n .
Henceforth we denote the set of nonnegative integers by N+. We denote the set of

those d in N
n+ with exactly m nonzero entries by N

n
m (Nn

n is denoted as usual by N
n).

When d is in N
n
m , Ld is a free Z-module of rank m. When d is in N

n , we say that the
sublattice Ld is of full rank; otherwise, we call it degenerate.

The ring of difference operators on the sublattice Ld is the F-subalgebra Ad =
F[σ d1

1 , σ
−d1
1 , . . . , σ

dn
n , σ

−dn
n ] of A generated by monomials corresponding to the

points of Ld . Such a subalgebra contains multiplicative inverses of all the nonzero
monomials in it, and we call it a Laurent subalgebra of A. The support of an element
in Ad is clearly contained in the sublattice Ld . The set of F-valued functions on the
sublattice Ld is denoted FLd . The ring Ad acts on it by shift, and gives it the structure
of an Ad -module, with respect to which it is an injective cogenerator.

The F-algebra A is a free Ad -module. It is finitely generated if and only if d is
in N

n , and then its rank, denoted by ρ, is equal to the product d1 . . . dn . The set
Bd = {σ x1

1 . . . σ
xn
n | 0 ≤ xi ≤ di − 1,∀i} is a basis for A as an Ad -module. The ring

A is then an integral extension of Ad .
If d ∈ N

n
m , and if I = {i1, . . . , im} is the set of indices corresponding to the nonzero

entries of d, then Ad 
 F[σ di1
i1

, σ
−di1
i1

, . . . , σ
dim
im

, σ
−dim
im

]. A free basis for A as an Ad

module is now Bd = {σ x1
1 . . . σ

xn
n | 0 ≤ xi ≤ di − 1, i ∈ I ; xi ∈ Z, i /∈ I }.

The inclusion i : Ad ↪→ A of F-algebras is an Ad -linear map and injects Ad into A
as a direct summand (corresponding to the element 1 in Bd ). Applying HomF (−, F)

to i gives a map π : FL → FLd , which is a surjection. It restricts a function on the
latticeL to the sublatticeLd . This restriction commutes with the action of Ad . In other
words, FL is an Ad -module by restriction of scalars, and π is an Ad -module map.

Similarly, applying HomF (−, F) to the surjection A → Ad , gives the inclusion
FLd ↪→ FL. It maps a function f on the sublattice Ld , to the function on the lattice
L given by f on the sublattice, and 0 on its non-trivial translates. It is an Ad -module
map.

The aforementioned Ad -module structure of FL is simple to describe.

123



410 Mathematics of Control, Signals, and Systems (2022) 34:405–433

Lemma 2.1 Let d ∈ N
n+. Then the signal space FL is isomorphic, as an Ad-module,

to the direct product
∏

σ x∈Bd FLd (number of factors equal to the cardinality of Bd).
Thus, if d ∈ N

n, i.e. if Ld is a full rank sublattice, then FL 
 (FLd )
ρ .

Proof The lattice L is the disjoint union of the translates {σ x (Ld)| σ x ∈ Bd}. A shift
definedby amonomial in the subring Ad , leaves eachof these translates invariant. Thus,
the set of F-valued functions on any of these translates is an Ad -module, isomorphic
to FLd . The isomorphism of the statement is now given by restricting an element
in FL to each of these translates of Ld . In other words, FL 
 HomF (A, F) 

HomF (

⊕
σ x∈Bd Ad , F) 
 ∏

σ x∈Bd FLd , as Ad -modules.
If d = (d1, . . . , dn) ∈ N

n , then the cardinality of Bd equals ρ = d1 . . . dn . �

3 Contraction and extension

In this section we introduce the notion of the contraction of an n-D system on L to a
diagonal sublattice, and of the extension of a system on a diagonal sublattice to L. In
Sect. 4, we generalize these notions to the case of general sublattices of L.

Let d be inN
n+, and i : Ak

d ↪→ Ak , be themap defined coordinate-wise by i : Ad ↪→
A of Sect. 2. Given an A-submodule P of Ak , its contraction to Ak

d is i
−1(P) = P∩Ak

d ,
and is denoted by Pc, or by Pc

d for emphasis. It is an Ad -submodule of Ak
d .

Definition 3.1 Let KerFL
(P) be the system defined on the lattice L by the submodule

P ⊂ Ak . Its contraction to the sublattice Ld is the system KerFLd
(Pc) defined by the

contraction Pc in Ak
d .

Proposition 3.1 The contracted system KerFLd
(Pc) is the restriction of the elements

of KerFL
(P) to the sublattice Ld .

Proof Consider the inclusion i : Ak
d/P

c ↪→ Ak/P of Ad -modules. The functor
HomF (−, F) is exact, hence π : HomF (Ak/P, F) → HomF (Ak

d/P
c, F) is a

surjection. The proposition now follows from Remark 2.1. �
Proposition 3.2 [3] Let d ∈ N

n, and let p ⊂ A be a prime ideal. Then pc ⊂ Ad is
maximal if and only p is maximal.

Every prime ideal q of Ad is of the form pc for some prime p in A. There is no
containment relation between the primes in A which contract to q.

Proof These are consequences of the ‘going-up’ theorem of Cohen–Seidenberg, appli-
cable here as the ring A is integral over Ad . �

We note that the Laurent polynomial ring A is the localization of the polynomial
ring F[σ1, . . . , σn] at the multiplicatively closed set S = {(σ1 . . . σn)

r |r ≥ 0} of
powers of the product σ1 . . . σn , and hence that the prime ideals of A are in bijective
correspondence with prime ideals of the polynomial ring that do not intersect S.

Remark 3.1 (i) Let d ∈ N
n so that A is integral over Ad , and let i ⊂ A be a nonzero

ideal. Let b be a nonzero element in it. Let br + ar−1br−1 + · · · + a0 = 0, ai ∈ Ad ,
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be an equation of integral dependence for b of smallest degree. As A is an integral
domain, it follows that a0 �= 0. Further, a0 ∈ Ad ∩ i = i c, and it follows that i c is not
the 0 ideal. Thus 0 is the only ideal of A that contracts to the 0 ideal of Ad .

(ii) The above is not true if d ∈ N
n
m . For instance the principal ideal (1 − σ1) in

C[σ1, σ−1
1 , σ2, σ

−1
2 ] contracts to the 0 ideal in C[σ2, σ−1

2 ].
(iii) As for k ≥ 2, consider the submodule generated by (1, σ ) in C[σ, σ−1]2. Its

contraction to C[σ 2, σ−2]2 equals 0. Thus a nonzero submodule could contract to the
0 submodule even when the sublattice is of full rank.

An immediate corollary is the following result on scalar systems.

Corollary 3.1 Let d ∈ N
n, and let i be an ideal of A. Then,

(i) the scalar system KerFL
(i) is a finite dimensional F-vector space if and only if the

contracted system KerFLd
(i c) is.

(ii) KerFL
(i) = FL if and only if KerFLd

(i c) = FLd .

Proof (i) As A is noetherian, the system KerFL
(i) defined by i is a finite dimensional

F-vector space if and only if the system KerFL
(
√
i) defined by its radical is, and this

is so if and only
√
i is an intersection of maximal ideals (for instance Corollary 3.9 in

[16]). Statement (i) now follows because
√
i c = (

√
i)c.

(ii) ByRemark 2.2,FL,FLd are injective cogenerators as A, Ad modules, respectively;
hence only the 0 ideal of A or Ad , defines the system which is all of FL or FLd . The
statement now follows from Remark 3.1 (i). �

We return to a systematic study of system theoretic properties of a general
KerFL

(P), and its contraction, in Sect. 7, where we need the following facts.

Lemma 3.1 If P is a p-primary submodule of Ak, then Pc is a pc-primary submodule
of Ak

d .

Proof Let q ∈ Ak
d\P (as P � Ak , it does not contain Ak

d ). Suppose a ∈ Ad is such
that aq ∈ Pc. As also q ∈ Ak\P , and as P is a primary submodule of Ak , there is an
integer r ≥ 1, such that ar Ak ⊂ P . Then, ar Ak ∩ Ak

d ⊂ P ∩ Ak
d = Pc, and thus Pc

is primary in Ak
d .

The above line also implies that
√
ann(Ak

d/P
c) ⊂ √

ann(Ak/P) ∩ Ad = pc. The

other inclusion being trivial, it follows that Pc is pc-primary in Ak
d . �

Recollect that a prime ideal p of a commutative ring R is an associated prime of
an R-module M if it is equal to the annihilator ann(x) of some x ∈ M ; the set of its
associated primes is denoted Ass(M).

Corollary 3.2 P, a submodule of Ak. If Ass(Ak/P) = {p1, . . . , pr }, then Ass(Ak
d/P

c)

⊂ {pc1, . . . , pcr }.
Proof If P = P1∩· · ·∩ Pr is an irredundant primary decompostion in Ak , where Pi is
the pi th primary component of P , then Pc

1 ∩ · · · ∩ Pc
r is a not necessarily irredundant

primary decomposition of Pc. �
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Corollary 3.3 (i) If Ak/P is torsion-free, then so is Ak
d/P

c.
(ii) Let d ∈ N

n. Then, if Ak/P is torsion, so is Ak
d/P

c.

Proof (i) To say that Ak/P is torsion-free is to say that P is 0-primary, and this implies
by the above lemma, that Pc is also 0-primary.

