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REPRESENTATION FORMULAE FOR DISCRETE 2D
AUTONOMOUS SYSTEMS∗

DEBASATTAM PAL† AND HARISH K. PILLAI‡

Abstract. In this paper, we provide solution formulae for higher order discrete two-dimensional
(2D) autonomous systems. We first consider a special type of 2D autonomous systems. These systems
are described by equations that satisfy a certain special property: the module of equations contains
elements of the form (σn2 + an−1(σ1)σ

n−1
2 + · · · + a0(σ1))wj = 0, for each dependent variable wj ,

where ai(σ1) ∈ R[σ±1
1 ] and a0(σ1) is a unit in R[σ±1

1 ]. We show that this property is equivalent to
the corresponding quotient module being finitely generated as a module over the 1-variable Laurent
polynomial ring R[σ±1

1 ]. We then show that solutions to these special systems can be viewed as
evolutions along the second coordinate direction of certain suitably chosen one-dimensional (1D)
trajectories over the first coordinate direction. Consequently, we show that these solutions can be
written in terms of various integer powers of a square 1-variable Laurent polynomial matrix A(σ1)
acting on suitable 1D trajectories. Following the 1D terminology we call these 1D trajectories initial
conditions. We call this form of expressing the solutions a representation formula. Then, in order to
extend this result to general 2D autonomous systems, we obtain an analogue of a classical algebraic
result, called Noether’s normalization lemma, for the Laurent polynomial ring in two variables. Using
this result we show that every 2D autonomous system admits a representation formula through a
suitable coordinate transformation in the domain Z2. Further, we analyze the set of initial conditions
that appear in our representation formulae and resolve the issue of how freely these initial conditions
can be chosen.

Key words. 2D systems, first order representation, time/space relevant systems, Laurent poly-
nomial ring, Noether’s normalization
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1. Introduction. First order representations of systems of partial differential or
difference equations, usually termed nD continuous or discrete systems, respectively,
have been a topic of active research for the past few decades; see, for example, [4,
5, 14, 15, 13, 23]. For ordinary differential/difference equations (i.e., one-dimensional
(1D) systems), a first order representation in input/state/output (or simply i/s/o)
form is almost always assumed to be the starting point. This is not the case for nD
systems with n � 2 (see [4, 22, 14]). For example, Maxwell’s equations are first order,
but heat equations or wave equations are not. In [20], Willems demonstrated how a
first order representation can be obtained from a general higher order representation
for 1D systems. For discrete two-dimensional (2D) systems, a similar construction
was provided in [14] using the behavioral description. In [4, 5] i/s/o representations
were constructed for 2D systems described in input/output form.

For 1D systems, an i/s/o representation provides a representation formula for
the solutions in terms of the “flow” operator acting on the initial conditions plus
the “input” convolved with the flow. Unfortunately, an analogous representation
formula is absent for nD systems. The main difficulty in obtaining such a formula

∗Received by the editors June 13, 2012; accepted for publication (in revised form) February 20,
2013; published electronically June 10, 2013.

http://www.siam.org/journals/sicon/51-3/88080.html
†Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati,

Guwahati, India (debasattam@iitg.ernet.in).
‡Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India

(hp@ee.iitb.ac.in).

2406



REPRESENTATION FORMULAE FOR DISCRETE 2D SYSTEMS 2407

stems from the fact that, unlike the 1D case, nD systems do not have an a priori
fixed direction of evolution. In this regard there have been two major approaches.
In one of them, one independent variable, namely ‘time,’ is given preference over the
others, and systems which are first order in that particular variable are considered (see
[2, 16, 7]). In the other approach, for the case of continuous autonomous systems, a
representation formula is given in terms of integrations on the “characteristic variety”
of the system. This representation formula is known as the Ehrenpreis–Palamodov
integral representation formula, see [18, 1].

Unfortunately, a shortcoming of the first approach is that there are many systems
which cannot be brought to a first order form in the special variable [7]. For these
cases, it is more advantageous to treat both variables equally. On the other hand,
a drawback of the integral representation formula is that it first requires a complete
knowledge of the points in the characteristic variety, and then an integration to be
evaluated on this variety with suitable measures; both of these processes may be
computationally very challenging.

In this paper, we shall present a representation theory for discrete 2D autonomous
systems, which is similar to the integral representation formula of Ehrenpreis and
Palamodov, although, as we shall see, our representation formulae require neither a
precise knowledge of the points of the characteristic variety nor integrations to be
performed on it. We show that every 2D autonomous system admits a representation
formula in terms of a flow matrix acting on the initial conditions. Interestingly, it
turns out that the initial conditions are either finite-dimensional vectors or infinite-
dimensional trajectories depending upon whether the characteristic variety is zero-
dimensional or one dimensional. We also show that for the case when the characteristic
variety is one dimensional, the initial condition trajectories can be freely chosen if and
only if the system is described as the kernel of a “square” partial difference operator
matrix.

In [8], the ramifications of the integral representation formula in the context of
discrete systems and nonautonomous systems was posed as an open problem. This
paper provides a partial solution to this problem for autonomous systems with n = 2.

1.1. Organization of the paper. In section 2, we provide some basic prelimi-
naries required for the rest of the paper. Then in section 3, we provide our first main
result of the paper, Theorem 3.7, which gives a representation formula for a special
type of autonomous systems. We call this special type of systems strongly σ2-relevant,
for it is a stronger notion of ‘time/space-relevant’ systems with respect to the one in-
troduced in [7]. Section 4 deals with the discrete version of Noether’s normalization
lemma. We extend this result to cater to submodules in section 5. With the help
of this extension of Noether’s normalization, we then show that every autonomous
system can be converted to a strongly σ2-relevant one by a coordinate transformation
on the domain Z2. Consequently, we arrive at a representation formula for a general
autonomous system. In section 6, we look at the set of initial conditions and address
the issue of initial conditions that can be chosen freely. Finally, we summarize the
results in section 7.

1.2. Notation. We use R and C to denote the fields of real and complex num-
bers, respectively. Consequently, Rn, Cn denote the n-dimensional vector spaces over
R and C, respectively. The set of integers is denoted by Z, and Z2 denotes the set of
two tuples of elements in Z. In this paper, our main object of study is a particular class
of doubly indexed sequences of elements in Rw for some positive integer w. We denote
the set of doubly indexed sequences in Rw by (Rw)Z

2

, i.e., (Rw)Z
2

:= {Z2 → Rw}. The
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Laurent polynomial ring in two indeterminates σ1, σ2, usually written as R[σ±1
1 , σ±1

2 ],
will be denoted by A, and the same in one indeterminate σ1, written as R[σ±1

1 ], will
be denoted by A1. We use Aw to denote the free module of rank w over A, where the
elements of Aw are written as w-tuples of rows. For a set S, we use Sm×n to denote
the set of (m× n) matrices with entries from the set S. We often use col(•) to stack
up entries one above the other to make a column-vector. The single letter σ is often
used to denote the tuple (σ1, σ2). Further, for an integer tuple ν = (ν1, ν2) ∈ Z2, the
symbol σν denotes the monomial σν11 σ

ν2
2 . In this paper, we follow the bar notation to

denote equivalence classes: for r(σ) ∈ Aw and a submodule R ⊆ Aw, we use r(σ) to
denote the equivalence class of r(σ) in the quotient module Aw/R.

2. Background. In this paper, we consider systems described by a set of 2D
linear partial difference equations with constant real coefficients. Such partial dif-
ference equations are described by using the 2D shift operators σ1 and σ2. These
shift operators act on a doubly indexed real-valued sequence w ∈RZ

2

as follows: for
ν′ := (ν′1, ν

′
2), ν := (ν1, ν2) ∈ Z

2,

(2.1) (σν
′
w)(ν1, ν2) = w(ν1 + ν′1, ν2 + ν′2).

This definition can be extended naturally to define the action of A, the Laurent
polynomial ring in the shifts, on RZ

2

. Let f(σ) ∈ A be given by f(σ) =
∑

ν∈Z2 ανσ
ν

with αν ∈ R and only finitely many αν �= 0. Then the action of this f(σ) on w ∈ R
Z
2

is given by

(f(σ)w)(ν1 , ν2) =
∑
ν∈Z2

αν(σ
νw)(ν1, ν2).

Consequently, for a row-vector r(σ) =
[
r1(σ) r2(σ) · · · rw(σ)

]
and a column-vector

w = col(w1, w2, . . . , ww) ∈ (Rw)Z
2

we define

(2.2) r(σ)w := r1(σ)w1 + r2(σ)w2 + · · ·+ rw(σ)ww ∈ R
Z
2

.

Equation (2.2) defines the action of the row module Aw on (Rw)Z
2

.

The collection of trajectories w ∈ (Rw)Z
2

that satisfy a given set of partial dif-
ference equations is called the behavior of the system and is denoted by B. The
above description of the action of Aw on (Rw)Z

2

gives the following representation of
behaviors of 2D partial difference equations:

(2.3) B := {w ∈ (Rw)Z
2 | R(σ)w = 0},

where R(σ) ∈ Ag×w. Equation (2.3) is called a kernel representation of B and written
as B = ker(R(σ)). Note that many different matrices can have the same kernel.
Importantly, all matrices having the same rowspan over A result in the same behavior.
This leads to the following equivalent definition of behaviors: let R(σ) ∈ Ag×w and
R := rowspan(R(σ)), then the behavior B = ker(R(σ)) can be written as

(2.4) B(R) := {w ∈ (Rw)Z
2 | r(σ)w = 0 for all r(σ) ∈ R}.

In [8] it was shown that for two submodules R1,R2 of Aw, B(R1) = B(R2) if and

only if R1 = R2. This was shown to be a consequence of a general result that (Rw)Z
2

,
as an A-module, is a large injective cogenerator. We state this important result in the
following proposition.
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Proposition 2.1. Let R1,R2 ⊆ Aw be two submodules, and let B(Ri), for
i = 1, 2, be as defined in (2.4). Then B(R1) = B(R2) if and only if R1 = R2.

Proposition 2.1 above shows a one-to-one correspondence between behaviors and
submodules of Aw. Following this one-to-one correspondence, we call R the equation
module of B.

In this paper, we provide representation formulae for a special type of 2D sys-
tems, namely autonomous systems. There are several equivalent definitions of 2D
autonomous systems (see [6, 10, 19]). In this paper, we stick to the more algebraic
definition of [10], which we state below as Definition 2.2. In Definition 2.2 and later
we need the notion of characteristic ideal of a behavior. Let B be a behavior given by
a kernel representation B = ker(R(σ)) with R(σ) ∈ Ag×w. The characteristic ideal of
B, denoted by I(B), is defined as the ideal of A generated by the (w × w) minors of
R(σ). For g < w, I(B) is defined to be the zero ideal. Although the definition is given
in terms of a kernel representation matrix, it was shown in [10] that the ideal gener-
ated by the (w×w) minors remain unchanged if R(σ) is replaced by another equivalent
kernel representation matrix. That way, by Proposition 2.1, the characteristic ideal
is an invariant of the behavior; this justifies the argument B in the notation I(B).

Definition 2.2. A behavior B is said to be autonomous if its characteristic ideal
I(B) is nonzero. Further, an autonomous behavior is said to be strongly autonomous
if the quotient ring A/I(B) is a finite-dimensional vector space over R.1

From the definition of I(B) it follows thatB is autonomous if and only if it admits
a kernel representation matrix that is full column-rank over the field of fractions of A.
It is well known that strongly autonomous systems admit first order representations
with a tuple of system matrices in the following manner (see [14, 6]):

B =
{
w ∈ (Rw)Z

2 | ∃x ∈ (Rn)Z
2

such that σ1x = A1x, σ2x = A2x, w = Cx
}
,

where n is a positive integer, A1, A2 ∈ Rn×n, and C ∈ Rw×n, with A1, A2 nonsingular
and satisfying A1A2 = A2A1. Consequently, trajectories in a strongly autonomous
behavior admit the following representation formula: for all (ν1, ν2) ∈ Z2,

(2.5) w(ν1, ν2) = CAν11 A
ν2
2 x(0),

where x(0) ∈ Rn is an arbitrary initial condition. For this reason, we consider in
this paper only those systems which are not strongly autonomous. We aim for a
representation formula, analogous to (2.5) above, for general autonomous behaviors
which are not strongly autonomous.

Given a behavior B = ker(R(σ)), let R be the submodule of Aw spanned by the
rows of R(σ). We define

M := Aw/R
and call it the quotient module of B. This quotient module M plays a central role in
this paper. We often let elements from M act on B. This action is defined as follows:
for m ∈ M, the action of m on w ∈ B is defined to be the action of a lift of m in Aw

on w. For example, let r(σ) ∈ Aw be such that r(σ) = m ∈ M; then

(2.6) mw := r(σ)w.

1In this case, when the quotient ring A/I(B) is a finite-dimensional vector space over R, the
characteristic ideal I(B) is called a zero-dimensional ideal and A/I(B) is called an Artinian ring
(see [3]).
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Note that m may have several distinct lifts in Aw, but all of them have the same
action on w ∈ B. This is because if r1(σ), r2(σ) ∈ Aw are two distinct lifts of the
same element m ∈ M, then we have r1(σ) − r2(σ) ∈ R. Therefore,

(r1(σ) − r2(σ))w = 0, i.e., r1(σ)w = r2(σ)w.

