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The Continuous-Time Singular LQR Problem and the Riddle of
Nonautonomous Hamiltonian Systems: A Behavioral Solution
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Abstract—In this article, we deal with the continuous-time sin-
gular linear quadratic regulator (LQR) problems, which give rise to
nonautonomous Hamiltonian systems. This case arises when the
system’s transfer function matrix is not left-invertible. A special
case of this problem can be solved using the constrained gener-
alized continuous algebraic Riccati equation (CGCARE), when a
certain condition on the input-cardinality of the Hamiltonian is sat-
isfied. However, this condition is only a special case among many
other possible cases. On the other hand, singular LQR problems
with autonomous Hamiltonian systems have been well studied in
the literature. In this article, we apply behavioral theoretic tech-
niques to show that the general case of the singular LQR problem
with nonautonomous Hamiltonian can be solved by a direct sum
decomposition of the plant behavior, where one of the direct sum-
mands can be solved via CGCARE, while the other gives rise to an
autonomous Hamiltonian system.

Index Terms—Behavioral theory, constrained generalized con-
tinuous algebraic Riccati equation (CGCARE), Hamiltonian, singu-
lar linear quadratic regulator (LQR) problem.

I. INTRODUCTION

This article deals with the most general case of the infinite horizon
singular linear quadratic regulator (LQR) problem: the case when the
system, along with the cost functional, may result in a Hamiltonian sys-
tem that is nonautonomous. The infinite-horizon singular LQR problem
is defined as follows:

Problem 1.1: Consider a stabilizable system with state-space dy-
namics d

dt
x(t) = Ax(t) +Bu(t), where A ∈ Rn×n, B ∈ Rn×m. Then,

for every initial condition x0, find an input u(t) that minimizes the
functional

J(x0, u) :=

∫ ∞

0

[
x(t)
u(t)

]T [
Q S
ST R

] [
x(t)
u(t)

]
dt with lim

t→∞
x(t) = 0

(1)

where Q ∈ Rn×n, R ∈ Rm×m,
[

Q S

ST R

]
� 0, and rankR < m.
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Intimately connected to the problem is the following linear dynam-
ical system given in singular descriptor model:⎡⎣In 0 0

0 In 0
0 0 0m,m

⎤⎦
︸ ︷︷ ︸

E

d

dt

⎡⎣x(t)z(t)
u(t)

⎤⎦ =

⎡⎣ A 0 B
−Q −AT −S
ST BT R

⎤⎦
︸ ︷︷ ︸

H

⎡⎣x(t)z(t)
u(t)

⎤⎦ . (2)

This system is known as the Hamiltonian system corresponding to
Problem 1.1. It follows from Pontryagin’s Maximum Principle that all
smooth optimal trajectories must necessarily satisfy the Hamiltonian
system equations [1]. Recent studies have revealed that not just the
smooth optimal trajectories, but also the distributional ones pertaining
to the singular LQR problem must also satisfy the Hamiltonian sys-
tem equations in a distributional sense over the half-line R+ [2]. A
hallmark of the singular LQR problem is that, unlike the regular case
(rankR = m), the singular problem may give rise to a Hamiltonian
system that is nonautonomous. This peculiarity is well-known: in the
literature, this has either been ruled out by assuming left-invertibility
of the system (equivalently, uniqueness of the optimal solution) [3],
or been dealt with by introducing several intricate decomposition of
the state space [4]. Further, a special case of the nonautonomous
Hamiltonian system scenario has been pursued in [5]–[7] in connection
with the constrained generalized continuous algebraic Riccati equation
(CGCARE) given as follows:

ATK +KA+Q− (KB + S)R†(BTK + ST ) = 0

ker(R) ⊆ ker(S +KB) (3)

where R† is the Moore–Penrose pseudoinverse of R. However, it has
been shown in [8] that this special case lies at an extreme end of a pretty
wide gamut of special cases in the general scenario of the nonautonomy
of the Hamiltonian system (we explain this phenomenon in Lemma 3.2).
All in all, it is safe to say that the nonautonomy of the Hamiltonian
system has been well-recognized as a problematic case in singular
LQR theory. In this article, we propose an extremely simple remedy to
this problematic case by employing ideas from behavioral theory and
polynomial matrices [9]–[11]. We would like to note here that the germ
of the ideas contained in this article can be found in [4]. Our principal
contribution here is a novel proposition (see Theorem 3.7) that shows
how behavioral theory naturally leads to a direct sum decomposition of
the plant behavior into two subbehaviors, one of which is left-invertible,
while the other admits a solution via CGCARE. Thus the singular LQR
problem is made amenable to solution by these two well-established
theories.

It is important to note that the abovementioned direct sum decom-
position of the plant behavior is obtained here considering only C∞

trajectories. We argue that this is enough although we do not discount the
possibility of distributional optimal trajectories. This can be understood
by noting that the existence of distributional optimal trajectories is
attributed to the singular descriptor nature of the Hamiltonian system,
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while the plant behavior is devoid of such singularities. Thus, the
decomposition of the smooth plant behavior, too, will not suppress
the possible distributional optimal trajectories. We explicitly show this
in Section V.

II. NOTATION AND PRELIMINARIES

A. Notation

The symbols R,C, and N are used for the sets of real numbers,
complex numbers, and natural numbers, respectively. The symbol R[s]
denotes the integral domain of polynomials in s with real coefficients,
while R(s) denotes its corresponding field of fractions. The symbols
Rn×p,R[s]n×p, and R(s)n×p denote the sets of n× p matrices with ele-
ments from R,R[s], and R(s), respectively. We use •when a dimension
need not be specified: for example, Rw×• denotes the set of real constant
matrices having w rows and an arbitrary number of columns. We use the
symbol In for the n× n identity matrix and the symbol 0n,m for an n× m

matrix with all entries zero. We drop these subscripts if the size of the
matrix is understood from the context. Symbol col(B1, B2, . . . , Bn)
represents a matrix of the form [BT

1 BT
2 · · · BT

n ]
T . The symbols

imgA and kerA denote the image and nullspace of a matrix A,
respectively. The symbolsrankA andnullity(A)denote the rank and
the dimension of the nullspace of a matrix A, respectively. The symbol
det(A) represents the determinant of a square matrix A. The space of
all infinitely differentiable functions from R to Rn is represented by the
symbolC∞(R,Rn). We use the symbolC∞(R,Rn)|R+

to represent the
set of all functions from R+ to Rn that are restrictions of C∞(R,Rn)
functions to R+, where R+ denotes the set of nonnegative real numbers.
By col(w1, w2) ∈ C∞(R,Rp+q) we mean that w1 ∈ C∞(R,Rp) and
w2 ∈ C∞(R,Rq). The subset of C∞(R,Rn) comprising of functions
having compact support is denoted by D(R,Rn). We simply use the
symbol D when the domain and the co-domain of the functions in the
set are clear from the context. The symbol δ represents the Dirac delta
impulse function and δ(i) represents its ith distributional derivative with
respect to t.