(ii) To say that Ak/P is torsion is to say that 0 is not in Ass(Ak/P). As d ∈ N
n , the

statement now follows from Remark 3.1 (i) and the above corollary. �
We now introduce the notion of extension. If Q is a submodule of Ak

d , let Q
e be the

A-submodule of Ak generated by Q. It is the extension of Q to Ak , and we describe it
explicitly. As A is a free Ad -module, tensoring the exact sequence 0 → Q → Ak

d →
Ak
d/Q → 0 of Ad -modules with A, yields the exact sequence 0 → A ⊗Ad Q →

Ak → A ⊗Ad Ak
d/Q → 0. Hence Qe 
 A ⊗Ad Q, and Ak/Qe 
 A ⊗Ad Ak

d/Q.

Definition 3.2 Let KerFLd
(Q) be the system defined on the sublattice Ld by the sub-

module Q ⊂ Ak
d . Its extension to the lattice L is the system KerFL

(Qe) defined by the
extension Qe in Ak .

The extended system admits an elementary description.

Proposition 3.3 Let d ∈ N
n+. The extension KerFL

(Qe) to the lattice L is isomorphic
to the product

∏
σ x∈Bd KerFLd

(Q).

Proof The extended system is HomA(Ak/Qe, FL), and in light of the above obser-
vation, is isomorphic to

HomA(A ⊗Ad Ak
d/Q, FL)


 HomAd (A
k
d/Q, HomA(A, FL)) 
 HomAd (A

k
d/Q, FL)

by tensor-hom adjunction. By Lemma 2.1, the Ad -module structure of FL is isomor-
phic to the product

∏
σ x∈Bd FLd , one copy for each of the translates of the sublatticeLd

in L. Hence, HomA(Ak/Qe, FL) is isomorphic to
∏

σ x∈Bd HomAd (A
k
d/Q, FLd ) 
∏

σ x∈Bd KerFLd
(Q). �

We illustrate the above proposition with an example that we return to in subsequent
sections.

Example 3.1 Let n = 1 and d ≥ 2; then Ld is the sublattice {0,±d,±2d, . . .} of
L = Z. The ring of difference operators on L (with complex coefficients) is A =
C[σ, σ−1], and on Ld is Ad = C[σ d , σ−d ]. The F-algebra A is a free Ad -module
of rank d, and Bd = {1, σ, . . . , σ d−1} is a basis. The lattice L is the union of the
sublattice Ld and its translates σ(Ld), . . . , σ

d−1(Ld).
Let i ⊂ Ad be the ideal generated by a = σ d−1. A function f ∈ FLd is a trajectory

of the system I = KerFLd
(i) on Ld if and only if (σ d − 1) f = 0. Thus I 
 C, the

space of constant functions on Ld .
The extension i e of i is the ideal generated by σ d −1 in A. It defines KerFL

(i e), the
extension of KerFLd

(i) to L, which by Proposition 3.3 is isomorphic to
∏

σ j∈Bd I 
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C
d . Thus, a trajectory of the extended system is a ‘piecewise constant’ functions onL,

namely an element ofFL which is constant on each translate σ z(Ld), z = 0, . . . , d−1.
We verify this by a direct calculation. Let σ d − 1 = (σ − ζ0) . . . (σ − ζd−1) be

the factorization of a in A, where ζ0(= 1), . . . , ζd−1 are the dth roots of unity in C.
As FL is an injective A-module, it follows that KerFL

(i e) = ∑d−1
i=0 KerFL

(σ − ζi )

(see for instance [16]). A trajectory fi in KerFL
(σ − ζi ) satisfies fi (x) = ζi fi (x − 1),

hence fi (x) = ζ x
i fi (0). As ζ d

i = 1 for each i , it follows that each fi is piecewise
constant, namely the constant fi (0) on the sublattice Ld , and the constant ζ

z
i fi (0) on

the translate σ z(Ld), z = 1, . . . d − 1. Thus a trajectory of KerFL
(i e), which is of

the general form f (x) = f0(0) + ζ x
1 f1(0) + · · · + ζ x

d−1 fd−1(0), is also piecewise
constant.

We now show that every piecewise constant function on L is a trajectory of
KerFL

(i e). Let c be the piecewise constant function which equals cz on the trans-
late σ z(Ld), z = 0, . . . , d − 1. We require a trajectory f which takes these values
cz . In other words, we require f (z) = f0(0) + ζ z

1 f1(0) + · · · + ζ z
d−1 fd−1(0) = cz ,

z = 0, . . . , d − 1, for appropriate choices of fi (0). We write this as

⎛

⎜
⎜
⎜
⎜
⎝

1 1 · · · 1
1 ζ1 · · · ζd−1
· · · · · ·
· · · · · ·
1 ζ d−1

1 · · · ζ d−1
d−1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

f0(0)
f1(0)

·
·

fd−1(0)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

c0
c1
·
·

cd−1

⎞

⎟
⎟
⎟
⎠

The d × d matrix above is invertible, and it is the Vandermonde matrix whose deter-
minant equals

∏
0≤i< j≤d−1(ζi − ζ j ). Hence we can indeed determine the (unique)

values of f0(0), . . . , fd−1(0) that result in the piecewise constant trajectory c.

Corresponding to Corollary 3.3 is the next lemma (which follows from Ak/Qe 

A ⊗Ad Ak

d/Q).

Lemma 3.2 (i) Ak
d/Q is torsion-free, or free of rank s, if and only if Ak/Qe is torsion-

free, or free of rank s, respectively.
(ii) Ak

d/Q is torsion if and only if Ak/Qe is torsion.

Next we study the processes of contraction and extension of a system in conjunction
with one another.

Lemma 3.3 Let d ∈ N
n+. Then,

(i) for a submodule P ⊂ Ak, Pce ⊂ P, and Pcec = Pc,
(ii) for a submodule Q ⊂ Ak

d , Q = Qec.

Proof (i) is straightforward. As for (ii), it is also straightforward that Q ⊂ Qec and
that Qe = Qece.

From the exact sequence 0 → Q → Qec → Qec/Q → 0, it follows that 0 →
A ⊗Ad Q → A ⊗Ad Qec → A ⊗Ad Qec/Q → 0 is also exact. This is just the exact
sequence 0 → Qe → Qece → A ⊗Ad Qec/Q → 0. As Qe = Qece, it follows that
A ⊗Ad Qec/Q = 0, and as A is free, it finally follows that Q = Qec. �

The following corollaries are now immediate.
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Corollary 3.4 Suppose that the submodule P ⊂ Ak is equal to the extension Qe of a
submodule Q ⊂ Ak

d . Then Q = Pc.

Corollary 3.5 In Lemma 3.3, Pce = P if and only if P is generated as an A-module
by elements in Ak

d .

Let Q be the system KerFLd
(Q) on the sublattice Ld , defined by the submodule

Q of Ak
d . Let QL denote the collection of systems on the lattice L which contract to

Q on Ld . As FL is an injective cogenerator, QL is in bijective, inclusion reversing,
correspondence with the collection C(Q) = {P ⊂ Ak | Pc = Q} of A-submodules of
Ak that contract to Q. By Lemma 3.3 (ii), Qec = Q, hence Qe ∈ C(Q). Moreover, if
P ∈ C(Q), then Qe = Pce ⊂ P , by Lemma 3.3 (i), and thus Qe is the unique minimal
element of C(Q). It follows that the system KerFL

(Qe) is the unique maximal element
in QL.

As the ring A is Noetherian, the collection C(Q) contains maximal elements, and
correspondingly QL contains minimal elements.

Example 3.2 Consider the system of Example 3.1. The ideal i ⊂ Ad is the principal
ideal generated by a = σ d − 1. The polynomial a is irreducible in Ad , hence i is a
maximal ideal. The system I = KerFLd

(i) on Ld is isomorphic to C, the space of
constant functions on Ld .

As σ d − 1 = (σ − ζ0) · · · (σ − ζd−1) is the factorization of a in A, where ζ0(=
1), . . . , ζd−1 are the dth roots of unity in C, the collection C(i) of ideals of A that
contract to i , are the ideals generated by various products of the d factors of a. Thus,
the cardinality of C(i) is 2d − 1. The systems defined by these ideals is the collection
of systems on L which contract to I on Ld .

The extension i e of i to A defines KerFL
(i e), the extension of the system I on L,

which by Example 3.1, is isomorphic to
∏

σ j∈Bd I 
 C
d , the space of ‘piecewise

constant’ function on L (namely an element of FL which is constant on each translate
σ z(Ld), z = 0, . . . , d − 1). This system is the unique maximal system on L which
contracts to the system I on Ld , as i e is the unique minimal element of C(i).

We next describe the minimal systems on L that contract to I on Ld ; these cor-
respond to maximal elements of C(i), namely the d maximal ideals of A generated
by the factors of a. Consider the factor σ − ζi , 0 ≤ i ≤ d − 1; it defines the system
KerFL

(σ −ζi ) onL. By Example 3.1, a trajectory fi in it satisfies fi (x) = ζ x
i fi (0), for

all x ∈ L. We may imagine this trajectory as follows: it is a constant on Ld , equal to
fi (0), and on the translate σ z(Ld) it equals the constant ζ

z
i fi (0). As the point moves

from 0 to d, the value fi (0) of fi at 0, ‘rotates’ till it is back to fi (0) at d.

Example 3.3 Let d ∈ N
n . By part (i) of Remark 3.1, 0 ⊂ A is the only ideal that

contracts to the 0 ideal of Ad , hence C(0) = {0}. Equivalently,FL is the only system on
the latticeL that contracts to the systemFLd onLd , viz. Corollary 3.1 (ii). Remark 3.1
(ii) and (iii) provide counter examples when the sublattice is degenerate, or when
k ≥ 2.