Thus, the above action of elements in M on B is well defined.
Now note that it follows from Definition 2.2 above that B is autonomous if and

only if the quotient module M is a torsion module; i.e., for every m(σ) ∈ M there
exists an f(σ) ∈ A such that f(σ)m(σ) = 0 ∈ M. In that case we get the following
ideal, called the annihilator ideal of M:

ann(M) := {f(σ) ∈ A | f(σ)m(σ) = 0 ∈ M for all m(σ) ∈ Aw}.
The following is an important relation between the characteristic ideal of an au-
tonomous behavior and the annihilator ideal of the corresponding quotient module.
The proof of this result follows from Fitting’s lemma (see [3]).

Proposition 2.3. Let B be an autonomous behavior with its equation module
R ⊆ Aw. Let M denote the quotient module Aw/R. Then we have

ann(M)w ⊆ I(B) ⊆ ann(M).

In particular, √
ann(M) =

√
I(B).

Remark 2.4. Note that M is naturally a finitely generated faithful module over
A/ann(M), meaning M, considered as a module over the ring A/ann(M), has {0} ⊆
A/ann(M) for its annihilator. That is,

{f ∈ A/ann(M) | fm = 0 ∈ M for all m ∈ M} = {0}.
In other words, M being faithful over A/ann(M) implies that M contains an iso-
morphic copy of A/ann(M) as a submodule (see [3]).

Change of coordinates in Z2 plays a crucial role throughout this paper. The
idea of change of coordinates and its effects on a behavior are not new (see [22, 19]);
however, we use this idea to achieve goals which are different from those achieved in
the aforementioned references. By a coordinate change we mean a Z-linear map from
Z
2 to itself of the form

T : Z2 → Z2

col(ν1, ν2) =: ν �→ Tν,

where T ∈ Z
2×2 is a unimodular matrix (i.e., det(T ) = ±1). Note that because

of unimodularity, the columns of T span the whole of Z2 as a Z-module. Such a
coordinate transformation T induces the two maps

(2.7)
ϕT : A → A

σν �→ σTν
ΦT : (Rw)Z

2 → (Rw)Z
2

w(ν) �→ w(Tν),

for all ν ∈ Z2. Unimodularity of T makes both of these maps bijective. In fact, ΦT is
an automorphism of the R-vector space (Rw)Z

2

, while ϕT is an automorphism of the
R-algebra A. As a consequence, an ideal a ⊆ A is mapped to another ideal ϕT (a).
The map ϕT can be extended to a map from Aw to itself:
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(2.8)
ϕ̂T : Aw → Aw,[

f1(σ) f2(σ) · · · fw(σ)
] �→ [

ϕT (f1(σ)) ϕT (f2(σ)) · · · ϕT (fw(σ))
]
.

The map ϕ̂T is an A-module morphism via the automorphism ϕT ; i.e., for r(σ) ∈ Aw

and f(σ) ∈ A,

ϕ̂T (f(σ)r(σ)) = ϕT (f(σ))ϕ̂T (r(σ)).

The bijective property of ϕT extends to the module case: as a result, ϕ̂T (R), the
image of a submodule R ⊆ Aw under ϕ̂T , is also a submodule.

In the next two results we bring out the relation between the two maps ϕ̂T and
ΦT .

Lemma 2.5. Let v, w ∈ (Rw)Z
2

be related by v = ΦT (w). Then for r(σ) ∈ Aw we
have

r(σ)v = ΦT (ϕ̂T (r(σ))w).

Proof. It is enough to prove the result for the scalar case; that is, for v, w ∈ RZ
2

and f(σ) ∈ A we must have

(2.9) f(σ)v = ΦT (ϕT (f(σ))w).

This is because ϕ̂T is defined as ϕT applied elementwise, and ΦT is linear. Further,
note that every Laurent polynomial is a finite R-linear combination of monomials.
Therefore, once again by the linearity of ΦT , it is enough to prove (2.9) for A �
f(σ) = σν , where ν ∈ Z2 is arbitrary.

Now, v, w ∈ RZ
2

are assumed to be related by v = ΦT (w). First, note that for
ν, ν′ ∈ Z

2, the action of the monomial σν on v is given by

(σνv)(ν′) = v(ν′ + ν) = ΦT (w)(ν
′ + ν) = w(T (ν′ + ν)) = (σTνw)(Tν′)

= ΦT (ϕT (σ
ν)w)(ν′).

Since ν′ was arbitrary, we get for all ν ∈ Z2

(2.10) σνv = ΦT (ϕT (σ
ν)w).

This is what we had claimed.
Given a behavior B, we now define

(2.11) ΦT (B) := {v ∈ (Rw)Z
2 | v = ΦT (w) for some w ∈ B}.

Theorem 2.6. Let R ⊆ Aw be a submodule with behavior B(R), and let T ∈ Z2×2

be unimodular. Then we have

(2.12) B(R) = ΦT (B(ϕ̂T (R))).

Proof. We first prove B(R) ⊇ ΦT (B(ϕ̂T (R))). Let w ∈ B(ϕ̂T (R)), we want to
show that ΦT (w) = w ◦ T =: v ∈ B(R). Note that by Lemma 2.5, for any r(σ) ∈ Aw,
we have

r(σ)v = ΦT (ϕ̂T (r(σ))w).

In particular, for all r(σ) ∈ R, we have ϕ̂T (r(σ)) ∈ ϕ̂T (R). Therefore, for all
r(σ) ∈ R,
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r(σ)v = ΦT (ϕ̂T (r(σ))w) = 0 (since w ∈ B(ϕ̂T (R)))

⇒ v ∈ B(R).

For the converse, note that since T is unimodular it has an inverse in Z2×2.
Then replacing T by T−1 and R by ϕ̂T (R) in the above chain of arguments, we
get B(ϕ̂T (R)) ⊇ ΦT−1(B(R)) because ϕ̂T−1(ϕ̂T (R)) = R. It then follows that
ΦT (B(ϕ̂T (R))) ⊇ B(R) because ΦT ◦ ΦT−1 = id.

3. Representation formula for a special type of autonomous systems.
In [7] the notion of “time/space-relevant” discrete 2D autonomous systems was in-
troduced. For “square”2 2D time-relevant systems, it was shown in [7] how a state-
variable type of first order representation can be obtained. In this section, we define
a stronger notion of relevance with respect to one coordinate axis for discrete 2D au-
tonomous systems. Further, we show how strong relevance of an autonomous system
leads to a representation formula for the trajectories in it. This result will prove to
be essential for a representation formula of general autonomous systems.

In [7], the notion of time-relevance has been defined in terms of “characteristic
sets.” A set S ⊆ Z

2 is said to be a characteristic set of a 2D autonomous behavior B
if every trajectory in B is uniquely determined by its restriction to S (see [13, 19]).
In mathematical terms, for w1, w2 ∈ B we have w1 = w2 if and only if w1|S = w2|S ,
where w|S denotes the restriction of w to S. With this notion of characteristic sets,
σ2-relevant systems can be defined following the definition of time-relevant systems
of [7].

Definition 3.1. A 2D behavior B is said to be σ2-relevant if for every k ∈ Z

the subset of Z2 of the form

Sk := {(ν1, ν2) ∈ Z
2 | ν2 � k}

is a characteristic set of B.
An algebraic criterion equivalent to time-relevance (and therefore σ2-relevance)

of square systems was subsequently presented in [7]. According to this algebraic
formulation, a square 2D behavior B is σ2-relevant if and only if it admits a kernel
representation matrix R(σ) ∈ Aw×w having the form

(3.1) R(σ) = Iw +R1(σ1)σ
−1
2 + · · ·+RL(σ1)σ

−L
2 ,

where L is a finite positive integer and Ri(σ1) ∈ Aw×w
1 for 1 � i � L. Definition 3.2

below defining strongly σ2-relevant systems is inspired from this algebraic formulation.
Note that it follows from (3.1) that B is σ2-relevant if and only if it admits a kernel
representation matrix of the form

(3.2) R(σ) = Iwσ
L
2 +R1(σ1)σ

L−1
2 + · · ·+RL(σ1),

where L is a finite positive integer and Ri(σ1) ∈ Aw×w
1 for 1 � i � L. This, in turn, is

equivalent to saying that every row-vector in Aw with entries having only nonnegative
powers in σ2 is equivalent modulo the equation module R to a row-vector in Aw

with entries having only finitely many powers of σ2, namely 1, σ2, σ
2
2 , . . . , σ

L−1
2 . Now,

let us denote by A1[σ2] the ring of polynomials with nonnegative powers in σ2 with

2By “square” it is meant that the system admits a square kernel representation matrix with
nonzero determinant (see [19]).
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coefficients from A1. Then the above condition translates, in algebraic terms, to the
following:

The A1[σ2]-module A1[σ2]
w quotiented by the rowspan of R(σ) over A1[σ2] is

finitely generated as a module over A1.
In Definition 3.2 we extend this property of the quotient module being a finitely

generated module over A1 to encompass not only nonnegative powers of σ2, but also
negative powers as well. In other words, we call a behavior strongly σ2-relevant if
the quotient module M = Aw/R is a finitely generated module over A1. Note that
we no longer restrict ourselves to systems described by square kernel representation
matrices.

Definition 3.2. Let B be an autonomous behavior with equation module R ⊆
Aw. Then B is said to be strongly σ2-relevant if the quotient module M = Aw/R is
a finitely generated module over A1.

Note that strongly autonomous systems are trivially strongly σ2-relevant. Indeed,
for strongly autonomous systems, M is a finite-dimensional vector space over R, which
is trivially a finitely generated module over A1. However, there are other strongly
σ2-relevant systems which are not strongly autonomous. The following is a scalar
(i.e., w = 1) example of one such system.

Example 3.3. Consider the behavior

B = ker

[
σ2
2 − 2σ2 + 1

σ1σ2 − σ1 − σ2 + 1

]
.

Since B has only one manifest variable, the equation module R is the ideal a :=
〈σ2

2 −2σ2+1, σ1σ2−σ1−σ2+1〉. Consequently, the quotient module M = A/a. The
presence of the polynomial σ2

2 − 2σ2 + 1 in the equation ideal a implies that this M
is a finitely generated module over A1. Indeed, every element in M can be written
as a linear combination of {1, σ2} with coefficients coming from A1. First, note that

σ2
2 − 2σ2 + 1 ∈ a implies that σ2 − 2 + σ−1

2 ∈ a. Therefore, (σ2)
−1

= −σ2 + 2 ∈ M.
As a result, all negative powers of σ2 can be written as polynomials in nonnegative
powers of σ2 with coefficients in R. As a consequence, every Laurent polynomial in σ1
and σ2 is equal to a polynomial having only nonnegative powers of σ2 with coefficients
from R[σ1

±1] = A1/(a ∩ A1). However, note that σ2
2 − 2σ2 + 1 is monic. Therefore,

using the Euclidean division algorithm, all positive powers of σ2 greater than one can
be expressed in terms of σ2 and 1. Therefore, given any polynomial, say f(σ) ∈ A,
it can be reduced to a polynomial f1(σ) ∈ A having only nonnegative powers of σ2.
Further, one can find a1(σ1), a0(σ1) ∈ A1 and q(σ) ∈ A such that

f1(σ) = q(σ)(σ2
2 − 2σ2 + 1) + a1(σ1)σ2 + a0(σ1).

In other words, f(σ) = a1(σ1)σ2 + a0(σ1). This proves that every element in M can
be written as a linear combination of 1 and σ2 with coefficients from A1. That is, M
is finitely generated as a module over A1. Thus, B above is strongly σ2-relevant.

The notion of strong σ2-relevance is indeed a stronger notion than the corre-
sponding notion of σ2-relevance of [7]. Observe that in the situation of (3.2), strong
σ2-relevance requires RL(σ1) to be invertible in Aw×w

1 . Thus for square autonomous
systems, being strongly σ2-relevant is a sufficient condition for σ2-relevance but is
clearly not necessary. For square autonomous systems, the difference between the σ2-
relevant system and the strongly σ2-relevant system can also be expressed in terms
of the characteristic sets. Whereas σ2-relevant systems require only half-planes as
characteristic sets, strongly σ2-relevant systems (that are square) require “strips” to
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be characteristic sets. This fact is be clear from Proposition 3.4 below. In Proposition
3.4, we bring out several structural properties involving the equation module R, the
kernel representation matrices, and the annihilator ideal of the quotient module M,
which are all equivalent to strong σ2-relevance. Note that the definition for strongly
σ2-relevant square autonomous systems could have been given in terms of character-
istic sets. However, we use the property of M being finitely generated over A1 as the
definition for strong σ2-relevance, since this definition applies to general autonomous
systems as opposed to square autonomous systems. Further, as an immediate con-
sequence of this definition, we are able to construct certain useful matrices, which
finally lead us to our desired representation formulae. We elaborate on this now.

Note that M being a finitely generated module over A1 implies that M admits
a finite generating set as an A1-module. Suppose {g1, g2, . . . , gn} ⊆ M is one such
finite generating set for M as an A1-module, where n is some finite positive integer.
This generating set can be used to define the following map of A1-modules from the
free module of row-vectors An

1 to M as

(3.3)
ψ : An

1 → M,
ei �→ gi for all 1 � i � n,

where ei is the standard basis row-vector in An
1 , i.e.,

ei :=

n entries︷ ︸︸ ︷[
0 0 · · · 1 · · · 0

] ∈ An
1 .

↑
ith position

So a row-vector r(σ1) =
[
r1(σ1) r2(σ1) · · · rn(σ1)

] ∈ An
1 is mapped to an element

in M by ψ as

ψ(r(σ1)) = r1(σ1)g1 + r2(σ1)g2 + · · ·+ rn(σ1)gn.