B. Brief Overview of Polynomial Matrices

In this section we provide a few definitions and properties pertaining
to polynomial matrices.

Definition 2.1: R(ξ) ∈ R[ξ]q×q is said to be unimodular if
detR(ξ) ∈ R \ {0}.

Definition 2.2: A matrix R(ξ) ∈ R[ξ]g×q is said to be factor left-
prime (FLP) if rankR(λ) = g for all λ ∈ C.

Factor right-prime (FRP) matrices can be defined analogously.
Remark 2.3: From the definition it follows that the Smith canon-

ical form (see [9, Th. 2.5.15]) of an FLP matrix R(ξ) is given by
[Ig 0g,(q−g)]. In other words, there exist unimodular matrices U(ξ) ∈
R[ξ]g×g and V (ξ) ∈ R[ξ]q×q such that R(ξ) = U(ξ)[Ig 0g,(q−g)]V (ξ).
Consequently, R(ξ) admits completion to a unimodular matrix by
the matrix R̃(ξ) := [0(q−g),g I(q−g)]V (ξ); i.e., col (R(ξ), R̃(ξ)) is

unimodular. Notice that R̃(ξ), too, turns out to be FLP. Similarly, if
R(ξ) is FRP, then there exists a matrix R̃(ξ), which is FRP such that
[R(ξ) R̃(ξ)] is unimodular. �

Definition 2.4: Let R(ξ) ∈ R[ξ]g×q with � := rankR(ξ). Then,
F (ξ) ∈ R[ξ](g−�)×g is called a minimal left-annihilator (MLA) ofR(ξ)
if both the following properties are satisfied:
1. F (ξ)R(ξ) = 0, and
2. F1(ξ)R(ξ) = 0 for an F1(ξ) ∈ R[ξ]•×g ⇒ there exists F2(ξ) ∈

R[ξ]•×(g−�) such that F1(ξ) = F2(ξ)F (ξ).
If R(ξ) is full row-rank, then its MLA is the zero matrix.

The minimal right-annihilator (MRA) can be defined analogously.
The following lemma related to the MLA and MRA is well-known in
the literature (see [12]).

Lemma 2.5: Say R(ξ) is not full row-rank (column-rank). Then, its
MLA (MRA) is FLP (FRP). If R(ξ) is full row-rank (column-rank),
then its MLA (MRA) is a zero matrix.

C. Behavior

A linear differential behavior B is defined to be the subspace of
C∞(R,Rq) consisting of solutions to a set of ordinary differential
equations with constant coefficients, i.e.,

B := kerR

(
d

dt

)
=

{
w(t) ∈ C∞(R,Rq)|R

(
d

dt

)
w(t) = 0

}
whereR(ξ) ∈ R[ξ]•×q. Such a representation of a behaviorB is called a
kernel representation. Every behavior B always admits a full row-rank
kernel representation, i.e., without loss of generality, R(ξ) can be
chosen to be full row-rank. Let R(ξ) ∈ R[ξ]g×q and assume that R̃(ξ),
too, provide a full row-rank representation of B. Then, there exists
a unimodular matrix U(ξ) ∈ R[ξ]g×g such that R(ξ) = U(ξ)R̃(ξ)
(see [9, Chap. 2] for more on this). It also follows that (q− g) is the
input-cardinality of the behavior B. This signifies that at most (q− g)
components of the trajectories of B can be chosen freely. Obviously,
the input cardinality of a behavior is independent of the representation.

Next, we define the autonomous and controllable behaviors.
Definition 2.6: B is called autonomous if for all w′, w′′ ∈ B

w′(t) = w′′(t) for t � 0 ⇒ w′(t) = w′′(t) ∀t ∈ R.

Definition 2.7: B is called controllable if for everyw′, w′′ ∈ B there
exists a w ∈ B and τ > 0 such that

w(t) = w′(t) for t ≤ 0 and w(t) = w′′(t) for t ≥ τ.

The following proposition characterizes the class of controllable
behaviors (see [9, Th. 5.2.10, Th. 6.6.1]).

Proposition 2.8: LetB := kerR( d
dt
), whereR(ξ) ∈ R[ξ]g×q is full

row-rank. Then, the following are equivalent:
1. B is controllable.
2. R(ξ) is FLP (see Definition 2.2).
3. There exists an M(ξ) ∈ R[ξ]q×(q−g) such that

B =

{
w(t)|∃� ∈ C∞(R,R(q−g)) such that w(t) = M

(
d

dt

)
�

}
.

� is called a vector of latent variables. The representation of B given
in Statement 3 is called an image representation andB is written asB =
imgM( d

dt
). It can be shown that M(ξ) can always be chosen to be full

column-rank. The following proposition establishes a relation between
a kernel representation and an image representation of a controllable
behavior (see [9, Th. 6.6.1] for proof).

Proposition 2.9: Assume that B := kerR( d
dt
) is controllable.

Then, B = imgM( d
dt
) is an image representation of B if M(ξ) is

an MRA of R(ξ) (see Definition 2.4).
Definition 2.10: An image representation B = imgM( d

dt
) is said

to be observable if M( d
dt
)� = 0 implies � = 0.

The following proposition gives a method to check whether an image
representation is observable (see [9, Th. 5.3.3]).

Proposition 2.11: An image representation B = imgM( d
dt
) is ob-

servable if and only if M(ξ) is FRP (see Definition 2.2).
The following proposition can be obtained by combining Lemma

2.5, Proposition 2.9, and Proposition 2.11 together.
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Proposition 2.12: A controllable behavior B always admits an
observable image representation.