As for extensions, let d ∈ N+. Then Fk
Ld

is the only system on Ld that extends to

Fk
L
on L (as 0 is the only submodule of Ak

d that extends to 0 in Ak).
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We continue our study of C(Q) in Sects. 5 and 7 below. Now we state the principal
result of this section.

Theorem 3.1 Suppose that the system KerFL
(P), defined by the submodule P ⊂ Ak

on the lattice L, is an extension of a system on Ld . Then it can be reconstructed from
the contracted system KerFLd

(Pc) on Ld .

Proof If P ⊂ Ak is an extension of a submodule of Ak
d , then it is the extension of

the submodule Pc, by Corollary 3.4. Hence KerFL
(P) is isomorphic to the prod-

uct
∏

σ x∈Bd KerFLd
(Pc), by Proposition 3.3. Thus, KerFL

(P) is determined by the
contracted system KerFLd (Pc) on the coarser lattice Ld . �

4 Nondiagonal sublattices of Z
n

In this section we consider the case of a general sublattice S of L (i.e. not necessarily
diagonal). Thus, S is a free Z-module of rank less than or equal to n. If its rank is
m, then S is the image of a Z-linear map S : Z

m → Z
n . Let the ring of difference

operators on S be denoted AS . It is the Laurent subalgebra of A generated by the
monomials corresponding to points in S. Denote the F-valued functions on S by FS;
it is an injective AS-module, and also a cogenerator.

In this section we show that A is always a free AS module, for S an arbitrary
sublattice of L, and is finitely generated when S is of full rank. Indeed, we show that
there is a Z-module automorphism of L which carries the sublattice S to a diagonal
sublattice of L. This allows us to carry over all the results of the previous sections
established for diagonal sublattices to the general case.

Proposition 4.1 There is a Z-module automorphism φ : L → L which maps the
sublattice S to a diagonal sublattice of L of the same rank.

Proof Let the rank of S be m. Let S : Z
m → Z

n be a Z-linear map whose image is
S. Let S also denote the n × m matrix whose columns are the images of the standard
basis for Z

m . Then there exist unimodular matrices U of size n and V of size m, with
integer entries, and a diagonal n × m matrix D such that S = UDV , namely the
Smith Canonical Form of S. Let d1, . . . , dm be the diagonal entries of D, which we
can assume are all strictly positive, as the rank of S equals the rank of D. Let Ld be
the diagonal sublattice of L defined by d = (d1, . . . , dm).

Consider the automorphism φ : L → L, defined by φ(x) = U−1(x). An x ∈ L is
in S if and only if x = Sz for some z ∈ Z

m , hence φ(S) = {U−1Sz | z ∈ Z
m}, and

the latter set is equal to U−1SV−1V (Zm) = DV (Zm) ⊂ Ld .
Conversely,Ld = D(Zm) = U−1SV−1(Zm) ⊂ φ(S). This proves thatφ(S) = Ld .

�
Corollary 4.1 The automorphismφ ofL in the above proposition induces an F-algebra
automorphismφ∗ of Awhichmaps AS to Ad . Thus A is a free AS-module, and is finitely
generated exactly when S is a full rank sublattice.
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Proof Define φ∗ : A → A by mapping a monomial σ x to σφ(x), and extending it
linearly to a map of F-vector spaces.. It is also an algebra map because φ∗(σ xσ x ′

) =
φ∗(σ x+x ′

) = σφ(x+x ′) = σφ(x)+φ(x ′) = σφ(x)σ φ(x ′) = φ∗(σ x )φ∗(σ x ′
).

As φ maps points of S bijectively to points of Ld , it follows that the automorphism
φ∗ of A maps AS to Ad . As A is a free Ad -module, it follows that A is also a free
AS-module, and is finitely generated only when S is of full rank. �

Wenow extend themap φ∗ to amap on Ak , also denoted φ∗ : Ak → Ak , by defining
it coordinate-wise: φ∗(a1, . . . , ak) = (φ∗(a1), . . . , φ∗(ak)). This is an F-vector space
map, and is not an A-module map. Nonetheless, as φ∗ : A → A is an F-algebra
map, it follows that φ∗(a(a1, . . . , ak)) = φ∗(a)(φ∗(a1), . . . , φ∗(ak)). Thus, it follows
that if P is an A-submodule of Ak , its image φ∗(P) is also an A-submodule of Ak ,
and hence that Ak/P is isomorphic to Ak/φ∗(P) as F-vector spaces. By Remark 2.1,
KerFL

(P) 
 HomF (Ak/P, F) 
 HomF (Ak/φ∗(P), F) 
 KerFL
(φ∗(P)) as F-

vector spaces. Furthermore, it also follows that Ak/P is torsion-free, or torsion, if and
only if Ak/φ∗(P) is torsion free, or torsion, respectively; indeed, the torsion elements
of Ak/P correspond bijectively to the torsion elements of Ak/φ∗(P) under the above
isomorphism. This allows us to carry over all the results of the previous sections about
a diagonal sublattice, to the case of a general sublattice. For instance, corresponding
to Corollary 3.4, we now have the following statement.

Lemma 4.1 Suppose that the submodule P ⊂ Ak is equal to the extension Qe of a
submodule Q ⊂ AS. Then Q = Pc, the contraction of P to AS.

Similarly, we have the following propositions.

Proposition 4.2 Let P ⊂ Ak be an A-submodule, and Pc its contraction to Ak
S. The

contracted system KerFS
(Pc) is the restriction of the elements of KerFL

(P) to the
sublattice S.

Proposition 4.3 Let Qe denote the extension of the submodule Q of Ak
S to Ak. Then

the system KerFL
(Qe) on the lattice L is a direct product of the system KerFS

(Q) on
the sublattice S.

Proposition 4.4 The system KerFL
(P) is an extension of a system on the sublattice

S if and only if KerFL
(φ∗(P)) is an extension of a system on the diagonal sublattice

φ(S) = Ld .

Proof The submodule P ⊂ Ak is the extension of its contraction to Ak
S if and only if

φ∗(P) is the extension of its contraction to Ak
d . �

The analogues of Lemma 3.1, Corollary 3.3 and Lemma 3.2, with Ad replaced by
AS , also continue to hold, an observation we use in Sect. 7.

We illustrate the above ‘change of coordinates’ by an elementary example.

Example 4.1 Let S be the full rank sublattice of Z
2 generated by (2, 2) and (1,−3). It

is the image of the map S : Z
2 → Z

2, where S =
(
2 1
2 −3

)

.
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We have S =
(
1 0
−3 1

)(
1 0
0 8

) (
2 1
1 0

)

. The Z-module automorphism φ : Z
2 → Z

2

defined by the matrix
(
1 0
3 1

)

maps S to the diagonal sublattice spanned by (1, 0)

and(0, 8). The algebra automorphism φ∗ : A → A defined by φ, maps σ1 to σ1σ
3
2 ,

and σ2 to itself. It follows that φ∗ maps AS = F[σ 2
1 σ 2

2 , σ−2
1 σ−2

2 , σ1σ
−3
2 , σ−1

1 σ 3
2 ] to

Ad = F[σ1, σ−1
1 , σ 8

2 , σ−8
2 ], which is the ring of operators on the diagonal sublattice

Ld , where d = (1, 8).
Finally, we check that A is a free AS-module. A basis for A as an Ad -module is

Bd = {1, σ2, σ 2
2 , . . . , σ 7

2 }. Then φ−1∗ (Bd) = Bd is also a basis for A as an AS-module.

We make a final observation about nondiagonal full rank sublattices.

Remark 4.1 Let S be a nondiagonal full rank sublattice of L. Let S be an n× n integer
matrix whose columns are a basis for it. Let its determinant be δ. Then multiplying it
by its adjoint results in the diagonal matrix diag(δ). The diagonal sublattice defined
by the columns of diag(δ), and hence all coarser diagonal sublattices than it, are thus
contained in S.

5 A Galois criterion for extended systems

The purpose of this section is to provide conditions for a system onL to be an extension
of a system defined on a sublattice in terms of symmetries that it must then neces-
sarily possess. Towards this, we first calculate the group AutAd (A) of all F-algebra
automorphisms of A that fix the Laurent subalgebra Ad .

Let K = F(σ ) = F(σ1, . . . , σn) and Kd = F(σ d) = F(σ
d1
1 , . . . , σ

dn
n ), denote

the fields of fractions of A and Ad , respectively, where d = (d1, . . . , dn). We first
study the case when d ∈ N

n , that is when Ld is a diagonal sublattice of Z
n of full

rank, postponing the calculation in the general case to the end of the section. Thus, K
is now a finite extension of Kd , of degree ρ = d1 . . . dn . We also confine ourselves to
the case of separable extensions.

We denote the r th roots of unity in a ring R by μr (R).

Proposition 5.1 Let K and Kd be as above, where d ∈ N
n. Let F be either C, or an

algebraically closed field of characteristic p, with p relatively prime to d1, . . . , dn.
Then K is a finite Galois extension of Kd , whose Galois group is Gal(K/Kd) =
μd1(F) × · · · × μdn (F). The group AutAd (A) is isomorphic to Gal(K/Kd).

Proof The irreducible polynomial of σi over Kd is (Xdi − σ
di
i ), for each i . Hence,

as char(F) is relatively prime to di (or equals 0), K is separable over Kd . As F is
algebraically closed, K is also normal over Kd and is thus a finite Galois extension of
Kd .