Now, since M is originally a module over A, multiplication of elements in M by
f(σ) ∈ A is well defined. When M is viewed as a module over A1, this multiplication
defines a map from M to itself, which is clearly A1-linear. In mathematical terms,
the map

(3.4)
μf : M → M,

m �→ f(σ)m

is a map of A1-modules. Now, if M is finitely generated as an A1-module, then this
A1-linear map μf can be represented by a square matrix. Let {g1, g2, . . . , gn} ⊆ M
be a finite generating set for M as an A1-module. Suppose, for 1 � i � n,

(3.5) μf (gi) = f(σ)gi = ai,1(σ1)g1 + ai,2(σ1)g2 + · · ·+ ai,n(σ1)gn.

We define

(3.6) Af (σ1) :=

⎡⎢⎢⎢⎣
a1,1(σ1) a1,2(σ1) · · · a1,n(σ1)
a2,1(σ1) a2,2(σ1) · · · a2,n(σ1)

...
...

. . .
...

an,1(σ1) an,1(σ1) · · · an,n(σ1)

⎤⎥⎥⎥⎦ .
It then follows that for any m ∈ M, if m is written as an A1-linear combination of
the generators {g1, g2, . . . , gn}, say



REPRESENTATION FORMULAE FOR DISCRETE 2D SYSTEMS 2415

m = m1(σ1)g1 +m2(σ1)g2 + · · ·+mn(σ1)gn

=
[
m1(σ1) m2(σ1) · · · mn(σ1)

]
⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦ ,
then f(σ)m ∈ M will be represented in terms of the same generating set as

(3.7) f(σ)m =
[
m1(σ1) m2(σ1) · · · mn(σ1)

]
Af (σ1)

⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦ .
In Proposition 3.4 below we utilize the above-mentioned matrix representation of the
multiplication map to bring out certain structural properties equivalent to M being
finitely generated as an A1-module.

Proposition 3.4. Let B be an autonomous behavior with equation module R ⊆
Aw. Then the following conditions are equivalent:

1. B is strongly σ2-relevant.
2. The quotient module M = Aw/R is a finitely generated module over A1.
3. The annihilator ann(M) contains a p(σ) ∈ A of the form

(3.8) p(σ) = σL2 + aL−1(σ1)σ
L−1
2 + · · ·+ a1(σ1)σ2 + a0(σ1),

where L is a finite positive integer, a0(σ1), a1(σ1), . . . , aL−1(σ1) ∈ A1, and
a0(σ1) is a unit in A1.

4. There exist a finite positive integer L and a0(σ1), a1(σ1), . . . , aL−1(σ1) ∈ A1,
with a0(σ1) a unit in A1, such that for all standard basis vectors {ei | 1 �
i � w} ⊆ Aw we have

(3.9)
(
σL2 + aL−1(σ1)σ

L−1
2 + · · ·+ a1(σ1)σ2 + a0(σ1)

)
ei ∈ R.

5. B admits a kernel representation matrix R(σ) ∈ Ag×w that can be partitioned
as

R(σ) =

[
Rsq(σ)
R′(σ)

]
,

where Rsq ∈ Aw×w is square and of the form

(3.10) Rsq(σ) = Iwσ
L
2 +RL−1(σ1)σ

L−1
2 + · · ·+R1(σ1)σ2 +R0(σ1)

with L being a finite positive integer, Ri(σ1) ∈ Aw×w
1 for 0 � i � L − 1, and

R0(σ1) being invertible (unimodular) in Aw×w
1 .

Proof. We prove the equivalences in the following sequence: (1) ⇔ (2), (2) ⇔ (3),
(3) ⇔ (4), (4) ⇒ (5), and (5) ⇒ (3).

(1) ⇔ (2) This is true by definition.
(2) ⇒ (3) We assume that M is a finitely generated A1-module. We want to

show that there exists a Laurent polynomial p(σ) ∈ ann(M) of the form

p(σ) = σL2 + aL−1(σ1)σ
L−1
2 + · · ·+ a1(σ1)σ2 + a0(σ1)
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with L being a finite positive integer, a0(σ1), a1(σ1), . . . , aL−1(σ1) ∈ A1, and a0(σ1)
being a unit in A1. First, we show that there exists a Laurent polynomial p1(σ) ∈
ann(M) of the form

p1(σ) = σn2 + bn−1(σ1)σ
n−1
2 + · · ·+ b1(σ1)σ2 + b0(σ1)

with n being a finite positive integer and b0(σ1), b1(σ1), . . . , bn1−1(σ1) ∈ A1. However,
note that we do not insist on b0(σ1) being a unit in A1. To get this p1(σ), first consider
a generating set {g1, g2, . . . , gn} of M over A1, and substitute σ2 for f(σ) in (3.4),
(3.5), and (3.6). That way, multiplication by σ2 in M is represented by a square
matrix, say A(σ1) ∈ An×n

1 . Let ξ be any transcendental over the field of fractions of
A1. Then det(ξIn −A(σ1)) is a monic polynomial in ξ with coefficients from A1, say

det(ξIn −A(σ1)) = ξn + bn−1(σ1)ξ
n−1 + · · ·+ b1(σ1)ξ + b0(σ1).

Define p1(σ1, ξ) := det(ξIn − A(σ1)). It follows from the Cayley–Hamilton theorem
that p1(σ1, A(σ1)) ∈ An×n

1 is the zero matrix. This means that for any arbitrary
row-vector r(σ1) ∈ An

1 we have

(3.11) r(σ1)p1(σ1, A(σ1)) = 0 ∈ An
1 .

Note that a straightforward consequence of the definition of the matrix A(σ1) is that
the matrix p1(σ1, A(σ1)) represents the multiplication map from M to itself defined
by p(σ1, σ2). It then follows from (3.7) that for any m = m1(σ1)g1 + m2(σ1)g2
+ · · ·+mn(σ1)gn ∈ M,

p1(σ1, σ2)m =
[
m1(σ1) m2(σ1) · · · mn(σ1)

]
p1(σ1, A(σ1))

⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦ .
But the right-hand side equals zero because of (3.11). Thus, for all m ∈ M, we have
p(σ1, σ2)m = 0; in other words, p1(σ1, σ2) ∈ ann(M).

Further note that multiplication by σ−1
2 too defines an A1-linear map from M to

itself. Thus, substituting σ−1
2 for f(σ) in (3.4), (3.5), and (3.6) and following exactly

the same steps as above, we find that there exists p2(σ) ∈ ann(M) of the form

p2(σ) = σ−n
2 + cn−1(σ1)σ

−n+1
2 + · · ·+ c1(σ1)σ

−1
2 + c0(σ1),

where ci(σ1) ∈ A1 for 0 � i � n − 1. Since ann(M) is an ideal in A, it now follows
that p(σ) := σ2p1(σ) + σn2 p2(σ) ∈ ann(M). Observe that p(σ) thus defined has the
form

p(σ) = σn+1
2 + (bn−1(σ1) + c0(σ1))σ

n
2 + (bn−2(σ1) + c1(σ1)) σ

n−1
2 + · · ·

+ (b0(σ1) + cn−1(σ1))σ2 + 1.

Defining L := n+ 1, ai(σ1) := (bi−1(σ1) + cn−i) for 1 � i � n and a0(σ1) = 1, we get
the desired expression for p(σ), where a0(σ1) = 1 is trivially a unit in A1.

(2) ⇐ (3) Assuming that there exists p(σ) ∈ ann(M) of the form of (3.8), we
want to show that M is a finitely generated A1-module. In order to do so it is enough
to show that the ring A/ann(M) is a finitely generated A1-module. For M is finitely
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generated as a module over the ring A/ann(M) (see Remark 2.4), and A/ann(M)
being a finitely generated module overA1 guarantees thatM, too, is finitely generated
as a module over A1. Indeed, if {g1, g2, . . . , gr} ⊆ M is a generating set for M as a
module overA/ann(M), and {f1, f2, . . . , fs} ⊆ A/ann(M) is the same for A/ann(M)
as a module overA1, then {figj | 1 � i � s, 1 � j � r} can be shown to be a generating
set for M as a module over A1.

In order to show that A/ann(M) is finitely generated as a module over A1,
we essentially generalize the method employed in Example 3.3. First, note that every
Laurent polynomial inA can be written as a Laurent polynomial in σ2 with coefficients
coming from A1; that is, any f(σ) ∈ A can be written as

(3.12) f(σ) =
∑
i∈Z

αi(σ1)σ
i
2,

where αi(σ1) ∈ A1 for all i and the sum is finite, meaning ai(σ1) �= 0 only for
finitely many i’s. We first show that the presence of p(σ), having the form of (3.8),
in ann(M) makes every Laurent polynomial equivalent modulo ann(M) to another
Laurent polynomial with only nonnegative powers in σ2. To see this, first observe
that from (3.8) we can write

σ−1
2 = a0(σ1)

−1p(σ)− a0(σ1)
−1
(
σL−1
2 + aL−1(σ1)σ

L−2
2 + · · ·+ a1(σ1)

)
.

In other words,

(3.13) σ−1
2 ≡ −a0(σ1)−1

(
σL−1
2 + aL−1(σ1)σ

L−2
2 + · · ·+ a1(σ1)

)
modulo ann(M).

Note that the right-hand side of (3.13) has only nonnegative degrees in σ2. Taking
higher positive powers we see that for every positive integer i, σ−i

2 ≡ f(σ) ∈ A1[σ2]
modulo ann(M). In mathematical terms,

(3.14) A/ann(M) ∼= A1[σ2]/(ann(M) ∩ A1[σ2])

as rings. The next observation is yet another consequence of the presence of p(σ) ∈
ann(M). Notice that p(σ) is, as a polynomial in σ2 with coefficients in A1, monic.
This means, given any f(σ) ∈ A1[σ2], we can find q(σ), r(σ) ∈ A1[σ2], with r(σ)
having σ2-degree less than or equal to L− 1, such that

f(σ) = q(σ)p(σ) + r(σ).

That is, f(σ) ≡ r(σ) modulo ann(M). Since r(σ) ∈ A1[σ2] and has σ2-degree less than
or equal to L−1, it can be considered as a linear combination of {1, σ2, . . . , σL−1

2 } with
coefficients from A1. Therefore, it follows that every element in A1[σ2] is equivalent
modulo ann(M) to a linear combination of {1, σ2, . . . , σL−1

2 } with coefficients from
A1. In other words, A1[σ2]/ (ann(M) ∩A1[σ2]) is generated as a module over A1

by {1, σ2, . . . , σ2L−1}. This, together with (3.14), proves that A/ann(M) is finitely
generated as a module over A1, which is what we set out to prove.

(3) ⇔ (4) Statement (4) is just a restatement of the fact that p(σ) of the form of
(3.8) belongs to ann(M), which is nothing but statement (3).

(4) ⇒ (5) In order to show that statement (5) holds, it is enough to show that
there exists Rsq(σ) ∈ Aw×w of the form of (3.10) such that its rowspan over A is
contained in R. It follows from statement (4) that the rowspan of the square matrix
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Rsq(σ) := σL2 Iw + aL−1(σ1)σ
L−1
2 Iw + · · ·+ a1(σ1)σ2Iw + a0(σ1)Iw

over A is contained in the equation module R. Defining Ri(σ1) = ai(σ1)Iw for 0 � i �
L − 1, we get that det (R0(σ1)) = a0(σ1)

w, which is a unit in A1. Therefore, R0(σ1)
is invertible (unimodular) in Aw×w

1 .
(5) ⇒ (3) We assume B admits a kernel representation of the form

R(σ) =

[
Rsq(σ)
R′(σ)

]
with Rsq(σ) ∈ Aw×w of the form of (3.10), that is,

Rsq(σ) = Iwσ
L
2 +RL−1(σ1)σ

L−1
2 + · · ·+R1(σ1)σ2 +R0(σ1),

L being a finite positive integer, Ri(σ1) ∈ Aw×w
1 for 0 � i � L − 1, and R0(σ1) being

invertible (unimodular) in Aw×w
1 . We want to show that p(σ) of the form of (3.8)

belongs to ann(M). From the definition of the characteristic ideal I(B) it follows
that det(Rsq(σ)) ∈ I(B). By Proposition 2.3 we have I(B) ⊆ ann(M). Therefore,
det(Rsq(σ)) ∈ ann(M). Now observe that det(Rsq(σ)) is of the form

det(Rsq(σ)) = σwL2 + αwL−1(σ1)σ
wL−1
2 + · · ·+ α1(σ1)σ2 + α0(σ1).

Moreover, α0(σ1) = det(R0(σ1)). Since R0(σ1) has been assumed to be unimod-
ular, det(R0(σ1)) is a unit in A1. Thus, defining p(σ) := det(R0(σ1)), we get
statement (3).

As a corollary to the above proposition, we get the following useful result.
Corollary 3.5. Suppose a ⊆ A is an ideal. Then the quotient ring A/a is a

finitely generated module over A1 if and only if a contains a Laurent polynomial p(σ)
of the form

p(σ) = σL2 + aL−1(σ1)σ
L−1
2 + · · ·+ a1(σ1)σ2 + a0(σ1),

where L is a finite positive integer, a0(σ1), a1(σ1), . . . , aL−1(σ1) ∈ A1, and a0(σ1) is
a unit in A1.

Proof. In Proposition 3.4 above, consider w = 1 and take R = a ⊆ A. Then the
quotient module M = A/a. The claim now follows from the equivalence of statements
(2) and (3) by noting that in this case ann(M) = a.