Given a behavior B (possibly uncontrollable), the controllable part
of B is defined in the following manner.

Definition 2.13: The largest controllable sub-behavior of B is said
to be the controllable part of a given behavior B.

We denote the controllable part of a behavior B by (B)cont.

D. Quotient of a Behavior

Let B̂ be a sub-behavior of B. We define the relation ∼ between
the trajectories of B as follows: for w1, w2 ∈ B, we say that w1 ∼ w2

if (w1 − w2) ∈ B̂. It can be easily verified that the relation ∼ is an
equivalence relation. We use the symbol [w] to denote the equivalence
class of the trajectory w ∈ B, i.e., [w] is the collection of all the
trajectories w1 ∈ B such that w1 ∼ w. The set B/B̂, called a quotient
of the behavior B modulo the sub-behavior B̂, is the collection of all
such equivalence classes. It is crucially important to note here that, when
the sub-behavior B̂ admits a complementary sub-behavior B̂′ such that
B = B̂⊕ B̂′, the quotient B/B̂ can then be identified with B̂′ as a
sub-behavior of B. In that situation, we simply write B = B̂⊕B/B̂.
B̂ does not always admit such a complementary sub-behavior.

It is known in the literature that for the particular case when B̂ equals
(B)cont, the behavior B indeed admits B = (B)cont ⊕Baut, where
Baut is an autonomous part of B (see [9, Chap. 5]). This enables the
following crucial proposition derived from [9, Th. 5.2.14 and Remark
5.2.15].

Proposition 2.14: For any behavior B the following hold:
1. (B)cont is unique.
2. Baut := B/(B)cont is autonomous.
3. B = (B)cont ⊕Baut.

In this article, our aim is to obtain a similar such direct sum de-
composition of B, not with (B)cont as a direct summand, but rather
with another special sub-behavior. In order to infer the corresponding
direct sum decomposition in the sequel we make use of the following
theorem.

Theorem 2.15: Let B̂ be a controllable sub-behavior of B (not
necessarily the controllable part of B). Then, B admits a direct sum
decomposition B = B̂⊕B/B̂.

Proof: By Definition 2.13, B̂ ⊆ (B)cont because B̂ has been
assumed to be controllable. Further, by the direct sum decomposition
of B as per Proposition 2.14, it is enough to show that (B)cont =

B̂⊕ (B)cont/B̂. Thus, we may assume without loss of generality
that B = (B)cont, i.e., B is controllable. Now, let B = kerR( d

dt
)

with R(ξ) ∈ R[ξ]g×q. Since B̂ ⊆ B, there exists R̂(ξ) ∈ R[ξ ]̂g×q

such that B̂ = ker
[
R( d

dt )
̂R( d

dt )

]
. Further, since B̂, too, is controllable,

by Proposition 2.8, B̂ = ker
[
R( d

dt )
̂R( d

dt )

]
is FLP. Thus, there exists

R̃(ξ) ∈ R[ξ](q−g−̂g)×q such that U(ξ) := col(R(ξ), R̂(ξ), R̃(ξ)) is

a unimodular matrix. We now define B̂′ := ker
[
R( d

dt )
˜R( d

dt )

]
. We claim

that B = B̂⊕ B̂′. In order to prove the claim, we first show that
for any arbitrary w ∈ B there exists w1 ∈ B̂ and w2 ∈ B̂′ such
that w = w1 + w2. For this purpose, we first notice that, since U(ξ)
is unimodular, by the matrix version of the Aryabhatta–Bezout

identity, there exist A(ξ) ∈ R[ξ]q×g, B(ξ) ∈ R[ξ]q×̂g, and

C(ξ) ∈ R[ξ]q×(q−g−̂g) such that [A(ξ) B(ξ) C(ξ)]U(ξ) =

A(ξ)R(ξ) +B(ξ)R̂(ξ) + C(ξ)R̃(ξ) = Iq. It then follows that
A( d

dt
)R( d

dt
)w +B( d

dt
)R̂( d

dt
)w + C( d

dt
)R̃( d

dt
)w = Iqw = w.

Since w ∈ B, we have A( d
dt
)R( d

dt
)w = 0. Also, we define

w2 := B( d
dt
)R̂( d

dt
)w and w1 := C( d

dt
)R̃( d

dt
)w. Note that[

R(ξ)

R̂(ξ)

R̃(ξ)

]
[A(ξ) B(ξ) C(ξ)] =

[
R(ξ)A(ξ) R(ξ)B(ξ) R(ξ)C(ξ)
̂R(ξ)A(ξ) ̂R(ξ)B(ξ) ̂R(ξ)C(ξ)
˜R(ξ)A(ξ) ˜R(ξ)B(ξ) ˜R(ξ)C(ξ)

]
= Iq.

So, we have the identities R(ξ)B(ξ) = 0, R̃(ξ)B(ξ) = 0,
R(ξ)C(ξ) = 0, R̂(ξ)C(ξ) = 0. It then easily follows that[
R( d

dt )
̂R( d

dt )

]
w1 = 0, and

[
R( d

dt )
˜R( d

dt )

]
w2 = 0. That is, w1 ∈ B̂ and w2 ∈ B̂′.

Hence, B = B̂+ B̂′. In order to show that the sum is a direct sum, we
have to prove that B̂ ∩ B̂′ = {0}. Let w ∈ B̂ ∩ B̂′. Then this w must

satisfy
[
R( d

dt )
̂R( d

dt )

]
w = 0, and also

[
R( d

dt )
˜R( d

dt )

]
w = 0. Thus, combining

the above two equations we get that U( d
dt
)w = 0. Since U(ξ) is

unimodular, it follows that w = 0. Identifying B/B̂ with B̂′ we get
the desired result. �

E. Projection of a Behavior

Let Bfull := {
[
w1

w2

]
∈ C∞(R,Rg+q)|[R1(

d
dt ) R2(

d
dt )]
[
w1

w2

]
= 0},

where R1(ξ) ∈ R[ξ]•×g and R2(ξ) ∈ R[ξ]•×q. A projection of the
behavior Bfull on the variable w2 is defined as Πw2

(Bfull) := B :=

{w2 ∈ C∞(R,Rq)|∃w1 ∈ C∞(R,Rg) such that
[
w1

w2

]
∈ Bfull}. The

following lemma can be derived from [13, Lemma 2.9.5]. It shows that
elimination of output variables does not change the input-cardinality.