Clearly, an automorphism of K which fixes every element of Kd , must map σi to
ζiσi , where ζi is a (not necessarily primitive) di th root of unity, for each i . Thus the
Galois group of the extension K/Kd is isomorphic to the group of the statement. It is
also clear that each element of Gal(K/Kd) gives by restriction an automorphism of A
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which fixes Ad pointwise, and hence an element of AutAd (A). Conversely, an element
of AutAd (A) extends to a unique field automorphism of K/Kd . Thus AutAd (A) 

Gal(K/Kd). �

Let G denote AutAd (A). It acts on Ak by g(a1, . . . , ak) = (g(a1), . . . , g(ak)). It is
an Ad -module automorphism of Ak that fixes Ak

d pointwise. Let P be an A-submodule
of Ak , then g(P) is also an A-submodule of Ak . Thus, G acts on the collection of all
A-submodules of Ak by mapping the submodule P to g(P).

We now provide a group theoretic criterion to determine when a system on L is the
extension of a system on a sublattice Ld of full rank. We assume henceforth that the
field F satisfies the conditions of Proposition 5.1.

Proposition 5.2 Let d ∈ N
n. Let P be an A-submodule of Ak, and Pc its contraction

to Ak
d . Then P = Pce if and only if P is G-invariant, i.e. g(P) = P for every g ∈ G.

We reduce the proof of this proposition to the following lemma.

Lemma 5.1 Let R be a (commutative) ring containing all the rth roots of unity, where
r ∈ N is a unit in R. Let T = R[x, x−1] be the Laurent polynomial ring (in one
indeterminate) with coefficients in R, and let Tr = R[xr , x−r ]. Let i be an ideal of T ,
and ic its contraction to the subring Tr . Then i is equal to the extension ice of ic to T
if g(i) = i , for all g ∈ AutTr (T ).

Proof As in the proof of Proposition 5.1, it follows that AutTr (T ) = μr (R). Indeed,
an automorphism of T which fixes Tr is given by mapping x to ζ j x , where ζ j is a r th
root of unity, j = 1, . . . , r . Denote this automorphism also by ζ j .

The ring T is a free Tr -module of rank r (with {1, x, . . . , xr−1} a basis). Let b ∈ i ,
and let b = b0 + b1x + · · · + br−1xr−1, where the b j belong to Tr for all j . By
assumption, the elements ζ1(b), . . . , ζr (b) are all in the ideal i , and hence so is the
sum ζ1(b) + · · · + ζr (b) in i . Writing out all the terms in this sum yields

b0r + b1(ζ1 + · · · + ζr )x + · · · + br−1(ζ
r−1
1 + · · · + ζ r−1

r )xr−1

In the above sum, each of the terms in brackets equals 0, as ζ j is a r th root of unity,
for each j . Hence the above sum equals b0r , and as r is a unit in R, it follows that b0
is in the ideal i , and hence that it is in Tr ∩ i = i c.

It now follows that b− b0 = b1x +· · ·+ br−1xr−1 is in the ideal i , and hence so is
b1 + · · ·+ br−1xr−2 also in i , as x is a unit in T . Repeating the argument in the above
paragraph yields that b1 is in the ideal i , and hence that it is also in i c. Continuing thus,
it follows that b0, b1, . . . , br−1 are all in i c, and hence that b is in i ce. This implies
that i = i ce, as b was an arbitrary element of i . �

Proof of Proposition 5.2 By Corollary 3.5, P = Pce if and only if P is generated as
an A-module by elements in Ak

d . As G leaves Ak
d fixed pointwise, it follows that

g(P) = P , for every g ∈ G.
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We prove the converse by induction on k. Let k = 1, and let i be an ideal of A such
that g(i) = i , for all g ∈ G. Consider the sequence of inclusion of F-algebras

Ad ↪→ Ad [σ1, σ−1
1 ] ↪→ · · · ↪→ Ad [σ1, σ−1

1 , . . . , σn−2, σ
−1
n−2][σn−1, σ

−1
n−1] ↪→

Ad [σ1, σ−1
1 , . . . , σn−1, σ

−1
n−1][σn, σ−1

n ] = A.

We change notation and rewrite the sequence as

Ad = Ad,0 ↪→ Ad,1 ↪→ · · · ↪→ Ad,n−1 ↪→ Ad,n = A

As p is relatively prime to d1, . . . , dn , every inclusion Ad, j−1 ↪→ Ad, j , j = 1, . . . , n,
satisfies the conditions of Lemma 5.1, with AutAd, j−1(Ad, j ) 
 Z/(d j ). Then, as the
ideal i ⊂ A is invariant underAutAd (A), it is in particular invariant under the subgroup
AutAd,n−1(A) 
 Z/(dn), and hence equals the extension of its contraction to Ad,n−1.
Repeating this argument for every inclusion in the above chain, it finally follows that
i is the extension of its contraction i c to Ad .

Now assume that the proposition holds for all G-invariant submodules of Ak−1.
Let P ⊂ Ak be a G-invariant submodule of Ak . Consider the short exact sequence

0 → A
ι−→ Ak π−→ Ak−1 → 0

where ι(a) = (a, 0, . . . , 0), and π(a1, . . . , ak) = (a2, . . . , ak). Restricting this
sequence to P ⊂ Ak gives the short exact sequence

0 → ι−1(P) −→ P −→ π(P) → 0 (1)

of G-invariant A-modules. Similarly, the short exact sequence

0 → Ad
ι−→ Ak

d
π−→ Ak−1

d → 0

yields the short exact sequence of Ad -modules

0 → ι−1(Pc) −→ Pc −→ π(Pc) → 0.

An elementary calculation shows that ι−1(Pc) = ι−1(P)c, π(Pc) = π(P)c. Extend-
ing this exact sequence of Ad -modues to A-modules by tensoring with A, yields the
short exact sequence

0 → ι(P)ce
ι−→ Pce π−→ π(P)ce → 0. (2)

Sequences (1) and (2) fit into the commutative diagram

0 → ι−1(P) −→ P −→ π(P) → 0
↑ ↑ ↑

0 → ι−1(P)ce −→ Pce −→ π(P)ce → 0
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of G-invariant A-modules. By induction, ι−1(P)ce = ι−1(P) and π(P)ce = π(P),
hence it follows (by the ‘Five Lemma’) that Pce = P . This concludes the proof of the
proposition. �

The above proposition carries over to a general sublattice S of full rank. We denote
the group of automorphisms of A which fixes every element of AS (in the notation of
Sect. 4) by AutAS (A).

Proposition 5.3 Suppose that the sublatticeS ⊂ L is of full rank. Let P be a submodule
of Ak, and let Pc be its restriction to Ak

S. Then P = Pce if and only if P is AutAS (A)-
invariant.

Proof By Proposition 4.1, S is isomorphic to a diagonal sublattice Ld , d ∈ N
n , via

a Z-module automorphism φ of L. This automorphism induces an F-algebra auto-
morphism φ∗ : A → A, which maps AS to Ad . We define a map � : AutAS (A) →
AutAd (A) by �(g) = φ∗ ◦ g ◦ φ−1∗ . It is clearly a group isomorphism.

As observed in Proposition 4.4, P equals the extension of its contraction to Ak
S if

and only ifφ∗(P) is the extension of its contraction to Ad , which in turn is equivalent to
AutAd (A)-invariance ofφ∗(P). Thus, if g ∈ AutAS (A), it follows that�(g)(φ∗(P)) =
φ∗ ◦ g(P) = φ∗(P) if and only if g(P) = P . �

We can now state the main result of this section.

Theorem 5.1 The system KerFL
(P) on the lattice L is the extension of a system on the

sublattice S of full rank, if and only if the submodule P ⊂ Ak is AutAS (A)-invariant.

Proof The proof follows from Lemma 4.1 and Proposition 5.3. �
Recollect from Sect. 3 the set C(Q) of A-submodules of Ak that contract to the

Ad -submodule Q of Ak
d ; they correspond to systems on the lattice L that contract to

the system KerFLd
(Q) on the sublattice Ld .

Lemma 5.2 The set C(Q) is stable under the action of AutAd (A). Furthermore, if the
sublattice Ld is of full rank, then the unique fixed point of the action is Qe.

Proof If P is in C(Q), then g(P)c = g(Pc) = g(Q) = Q, hence g(P) ∈ C(Q), for
every g ∈ AutAd (A). In the case of a full rank sublattice, Proposition 5.2 implies that
P ∈ C(Q) is a fixed point of the action if and only if P = Pce = Qe. �

We continue to assume that Ld is of full rank, i.e. d ∈ N
n , and now study the action

of AutAd (A) on C(Q)\{Qe}. Towards this, we establish a ‘Galois correspondence’
result in which we use the following terminology: Let G = AutAd (A) = μd1(F) ×
· · · × μdn (F), as above. Let H be a subgroup of G; if H = H1 × · · · × Hn , where Hi

is a subgroup of μdi (F) for all i , then we say that H is a product subgroup of G

Proposition 5.4 Let d ∈ N
n, and let G be the group AutAd (A). There is an inclusion

reversing correspondence between subgroups of G and sublattices of L containing
Ld , where product subgroups correspond to diagonal sublattices.
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Proof For a subgroup H of G, let A(H) be the subset of A that is fixed by all the
elements of H ; it is an F-subalgebra of A that contains Ad . As an element ofG acts on
a monomial term in A by multiplying it by an appropriate element of F , it follows that
a Laurent polynomial in A is fixed by an element of G if and only if each monomial
term of the polynomial is itself fixed. Thus, A(H) is generated as an F-algebra by
monomials. If ζ = (ζ1, . . . , ζn) is an element of H , and σ x = σ

x1
1 . . . σ

xn
n is a

monomial in A(H), then ζ(σ x )ζ(σ−x ) = ζ(σ xσ−x ) = ζ(1) = 1; hence as ζ(σ x ) =
σ x , it follows that ζ(σ−x ) = σ−x . It follows that A(H) is a Laurent subalgebra
of A that contains Ad . (Here we have used ζ(σ x ) to denote (ζ1σ1)

x1 · · · (ζnσn)xn .)
Furthermore, if H is a product subgroup of G, then A(H) = Ad ′ for some d ′ =
(d ′

1, . . . , d
′
n) ∈ N

n , with d ′
i |di , for all i ; this follows as H is now generated by elements

(ζ1, 1, . . . 1), (1, ζ2, . . . , 1), . . . , (1, 1, . . . , ζn), for some ζi ∈ μdi , where the order
of ζi equals d ′

i . Conversely, given a Laurent subalgebra B of A containing Ad that
is generated by monomials, the set of elements of G that fix every element of B is a
subgroup, say H , ofG. It is clear that B = A(H) and that this is an inclusion reversing
bijective correspondence between subgroups of G, and Laurent subalgebras of A
containing Ad that are generated bymonomials. In this correspondence,G corresponds
to Ad and the identity subgroup corresponds to A.