The defining property of strongly σ2-relevant systems, that is, the quotient module
M being finitely generated over A1, leads to a representation formula for trajecto-
ries in such systems. We present this representation formula in Theorem 3.7 below.
Before we present this theorem we need some auxiliary results. Theorem 3.7 requires
the following 1-variable Laurent polynomial matrices, which are guaranteed to exist
once M is assumed to be a finitely generated module over A1 (i.e., B is strongly
σ2-relevant). These matrices are defined in (3.15), (3.17), and (3.18) below. First,
note that M as an A1-module may not be free, that is, the generators may sat-
isfy nontrivial relations among themselves over A1. In that case, recalling the map
ψ : An

1 → M defined by (3.3), we must have ker(ψ) to be a nontrivial submodule
of An

1 . Since An
1 is a Noetherian module, this submodule ker(ψ) must be finitely

generated. Let R1(σ1) ∈ An′×n
1 be a matrix whose rows generate ker(ψ), i.e.,

(3.15) rowspan(R1(σ1)) = ker(ψ).
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We call this matrix R1(σ1) the matrix corresponding to the module of relations of the
generating set {g1, g2, . . . , gn}, in short, the matrix of relations of {g1, g2, . . . , gn}. It
then easily follows that

(3.16) R1(σ1)

⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦ = 0 ∈ Mn′
.

Next, let ei be the standard ith basis row-vector in Aw. Suppose ei ∈ M, the
image of ei under the surjection Aw � Aw/R = M, is given by a linear combination
of {g1, g2, . . . , gn} over A1 as

ei = ci,1(σ1)g1 + c1,2(σ1)g2 + · · ·+ ci,n(σ1)gn.

Define

(3.17) C(σ1) :=

⎡⎢⎢⎢⎣
c1,1(σ1) c1,2(σ1) . . . c1,n(σ1)
c2,1(σ1) c2,2(σ1) . . . c2,n(σ1)

...
...

. . .
...

cw,1(σ1) cw,2(σ1) . . . cw,n(σ1)

⎤⎥⎥⎥⎦ .
Finally, reconsider the map μf : M → M defined in (3.4), with f(σ) = σ2. We

shall be using μf only for the case f(σ) = σ2 in what follows, and hence, we refer
to this map defined by multiplication by σ2 as just μ. As we have mentioned before,
μ is a map of A1-modules. We have also seen that M being a finitely generated
A1-module implies that μ admits the following matrix representation:

(3.18) A(σ1) :=

⎡⎢⎢⎢⎣
a1,1(σ1) a1,2(σ1) · · · a1,n(σ1)
a2,1(σ1) a2,2(σ1) · · · a2,n(σ1)

...
...

. . .
...

an,1(σ1) an,1(σ1) · · · an,n(σ1)

⎤⎥⎥⎥⎦ ,
where, for 1 � i � n, μ(gi) = σ2gi = ai,1(σ1)g1 + ai,2(σ1)g2 + · · ·+ ai,n(σ1)gn. Note
that this representation allows us to write

(3.19) σ2

⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
μ(g1)
μ(g2)

...
μ(gn)

⎤⎥⎥⎥⎦ = A(σ1)

⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦ .
This matrix representation of the map μ entails the following consequences. Recall the
map ψ : An

1 → M of (3.3). Then, for any arbitrary r(σ1) =
[
r1(σ1) r2(σ1) · · · rn(σ1)

] ∈
An

1 , it follows from the definition of ψ and (3.19) above that

μ (ψ (r(σ1))) = σ2 (r1(σ1)g1 + r2(σ1)g2 + · · ·+ rn(σ1)gn)

= r(σ1)σ2

⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦ = r(σ1)A(σ1)

⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦ = ψ(r(σ1)A(σ1)).
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In other words, the following diagram of maps of A1-modules commute:

(3.20)
An

1

ψ
� M

A(σ1) ↓ ↓ μ

An
1

ψ
� M

,

where the A1-module morphism given by A(σ1) is right multiplication by A(σ1) to
row-vectors in An

1 . An important consequence of the above commutative diagram is

that if R1(σ) ∈ An′×n
1 is a matrix of relations of {g1, g2, . . . , gn}, then we have

(3.21) R1(σ1)A(σ1) = F (σ1)R1(σ1)

for some F (σ1) ∈ An′×n′
1 .

At this juncture, we note that the map μ is invertible on M, and its inverse is the
map given by μf with f(σ) = σ−1

2 , although the matrix A(σ1) representing μ may
not be automatically invertible (unimodular) in An×n

1 . However, as we show below in
Lemma 3.6, one can always choose a suitable generating set for M as a module over
A1 such that the corresponding A(σ1) is indeed invertible.

Lemma 3.6. Let R ⊆ Aw be a submodule such that M = Aw/R is a finitely
generated module over A1. Then there exists a finite generating set {g1, g2, . . . , gn} of
M as a module over A1 such that the corresponding matrix A(σ1) ∈ An×n

1 , as defined
in (3.18), is invertible (unimodular) in An×n

1 .
Proof. In order to show that A(σ1) is invertible it is enough to show that

det(A(σ1)) is a unit in A1. By assumption, M is a finitely generated module over A1.
It then follows from Proposition 3.4 that there exists a Laurent polynomial p(σ) ∈ A
of the form

σL2 + aL−1(σ1)σ
L−1
2 + · · ·+ a1(σ1)σ2 + a0(σ1),

where L is a finite positive integer and a0(σ1), a1(σ1), . . . , aL−1(σ1) ∈ A1, with a0(σ1)
a unit in A1 such that for all standard basis vectors {ei | 1 � i � w} ⊆ Aw we have

p(σ)ei ∈ R.
We claim that the images of the elements

{σj2ei | 1 � i � w, 0 � j � L− 1}
in M form a generating set for M as a module over A1. In order to see this, first
note that p(σ)ei ∈ R for all 1 � i � w implies that for two row-vectors

r1(σ) =
[
r11(σ) r12(σ) · · · r1w(σ)

] ∈ Aw

and

r2(σ) =
[
r21(σ) r22(σ) · · · r2w(σ)

] ∈ Aw

we have
(3.22)

r1i(σ) ≡ r2i(σ) modulo 〈p(σ)〉 for all 1 � i � w ⇒ r1(σ) ≡ r2(σ) modulo M.

However, the structure of the polynomial p(σ) implies first that every Laurent poly-
nomial is equivalent to a Laurent polynomial with only nonnegative powers in σ2
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modulo 〈p(σ)〉 (this is because the constant term a0(σ1) is a unit in A1; see (2) ⇐ (3)
in the proof of Proposition 3.4). Second, every Laurent polynomial with only non-
negative powers in σ2 is equivalent to a linear combination of {1, σ2, . . . , σL−1

2 } with
coefficients from A1 (this is because p(σ) is monic with σ2-degree L). This, together
with (3.22), implies that for an arbitrary m(σ) ∈ Aw, there exist {αi,j(σ1) ∈ A1 | 1 �
i � w, 0 � j � L− 1} such that

m(σ) ≡ [
r1(σ) r2(σ) · · · rw(σ)

]
modulo R,

where ri(σ) = αi,0(σ1) + αi,1(σ1)σ2 + · · ·+ αi,L−1(σ1)σ
L−1
2 . That is,

m(σ) ≡
w∑
i=1

L−1∑
j=0

αi,j(σ1)σ
j
2ei modulo R.

In other words, M is generated as an A1-module by {σj2ei | 1 � i � w, 0 � j � L−1}.
Let us now order this generating set as {e1, σ2e1, . . . , σL−1

2 e1, e2, σ2e2, . . .} and
define

σj2ei =: gL(i−1)+(j+1).

With this generating set {g1, g2, . . . , gLw} it is straightforward to check that μ admits
a matrix representation of the form

A(σ1) =

⎡⎢⎢⎢⎣
Ablock(σ1) 0 · · · 0

0 Ablock(σ1) · · · 0
...

...
. . .

...
0 0 · · · Ablock(σ1)

⎤⎥⎥⎥⎦ ∈ ALw×Lw
1 ,

where the Ablock(σ1) ∈ AL×L
1 is given by

Ablock(σ1) =

⎡⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−a0(σ1) −a1(σ1) −a2(σ1) · · · −aL−1(σ1)

⎤⎥⎥⎥⎦ ,
where the ai(σ1)’s are the coefficients of p(σ). Now, clearly det(A(σ1)) =
det(Ablock(σ1))

w. Since Ablock(σ1) is in companion form, det(Ablock(σ1)) = a0(σ1).
Therefore, det(A(σ1)) = a0(σ1)

w, which is clearly a unit because a0(σ1) is.
Keeping Lemma 3.6 in mind, in what follows we always assume that A(σ1) is

invertible in An×n
1 . The inverse of A(σ1) clearly represents the map defined by mul-

tiplication by σ−1
2 . This enables us to extend the commutative diagram of (3.20) to

the case when μ is replaced by any integer power of it. That is, for any i ∈ Z, define

μi : M � m �→ σi2m ∈ M; then the following diagram commutes:

(3.23)
An

1

ψ
� M

A(σ1)
i ↓ ↓ μi

An
1

ψ
� M

,

where A(σ1)
i : An

1 � r(σ1) �→ r(σ1)A(σ1)
i ∈ An

1 . Consequently, for all i ∈ Z we have

Fi(σ1) ∈ An′×n′
1 such that
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(3.24) R1(σ1)A(σ1)
i = Fi(σ1)R1(σ1).

We now present the representation formula for strongly σ2-relevant autonomous
systems. It is important to note at this point that elements from An

1 act on n-
tuples of 1D trajectories. As in (2.2), in this case we have that for r(σ1) =[
r1(σ1) r2(σ1) · · · rn(σ1)

] ∈ An
1 and x = col(x1, x2, . . . , xn) ∈ (Rn)Z the action

of r(σ1) on x is defined as

(3.25) r(σ1)x = r1(σ1)x1 + r2(σ1)x2 + · · ·+ rn(σ1)xn ∈ R
Z.

Theorem 3.7. Let B be an autonomous behavior with equation module R ⊆ Aw.
Suppose B is strongly σ2-relevant; that is, M = Aw/R is a finitely generated module
over A1. Let {g1, g2, . . . , gn} ⊆ M be a set of generators of M as an A1-module,
and consider the A1-module map ψ : An

1 → M as in (3.3). Further, let R1(σ1) ∈
An′×n

1 , C(σ1) ∈ Aw×n
1 , and A(σ1) ∈ An×n

1 be as defined in (3.15), (3.17), and (3.18),
respectively, with A(σ1) invertible in An×n

1 . Then w ∈ B if and only if there exists
x ∈ (Rn)Z satisfying

(3.26) R1(σ1)x = 0

such that for all ν = col(ν1, ν2) ∈ Z2,

(3.27) w(ν) = (C(σ1)A(σ1)
ν2x) (ν1).

In order to prove Theorem 3.7 we first need Lemma 3.8. The content of Lemma
3.8 is that given any arbitrary r(σ) ∈ Aw, the lemma provides a candidate row-vector
in An

1 such that the image of this row-vector under ψ is equal to r(σ) ∈ M. As a
consequence of this observation, we get a necessary and sufficient condition, in terms
of R(σ1), A(σ1), and C(σ1), for r(σ) to be in the equation module R. First, in Lemma
3.8 and in the proof of Theorem 3.7 we shall require writing row-vectors in Aw in an
alternative form. For this we first define the following finite subset of Z2: suppose a
row-vector r(σ) ∈ Aw is given by

(3.28) r(σ) =
∑
ν∈Z2

ανσ
ν ,

where αν ∈ R
w
row are row-vectors of real numbers and only finitely many of αν ’s are

nonzero; then define

supp(r) := {ν ∈ Z
2 | αν �= 0 ∈ R

w
row}.

Further, for any subset Γ of Z2 we define

π2(Γ) := {i ∈ Z | ∃ j ∈ Z such that (j, i) ∈ Γ}.

Then (3.28) can be rewritten in powers of σ2 with coefficients from Aw
1 as

(3.29) r(σ) =
∑

i∈π2(supp(r))

βi(σ1)σ
i
2,

where βi(σ1) ∈ Aw
1.
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Next, observe that it follows from the definition of C(σ1) that ψ(C(σ1)) = Iw.
Then for any β(σ1) ∈ Aw

1 ⊆ Aw we have

(3.30) ψ(β(σ1)C(σ1)) = β(σ1) ∈ M.

With this we are now in a position to state and prove Lemma 3.8.
Lemma 3.8. Suppose R ⊆ Aw is a submodule such that M = Aw/R is a finitely

generated module over A1. Let {g1, g2, . . . , gn} ⊆ M be a set of generators of M as
an A1-module, and consider the A1-module map ψ : An

1 → M as in (3.3). Further,

let R1(σ1) ∈ An′×n
1 , C(σ1) ∈ Aw×n

1 , and A(σ1) ∈ An×n
1 be as defined in (3.15), (3.17),

and (3.18), respectively, with A(σ1) invertible in An×n
1 . Suppose r(σ) ∈ Aw is given

by (3.29). Then we have

(3.31) r(σ) = ψ

⎛⎝ ∑
i∈π2(supp(r))

βi(σ1)C(σ1)A(σ1)
i

⎞⎠ .

Therefore, r(σ) ∈ R if and only if

(3.32)
∑

i∈π2(supp(r))

βi(σ1)C(σ1)A(σ1)
i ∈ rowspan(R1(σ1)).