Lemma 2.16: Let [R1(ξ) R2(ξ)] ∈ R[ξ]g×q and B := {
[
w1

w2

]
∈

C∞(R,Rq)|[R1(
d
dt
) R2(

d
dt
)]
[
w1

w2

]
= 0}. The partitioning in

col(w1, w2) conforms with the partitioning in [R1(ξ) R2(ξ)].
Assume that R1(ξ) is full column-rank. Then, the input-cardinality of
B = the input-cardinality of Πw2

(B).

III. MAIN RESULTS

Since the cost matrix
[
Q S
ST R

]
� 0, it admits a factorization[

Q S
ST R

]
=:
[
CT

DT

]
[C D], where C ∈ Rp×n,D ∈ Rp×m with p being the

rank of the cost matrix. Therefore, using this factorization, Problem 1.1
can be equivalently rewritten as:

Problem 3.1: Consider a stabilizable system

Σ :
d

dt
x(t) = Ax(t) +Bu(t) and y(t) = Cx(t) +Du(t) (4)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. Then, for ev-
ery initial condition x0, find an input u(t) that minimizes

J(x0, u) :=

∫ ∞

0

y(t)T y(t)dt with lim
t→∞

x(t) = 0. (5)

The problem is a singular LQR problem if rankD < m. We formu-
late this problem in the behavioral theory set up. Therefore, we first
define the behavior of the system Σ as

Bfull :=

⎧⎨⎩
⎛⎝x
u
y

⎞⎠ ∈ C∞(R,Rn+m+p)|x, u, and y satisfy equation (4)

⎫⎬⎭ .

The objective function defined in equation (5) consists of the output
y(t) of Σ only. Therefore, we restrict ourselves to the input trajectory
u(t) and the output trajectory y(t). Define the behavior (following the
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notation used in Section II-E)

B := Π(
u
y

)(Bfull). (6)

The dual B⊥ of the behavior B is defined as

B⊥ :=

{(
û
ŷ

)
∈ C∞(R,Rm+p)|L

((
û
ŷ

)
,

(
u
y

))
= 0∀

(
u
y

)
∈ B ∩D

}

where L

((
û
ŷ

)
,

(
u
y

))
:=

∫ ∞

−∞
ŷT ydt. (7)

By Pontryagin’s maximum principle col(u∗, y∗) is an optimal trajec-
tory of the behavior B only if col(u∗, y∗) ∈ BHam, where BHam is
the Hamiltonian of B defined as

BHam := B ∩B⊥. (8)

It is evident that the behavior BHam is the projection Π(u
y )(BHfull),

where BHfull is defined as

BHfull :=

⎧⎪⎨⎪⎩
⎛⎜⎜⎝
x
z
u
y

⎞⎟⎟⎠ ∈ C∞(R,Rn+n+m+p)|
⎛⎝x
z
u

⎞⎠ satisfies

equation (2) and y = Cx+Du

⎫⎪⎬⎪⎭. (9)

Recall that Q = CTC,S = CTD, and R = DTD. The following
lemma derived from [8, Th. 1] presents a necessary and sufficient
condition for CGCARE solvability.

Lemma 3.2: Consider the LQR Problem 3.1 and the Hamiltonian
behavior BHam defined in equation (8). Then, the CGCARE given by
equation (3) (where Q = CTC,S = CTD, and R = DTD) admits
a solution if and only if the input-cardinality of BHam is equal to
nullity(D).

Proof: From equation (2) and equation (9), it fol-
lows that BHfull is given by BHfull = kerR̂( d

dt
), where

R̂(ξ) := [
ξE −H 0

−F Ip
], F := [C 0p,n D]. Next, by [8, Th. 1], it follows

that CGCARE is solvable ⇔ rank (ξE −H) = 2n+ rankR.

But, clearly rank (ξE −H) = 2n+ rankR ⇔ rank R̂(ξ) =

2n+ p+ rankR. Therefore, CGCARE is solvable ⇔ rank R̂(ξ) =
2n+ p+ rankR. Now, define m̂ := the input-cardinality of BHfull.
Then, recall from Section II-C that m̂ = 2n+ m+ p− rank R̂(ξ).
Thus, CGCARE is solvable ⇔ m̂ = m− rankR = nullity(R).
Since BHam is a projection of the behavior BHfull, which is obtained
by eliminating the output variables (x

z
), by Lemma 2.16 it follows

that input-cardinality of BHfull = input-cardinality of BHam. Also,
since R = DTD, we have nullity(R) = nullity(D). Hence, we
conclude that CGCARE is solvable if and only if the input-cardinality
of BHam is equal to nullity(D). �

By using the idea of Schur complement, it can be shown that
rank R̂(ξ) � 2n+ p+ rankD. The maximum rank that R̂(ξ) can
attain is, of course, 2n+ m+ p. Therefore, the following inequality
always holds:

0 � input-cardinality of BHam � nullity(D). (10)

Two boundary cases of inequality (10) are the input-cardinality of
BHam = 0 and the input-cardinality of BHam = nullity(D). The
former corresponds to BHam being autonomous and thus [3] becomes
applicable. The latter corresponds to CGCARE being solvable and

thus [5], [6] can be employed. However, to the best of our knowledge,
the cases when inequality (10) does not lie in any of the boundaries
have remained unsolved. In this article, we deal with the cases when
inequality (10) is strict. The following corollary of Lemma 3.2 is a case
when inequality (10) attains its upper bound.