In turn, a Laurent subalgebra B of A containing Ad that is generated bymonomials,
corresponds to the sublattice S, of full rank, generated by the points of L correspond-
ing to these monomials, namely the identification of σ

x1
1 . . . σ

xn
n with (x1, . . . , xn) in

Remark 2.1; clearly S contains Ld . If S is the image of the map S : Z
n → Z

n , in the
notation of Sect. 4, then B is the ring AS , and if it were the diagonal sublattice Ld ′ ,
then B would be Ad ′ . Conversely, a sublattice S of L containing Ld defines the ring
AS of difference operators on it, which is a Laurent subalgebra of A containing Ad

that is generated by monomials. This is a bijective correspondence which is inclusion
preserving, namely AS ⊂ AS′ if and only the sublattices they define satisfy S ⊂ S

′.
Composing these two correspondences yields an inclusion reversing correspon-

dence between subgroups of AutAd (A) and sublattices of L containing Ld , where
product subgroups correspond to diagonal sublattices. �

We build upon the following example in Sect. 6.

Example 5.1 Let n = 2, d = (2, 2) (thus L = Z
2, d1 = 2, d2 = 2). Then G =

AutAd (A) = μ2(F) × μ2(F). The five subgroups of G are: G, the identity subgroup
{(1, 1)}, μ2(F) × {1}, {1} × μ2(F), and the subgroup H2 = {(1, 1), (−1,−1)} (we
write μ2(F) 
 Z/2Z multiplicatively as {−1, 1}). By the above proposition, the
sublattices of L that contain the sublattice L(2,2) correspond to the five subgroups, and
are, respectively, L(2,2), L, L(1,2), L(2,1) and the sublattice generated by (1, 1) and
(2, 0). This last sublattice corresponding to H2, denoted H2, is nondiagonal as H2 is
not a product subgroup.

We return to the description of the set C(Q) in Lemma 5.2.

Proposition 5.5 Let P ∈ C(Q). Let its stabilizer under the action of G = AutAd (A)

be the subgroup H. Then the orbit of P is isomorphic to the quotient G/H. When
d ∈ N

n, the orbit of P is finite. In this case, let H be the sublattice of L corresponding
to the subgroup H ⊂ G. Then P = Pce, where Pc is the contraction of P to A(H).
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Proof The first part is clear. Let A(H) be the ring of difference operators on the
sublattice H; then AutA(H)(A) = H , and the result follows from Proposition 5.3. �
Remark 5.1 Moregenerally,wedefine the setC(Q)by replacing the diagonal sublattice
Ld with an arbitrary sublattice S. Thus, let Q ⊂ Ak

S , and let C(Q) = {P ⊂ Ak | Pc =
Q}be the set of A-submodules of Ak that contract to the submoduleQ.As inSect. 3, Qe

is the uniqueminimal element of C(Q). The AS-moduleFS is an injective cogenerator,
hence the elements in C(Q) are in bijective, inclusion reversing, correspondence with
the collection of systems on L which contract to KerFS

(Q) on the sublattice S.
All the results on C(Q) continue to hold in this generality. Thus, Proposition 5.3

implies the following generalization of Lemma 5.2: The set C(Q) is stable under the
action of AutAS (A). Furthermore, if the sublattice S is of full rank, then the unique
fixed point of the action is Qe.

We return to Example 3.1 to elucidate the above results.

Example 5.2 In the notation of Example 3.1, a = σ d − 1 is irreducible in Ad , and
(σ − ζ0) · · · (σ − ζd−1) is its factorization in A, where ζ0(= 1), . . . , ζd−1 are the dth
roots of unity in C. The ideal i ⊂ Ad is the principal ideal (a). The set C(i) of ideals
in A that contract to i in Ad , is of cardinality 2d − 1, and consists of the ideals in A
generated by the various possible products of the factors of a.

The group G = AutAd (A) of automorphisms of A keeping Ad fixed is μd(C), the
group of the dth roots of unity. G acts on C(i); for instance the element ζ ∈ G acts
on the principal ideal (σ − ζi ) ∈ C(i) to give the principal ideal (ζσ − ζi ). The fixed
point of the full group G is clearly the ideal i e. Thus, only the ideal i e = (σ d − 1) in
C(i) is the extension of its contraction to Ad .

If d is prime, then every element in C(i)\{i} is left invariant only by the trivial
subgroup 1. Otherwise, suppose d ′ > 1 divides d. Let H be the subgroup of G
consisting of the d ′th roots of unity, say ζ0, ζi1 , . . . ζid′−1

. Then H leaves invariant

the ideal generated by the factor a′ = (σ − ζ0)(σ − ζi1) · · · (σ − ζid′−1
) = σ d ′ − 1

of a. Thus A(H), the ring of difference operators left fixed by H equals Ad ′ . The
sublattice of L corresponding to H is Ld ′ . By Proposition 6.4, the ideal (a′) ⊂ A
satisfies (a′) = (a′)ce, where (a′)c is the contraction of (a) to Ld ′ .

Remark 5.2 The principal results of this section are all for sublattices of full rank. If we
wish to make a similar study of symmetries of n-D systems on degenerate sublattices,
then we would need analogues of results of this section for purely transcendental
extensions. We make a few brief comments to illustrate the difficulties involved.

Assume now that the sublattice Ld is degenerate, and suppose that d ∈ N
n
m . Then

the Laurent subalgebra Ad is isomorphic to F[σ d1
1 , σ

−d1
1 , . . . , σ

dm
m , σ

−dm
m ], and A is

not integral over Ad . The extension K = F(σ1, . . . , σn) of Kd = F(σ
d1
1 , . . . σ

dm
m ) is

a Galois extension followed by a transcendental extension, and it suffices for us now
to study purely transcendal extensions.

The field of fractions K = F(σ1, . . . , σn) of A is a purely transcendental extension
of F . The automorphism groupAutF (K ) is the Cremona group, the group of birational
transformations of projective space P

n
F . The group PGLn+1(F) of linear projective
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transformations is contained in AutF (K ), and is equal to it only for n = 1. In general,
AutF (K ) is an object of current study in algebraic geometry, see for instance [2].
Similarly, the automorphism group of the polynomial ring F[σ1, . . . , σn] is also a
subject of current research, where the Jacobian Conjecture still remains open [4].

In contrast, the automorphism group AutF (A) of the Laurent polynomial ring A,
which sits between F(σ1, . . . , σn) and F[σ1, . . . , σn], can be easily determined, as
we show next.

An F-algebra endomorphism of A must map σi to a unit, and hence to a monomial
riσ

mi1
1 · · · σmin

n , where the ri ∈ F∗ and the mi j ∈ Z, for i, j = 1, . . . , n. Clearly, if
this endomorphism is to be an F-algebra automorphism, then the n × n matrix (mi j )

must be unimodular. Thus, we can consider this automorphism to be a ‘composition’
of two F-algebra automorphisms, the first a homothety, σi �→ riσi , and the second
given by σi �→ σ

mi1
1 . . . σ

min
n , for all i . They define two group homomorphisms:

(i) ψ1 : (F∗)n → AutF (A), defined by ψ1(R)(σi ) = riσi , i = 1, . . . , n, where
R = (r1, . . . , rn),

(ii) ψ2 : GLn(Z) → AutF (A), defined by ψ2(M)(σi ) = σ
mi1
1 . . . σ

min
n , i =

1, . . . , n, where the entries of M are the mi j .
The two actions they define do not commute, namely, ψ2(M) ◦ ψ1(R) �= ψ1(R) ◦

ψ2(M), for all R ∈ (F∗)n, M ∈ GLn(Z). Hence they do not lift to an action of the
product group (F∗)n × GLn(Z) on A.

There is, however, an action of a semi-direct product of (F∗)n and GLn(Z) on A,
defined as follows.

Let φ : GLn(Z) → Aut((F∗)n) be the group homomorphism defined by
φ(M)(R) = (

∏n
i=1 r

m1i
i , . . . ,

∏n
i=1 r

mni
i ), where R = (r1, . . . , rn) and M is the

matrix (mi j ). Let (F∗)n �φ GLn(Z) be the semi-direct product of (F∗)n and GLn(Z)

determined by φ. A routine calculation shows that

ψ1(R) ◦ ψ2(M)(σi ) = ψ2(M) ◦ ψ1(φ(M)(R))(σi ),

for all i , and for all R ∈ (F∗)n, M ∈ GLn(Z). Thus, the actions defined by ψ1 and
ψ2 lift to the semidirect product and give a homomorphism � : (F∗)n �φ GLn(Z) →
AutF (A).