Proof. First note that

r(σ) =
∑

i∈π2(supp(r))

βi(σ1)σi2

=
∑

i∈π2(supp(r))

μi
(
βi(σ1)

)
.(3.33)

Since βi(σ1) ∈ Aw
1 it follows from (3.30) that βi(σ1) = ψ(βi(σ1)C(σ1)). So the right-

hand side of (3.33) can be written as

(3.34) r(σ) =
∑

i∈π2(supp(r))

μi (ψ(βi(σ1)C(σ1))) .

Now by the commutative diagram of (3.23) we get

r(σ) =
∑

i∈π2(supp(r))

ψ
(
βi(σ1)C(σ1)A(σ1)

i
)

= ψ

⎛⎝ ∑
i∈π2(supp(r))

βi(σ1)C(σ1)A(σ1)
i

⎞⎠ .

This proves the first claim of the lemma, that is, (3.31).
The second claim, (3.32), easily follows from here, because ker(ψ) = rowspan(R1(σ1))

and r(σ) ∈ R if and only if r(σ) = 0 ∈ M.
We now prove Theorem 3.7.
Proof of Theorem 3.7. (Only if) We assume that w ∈ B and show existence of

x ∈ (Rn)Z satisfying (3.26) and (3.27), that is,

R1(σ1)x = 0 and for all ν = col(ν1, ν2) ∈ Z2, w(ν) = (C(σ1)A(σ1)
ν2x) (ν1).
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We claim that an x with the desired properties can be obtained as follows: recall the
definition of the action of elements in M on B shown in (2.6); then, for all ν ∈ Z,
define

x(ν) :=

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦w
⎞⎟⎟⎟⎠ (ν, 0).

We first show that x, as defined above, satisfies R1(σ1)x = 0. This follows from the
following equations:

R1(σ1)x = R1(σ1)

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦w
⎞⎟⎟⎟⎠ (•, 0) = 0,

where the last equality follows from (3.16).

Next we show that x, as defined above, also satisfies w(ν) = (C(σ1)A(σ1)
ν2x) (ν1)

for all ν = (ν1, ν2) ∈ Z2. Let ν = (ν1, ν2) ∈ Z2 be arbitrary. It follows from the
definition of the A1-module map ψ that

(C(σ1)A(σ1)
ν2x) (ν1) =

⎛⎜⎜⎜⎝C(σ1)A(σ1)ν2
⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦w
⎞⎟⎟⎟⎠ (ν1, 0)(3.35)

= (ψ (C(σ1)A(σ1)
ν2)w) (ν1, 0).

Now utilizing the commutative diagram of (3.21) it follows from (3.35) that

(C(σ1)A(σ1)
ν2x) (ν1) = (ψ (C(σ1)A(σ1)

ν2)w) (ν1, 0)

= (μν2 (ψ(C(σ1)))w) (ν1, 0)

=
(
σ2
ν2Iww

)
(ν1, 0) = w(ν1, ν2),

where we have used the fact that ψ(C(σ1)) = Iw.

(If) We show that if x ∈ (Rn)Z satisfies R(σ1)x = 0, then w, given by

w(ν1, ν2) := (C(σ1)A(σ1)
ν2x) (ν1),

is a trajectory inB. Note that, since ker(ψ) is a proper submodule ofAn
1 , ker(R1(σ1)) �=

∅. Therefore, there exists x ∈ (Rn)Z satisfying R1(σ1)x = 0. In order to show that
w as defined above is a trajectory in B, it is enough to show that r(σ)w = 0 for all
r(σ) ∈ R. Suppose r(σ) ∈ R is written in powers of σ2 as in (3.29):

r(σ) =
∑

i∈π2(supp(r))

βi(σ1)σ
i
2,

where βi(σ1) ∈ Aw
1. For arbitrary (ν1, ν2) ∈ Z2, by making this r(σ) act on w we get
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(r(σ)w) (ν1, ν2) =
∑

i∈π2(supp(r))

(
βi(σ1)σ

i
2w
)
(ν1, ν2)

=
∑

i∈π2(supp(r))

(βi(σ1)w) (ν1, ν2 + i)

=
∑

i∈π2(supp(r))

(
βi(σ1)C(σ1)A(σ1)

ν2+ix
)
(ν1) (by definition of w)

=

⎛⎝⎛⎝ ∑
i∈π2(supp(r))

βi(σ1)C(σ1)A(σ1)
i

⎞⎠A(σ1)
ν2x

⎞⎠ (ν1).(3.36)

Since r(σ) ∈ R, by Lemma 3.8
∑

i∈π2(supp(r))
βi(σ1)C(σ1)A(σ1)

i ∈ rowspan(R1(σ1));

that is, there exists f(σ1) ∈ A1×n′
1 such that∑

i∈π2(supp(r))

βi(σ1)C(σ1)A(σ1)
i = f(σ1)R1(σ1).

Putting this in (3.36), we get

(r(σ)w) (ν1, ν2) = (f(σ1)R1(σ1)A(σ1)
ν2x) (ν1)

= (f(σ1)Fν2 (σ1)R1(σ1)x) (ν1) (by (3.24))

= 0,

where Fν2 (σ1) ∈ An′×n′
1 . Since (ν1, ν2) ∈ Z2 was arbitrary, it follows that r(σ)w =

0 ∈ RZ
2

. Thus w ∈ B.
The result of Theorem 3.7 is illustrated in the following two examples involving

scalar behaviors.
Example 3.9. Consider the scalar (w = 1) strongly σ2-relevant behavior of Ex-

ample 3.3,

B = ker

[
σ2
2 − 2σ2 + 1

σ1σ2 − σ1 − σ2 + 1

]
.

Here the equation module is the ideal a = 〈σ2
2 − 2σ2 + 1, σ1σ2 − σ1 − σ2 + 1〉, and

consequently, the quotient module M = A/a. As we have already seen, here M is
a finitely generated module over A1; {1, σ2} generate M as an A1-module. In this
case, we have n = 2 and the 1-variable Laurent polynomial matrices R1(σ1), C(σ1),
and A(σ1) are given by

1. R1(σ1) = [ (σ1−1) −(σ1−1) ],
2. C(σ1) = [ 1 0 ],
3. A(σ1) =

[
0 1−1 2

]
.

So every solution in B is of the form

w(ν1, ν2) =

([
1 0

] [ 0 1
−1 2

]ν2 [x1
x2

])
(ν1),

where col(x1, x2) ∈ (R2)Z satisfies

[
(σ1 − 1) −(σ1 − 1)

] [x1
x2

]
= 0.
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Example 3.10. Consider the following kernel representation:

B = ker

[
σ3
2 − (σ1 + 3)σ2

2 + (σ1 + 4)σ2 − 2,
(σ1 − 1)σ2

2 − (σ2
1 + σ1 − 2)σ2 + 2σ1 − 2

]
.

The equation ideal is a = 〈σ3
2−(σ1+3)σ2

2+(σ1+4)σ2−2, (σ1−1)σ2
2−(σ2

1+σ1−2)σ2+
2σ1 − 2〉. By Proposition 3.4, the presence of the polynomial σ3

2 − (σ1 + 3)σ2
2 + (σ1 +

4)σ2 − 2 in the kernel representation matrix implies that the quotient ring M = A/a
is finitely generated as a module over A1. In fact, {1, σ2, σ22} is a possible generating
set. The corresponding 1-variable matrices turn out to be

1. R1(σ1) = [ 2(σ1−1) −(σ2
1+σ1−2) (σ1−1) ],

2. C(σ1) = [ 1 0 0 ],

3. A(σ1) =
[ 0 1 0
0 0 1
2 −(σ1+4) (σ1+3)

]
.

It can be checked that every trajectory in B can be obtained by

w(ν1, ν2) =

⎛⎝[1 0 0
]⎡⎣0 1 0

0 0 1
2 −(σ1 + 4) (σ1 + 3)

⎤⎦ν2 ⎡⎣x1x2
x3

⎤⎦⎞⎠ (ν1),

where col(x1, x2, x3) ∈ (R3)Z satisfies

[
2(σ1 − 1) −(σ2

1 + σ1 − 2) (σ1 − 1)
] ⎡⎣x1x2
x3

⎤⎦ = 0.

Remark 3.11. The 1D trajectory x appearing in Theorem 3.7 plays the role of
initial conditions. Note that x ∈ (Rn)Z must satisfy the equation R1(σ1)x = 0 in order
to qualify as a valid initial condition. We denote this set of valid initial conditions
by X :

(3.37) X := {x ∈ (Rn)Z | R1(σ1)x = 0}.

This X can in fact be treated as a 1D behavior with kernel representation given by
R1(σ1). Thus, X turns out to be a subspace of (Rn)Z. It is interesting to note that
under the operator A(σ1) : (R

n)Z → (Rn)Z, X is an invariant subspace. This follows
from (3.21). As a result, restriction of A(σ1) to X is a well defined endomorphism of
X . It then makes sense to define a 1D first order dynamical system over X given by
(3.38) below. For this purpose we define x : Z → X as a 1D trajectory taking values
in X . That is, for ν ∈ Z we have x(ν) ∈ X . Now consider the first order dynamical
system on X is defined by

(3.38) x(ν + 1) = A(σ1)x(ν)

for all ν ∈ Z. Then the solution to this first order equation is given by

(3.39) x(ν) = A(σ1)
νx(0).

By identifying x(0) = x ∈ X as the initial condition, and Cx(ν) =: w(•, ν) it follows
that (3.39) is just another way of rewriting (3.27) of Theorem 3.7. Thus, Theorem 3.7
in fact shows that the first order system over X defined by (3.38) is equivalent to the
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behavior B. This way, X is like a state-space for B. The state-variables get defined
as

x(ν) =

⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦w(•, ν),
where {g1, g2, . . . , gn} ⊆ M is a suitable generating set for M as a module over A1.

The assumption ofB being strongly σ2-relevant in Theorem 3.7 is very restrictive.
There are many systems which do not satisfy this requirement. For example, consider
a scalar behavior given by a single equation B = ker(f(σ)), where f(σ) ∈ A is of the
form

f(σ) = σn2 + αn−1(σ1)σ
n−1
2 + · · ·+ α1(σ1)σ2 + α0(σ1),

where n is a positive integer, with αi(σ1) ∈ A1 for 0 � i � n−1. Suppose that α0(σ1)
is not a unit in A1. It can be shown, in that case, that B cannot be strongly σ2-
relevant. Indeed, supposing that B is σ2-relevant, it follows from Proposition 3.4 (or,
equivalently, Corollary 3.5) that the ideal 〈f(σ)〉 must contain a Laurent polynomial
of the form p(σ) = σL2 + aL−1(σ1)σ

L−1
2 + · · ·+ a1(σ1)σ2 + a0(σ1), where a0(σ1) is a

unit in A1. This means there exists g(σ) ∈ A such that p(σ) = f(σ)g(σ). Let g(σ)
be written as

g(σ) =

r2∑
i=r1

βi(σ1)σ
i
2,

where βi(σ1) ∈ A1 for r1 � i � r2. It follows from the equation p(σ) = f(σ)g(σ), by
equating various powers of σ2 in p(σ), that βi(σ1) = 0 for r1 � i < 0. Furthermore,
it also follows that a0(σ1) = α0(σ1)β0(σ1). Now observe that a0(σ1) being a unit in
A1 forces α0(σ1) to be a unit too in A1; this is clearly a contradiction. Therefore, the
scalar behavior B = ker(f(σ)) cannot be strongly σ2-relevant. A concrete example of
such an f(σ) is f(σ) = σ2 − σ1 − 1. Another example of a scalar behavior that is not
strongly σ2-relevant would beB = ker(σ1σ2−σ1−σ2+1). In sections 4 and 5 following
we overcome this drawback of Theorem 3.7 and present a representation formula for
general autonomous systems in Theorem 5.3. The main idea behind this is that every
autonomous system can be converted to a strongly σ2-relevant system by a suitable
change of coordinates. In section 4 we show how to achieve this transformation for
ideals; we call this result the discrete version of Noether’s normalization lemma. Then
in section 5 we first extend the normalization process to submodules and then use this
result to give the general representation formula (Theorem 5.3).

4. Discrete version of Noether’s normalization. Recall that given a uni-
modular T ∈ Z

2×2, it defines an automorphism of A as

(4.1)
ϕT : A → A,

σν �→ σTν
.

In this section, we show that, given a nonzero ideal a ⊆ A, either A/a is a finite
dimensional vector space over R, or there exists a unimodular T ∈ Z2×2 such that
under the corresponding ϕT the quotient ring A/ϕT (a) is a finitely generated faithful
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module over A1. This observation constitutes the main theorem, Theorem 4.3, of this
section. However, before we state and prove this theorem, we first prove following
Lemma 4.1, which is a precursor to Theorem 4.3. The lemma shows that given a
2D Laurent polynomial, there exists a unimodular T such that under ϕT the given
Laurent polynomial is mapped to a Laurent polynomial with a special structure: when
written as a Laurent polynomial in σ2 with coefficients from A1, these coefficients are
all units in A1. A similar result can be found in [9], where the result has been used
in a different context, namely design of inverse 2D filters.