Corollary 3.3: B admits a solvable CGCARE if BHam = B.
Proof: Clearly, nullity(D) � m = the input-cardinality of B =

the input-cardinality of BHam (since BHam = B). Thus, by inequality
(10), it is evident that input-cardinality of BHam = nullity(D).
Hence, the result follows. �

Our main result shows that we can always write the behavior B as
a direct sum of two behaviors such that one of the behaviors admits
a solvable CGCARE, while the Hamiltonian of the other behavior is
autonomous. We further show that the Hamiltonians of these direct
summands are direct summands of the Hamiltonian behavior BHam as
well. To achieve this goal, we first define the output-nulling behavior
Bnull as

Bnull :=

{(
u
0

)
∈ C∞(R,Rm+p)|

(
u
0

)
∈ B

}
. (11)

The controllable parts of Bnull and BHam are defined as

Bnc := (Bnull)cont and BHc := (BHam)cont. (12)

Since Bnc ⊆ Bnull ⊆ B, we define the following quotient:

BLI := B/Bnc. (13)

Since Bnc is controllable, Theorem 2.15 ensures that BLI can be
embedded into C∞(R,Rm+p) as a sub-behavior of B.

The following lemma plays a very important role in finding the direct
summands of the behavior B.

Lemma 3.4: Consider Bnc and BHc as defined in equation (12).
Then, Bnc = BHc.

Proof: Bnc ⊆ BHc: We start by showing that Bnull ⊆ BHam.
Clearly,Bnull ⊆ B by construction. Further, by equation (7), it is ev-

ident that Bnull ⊆ B⊥. Hence, Bnull ⊆ B ∩B⊥ = BHam ⇒ Bnc ⊆
BHam. But, since Bnc is controllable, by Definition 2.13 we further
have Bnc ⊆ (BHam)cont = BHc.

BHc ⊆ Bnc: We first show that BHc ∩D ⊆ Bnull. Let
( û
ŷ
) ∈ BHc ∩D be arbitrary. Then, ( û

ŷ
) ∈ B ∩D and ( û

ŷ
) ∈ B⊥ ∩D.

Now, since ( û
ŷ
) ∈ B⊥, it follows that

∫ ∞
−∞ ŷT ydt = 0 for all (u

y
) ∈

B ∩D. Since ( û
ŷ
) ∈ B ∩D, we must have

∫∞
−∞ ŷT ŷdt = 0 ⇔ ŷ = 0.

Therefore, BHc ∩D ⊆ Bnull. By taking closure in C∞-topology,
we further have BHc ⊆ Bnull (see proof of [14, Th. 4] for
instance). But, since BHc is controllable, it further follows that
BHc ⊆ (Bnull)cont = Bnc. Hence, Bnc = BHc. �

Remark 3.5: Recall that,BLI [defined in equation (13)] is a quotient
behavior. So, the elements inBLI are equivalence classes of trajectories
from B modulo the behavior Bnc. Say, (u

y
) ∈ B, then we denote the

equivalence class of this trajectory by the notation [(u
y
)]. As discussed

before, BLI can be represented as a sub-behavior of B. But, being a
quotient behavior, this representation is not unique. Different represen-
tations of BLI signify different choices of the representatives of the
equivalence classes. Therefore, in order to define the Hamiltonian of
BLI with respect to the cost function (5), the natural questions that one
encounters are the following:
1) Is the function L([(u

y
)], ·) in equation (7) well-defined for all

[(u
y
)] ∈ BLI?

2) Is the cost function J(x0, u) in equation (5) well-defined for the
quotient behavior BLI as well?

The answer to both these questions is “yes.” To show this, first
consider [(u

y
)] ∈ BLI. Note that a trajectory ( û

ŷ
) ∈ B belongs to
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the equivalence class [(u
y
)] if and only if ( û

ŷ
)− (u

y
) ∈ Bnc, which

in turn implies ŷ = y. Now, say ( ũ
ỹ
) ∈ C∞(R,Rm+p) is arbitrary,

then L((u
y
), ( ũ

ỹ
)) =

∫ ∞
−∞ yT ỹdt =

∫ ∞
−∞ ŷT ỹdt = L(( û

ŷ
), ( ũ

ỹ
)). Thus,

L([(u
y
)], ·) is independent of the representative of [(u

y
)]. Hence,

L([(u
y
)], ·) is well-defined for BLI. Similar argument shows that

J(x0, u), too, is well-defined.
As a consequence of Remark 3.5, we can define

B⊥
LI with respect to the same cost function J(x0, u) as

B⊥
LI := {( û

ŷ
) ∈ C∞(R,Rm+p)|L(( û

ŷ
), [(u

y
)]) = 0 ∀ [(u

y
)] ∈ BLI ∩D}.

Therefore, the Hamiltonian of BLI can be defined as

BLHam := BLI ∩B⊥
LI. (14)

The following lemma is pivotal in showing that BLHam is autonomous.
Lemma 3.6: Consider BHam,Bnc, BLHam given in equation (8),

equation (12), and equation (14), respectively. Then, BHam/Bnc =
BLHam.

Proof: BHam/Bnc ⊆ BLHam: Recall that BLHam = BLI ∩
B⊥

LI= (B/Bnc) ∩ (B/Bnc)
⊥ [see equation (13) and equation (14)].

Now, BHam ⊆ B ⇒ BHam/Bnc ⊆ B/Bnc by natural inclusion.
Thus, it suffices to show that BHam/Bnc ⊆ (BLI)

⊥.
Let [( û

ŷ
)] ∈ BHam/Bnc be arbitrary ⇒ ( û

ŷ
) ∈ BHam. Thus,

( û
ŷ
) ∈ B⊥. Therefore, by equation (7)

L

((
û
ŷ

)
,

(
u
y

))
= 0 for all

(
u
y

)
∈ B ∩D

⇒ L

((
û
ŷ

)
,

[(
u
y

)])
= 0 for all

[(
u
y

)]
∈ BLI ∩D, (as BLI ⊆ B)

⇒ L

([(
û
ŷ

)]
,

[(
u
y

)])
= 0 for all

[(
u
y

)]
∈ BLI ∩D. (15)

Note that, the last two implications in the above equation follow
from Remark 3.5. From equation (15), it directly follows that [( û

ŷ
)] ∈

(BLI)
⊥. Hence, BHam/Bnc ⊆ BLHam.