Conversely, an element g of AutF (A) is determined by the images of the σi under
g. If g(σi ) is equal to riσ

mi1
1 . . . σ

min
n , for i = 1, . . . , n, then the g(σi ) determine

the element R = (r1, . . . , rn) ∈ (F∗)n and the unimodular matrix M = (mi j ). This
defines AutF (A) → (F∗)n �φ GLn(Z), by mapping g to (R, M), which is inverse to
�.

We have thus established the following result.

Proposition 5.6 AutF (A) 
 (F∗)n �φ GLn(Z).

Degenerate nondiagonal sublattices of Z
n are important for several reasons, for

instance [7] discusses restrictions of a system to degenerate sublattices of rank nminus
the degree of autonomy of the system. These sublattices play the role of minimal initial
conditions required to solve the difference equations defining the system.
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6 The coarsest lattice of definition

We now prove the central result of the paper, viz. that there is a coarsest lattice of
definition of an n-D system.

Towards this, we study the process of contraction to coarser and coarser sublattices
of L, starting with the case of diagonal sublattices. Let I = {i1, . . . , ir } be a subset
of {1, . . . , n}, and I ′ = { j1, . . . , js} its complement, where r + s = n. Let N

n
I =

{(d1, . . . , dn) | di = 1,∀i ∈ I , di ∈ N,∀i ∈ I ′}. Denote F[σi1, σ−1
i1

, . . . , σir , σ
−1
ir

]
by AI .

The following lemma is elementary.

Lemma 6.1 An A-submodule P of Ak is an extension of a submodule of Ak
d , for every

d = (d1, . . . , dn) ∈ N
n
I , if and only if it is an extension of a submodule of Ak

I .

Proof Again, by Corollary 3.4 it suffices to show that P = (Pc
d )e,∀d ∈ N

n
I , if and

only if P = (Pc
I )

e; here Pc
I denotes the restriction of P to Ak

I . If the latter holds, then
certainly P = (Pc

d )e,∀d ∈ N
n
I .

To prove the converse, it suffices to observe that there is a sequence
d(1), d(2), . . . , d(m) . . . in N

n
I such that Ak

d(1) � Ak
d(2) . . . � Ak

d(m) . . ., and such that

the intersection of this nested sequence is Ak
I . Thus if P can be generated by elements

in every Ak
d(m) of the nested sequence, then it can also be generated by elements in

their intersection Ak
I . �

Corollary 6.1 An A-submodule P of Ak is an extension of a submodule of Ak
S, for

every sublattice S ⊂ L, if and only if it is generated by elements in Fk.

Proof By Remark 4.1, it suffices to consider the statement for diagonal sublattices of
L. Now let I = ∅ in the above lemma; then A∅ = F . �
Definition 6.1 An A-submodule P of Ak is said to be constant if it has a set of gener-
ators in Fk . The set of constant submodules of Ak is denoted M(F).

Lemma 6.2 A constant submodule of Ak is free.

Proof Let P be a constant submodule, and let p1, . . . , p� be a set of generators for
P as in the above definition. Without loss of generality, we can assume the pi to be
F-independent.

Suppose a1 p1 + . . . ,+a� p� = 0, for some a1, . . . , a� in A. Write ai = ci + bi ,
i = 1, . . . , �, where ci is the constant term of ai . Then

∑
i (ci pi + bi pi ) = 0 implies∑

i ci pi = 0, and thus that ci = 0, for all i . Thus none of the ai has a constant term.

Repeating this argument for each monomial term σ
j1
1 . . . σ

jn
n proves that the ai are

all 0, and thus that these generators are A-independent as well. �
LetT and S be arbitrary sublattices ofL. By Proposition 4.1, we may assume thatT

is a diagonal sublattice Ld , for some d ∈ N
n+. The corresponding Laurent subalgebras

of A are Ad and AS . Let ASd denote Ad ∩ AS , it is the ring of difference operators on
the intersection Ld ∩ S, denoted Sd . It is the largest Laurent subalgebra of A that is
contained in both Ad and AS .
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We expand our previous notation: if S ⊂ S
′, so that AS ⊂ AS′ , then the contraction

of Q ⊂ Ak
S′ to Ak

S is denoted Qc
S , or by Qc

d if S is the diagonal sublatticeLd . Similarly,
the extension of R ⊂ Ak

S to Ak
S′ is denoted by Re

S′ , or by Re
d ′ if S

′ is Ld ′ . We continue
to denote by Re its extension to Ak .

Proposition 6.1 Let d = (d1, . . . , dn) ∈ N
n
m, 0 ≤ m ≤ n, and S be a sublattice of L.

Let i be an ideal of A. If i = (i cd)
e, then it follows that icS = (i cSd )

e
S.

Thus, if also i = (i cS)
e, then i = (i cSd )

e.

Proof The containment i cS ⊃ (i cSd )
e
S is trivial, and it remains to show the other con-

tainment.
Let a ∈ i ; then a = ∑

j a j b j for some a j ∈ A, b j ∈ i cd , as i = (i cd)
e by assumption.

Now recollect from the discussion preceding Lemma 2.1 that Bd = {σ x1
1 . . . σ

xn
n | 0 ≤

x j ≤ d j − 1, i ∈ J ; xi ∈ Z, j /∈ J }, where J is the set of indices corresponding
to the nonzero entries of d ∈ N

n
m , is a basis for A as an Ad -module. Thus each a j in

the above sum can be expressed as a j = ∑
σ x∈Bd σ xbx , where bx ∈ Ad (only finitely

many of which are nonzero), and x = (x1, . . . , xn), σ x = σ
x1
1 . . . σ

xn
n . Substituting

these values of a j in the first sum and gathering terms, it follows that a can be written
as

∑
σ x∈Bd σ xb′

x , b′
x ∈ i cd . As the support of each nonzero b

′
x is in Ld , it follows that

supp(σ xb′
x ) is contained entirely in the coset σ

x (Ld) of Ld in L. Thus the support of
the distinct terms of a in the above sum are contained in distinct cosets of Ld in L,
and hence the support of a is the disjoint union of these supports.

Now suppose that a ∈ i cS , then the support of a is also contained in the sublattice
S. Let z1, z2 be any two elements in supp(σ xb′

x ) ⊂ σ x (Ld). Then z1 − z2 is in
S ∩ Ld = Sd , and hence it follows that the support of the term σ xb′

x of a is now
contained in a single coset, say σ x ′

(Sd), of Sd in S, for some x ′ ∈ S. We rewrite this
term as (σ x−x ′

b′
x )σ

x ′
, so that supp(σ x−x ′

b′
x ) ⊂ Sd . Hence, σ x−x ′

b′
x ∈ i ∩ ASd , and

as σ x ′ ∈ AS , it follows that this term is in the extension (i cSd )
e
S of i

c
Sd

to AS , and hence
so is a in it.

By Corollary 3.5, the above conclusion is equivalent to saying that the ideal i cS is
generated by elements of its contraction i cSd to ASd . If also i = (i cS)

e, that is if i is
generated by elements in i cS , then it follows that i is generated by elements of i cSd . This
concludes the proof of the proposition. �
Corollary 6.2 Let P ⊂ Ak be such that both P = (Pc

d )e and P = (Pc
S )e. Then

P = (Pc
Sd

)e.

Proof As the composition of two restrictions is a restriction, and the composition of
two extensions an extension, the proof of the corollary follows by induction on k and
the ‘Five Lemma’, exactly as in the proof of Proposition 5.2 above. �

We can now prove our main result.

Theorem 6.1 If P is inM(F), then the system KerFL
(P) can be reconstructed from its

contraction to any sublattice of L, in particular from its contraction to the sublattice
0 ⊂ L.

123



426 Mathematics of Control, Signals, and Systems (2022) 34:405–433

If P is not inM(F), then there is a unique coarsest sublattice S of L, of rank greater
than or equal to 1, such that KerFL

(P) can be reconstructed from its contraction
KerFS

(Pc
S ) to S, but not from its contraction to any coarser sublattice of L.

Proof The first statement follows from Lemma 6.1 and Theorem 3.1.
Suppose now that P /∈ M(F). Let S be the collection of sublattices S of L such

that the system defined by P can be reconstructed from its contraction to S. Let the
minimum of the ranks of all the sublattices in S be r ; then r ≥ 1. Let S1, S2, . . . be
the sublattices of this minimum rank, listed in some order. Then we can replace S2 by
S1 ∩ S2, as by Proposition 4.4 and Corollary 6.2, it is again in S, and hence also of
rank r . Similarly, replacing S3 by S1 ∩ S2 ∩ S3, and so on, we may assume that there
is a nested sequence S1 ⊃ S2 ⊃ · · · ⊃ Si ⊃ · · · of sublattices in S, of lowest rank
r . By a final application of Proposition 4.1, we may also assume that S1 = Z

r , and
hence that the nested sequence above is a sequence of full rank sublattices in Z

r . We
claim that there are only finitely many terms in this sequence.

By Remark 4.1, we can choose a diagonal sublattice Di ⊂ Si , for each i ≥ 2. By
Proposition 5.4, there are only finitely many sublattices in Z

r that contain Di , for any
i , hence the nested sequence Z

r ⊃ D2 ⊃ · · · ⊃ Di ⊃ · · · is cofinal in the original
nested sequence. Thus the system can be reconstructed from its contraction to every
Di . If the sequence of theDi has infinitely many terms, then its intersection (or inverse
limit) D is of rank strictly less than r , and the system could be reconstructed from it
by Lemma 6.1. This contradicts the minimality of r .