Lemma 4.1. Let 0 �= f(σ) ∈ A be given by

f(σ) =
∑
ν∈Z2

ανσ
ν , αν ∈ R,

with only finitely many αν �= 0. Then there exists a unimodular T ∈ Z2×2 such that
under the corresponding automorphism ϕT given by (4.1), we have

(4.2) ϕT (f(σ)) =

(
δ∑

k=0

uk(σ1)σ
k
2

)
u(σ2),

where {u0(σ1), u1(σ1), . . . , uδ(σ1)} ⊆ A1, and u(σ2) ∈ R[σ±1
2 ] are all units in A, and

δ is some finite positive integer.
Proof. There are, in general, many T ’s which will render f(σ) in the form of

(4.2); we construct one particular T for which the monomials of f(σ) are mapped to
monomials having different σ2 degrees. To this end let us define T ∈ Z2×2 as

T :=

[
1 0
t 1

]
,

where t ∈ Z. Clearly, T is unimodular. It follows from the structure of T that the
ring map ϕT maps an arbitrary monomial σν with ν = col(ν1, ν2) ∈ Z

2 to

ϕT (σ
ν) = σTν = σν11 σ

tν1+ν2
2 .

We claim that t ∈ Z can be chosen such that the σ2-degrees of ϕT (σ
ν ), for the

monomials σν having nonzero coefficient αν in f(σ), are all different from each other.
For easy referencing we define the following finite subset of Z2:

supp(f) := {ν ∈ Z
2 | αν �= 0}.

Indeed, a t ∈ Z fails to achieve this if and only if there exist (ν1, ν2), (ν
′
1, ν

′
2) ∈ supp(f),

(ν1, ν2) �= (ν′1, ν
′
2) such that

(4.3) t(ν1 − ν′1) = (ν′2 − ν2).

Since, (ν1, ν2) �= (ν′1, ν′2), both (ν1 − ν′1) and (ν′2 − ν2) cannot be zero simultaneously.
Therefore, the set

S := {t ∈ Z | t(ν1 − ν′1) = (ν′2 − ν2) for (ν1, ν2), (ν
′
1, ν

′
2) ∈ supp(f), (ν1, ν2) �= (ν′1, ν

′
2)}

is either empty or finite. Choosing t from the nonempty set Z \ S ensures that

(tν1 + ν2) �= (tν′1 + ν′2) for all (ν1, ν2), (ν
′
1, ν

′
2) ∈ supp(f), (ν1, ν2) �= (ν′1, ν

′
2).
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This means the monomials appearing in ϕT (f(σ)) have all distinct powers of σ2.
Therefore, ϕT (f(σ)) can be written as

ϕT (f(σ)) =
∑

ν∈supp(f)

ανσ
ν1
1 σ

tν1+ν2
2 .

Note that ανσ
ν1
1 are units in A1 for all ν ∈ supp(f). Rearranged in ascending order

of powers of σ2, we get uk(σ1)’s from ανσ
ν1
1 s. Further, taking out the smallest power

of σ2 and calling it u(σ2) we get the desired expression of (4.2).
Before we get to Theorem 4.3 we require one more important lemma.

Lemma 4.2. Let a ⊆ A be a nonzero ideal. Then there exists T ∈ Z
2×2 uni-

modular such that under the corresponding automorphism ϕT : A → A we have that
A/ϕT (a) is a finitely generated module over A1/(ϕT (a) ∩A1).

Proof. Let 0 �= f(σ) ∈ a. By Lemma 4.1 above, there exists a unimodular
matrix T such that ϕT (f(σ)) has the form of (4.2). Let us define b := ϕT (a). As
we have mentioned earlier, since ϕT is an automorphism, b is an ideal. Note that
ϕT (f(σ)) ∈ b. Since ϕT (f(σ)) ∈ b, and u(σ2), uδ(σ1) in the expression of ϕT (f(σ))
are units in A, we also have g(σ) := u(σ2)

−1uδ(σ1)
−1ϕT (f(σ)) ∈ b. Now note that

g(σ) is of the following form:

g(σ) = σδ2 + uδ(σ1)
−1uδ−1(σ1)σ

δ−1
2 + · · ·+ uδ(σ1)

−1u0(σ1).

Thus, g(σ2) is a monic polynomial in σ2 with coefficients from A1 such that the
constant term is uδ(σ1)

−1u0(σ1), which is a unit in A1. It then follows from Corollary
3.5 that A/b is a finitely generated module over A1.

Further, the annihilator ofA/b as a module overA1 is clearly the intersection ideal
b ∩ A1. Hence, by Remark 2.4, A/b is a finitely generated module over A1/ (b ∩ A1)
as claimed in the statement of the lemma.

We now state and prove the discrete version of Noether’s normalization lemma.
Theorem 4.3. Suppose {0} �= a ⊆ A is an ideal. Then exactly one of the

following statements is true:
1. A/a is a finite-dimensional vector space over R.
2. There exists T ∈ Z2×2 unimodular such that under the corresponding ring

automorphism ϕT : A → A, the quotient ring A/ϕT (a) is a finitely generated
faithful module over A1.

Proof. By Lemma 4.2 there exists T ∈ Z2×2 unimodular such that A/ϕT (a) is a
finitely generated module over A1/(ϕT (a) ∩ A1). Once again, we define b := ϕT (a).
Now looking at b ∩ A1, there are two possible situations:

(a) b ∩ A1 = 0,
(b) b ∩ A1 �= 0.

For the first case we have A1/(b ∩ A1) = A1. It then follows from Lemma 4.2 that
A/b is a finitely generated module over the 1-variable Laurent polynomial ring A1.
Also, since b ∩ A1 is equal to the kernel of the ring map A1 → A/b, we have A1

contained in A/b as a subring. That is, A/b is faithful as an A1-module. Hence in
this case, statement (2) of the theorem holds.

On the other hand, when b ∩ A1 �= 0, the quotient ring A1/(b ∩ A1) turns out
to be a finite-dimensional vector space over R. This is true essentially because A1,
being the 1-variable Laurent polynomial ring, is a principal ideal domain (PID). This
finite dimensionality of A1/(b ∩ A1) as a vector space over R, together with the fact
that A/b is finitely generated as a module over A1/(b ∩A1), implies that A/b too is
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a finite-dimensional vector space over R. This is equivalent to A/b being an Artinian
ring (see footnote 1). Since ϕT is an automorphism of A it follows that A/a too is
Artinian (see [3]) and thus a finite-dimensional vector space over R. This is nothing
but statement 1 of the theorem.

Thus, since exactly one of the statements (a) and (b) is true, we consequently
have that exactly one of the statements 1 and 2 holds. This completes the
proof.

Remark 4.4. Incidentally, statement 1 of Theorem 4.3 corresponds to A/a having
Krull dimension3 equal to 0. And, statement 2 corresponds to Krull dimension of A/a
being 1. Since the global dimension of A is 2, only these two situations are possible.
Thus, depending upon the Krull dimension of A/a, one of the two statements of
Theorem 4.3 holds.

When statement 1 of Theorem 4.3 above does not hold, the process of obtaining
a unimodular T ∈ Z2×2 to get the automorphism ϕT : A → A so that statement 2
holds will be referred to in what follows as Noether’s normalization.

5. Representation formula for general autonomous systems. In this sec-
tion, we utilize the discrete version of Noether’s normalization lemma to obtain
a representation formula for a general 2D autonomous system. This is stated as
Theorem 5.3 below. In order to make use of Noether’s normalization, we need first to
extend Theorem 4.3 to the module case. We do this in Theorem 5.2. For the proof
of this extension, we need the following technical lemma, which relates annihilators
of two quotient modules after a coordinate change, as in the Noether’s normaliza-
tion process, is done. Recall from (2.8) how a unimodular T ∈ Z2×2 induces a map
ϕ̂T : Aw → Aw.

Lemma 5.1. Let T ∈ Z2×2 be unimodular, and let ϕ̂T : Aw → Aw be the corre-
sponding map of A-modules via the ring map ϕT : A → A. Then

ϕT (ann(M)) = ann(Aw/ϕ̂T (R)).

Proof. Since ϕ̂T : Aw → Aw is a bijection, f(σ) ∈ ann(Aw/ϕ̂T (R)) if and only if
for all r(σ) ∈ Aw we have f(σ)ϕ̂T (r(σ)) ∈ ϕ̂T (R). Recall that ϕT is an automorphism
of A. Therefore, we have g(σ) := ϕ−1

T (f(σ)). Then we can write

f(σ)ϕ̂T (r(σ)) = ϕT (g(σ))ϕ̂T (r(σ)) = ϕ̂T (g(σ)r(σ)) ∈ ϕ̂T (R) ⇔ g(σ) ∈ ann(M).

But g(σ) ∈ ann(M) if and only if f(σ) ∈ ϕT (ann(M)).
Lemma 5.1 above, together with Remark 2.4, leads to Theorem 5.2 below.
Theorem 5.2. Let R ⊆ Aw be a submodule such that M = Aw/R is a torsion

module. Then exactly one of the following statements is true:
1. M is a finite-dimensional vector space over R.
2. There exists T ∈ Z

2×2 such that under the corresponding module map ϕ̂T :
Aw → Aw, the quotient module Aw/ϕ̂T (R) is a finitely generated faithful mod-
ule over A1.

Proof. From the fact thatM is a finitely generated faithful module overA/ann(M)
(Remark 2.4) it follows that M is a finite-dimensional R-vector space if and only if
A/ann(M) too is a finite-dimensional R-vector space (see [3]). Now applying Theo-
rem 4.3 to the ideal ann(M) we get that exactly one of the following statements is
true:

3The Krull dimension of A/a is the length of a maximal proper chain of prime ideals in A/a. See
[3] for a detailed exposition of this concept.
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(a) A/ann(M) is a finite-dimensional vector space over R.
(b) There exists T ∈ Z2×2 unimodular such that under the corresponding ring

automorphism ϕT : A → A, the quotient ring A/ϕT (ann(M)) is a finitely
generated faithful module over A1.

As mentioned at the beginning of this proof, statement (a) here is equivalent to
statement 1 of the theorem. On the other hand, using the unimodular T ∈ Z2×2 of
statement (b) to define ϕ̂T : Aw → Aw, we get by Lemma 5.1 that ϕT (ann(M)) =
ann(Aw/ϕ̂T (R)). Therefore, statement (b) is equivalent to A/ann(Aw/ϕ̂T (R)) being a
finitely generated faithful module over A1. Once again using the fact that Aw/ϕ̂T (R)
is a finitely generated faithful module over A/ann(Aw/ϕ̂T (R)), we get that Aw/ϕ̂T (R)
too is a finitely generated faithful module over A1. This is nothing but statement 2
of the theorem. Since exactly one of the statements (a) and (b) is true, it follows that
exactly one of the statements 1 and 2 of the theorem is true.

It is well known that statement 1 of Theorem 5.2 above corresponds toB(R) being
strongly autonomous. Since such behaviors are already known to have a representa-
tion formula given by (2.5), in what follows we shall concentrate only on autonomous
systems which are not strongly autonomous. Recall that strongly autonomous sys-
tems are always strongly σ2-relevant. As a consequence of Theorem 5.2 above and
Theorem 2.6 it follows that for every 2D autonomous system B there exists a coordi-
nate transformation T such that B is related with a strongly σ2-relevant behavior, say
B′, by B = ΦT (B

′). This is the key idea behind the general representation formula
stated in Theorem 5.3 below.

Theorem 5.3. Suppose B is an autonomous behavior whose equation module
R ⊆ Aw is such that the quotient module Aw/R is not a finite-dimensional vector
space over R. Then there exists T ∈ Z2×2 unimodular, two positive integers n, n′,
and the following 1-variable Laurent polynomial matrices:

• R1(σ1) ∈ An′×n
1 ,

• C(σ1) ∈ Aw×n
1 ,

• A(σ1) ∈ An×n
1 ,

with A(σ1) invertible in An×n
1 , such that w ∈ B if and only if there exists x ∈ (Rn)Z,

which satisfies

R1(σ1)x = 0,

and for all ν = col(ν1, ν2) ∈ Z2,

w(ν) =
(
C(σ1)A(σ1)

(Tν)2x
)
((Tν)1),

where Tν = col((Tν)1, (Tν)2).
Proof. Since Aw/R is not a finite-dimensional R-vector space, by Theorem 5.2,

there exists T ∈ Z2×2 unimodular such that under the corresponding map ϕ̂T : Aw →
Aw we have Aw/ϕ̂T (R) as a finitely generated module over A1. It then follows from
Theorem 3.7 that there exist two positive integers n and n′ and the following 1-variable
Laurent polynomial matrices:

• R1(σ1) ∈ An′×n
1 ,

• C(σ1) ∈ Aw×n
1 ,

• A(σ1) ∈ An×n
1

such that v ∈ B(ϕ̂T (R)) if and only if there exists x ∈ (Rn)Z, which satisfies

R1(σ1)x = 0,
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and for all ν = col(ν1, ν2) ∈ Z2,

(5.1) v(ν) = (C(σ1)A(σ1)
ν2x) (ν1).

Now, by Theorem 2.6, B = ΦT (B(ϕ̂T (R))). Hence w ∈ B if and only if there exists
v ∈ B(ϕ̂T (R)) such that for all ν ∈ Z2,

w(ν) = v(Tν).

It then follows from (5.1) that w ∈ B if and only if there exists x ∈ (Rn)Z satisfying
R1(σ1)x = 0 and

w(ν) =
(
C(σ1)A(σ1)

(Tν)2x
)
((Tν)1),

where Tν = col((Tν)1, (Tν)2).
Example 5.4. Consider the scalar behavior

B = ker(σ1σ2 − σ1 − σ2 + 1).