BLHam ⊆ BHam/Bnc: Let [( û
ŷ
)] ∈ BLHam = BLI ∩ (BLI)

⊥ be

arbitrary. Then, [( û
ŷ
)] ∈ (BLI)

⊥; which implies that L([( û
ŷ
)],

[(u
y
)]) = 0 for all [(u

y
)] ∈ BLI ∩D. But, due to Remark 3.5, this

further implies that L(( û
ŷ
), (u

y
)) = 0 for all (u

y
) ∈ B ∩D. Therefore,

( û
ŷ
) ∈ B⊥. But, by our assumption, [( û

ŷ
)] ∈ BLHam ⊆ BLI ⊆ B.

So, ( û
ŷ
) ∈ B and hence ( û

ŷ
) ∈ BHam ⇒ [( û

ŷ
)] ∈ BHam/Bnc. Thus,

BLHam ⊆ BHam/Bnc. �
Now, we prove the main result of this article. This result shows that

the behavior B can be written as B = Bnc ⊕BLI, where Bnc admits
a CGCARE which is solvable, while BLI gives rise to an autonomous
Hamiltonian.

Theorem 3.7: Consider the behaviors B, Bnc, and BLI as defined
in equation (6), equation (12), and equation (13), respectively. Define
BncHam := Bnc ∩B⊥

nc. Then
1. B = Bnc ⊕BLI.
2. CGCARE is solvable for the behavior Bnc.
3. The Hamiltonian BLHam of BLI is autonomous.
4. BHam = BncHam ⊕BLHam.

Proof: 1. Since Bnc ⊆ Bnull ⊆ B, BLI = B/Bnc, and Bnc is
controllable, by Theorem 2.15, B = Bnc ⊕BLI.

2. The dual of the behavior Bnc with respect to the
cost function (5) is given by B⊥

nc := {( û
ŷ
) ∈ C∞(R,Rm+p)|

L(( û
ŷ
), (u

y
)) = 0∀(u

y
) ∈ Bnc ∩D}, where L(( û

ŷ
), (u

y
)) is as defined

in equation (7). Now, from the construction of Bnc it follows that for
col(u, y) ∈ Bnc, where y ∈ C∞(R,Rp), we must have that y ≡ 0.

Thus, Bnc ⊆ B⊥
nc ⇒ BncHam = Bnc. Thus, using Corollary 3.3, we

conclude that Bnc admits a CGCARE, which is solvable.
3. From Lemma 3.6, BLHam = BHam/Bnc. But, by Lemma 3.4,

we also know that Bnc = BHc, where BHc = (BHam)cont. Hence, by
Proposition 2.14, BLHam is autonomous.

4. BLHam = BHam/Bnc ⇒ BHam = Bnc ⊕ BLHam. Also,
BncHam = Bnc. Hence, BHam = BncHam ⊕BLHam. �

Remark 3.8: As mentioned earlier, we have considered only smooth
trajectories for defining the behaviors involved in this article, because
our primary aim is to write the behavior B as B = Bnc ⊕BLI.
This direct sum decomposition enables us to solve the singular LQR
problems for the behaviors Bnc and BLI separately. While solving the
problems for these behaviors, we extend the trajectory space to allow
the impulsive trajectories as well (see Section V for more on impulsive
trajectories). Let col(u∗

1, y
∗
1) and col(u∗

2, y
∗
2) be optimal trajectories

for the behavior Bnc and BLI, respectively. Then, it is obvious that
col(u∗, y∗) := col(u∗

1, y
∗
1) + col(u∗

2, y
∗
2) is an optimal trajectory for

B. Because, from the structure of Bnc it is clear that the optimal cost
for the behavior Bnc is zero. Thus, optimal cost for the behavior B
is the same as the optimal cost for the behavior BLI. Further, Bnc

can be solved using a proportional state-feedback, because it admits a
solvable CGCARE [6]. On the other hand, BLI can be solved using a
proportional–derivative (P-D) state-feedback. Hence, a controller that
solves the original problem is of a P–D feedback nature. It also follows
that Bnc does not have a unique optimal trajectory. This results in the
nonuniqueness of an optimal trajectory for B as well.

IV. METHOD TO OBTAIN THE DIRECT SUMMANDS Bnc AND

BLI OF B

In this section, we obtain the representations of the behaviors
Bnc and BLI. Recall from Proposition 2.14 that B admits a direct
sum decomposition given by B = (B)cont ⊕Baut, where Baut :=
B/(B)cont is autonomous. Since B is stabilizable, Baut must be
asymptotically stable; i.e., if Baut =: kerRaut(

d
dt
), then all the roots

of detRaut(ξ) lie in the open left-half of the complex plane. Such
a matrix Raut(ξ) can be obtained from the kernel representation of
B (see [9, Th. 5.2.14]). Similarly, a kernel representation of (B)cont
can also be found. Furthermore, (B)cont being controllable admits an
observable image representation given by

(B)cont =: img

[
U( d

dt
)

Y ( d
dt
)

]
, U(ξ) ∈ R[ξ]m×m, Y (ξ) ∈ R[ξ]p×m. (16)

Obtaining the behavior Bnc : In the following lemma, we obtain an
observable image representation of Bnc from the image representation
of (B)cont.

Lemma 4.1: Consider the behaviors B and Bnc as defined in equa-
tion (6) and equation (12), respectively. Recall the matrices U(ξ) and
Y (ξ) from equation (16). Let M(ξ) ∈ R[ξ]m×q be an MRA of Y (ξ),
where q := m− rankY (ξ). Then, Bnc is given by the observable

image representation: Bnc = img
[
U( d

dt )M( d
dt )

0p,q

]
.

Proof: Since Bnc is controllable, it admits an image representation.
Also, by Definition 2.13, we have that Bnc ⊆ (B)cont. Thus, there

exists M1(ξ) ∈ R[ξ]m×• such that Bnc=img
[
U( d

dt )
Y ( d

dt )

]
M1(

d
dt
). From

the definition ofBnc, we must haveY ( d
dt
)M1(

d
dt
) = 0. Thus,M1(ξ) is

a right-annihilator of Y (ξ). Therefore, imgM1(
d
dt
) ⊆ imgM( d

dt
). So,

Bnc=img
[
U( d

dt )
Y ( d

dt )

]
M1(

d
dt
)⊆ img

[
U( d

dt )
Y ( d

dt )

]
M( d

dt
)=img

[
U( d

dt )M( d
dt )

0p,q

]
.