Thus there are only finitely many sublattices Si of minimum rank r in S, and
their intersection is the unique coarsest sublattice of L from which the system can be
reconstructed. �

The coarsest sublattice from which a system can be reconstructed may of course
be coarser than the coarsest diagonal sublattice from which it can be reconstructed.

Example 6.1 Consider the scalar system KerFL
(i) on L = Z

2 defined by the principal
ideal i = (1 + σ1σ2 + σ 2

2 ) ⊂ A = F[σ1, σ−1
1 , σ2, σ

−1
2 ]. Let H2 be the sublattice

of Example 5.1, H2 ⊃ L(2,2), corresponding to the subgroup H2. If AH2 is the ring
of difference operators on H2, then the ideal i is invariant under AutAH2

(A) = H2,
and hence i = i ce, where i c is the contraction of i to AH2 . Thus the system KerFL

(i)
can be reconstructed from the sublattice H2 by Theorem 5.1. It is easy to see that this
nondiagonal sublattice of full rank is the coarsest lattice from which the system can
be reconstructed.

Example 6.2 Consider the scalar system KerFL
( j) on L = Z

2 defined by the ideal
j = (1 + σ1σ2) ⊂ A = F[σ1, σ−1

1 , σ2, σ
−1
2 ]. Let H2 be as above. Again, the ideal j

is invariant underAutAH2
(A) = H2, and thus the systemKerFL

( j) canbe reconstructed
from the sublattice H2.

Now let dr = (2r , 2r ) and let H2r denote the subgroup {(ζ, ζ−1) | ζ ∈ μ2r (F)} of
AutAdr

(A) = μ2r (F) × μ2r (F) (where μ2r (F) denotes the 2r th roots of unity in F).
Let H2r ⊃ L(2r ,2r ) be the sublattice corresponding to H2r given by Proposition 5.4;
this sublattice is generated by (1, 1) and (2r , 0). If AH2r is the ring of difference
operators on H2r , then the ideal j is also invariant under AutAH2r

(A) = H2r ; hence
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j = j ce, where j c is now the contraction of j to AH2r . Thus the system KerFL
( j) can

also be reconstructed from the sublattice H2r .
In this way, we construct a decreasing nested sequence of sublattices H2r , r ≥ 1,

of L, from each of which the system KerFL
( j) can be reconstructed. Then the system

can also be reconstructed from the intersection of these sublattices (as in the proof of
Lemma 6.1). This intersection is the degenerate nondiagonal sublattice of Z

2 of rank
1 generated by (1, 1), namely the sublattice D = {(x, x) ∈ Z

2 | x = 0,±1,±2, . . .}.
We finally remark that AutF (A) 
 (F∗)2 �φ GL2(Z) by Proposition 5.6 and that

the subgroup that leaves j invariant contains the infinite subgroup isomorphic to

{
(
m m − 1
1 − m 2 − m

)

| m ∈ Z}, as well as the infinite set {
(
m m + 1
1 − m −m

)

| m ∈ Z} (the lat-

ter includes the transposition σ1 �→ σ2, σ2 �→ σ1). The proof of Lemma 5.1 thus
fails here, and so do all subsequent results which rely upon it. We therefore arrive
at the (degenerate) coarsest lattice of definition of KerFL

( j), namely D above, via a
sequence of full rank sublattices, for which our results hold.

7 Control of n-D systems

In this section we relate system theoretic properties of an n-D system to those of its
contraction or extension. We start with the fundamental notion of controllability due
to Willems [19]. The following definition of a controllable n-D system due to Wood
et al. is patterned after Willems [19] and Rocha [14]; we refer to Zerz’s book [22] for
details.

Definition 7.1 [20] An n-D system B is controllable if there exists a positive real ρ

such that for any subsets T1, T2 ofZn with d(T1, T2) > ρ,B(T1∪T2) = B(T1)×B(T2).

Here B(T ) denotes the restriction of the trajectories of B to the subset T ⊂ Z
n , and

d(T1, T2) = min{d(x1, x2) | x1 ∈ T1, x2 ∈ T2}, where d(x1, x2) = ‖x1 − x2‖1, is the
L1 norm on Z

n .
The definition posits a solution to a ‘patching problem’, namely, that if T1 and T2

are any two subsets of the lattice Z
n that are separated by distance at least ρ, and given

any two trajectories f1 and f2 of the system B restricted to T1 and T2, respectively,
then there is a trajectory f in B that restricts to f1 on T1 and to f2 on T2.

Theorem 7.1 [20] If the system B is KerFL
(P), P a submodule of Ak, then it is

controllable if and only if Ak/P is torsion-free.

Remark 7.1 We first explain that the torsion-free condition in the above theorem
implies a result which is, a priori, stronger than controllability, namely the existence
of an ‘image representation’.

Let P(σ, σ−1) be an � × k matrix whose � rows generate the submodule P ⊂ Ak .
Let R be the set of all relations between its k columns. R is an A-submodule of
Ak ; clearly it depends only on the submodule P , and not the choice of the matrix
P(σ, σ−1). Suppose that R is generated by k1 elements. Let R(σ, σ−1) be the k × k1
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matrix whose columns are these generators. Then the sequence

A� P(σ,σ−1)T−→ Ak R(σ,σ−1)T−→ Ak1

is a complex (the superscript T denotes transpose), which is exact if and only if Ak/P
is torsion-free, [10, 16].

Assuming that Ak/P is torsion-free, and applying the functor HomA(−, FL) to
this exact sequence gives the exact sequence

Fk1
L

R(σ,σ−1)−→ Fk
L

P(σ,σ−1)−→ F�
L

,

as FL is an injective A-module. Hence KerFL
(P) is equal to the image of R(σ, σ−1),

and it is elementary that the existence of such an image representation implies con-
trollability. Thus torsion freeness of Ak/P implies that KerFL

(P) admits an image
representation, and hence that it is controllable.

Furthermore, as FL is also a cogenerator, namely Remark 2.2, it follows that if
Ak/P is not torsion-free, then it is not controllable, and hence that it does not admit
an image representation, see [16].

In what follows, we use the notation of Sect. 4. Thus S is a sublattice of L, and AS

is the ring of difference operators on it.

Proposition 7.1 If KerFL
(P) is controllable, then the contracted system KerFS

(Pc)

on S is also controllable (where Pc is the contraction of the submodule P ⊂ Ak to
Ak
S).

Proof We have observed in Sect. 4 that the analogue of Corollary 3.3 (i) holds for
the sublattice S; hence Ak

S
/Pc is torsion-free if Ak/P is torsion-free. The AS-module

FS is an injective cogenerator, thus the system KerFS
(Pc) on S admits an image

representation if KerFL
(P) admits an image representation on L. �

Remark 7.2 The submodule R ⊂ Ak (in the notation of Remark 7.1) which determines
the image representation of the system KerFL

(P) does not necessarily contract to the
submodule which determines the image representation of the contracted system. For
instance, consider the example of a nonzero submodule P ⊂ Ak which contracts to
the 0 submodule of Ak

S , as in Remark 3.1 (iii). Then R is strictly contained in Ak ,
and hence does not contract to Ak

S , which is the submodule that determines the image
representation of the contracted system KerFS

(0).
Image representations are, however, well behaved under extensions, as we discuss

below.

Remark 7.3 Webriefly discuss systems defined by constant submodules of Ak , namely
the definition of M(F) in 6.1. By Lemma 6.2, every P ∈ M(F) is free, and in fact
satisfies the conditions of Theorem 3.1 of [15] (the exposition there is for distributed
systems defined by constant coefficient partial differential equations, but the identical
results also hold for n-D systems). Thus, not only is KerFL

(P) controllable for every
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P ∈ M(P), but it also satisfies a generalization of the classical Popov–Belevitch–
Hautus test [5].

If P ∈ Ak is a constant submodule, then by definition, its restriction Pc to the zero
sublattice of L satisfies Pce = P , and hence the conclusions of the above paragraph
hold on every sublattice of L.

Definition 7.2 [19, 20] An n-D system B is autonomous if no nonzero subsystem of
B is controllable.

An autonomous system is also called uncontrollable, because such a system does
not admit any inputs [16].

Theorem 7.2 [20] If the system B is KerFL
(P), P a submodule of Ak, then it is

autonomous if and only if Ak/P is torsion.

Proposition 7.2 Let S be a sublattice of full rank. If KerFL
(P) is autonomous, then

the contracted system KerFS
(Pc) on S is also autonomous.

Proof The analogue of Corollary 3.3 (ii) holds for the sublattice S of full rank; hence
Ak
S
/Pc is torsion if Ak/P is torsion. �
More generally, for P a submodule of Ak , let P0 be the submodule {x ∈ Ak | ∃ a �=

0 wi th ax ∈ P}. Then P0 contains P , and the quotient P0/P is the submodule of
Ak/P consisting of its torsion elements. The following sequence

0 → P0/P −→ Ak/P −→ Ak/P0 → 0 (3)

is exact, where Ak/P0 is torsion-free. In general, given a short exact sequence of A-
modules, the associated primes of the middle term is contained in the union of the
associated primes of the other two modules. However, here it is clear that we have
equality.

Lemma 7.1 Ass(Ak/P) = Ass(P0/P) � Ass(Ak/P0) (disjoint union). Hence, if
P � P0 � Ak, then Ass(Ak/P0) = {0} and Ass(P0/P) is the set of all the nonzero
associated primes of Ak/P.