The equation module is the principal ideal a = 〈σ1σ2 − σ1 − σ2 + 1〉. The quotient
module M = A/a is clearly not a finitely generated module over A1. Therefore, B
is not strongly σ2-relevant. However, under the coordinate transformation T = [ 1 0

2 1 ]
the transformed ideal ϕT (a) turns out to be

ϕT (a) = 〈ϕT (σ1σ2 − σ1 − σ2 + 1)〉 = 〈σ3
2 − σ2

2 − σ−1
1 σ2 + σ−1

1 〉.

Clearly, A/ϕT (a) is a finitely generated module over A1. Generators can be chosen to
be {1, σ2, σ22}. In fact, these generators freely generate A/ϕT (a) as an A1-module.
Here, n = 3 and

• R1(σ1) = 0,

• A(σ1) =

[
0 1 0
0 0 1

−σ−1
1 σ−1

1 1

]
,

• C(σ1) = [ 1 0 0 ].
Hence, solutions in B are given by

w(ν1, ν2) =

⎛⎜⎝[1 0 0
]⎡⎣ 0 1 0

0 0 1
−σ−1

1 σ−1
1 1

⎤⎦2ν1+ν2

x

⎞⎟⎠ (ν1),

where x ∈ (R3)Z is arbitrary.

6. The set of valid initial conditions and alternative representation
formulae. As mentioned in Remark 3.11, the variable x can be thought of as initial
conditions. Unlike the situation in 1D systems where x can always be constructed so
that the initial conditions can be chosen freely (see [20]), here x must satisfy certain
constraints to qualify as a valid initial condition and, consequently, may not always
be free. We have already seen that the set of valid initial conditions is given by
X := ker(R1(σ1)). Note that a different choice of generators for Aw/ϕ̂T (R) results
in a different X ; however, these different X ’s are isomorphic to each other as 1D
behaviors in the sense of [11]. In this section, we first show in Theorem 6.5 how a
better choice of generators leads to an alternative representation formula. Later, in
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Theorem 6.10 we resolve another issue related to X : when is X free, when is X free,
i.e., when is X = (Rn)Z for some n?

Remark 6.1. Note that, if B is assumed to be not strongly autonomous, then,
by Theorem 5.2, Aw/ϕ̂T (R) is a faithful A1-module. Therefore, Aw/ϕ̂T (R) as an
A1-module has the trivial ideal {0} as its annihilator. In other words, Aw/ϕ̂T (R), as
an A1-module, cannot be torsion. This means X , when viewed as a 1D behavior,
cannot be autonomous. Hence X , the set of valid initial conditions, is not a finite-
dimensional vector space over R. Also, X not being autonomous means that some
of the x variables can be treated as inputs and some as outputs (see [21]). Those of
x which are treated as inputs can be any 1D trajectory. We call these variables free
variables. In general, not all of the x variables are free, but it is desirable to have all
of x free. Theorem 6.10 gives conditions equivalent to this freeness. Recall that if B
is strongly autonomous, then it is already strongly σ2-relevant. In that case, although
M will be a finitely generated module over A1, it will not be faithful. However, if we
carry out the construction of X in this case we will find that X is an autonomous 1D
behavior. This is the other extreme case where all of the x variables will be outputs.

In order to resolve the issue of free initial conditions, it will be useful to look at an
alternative representation formula. In this alternative formula, we give a more precise
description of the initial conditions. We first prove in Lemma 6.3 below how a clever
choice of the generators results in a better structure of the matrix of relations R1(σ1).
Note that we can make R1(σ1) full row-rank over the field of fractions qt(A1). This
is true because A1 is a PID.4 Lemma 6.3 below utilizes another consequence of A1

being a PID: R1(σ1) admits a Smith form. For our purpose, the Smith canonical form
in full generality is not required; a weaker version suffices. We state this result as
Proposition 6.2 below. See [12] for a proof.

Proposition 6.2. Let R1(σ1) ∈ An′×n
1 be a full row-rank matrix. Then there

exist square matrices U(σ1) ∈ An′×n′
1 and V (σ1) ∈ An×n

1 , with the property that
det(U(σ1)) and det(V (σ1)) are units in A1, such that

U(σ1)R1(σ1)V (σ1) =
[
D(σ1) 0

]
,

where D(σ1) ∈ An′×n′
1 is square with nonzero determinant.

Lemma 6.3. Let R ⊆ Aw be a submodule such that M = Aw/R is a finitely gener-
ated module over A1. Then there exists a set of generators of M as an
A1-module, which admits a matrix of relations R1(σ1) of the form

(6.1) R1(σ1) =
[
D(σ1) 0

]
,

where D(σ1) is a square matrix with nonzero determinant.

Proof. Let {g′1(σ), g′2(σ), . . . , g′n(σ)} be an arbitrary set of generators for M as an

A1-module, and let R′
1(σ1) ∈ An′×n

1 be its matrix of relations. As mentioned earlier,
R′

1(σ1) can be assumed to be full row-rank. Then by Proposition 6.2 there exist square

matrices U(σ1) ∈ An′×n
1 and V (σ1) ∈ An×n

1 , both having units for determinants, such
that

(6.2) U(σ1)R
′
1(σ1)V (σ1) =

[
D(σ1) 0

]
,

4A1 being a PID implies that the submodule ker(ψ) of the free module An
1 is free, and hence

there exists a full row-rank matrix R1(σ1) whose rows will generate the free module ker(ψ) over A1.
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where D(σ1) ∈ An′×n′
1 with nonzero determinant. Since det(V (σ1)) is a unit in A1,

it follows that V (σ1) has an inverse in An×n
1 . Define

(6.3)

⎡⎢⎢⎢⎣
g1(σ)
g2(σ)

...
gn(σ)

⎤⎥⎥⎥⎦ := V (σ1)
−1

⎡⎢⎢⎢⎣
g′1(σ)
g′2(σ)

...
g′n(σ)

⎤⎥⎥⎥⎦ .
Clearly, G := {g1(σ), g2(σ), . . . , gn(σ)} is a generating set for M as an A1-module. It
then follows that a matrix of relations for this new set of generators is given by

R1(σ1) := U(σ1)R
′
1(σ1)V (σ1).

Indeed, R′
1(σ1)V (σ1) is clearly a matrix of relations for G. Since det(U(σ1)) is a unit

in A1, it also has an inverse in An′×n′
1 . It then follows that the rowspan of

R′
1(σ1)V (σ1) is the same as that of U(σ1)R

′
1(σ1)V (σ1). Therefore, R1(σ1) :=

U(σ1)R
′
1(σ1)V (σ1) is a matrix of relations for G. The statement of the lemma then

follows from (6.2).
The purpose of obtaining R1(σ1) in the form of (6.1) is that now the set of

valid initial conditions X := ker(R1(σ1)) has a nice description. Suppose R1(σ1) =[
D(σ1) 0

] ∈ An′×n
1 , with D(σ1) ∈ An′×n′

1 having nonzero determinant. Now par-

tition x ∈ (Rn)Z as x = (x1, x2), where x1 ∈ (Rn
′
)Z and x2 ∈ (Rn−n

′
)Z. Then

x ∈ ker(R1(σ1)) if and only if

D(σ1)x1 = 0,

and x2 is free. Now, since D(σ1) is square with nonzero determinant, it follows that
ker(D(σ1)) is a finite-dimensional vector space over R. In other words, there exists a
fixed set of finitely many 1D trajectories {z1, z2, . . . , zr} ⊆ (Rn

′
)Z such that x ∈ X if

and only if it is of the form

(6.4) x =

[
a1z1 + a2z2 + · · ·+ arzr

x2

]
,

where {a1, a2, . . . , ar} ⊆ R and x2 ∈ (Rn−n
′
)Z. This leads to the following alternative

representation formula.
Remark 6.4. It is important to note that when a new set of generators, say

{g′1(σ), g′2(σ), . . . , g′n(σ)}, is obtained from an old one, say {g1(σ), g2(σ), . . . , gn(σ)},
by (6.3) in Lemma 6.3, the corresponding matrix representations of the map μ turn
out to obey the following equation:

A′(σ1) = V (σ1)A(σ1)V (σ1)
−1.

This is analogous to a similarity transformation done on the state-space in 1D systems.
Observe that A′(σ1) is invertible if and only if A(σ1) is.

Theorem 6.5. Suppose B is an autonomous behavior whose equation module
R ⊆ Aw is such that the quotient module Aw/R is not a finite-dimensional vector
space over R. Then there exists T ∈ Z2×2 unimodular, two positive integers n, n′, the
1-variable Laurent polynomial matrices

• C(σ1) ∈ Aw×n
1 ,

• A(σ1) ∈ An×n
1 invertible,



REPRESENTATION FORMULAE FOR DISCRETE 2D SYSTEMS 2435

and a fixed set of finitely many 1D trajectories {z1, z2, . . . , zr} ⊆ (Rn
′
)Z such that

w ∈ B if and only if for all ν = col(ν1, ν2) ∈ Z2,

w(ν) =

(
C(σ1)A(σ1)

(Tν)2

[
a1z1 + a2z2 + · · ·+ arzr

0

])
((Tν)1)

+

(
C(σ1)A(σ1)

(Tν)2

[
0
x2

])
((Tν)1),(6.5)

where {a1, a2, . . . , ar} ⊆ R and x2 ∈ (Rn−n
′
)Z.

Proof. By Theorem 5.2 there exists T ∈ Z2×2 unimodular such that Aw/ϕ̂T (R) is
a finitely generated module over A1. By Lemma 6.3 there exists a generating set for
Aw/ϕ̂T (R) over A1 such that the matrix of relations, say R1(σ1), for this generating
set is of the form

[
D(σ1) 0

]
with D(σ1) square and having nonzero determinant.

Note that by Remark 6.4 we can guarantee that the matrix A(σ1) in this generating
set is invertible in An×n

1 . By (6.4) it follows that in this case there exists a fixed

set of finitely many 1D trajectories {z1, z2, . . . , zn} ⊆ (Rn
′
)Z such that all the 1D

trajectories in X := ker(R1(σ1)) are given by

x =

[
a1z1 + a2z2 + · · ·+ anzn

x2

]
,

where {a1, a2, . . . , an} ⊆ R and x2 ∈ (Rn−n
′
)Z. From Theorem 5.3 we get our desired

result that in this case w(ν) ∈ B is given by

w(ν) =

(
C(σ1)A(σ1)

(Tν)2

[
a1z1 + a2z2 + · · ·+ anzn

0

])
((Tν)1)

+

(
C(σ1)A(σ1)

(Tν)2

[
0
x2

])
((Tν)1).

Remark 6.6. The representation formula in Theorem 6.5 explicitly brings out
how free the initial conditions are; the x2 ∈ (Rn−n

′
)Z trajectories constitute the free

part. Once again, viewing X as a 1D system, x2 can be thought of as input. In
[21] this number (n − n′) has been called the input cardinality of the concerned 1D
behavior.

Remark 6.7. Note that a variant of (6.5) holds even for the case when B is
strongly autonomous. In that case, as we have already mentioned in Remark 6.1, the
set of valid initial conditions X turns out to be a finite-dimensional vector space over
R. Viewed as a 1D system, then, X turns out to have input cardinality equal to zero.
So, all the initial conditions are of the form

x = a1z1 + a2z2 + · · ·+ arzr,

where {z1, z2, . . . , zr} ⊆ (Rn)Z are a fixed finite set of 1D trajectories. Moreover, since
strongly autonomous implies strongly σ2-relevant, no explicit coordinate change is
required in this case. With these considerations then, we get for strongly autonomous
systems the following representation formula, which is a variant of (6.5):

w(ν) =
(
C(σ1)A(σ1)

ν2
[
a1z1 + a2z2 + · · ·+ arzr

])
(ν1),

where a1, a2, . . . , ar ∈ R are arbitrary.
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In light of Theorem 6.5, a set of valid initial conditions will be free if the de-
terminant of D(σ1) is a unit in A1. This means ker(D(σ1)) = 0. In that case,
only the free x2 part constitutes all the valid initial conditions. Now D(σ1) having
a unit for determinant is equivalent to Aw/ϕ̂T (R) being a free module over A1 be-
cause Aw/ϕ̂T (R) ∼= An

1/rowspan(R1(σ1)) as A1-modules. In Theorem 6.10 below we
provide equivalent conditions for Aw/ϕ̂T (R) to be a free A1-module. For the proof
of this result we make use of the following crucial lemma, Lemma 6.8. The proof of
Lemma 6.8 utilizes various intricate algebraic ideas, which we do not make use of
elsewhere in the paper. Due to this technicality, we provide the proof of Lemma 6.8
in Appendix A.

Lemma 6.8. Let R(σ) ∈ Aw×w have a nonzero determinant g(σ). Further, let

g(σ) = u(σ)p1(σ)
n1p2(σ)

n2 · · · pk(σ)nk

be a prime factorization of g(σ), with u(σ) a unit and {pi(σ)} irreducible elements in
A and pi(σ) �= pj(σ) for i �= j. If f(σ) ∈ A is a zerodivisor on M = Aw/rowspan(R(σ))
then f(σ) must be divisible by one of the pi(σ)s.

We require one more technical result before we proceed to Theorem 6.10.
Lemma 6.9 below is a consequence of Proposition 3.4. It says that if R(σ) ∈ Aw×w is
a square matrix whose determinant has a special structure (similar to the right-hand
side of (4.2) in Lemma 4.1), then the quotient module M = Aw/rowspan(R(σ)) will
be finitely generated as a module over A1.

Lemma 6.9. Let R(σ) ∈ Aw×w be such that

det(R(σ)) = u(σ)

(
δ−1∑
i=0

ui(σ1)σ
i
2 + σδ2

)
,

where u(σ) ∈ A is a unit and {u0(σ1), u1(σ1), . . . , uδ−1(σ1)} ⊆ A1 are also units.
Then M = Aw/rowspan(R(σ)) is a finitely generated module over A1.