But, clearly img
[
U( d

dt )M( d
dt )

0p,q

]
⊆ Bnull. Also, the behavior
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img
[
U( d

dt )M( d
dt )

0p,q

]
is controllable. Therefore, by Definition 2.13,

img
[
U( d

dt )M( d
dt )

0p,q

]
⊆ Bnc. Hence, Bnc = img

[
U( d

dt )M( d
dt )

0p,q

]
.

Next, since
[
U(ξ)M(ξ)

0p,q

]
=
[
U(ξ)
Y (ξ)

]
M(ξ) and both

[
U(ξ)
Y (ξ)

]
and M(ξ) are FRP, we have

[
U(ξ)M(ξ)

0p,q

]
is FRP. Hence,

Bnc = img
[
U( d

dt )M( d
dt )

0p,q

]
is an observable image representation. �

Obtaining the behavior BLI: Recall that BLI = B/Bnc. Being
a quotient behavior, BLI is not unique. The next lemma provides a
representation for BLI as a sub-behavior of B.

Lemma 4.2: Recall behavior Baut = B/(B)cont and the matrices[
U(ξ)
Y (ξ)

]
and M(ξ) from equation (16) and Lemma 4.1, respectively.

Then, the following are true
1. There exists a matrix N(ξ) ∈ R[ξ]m×(m−q), which is FRP such that

[M(ξ) N(ξ)] is unimodular.

2. B̂LI := (B)cont/Bnc is given by an observable image representa-

tion B̂LI = img
[
U( d

dt )
Y ( d

dt )

]
N( d

dt
).

3. BLI = Baut ⊕ B̂LI.
Proof: 1. Follows from Remark 2.3.
2. Since [M(ξ) N(ξ)] is unimodular, img[M( d

dt
) N( d

dt
)] =

C∞(R,Rm). Consequently, using Lemma 4.1, it is evident that

(B)cont = img

[
U( d

dt
)

Y ( d
dt
)

]
= img

[
U( d

dt
)

Y ( d
dt
)

] [
M( d

dt
) N( d

dt
)
]

= Bnc + img

[
U( d

dt
)

Y ( d
dt
)

]
N

(
d

dt

)
. (17)

Now, let col (u(t), y(t)) ∈ Bnc ∩ img
[
U( d

dt )
Y ( d

dt )

]
N( d

dt
). Then,

there exist �1 ∈ C∞(R,Rq) and �2 ∈ C∞(R,R(m−q)) such that[
u(t)
y(t)

]
=
[
U( d

dt )M( d
dt )

0p,q

]
�1 =

[
U( d

dt )
Y ( d

dt )

]
N( d

dt
)�2 ⇔

[
U( d

dt )
Y ( d

dt )

]
M( d

dt
)

�1 =
[
U( d

dt )
Y ( d

dt )

]
N( d

dt
)�2 ⇔

[
U( d

dt )
Y ( d

dt )

]
[M( d

dt ) N( d
dt )] [

�1
−�2

] = 0. Since

(B)cont = img

[
U( d

dt
)

Y ( d
dt
)

]
is observable, by Definition 2.10, we infer

that [M( d
dt ) N( d

dt )][
�1
−�2

] = 0. But, [M( d
dt
) N( d

dt
)] being unimodular

further implies that col (�1,−�2) = 0. Therefore, col (u(t),

y(t)) = 0. Thus, Bnc ∩ img
[
U( d

dt )
Y ( d

dt )

]
N( d

dt
) = {0}. Hence, from

equation (17), we infer that (B)cont = Bnc ⊕ img
[
U( d

dt )
Y ( d

dt )

]
N( d

dt
).

Therefore, img
[
U( d

dt )
Y ( d

dt )

]
N( d

dt
) = (B)cont/Bnc = B̂LI.

Since col (U(ξ), Y (ξ)) and N(ξ) are FRP,

B̂LI = img
[
U( d

dt )
Y ( d

dt )

]
N( d

dt
) is an observable image representation.

3. By definition BLI = B/Bnc = [Baut ⊕ (B)cont]/Bnc. Now,
Bnc ⊆ (B)cont implies that Baut ∩Bnc = {0}. Therefore, BLI =

Baut ⊕ [(B)cont/Bnc] = Baut ⊕ B̂LI.
Remark 4.3: Here, we summarize the relations between the behav-

iors encountered in this article.
1) The plant behavior B is written as a direct sum decomposition

B = Bnc ⊕BLI, where Bnc is the controllable part of the output-
nulling behaviorBnull [see equation (11)]. Hence,Bnc ⊆ (B)cont.

2) On the other hand, Baut ⊆ BLI. As mentioned before, Baut is
asymptotically stable. So, by Lemma 4.2, we can infer that BLI is
stabilizable.

3) BHam is the Hamiltonian behavior of the plant behavior B. We
showed thatBHam admits the decompositionBHam = BncHam ⊕
BLHam, whereBncHam andBLHam are the Hamiltonian behaviors
corresponding to the behaviors Bnc and BLI, respectively.

4) Further, due to the structure ofBnc, it follows thatBncHam = Bnc

while BLHam is autonomous.

V. ON THE DISTRIBUTIONAL OPTIMAL TRAJECTORIES

Singular LQR problems, in general, exhibit optimal trajectories,
which are impulsive in nature. But, while defining the behaviors, we
have considered only smooth trajectories. This may lead one to believe
that the approach presented in this article works only for the smooth op-
timal trajectories. In this section, we show that this apparent impression
is not true. As discussed before (see Remark 3.8), smooth trajectories
have been considered only to get a direct sum decomposition of the plant
behavior, which is our initial aim. While solving the problems for the
direct summand behaviors individually, we extend our trajectory space
to allow the impulsive trajectories as well. We show that the method
presented in this article can obtain the impulsive optimal trajectories,
too. We first define the set of impulsive-smooth distributions.

Definition 5.1: The set of impulsive-smooth distributions Cw
imp is

defined as

Cw
imp := { f = freg + fimp|freg ∈ C∞(R,Rw)|R+

and

fimp =
k∑

i=0

aiδ
(i), with ai ∈ Rw and k ∈ N }.

Next, we formally define the set of allowable impulsive trajectories
for a system with transfer function matrix G(s).