Applying the exact functor HomA(−, FL) to the above sequence gives the exact
sequence

0 → KerFL
(P0) −→ KerFL

(P) −→ HomA(P0/P, FL) → 0 (4)

By the above lemma Ak/P0 is torsion-free, hence KerFL
(P0) is a controllable sub-

system of KerFL
(P). If P1 is any A-submodule of Ak such that P ⊂ P1 � P0, then

Ak/P1 has torsion elements and KerFL
(P1) is not controllable. Hence KerFL

(P0) is the
largest controllable sub-system of KerFL

(P) in the sense that any other controllable
sub-system is contained in it. It is the controllable part of the system KerFL

(P) (see
[16] for more details).

Suppose P0/P can be generated by r elements; then P0/P 
 Ar/R, for some
submodule R ⊂ Ar , hence HomA(P0/P, FL) 
 KerFL

(R). As Ar/R is a torsion
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module, KerFL
(R) is autonomous (this system is a quotient, and not a sub-system,

of KerFL
(P), unless the above short exact sequence splits). The sequence (4) is the

‘controllable–uncontrollable decomposition’ of the system KerFL
(P), [16, 20]. (Ref-

erences [1, 8, 24] study weaker notions of this decomposition.)
We assume now that the sublattice S is of full rank. Contracting P � P0 � Ak

to Ak
S gives Pc

� Pc
0 � Ak

S , where the first strict inclusion is because the quotient
Pc
0 /Pc 
 Ar

S/R
c is torsion (by Corollary 3.3), and the second strict inclusion is

obvious. Hence, contracting the exact sequence (3) to Ak
S results in the exact sequence

0 → Pc
0 /Pc −→ Ak

S/P
c −→ Ak

S/P
c
0 → 0

where Ak
S/P

c
0 is torsion-free, and Pc

0 /Pc is the torsion submodule of Ak
S/P

c. Thus,
applying the exact functor HomAd (−, FS) gives

0 → KerFS
(Pc

0 ) −→ KerFS
(Pc) −→ HomAS (P

c
0 /Pc, FS) → 0

which is the controllable–uncontrollable decomposition of KerFS
(Pc).

We now study controllability and autonomy of extensions.

Proposition 7.3 Let Q ⊂ Ak
S be a submodule. The system KerFS

(Q) on the sublattice
S is controllable if and only if its extension KerFL

(Qe) to L is controllable, and is
autonomous if and only if the extension is autonomous.

Proof We have already observed in Sect. 4 that Lemma 3.2 holds with Ad replaced
by AS ; thus Ak

S/Q is torsion-free, or torsion, if and only if Ak/Qe is torsion-free, or
torsion, respectively. �

More generally, if 0 → Q0/Q −→ Ak
S/Q −→ Ak

S/Q0 → 0 is the ana-
logue of the exact sequence (3), where Q0/Q is the torsion submodule of Ak

S/Q,
and Ak

S/Q0 is torsion-free, then its extension 0 → Qe
0/Q

e −→ Ak/Qe −→
Ak/Qe

0 → 0 is exact, where Qe
0/Q

e is torsion and Ak/Qe
0 is torsion free. Thus the

controllable–uncontrollable decomposition of KerFS
(Q) determines the controllable–

uncontrollable decomposition of its extension KerFL
(Qe).

We briefly discuss image representations for extended systems. As explained in
Remark 7.1, an image representation for a controllable system defined by a submodule
P ⊂ Ak is determined by a submodule R ⊂ Ak , which is generated by the columns
of a matrix R(σ, σ−1) that is a ‘right annihilator’ for P . This implies that if p =
(p1, . . . , pk) is an arbitrary element of P , and r = (r1, . . . , rk) an arbitrary element
of R, then p · r = ∑k

i=1 piri = 0. We write this symbolically as P · R = 0.
Now let Q ⊂ Ak

S define a system on the sublattice S ⊂ L. As in Remark 5.1, the
submodules of Ak in C(Q) define n-D systems on L that contract to KerFS

(Q) on S.
If P ∈ C(Q) defines a controllable system, and if the submodule R defines an image
representation for it, then as P · R = 0, it follows that g(P) · g(R) = 0, for every
g ∈ AutAS (A), and hence that g(R) is the right annihilator for g(P). This implies that
g(R) defines an image representation for the controllable system defined by g(P).
Thus, controllability and image representations behave well along an AutAS (A)-orbit
in C(Q).
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Now assume that S is of full rank, and suppose that Q defines a controllable system
on it. Then Qe defines a controllable system on L. Let its image representation be
defined by the submodule R, so that Qe · R = 0. It now follows that g(Qe) · g(R) =
Qe · g(R) = 0 for all g ∈ AutAS (A). This implies that g(R) = R for all g, and hence
that R = Rce, by Proposition 5.3. We have thus established the following proposition.

Proposition 7.4 Let S be a sublattice of full rank. The submodule Q ⊂ Ak
S defines a

controllable system on S if and only if its extension to L defined by Qe is controllable.
Then T ⊂ Ak

S defines an image representation for KerFS
(Q) if and only if T e defines

an image representation for KerFL
(Qe).

Observe that while controllability is well behaved with respect to arbitrary contrac-
tions, viz. Proposition 7.1, autonomy is well behaved only with respect to contractions
to full rank sublattices, viz. Proposition 7.2. Indeed, an autonomous n-D system on
L may contract to a nonautonomous system on a degenerate sublattice. This is an
important phenomenon, and we study it next.

If an n-D system on L admits ‘inputs’, i.e. if it is not autonomous, then it follows
from Proposition 7.1 and the exact sequence (4) that its restriction to any degenerate
sublattice also admits inputs. On the other hand, a system which is autonomous on
L might become non-autonomous upon restriction to a degenerate sublattice—this
phenomenon does not arise for restrictions to sublattices of full rank byProposition 7.2.
This prompts the following definition.

Definition 7.3 [9, 21] The degree of autonomy of an n-D system is the co-rank of
the largest diagonal sublattice of L such that the restriction of the system to it is not
autonomous.

Thus, the degree of autonomy of a nonautonomous system equals 0 and varies
between 1 and n for a nonzero autonomous system (a system is said to be strongly
autonomous when the degree equals n, [6, 16]).

We ask the following question: Let B be an n-D system on L, and let Bc be its
restriction to a full rank sublattice Ld . What is the relationship between the degrees
of autonomy of B and Bc ?

Proposition 7.5 The degrees of autonomy of B and of its restriction Bc to the full rank
sublattice Ld , are equal.

Proof If B is not autonomous, then neither is the restriction Bc to Ld , as we observed
above. Hence, both the degrees of autonomy are equal to 0 in this case.

Supposenow thatB is autonomous; this implies thatBc is also autonomous. Suppose
that the degree of autonomy ofB equals r = n−m, and letLd ′ , d ′ ∈ N

n
m be a diagonal

sublattice of rank m on which the restriction of B first becomes non-autonomous.
Denote this restriction by Bm . The sublattice Ld ′ ∩ Ld is of full rank in Ld ′ , hence the
restriction (Bm)c ofBm to it remains non-autonomous. But (Bm)c is also the restriction
of Bc to Ld ′ ∩ Ld , and hence the degree of autonomy of Bc is not larger that r .

Conversely, if the degree of autonomy of Bc were smaller than r , then there would
be a sublattice of Ld of rankm′ > m on which its restriction has already become non-
autonomous. However, this would imply that B has also become non-autonomous on
a rank m′ sublattice of L. This contradiction proves the proposition. �
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Remark 7.4 The definition of degree of autonomy aswell as all the results in [9, 17, 21],
and in other papers in the subject, would hold if diagonal sublattices were replaced by
arbitrary sublattices. Thus, for instance, the definition of degree of autonomy above
could be replaced by the statement ‘the degree of autonomy of an n-D system is
the co-rank of the largest sublattice of L such that the restriction of the system to
it is not autonomous’. This is because of the results of Sect. 4. Using the notation
there in the context of the above proposition, if φ : L → L is the isomorphism that
carries a nondiagonal sublattice S to the diagonal sublattice Ld ′ , then the induced map
Ak/P → Ak/φ∗(P) preserves the properties of controllability and autonomy, and
hence also preserves the degree of autonomy of the two systems defined by P and by
φ∗(P).

8 Concluding remarks

In summary, we have established that an n-D system on Z
n could arise as an extension

of a system on a sublattice of Z
n , and that this possibility is equivalent to the existence

of a group of symmetries that leave invariant the equations defining the system. These
symmetries can be expressed concretely as a subgroup of a Galois group. Such an
extension from a sublattice facilitates the study of properties of the n-D system, in
particular its decomposition into its controllable and autonomous parts.

We have already pointed out the implications of the results of this paper to the
problem of reducing the order of an n-D system. These questions, as well as the
connections between groups of symmetries and efficient Gröbner bases algorithms,
will be pursued elsewhere.

An important question that arises here is whether there are analogues of the results
of this paper to distributed systems defined by partial differential equations on R

n .
There are several problems that would immediately arise in this setting, for instance
there is no analogue inR

n of a full rank sublattice ofZ
n . If instead we were to consider

a subspace of R
n , then the restriction of the distributed system to this subspace might

not be a system [18]. Thus, there is no analogue of the notion of the degree of autonomy
of an n-D system to the distributed case. One way to circumvent these problems might
be to directly address these questions at the level of rings of differential operators in
the setting of fractional partial differential equations, as alluded to in the introduction,
but this would be a research proposal in itself.
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