Proof. Let us define f(σ) := u(σ)−1det(R(σ)). Since u(σ) is a unit in A, it
follows that f(σ) thus defined belongs to A. Note that f(σ) can also be viewed as
a polynomial in σ2 with coefficients from A1. That way, f(σ) is a monic polynomial
in σ2 with the constant term being a unit in A. Now, recall that the characteristic
ideal of a behavior B is defined to be the ideal generated by all (w × w) minors of its
kernel representation matrix. Let us define B = ker(R(σ)). Then, in this case, the
characteristic ideal turns out to be

I(B) = 〈det(R(σ))〉.
Clearly, then f(σ) ∈ I(B). However, by Proposition 2.3, I(B) ⊆ ann(M). Thus,
f(σ) ∈ ann(M). Now, we have already seen that f(σ), as a polynomial in σ2 with co-
efficients from A1, is monic and has as constant term a unit in A. Therefore, by equiv-
alence of statements 2 and 3 of Proposition 3.4, we get that M = Aw/rowspan(R(σ))
is a finitely generated module over A1.

We are now in a position to state and prove the second main result of this section:
Theorem 6.10. This theorem shows that initial conditions can be chosen freely if
and only if the behavior has a square kernel representation matrix with nonzero
determinant. As a consequence of free initial conditions, the first order equation over
X defined in Remark 3.11 becomes a first order equation over (Rn)Z. This results
in a first order representation of B(ϕ̂T (R)) as given in statement 3 of Theorem 6.10
below.
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Theorem 6.10. Let R ⊆ Aw be a submodule and B its behavior. Then the
following statements are equivalent:

1. There exists a square matrix R(σ) ∈ Aw×w
1 with det(R(σ)) �= 0 such that

B = ker(R(σ)).
2. There exists T ∈ Z

2×2 unimodular such that Aw/ϕ̂T (R) is a finitely generated
free A1-module.

3. There exist T ∈ Z2×2 unimodular, a positive integer n, and 1-variable Laurent
polynomial matrices A(σ1) ∈ An×n

1 and C(σ1) ∈ Aw×n
1 such that

B(ϕ̂T (R)) =

{
v ∈ (Rw)Z

2
∣∣∣∃ � ∈ (Rn)Z

2

s.t.

[
σ2In −A(σ1) 0

C(σ1) −Iw
] [
�
v

]
= 0

}
.

Proof. (1) ⇒ (2) Suppose g(σ) = det(R(σ)). By assumption, g(σ) �= 0. Using
Lemma 4.1 we get a unimodular T ∈ Z2×2 such that ϕT (g(σ)) has the form

(6.6) ϕT (g(σ)) = u(σ)

(
δ−1∑
i=0

ui(σ1)σ
i
2 + σδ2

)
,

where u(σ) ∈ A is a unit and {u0(σ1), u1(σ1), . . . , uδ−1(σ)} ⊆ A1 are also units. Let
ϕT (R(σ)) denote the matrix obtained by applying ϕT to each entry in R(σ). Then
clearly, det(ϕT (R(σ))) = ϕT (g(σ)). Note that rowspan(ϕT (R(σ))) = ϕ̂T (R). By
Lemma 6.9 Aw/ϕ̂T (R) is a finitely generated A1-module. We want to show that
Aw/ϕ̂T (R) is also free as an A1-module. In order to show this, it is enough that we
show Aw/ϕ̂T (R) is torsion-free as an A1-module. This is true because A1 is a PID,
and therefore, torsion-free is equivalent to free. Suppose Aw/ϕ̂T (R) is not torsion-
free as an A1-module. This would imply that there exists 0 �= f(σ1) ∈ A1 and
0 �= m(σ) ∈ Aw

1/ϕ̂T (R) such that f(σ1)m(σ) = 0 ∈ Aw
1/ϕ̂T (R). This means f(σ1) is

a zerodivisor on Aw
1/ϕ̂T (R). Then by Lemma 6.8 f(σ1) must be divisible by one of

the irreducible factors of det(ϕT (R(σ))) = ϕT (g(σ)). However, the right-hand side of
(6.6) is the product of a unit and a monic polynomial in σ2 with coefficients in A1.
Therefore, no irreducible factor of ϕT (g(σ)) can be purely in A1. This means f(σ1)
must be zero, that is, An

1/rowspan(R1(σ1)) is a torsion-free A1-module.
(2) ⇒ (3) We assume that there exists T ∈ Z2×2 such that Aw/ϕ̂T (R) is a finitely

generated free A1-module. This means we can fix a free basis for Aw/ϕ̂T (R). Since
this basis is free the matrix of relations R1(σ1) turns out to be zero. Therefore, it
follows from Theorem 3.7 that there exist

• a positive integer n,
• a 1-variable Laurent polynomial matrix A(σ1) ∈ An×n

1 , and
• another 1-variable Laurent polynomial matrix C(σ1) ∈ Aw×n

1

such that v ∈ B(ϕ̂T (R)) if and only if there exists x ∈ (Rn)Z, and for all ν =
col(ν1, ν2) ∈ Z2,

(6.7) w(ν) = (C(σ1)A(σ1)
ν2x) (ν1).

Define the following 2D trajectory: for all ν = col(ν1, ν2) ∈ Z2,

�(ν) := (A(σ1)
ν2x) (ν1).

Then by this definition � satisfies

(6.8) σ2� = A(σ1)�,
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and (6.7) can be rewritten as

(6.9) w = C(σ1)�.

Combining (6.8) and (6.9), we get that v ∈ B(ϕ̂T (R)) if and only if there exists

� ∈ (Rn)Z
2

such that [
σ2In −A(σ1) 0

C(σ1) −Iw
] [
�
v

]
= 0.

(3) ⇒ (1) First, note that it is enough to prove B(ϕ̂T (R)) admits a square kernel
representation. Indeed, by applying ϕT−1 elementwise we can obtain a square kernel
representation for B.

In order to show that B(ϕ̂T (R)) admits a square kernel representation we make
use of the elimination theorem from [8]. Let E1(σ) ∈ Ag×n and E2(σ) ∈ Ag×w be such

that the matrix E(σ) :=
[
E1(σ) E2(σ)

]
is a maximal left annihilator5 of

[ σ2In−A(σ1)
C(σ1)

]
.

Then according to the elimination theorem,

B(ϕ̂T (R)) = ker(−E2(σ)).

We first show that E2(σ) can be chosen to be square. Consider the 2D behavior

Baux := ker(E(σ)) ⊆ (Rn+w)Z
2

.

Since E(σ) is a maximal left annihilator matrix, it follows thatBaux is controllable (see
[10]). By Corollary 4 in [10], we get that rowspan(E(σ)) is a free submodule of An+w,

which means E(σ) can be chosen to be full row-rank. But since rank
[ σ2In−A(σ1)

C(σ1)

]
= n,

and E(σ) is its maximal left annihilator, it follows that rank(E(σ)) = w. Therefore,
E(σ) can be chosen to have full row-rank with w number of rows, thus making E2(σ)
square.

We now prove that det(−E2(σ)) �= 0. For this purpose, it is enough that we show
Aw/rowspan(−E2(σ)) is a torsion module. Let r(σ) ∈ Aw and consider

[
0 r(σ)

] ∈
An+w. Define

R′(σ) :=
[
σ2In −A(σ1) 0

C(σ1) −Iw
]
.

Since det(R′(σ)) �= 0, it follows that An+w/rowspan(R′(σ)) is a torsion module. Hence
there exists f(σ) ∈ A such that

f(σ)
[
0 r(σ)

]
=
[
0 f(σ)r(σ)

] ∈ rowspan(R′(σ)).

In other words, there exist r1(σ) ∈ An and r2(σ) ∈ Aw such that

(6.10)
[
0 f(σ)r(σ)

]
=
[
r1(σ) r2(σ)

]
R′(σ).

This means,
[
r1(σ) r2(σ)

][ σ2In−A(σ1)
C(σ1)

]
= 0. Since E(σ) ∈ Aw×(n+w) is a maximal

left annihilator of
[ σ2In−A(σ1)

C(σ1)

]
it follows that there exists r3(σ) ∈ Aw such that[

r1(σ) r2(σ)
]
= r3(σ)

[
E1(σ) E2(σ)

]
.

5By maximal left annihilator of a polynomial matrix M(σ) with entries in A we mean a matrix,
say N(σ), with entries in A such that the rows of N(σ) generate the module of relations of the rows
of M(σ).
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Putting this in (6.10), we get[
0 f(σ)r(σ)

]
= r3(σ)E(σ)R′(σ)

= r3(σ)
[
E1(σ) E2(σ)

] [σ2In −A(σ1) 0
C(σ1) −Iw

]
= r3(σ)

[
0 E2(σ)

]
⇒ f(σ)r(σ) = r3(σ)E2(σ) ∈ rowspan(−E2(σ)).

Since r(σ) was arbitrary, this proves that Aw/rowspan(E2(σ)) is a torsion
module.

7. Concluding remarks. In this paper, we looked into representation formulae
for discrete 2D autonomous systems. These representation formulae generalize the
solution formula for 1D autonomous systems given by a flow acting on initial con-
ditions. The crucial difference in the 2D case is that here the initial conditions are
given by 1D trajectories as opposed to real vectors in the 1D case. Moreover, instead
of a constant matrix, here in the 2D case the flow operator is a 1-variable Laurent
polynomial matrix. We first looked at systems whose corresponding quotient mod-
ules are finitely generated as modules over R[σ±1

1 ]. We showed that these systems
admit representation formulae of the above-mentioned type. Then we used a discrete
version of Noether’s normalization to obtain representation formulae for general 2D
autonomous systems. A crucial step in the normalization process is finding a suitable
coordinate transformation in Zn.

There are a number of issues related to the results presented in this paper that
have not been addressed here, for example, the question of how to get minimal size
of the 1-variable Laurent polynomial matrix A(σ1), or algorithms for computing the
matrix. The extension of the formulae to nonautonomous systems is also another
important unresolved issue.

Appendix A. Proof of Lemma 6.8. We require the following notions for the
proof. A prime ideal p ⊆ A is said to be an associated prime of M if there exists
0 �= m ∈ M such that

p = {h(σ) ∈ A | h(σ)m = 0 ∈ M}.

The set of all associated primes of M is denoted by Ass(M). Let Z(M) denote the
set of zerodivisors on M, i.e.,

Z(M) := {h(σ) ∈ A | ∃ 0 �= m ∈ M such that h(σ)m = 0 ∈ M}.
In order to prove the claim of the lemma it is enough that we show

(A.1) Z(M) ⊆ 〈p1(σ)〉 ∪ 〈p2(σ)〉 ∪ · · · ∪ 〈pk(σ)〉.
Since A is Noetherian and M is finitely generated over A, we have

Z(M) =
⋃

p∈Ass(M)

p

(see [17, Corollary 7.1.12]). Therefore, our claim of (A.1) will follow if we show that

(A.2) Ass(M) ⊆ {〈pi(σ)〉 | 1 � i � k}.
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Before we go ahead and prove (A.2), we point out the following important notions
from commutative algebra, which will be used below for showing that (A.2) holds.
Detailed expositions about these notions can be found in textbooks on commutative
algebra, e.g., [3, 17].

• Localization of a ring A and an A-module M at a prime ideal p, denoted
here by Ap and Mp, respectively.

• Projective dimension of Mp, written as proj dim(Mp) here.
• Depth of Mp, written as depth(Mp) here.
• Height of a prime ideal p, written as ht(p) here.
• Krull dimension of Ap, denoted by dim(Ap) here.
• Auslander–Buchsbaum formula.

In order to show (A.2), we first show that Ass(M) contains only principal ide-
als. Let p ∈ Ass(M). Localizing at p we get that pp ∈ Ass(Mp). Therefore,
depth(Mp) = 0. Also, Mp is torsion, so it is not free, but Mp = Aw

p/rowspan(R(σ)),
and rowspan(R(σ)) is free, because det(R(σ)) �= 0. Therefore, proj dim(Mp) = 1.
Hence by the Auslander–Buchsbaum formula,

dim(Ap) = proj dim(Mp) + depth(Mp) = 1 + 0 = 1.

But dim(Ap) = ht(p), so ht(p) = 1. By Corollary 10.6 of [3], p is a principal ideal
because A is a unique factorization domain (UFD). Let p(σ) ∈ A be a generator for
p, that is, p = 〈p(σ)〉. Now since p ∈ Ass(M), we have ann(M) ⊆ p. Note that if
we define a behavior B = ker(R(σ)), then the characteristic ideal of this behavior
is I(B) = 〈g(σ)〉, where g(σ) = det(R(σ)). By Proposition 2.3 〈g(σ)〉 = I(B) ⊆
ann(M). Therefore, 〈g(σ)〉 ⊆ p = 〈p(σ)〉. Since p is prime, it follows from the prime
factorization of g(σ) that for some 1 � i � k we have pi(σ) ∈ p. That is, there exists
f(σ) ∈ A such that pi(σ) = f(σ)p(σ). But pi(σ) has been assumed to be irreducible.
So f(σ) must be a unit, which means 〈p(σ)〉 = 〈pi(σ)〉. This proves (A.2), and hence
our claim of (A.1) follows.

Acknowledgments. We are grateful to Prof. Balwant Singh for providing the
proof of Lemma 6.8.
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