Definition 5.2: Consider a system with the transfer function matrix
G(s) ∈ R(s)p×m. Assume that the system produces the output y(t) on
application of the input u(t). Then, (u

y
) is said to be an allowable

impulsive trajectory, if u(t) ∈ Cm
imp and y(t) ∈ C∞(R,Rp)|R+

(i.e.,
the output is regular).

Remark 5.3: Let u(t) = ureg + uimp, where ureg ∈
C∞(R,Rm)|R+

and uimp =
∑k

i=0 aiδ
(i), with ai ∈ Rm and k ∈ N.

Define ǔ(s) := ǔreg(s) + ǔimp(s), where ǔreg(s) is the Laplace
transform of ureg and ǔimp(s) :=

∑k
i=0 ais

i. Then, it can be shown
that the output y(t) corresponding to the input u(t) is regular if and
only if G(s)ǔ(s) is strictly proper.

Next, we characterize the allowable impulsive trajectories for the
behavior (B)cont in terms of its image representation.

Lemma 5.4: Recall that (B)cont = img

[
U( d

dt
)

Y ( d
dt
)

]
, where Y (s) ∈

R[s]p×m, and U(s) ∈ R[s]m×m is nonsingular. Then, (u
y
) ∈ Cm+p

imp is an
allowable impulsive trajectory of (B)cont, if and only if there exists

� ∈ Cm
imp such that (u

y
) =

[
U( d

dt
)

Y ( d
dt
)

]
�, where u = U( d

dt
)� ∈ Cm

imp and

y = Y ( d
dt
)� ∈ C∞(R,Rp)|R+

.
Proof if: This direction follows directly.
only if: The transfer function matrix of the behavior (B)cont is given

by G(s) = Y (s)U(s)−1. Now, since (u
y
) is an allowable impulsive

trajectory, u(t) ∈ Cm
imp and y(t) ∈ C∞(R,Rp)|R+

. Moreover, y̌(s) =
Y (s)U(s)−1ǔ(s), where ǔ(s) is as defined in Remark 5.3 and y̌(s) is
the Laplace transform of y(t). Now, define �̌(s) = U(s)−1ǔ(s). Then,
�̌(s) can be written as �̌(s) = �̌1(s) + �̌2(s), where �̌1(s) is strictly
proper and �̌2(s) =

∑j
i=0 bis

i, for some bi ∈ Rm and j ∈ N. Define
�(t) = �1(t) + �2(t), where �1(t) is the Laplace inverse of �̌1(s) and

�2(t) :=
∑j

i=0 biδ
(i). Then, evidently, (u

y
) =

[
U( d

dt
)

Y ( d
dt
)

]
�. �

In Theorem 3.7, we have shown that the plant behavior admits a
decomposition B = Bnc ⊕BLI. But, while doing so, we have consid-
ered smooth trajectories only. The following theorem shows that this
decomposition works for the impulsive trajectories as well. Therefore,
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if (u
y
) is an allowable impulsive trajectory ofB, then (u

y
) can be written

as (u
y
) = (

û
0
) + (

ũ
y), where ( û

0
) ∈ Bnc and (

ũ
y) ∈ BLI. Furthermore,

(u
y
) ∈ BLI and (

ũ
y) ∈ BLI incur the same cost. Thus, even though we

have used only smooth trajectories to get a direct sum decomposition of
the plant behavior, the impulsive optimal trajectories are not lost when
we solve the singular LQR problems for the behaviors Bnc and BLI

individually.
Theorem 5.5: Let (u

y
) ∈ B be an impulsive optimal trajectory that

incurs the cost J0. Then, there exist û, ũ ∈ Cm
imp such that (u

y
) = (

û
0) +

(
ũ
y) with (

û
0) ∈ Bnc and (

ũ
y) ∈ BLI. Furthermore, (ũy) is an impulsive

optimal trajectory for B that incurs the cost J0.
Proof: Recall that B = Baut ⊕ (B)cont. Baut being an au-

tonomous behavior does not contain any impulsive optimal trajec-
tory. Thus, all the impulsive trajectories of B are contained in the
behavior (B)cont. Therefore, without loss of generality, we may

assume that B = (B)cont. So, B = img

[
U( d

dt
)

Y ( d
dt
)

]
, where U(ξ) ∈

R[ξ]m×m and Y (ξ) ∈ R[ξ]p×m. Assume thatM(ξ) ∈ R[ξ]m×q is an MRA
of Y (ξ) and N(ξ) ∈ R[ξ]m×(m−q) is such that [M(ξ) N(ξ)] is uni-
modular, where q := m− rankY (ξ). Then, from Lemmas 4.1 and

4.2 it follows that B is given by B = img

[
U1(

d
dt
) U2(

d
dt
)

0 Y2(
d
dt
)

]
, where

U1(
d
dt
) := U( d

dt
)M( d

dt
), U2(

d
dt
) := U( d

dt
)N( d

dt
), and Y2(

d
dt
) :=

Y ( d
dt
)N( d

dt
). Since (u

y
) ∈ B, by Lemma 5.4, there exist �1 ∈ Cq

imp

and �2 ∈ C
(m−q)
imp such that (u

y
) =

[
U1(

d
dt
) U2(

d
dt
)

0 Y2(
d
dt
)

] [
�1
�2

]
. Define û :=

U1(
d
dt
)�1 and ũ := U2(

d
dt
)�2. Then, clearly (u

y
) = (

û
0) + (

ũ
y) with

(
û
0) ∈ img

[
U1(

d
dt )
0

]
= Bnc and (

ũ
y) ∈ img

[
U2(

d
dt )

Y2(
d
dt )

]
= BLI.

Furthermore, by equation (5), it follows that (u
y
) and (

ũ
y) incur the

same cost J0. Since BLI ⊆ B, we have that (ũy), too, is an impulsive

optimal trajectory of B, which incurs the cost J0. �

VI. ILLUSTRATIVE EXAMPLE

Consider the singular LQR Problem 3.1, where the matrices of

the system Σ are given as A =

⎡⎣1 2 0
0 1 0
0 0 1

⎤⎦ , B =

⎡⎣1 −1 0
2
3
− 1

3
− 2

3
2
3

2
3

1
3

⎤⎦ , C =⎡⎣−1 −1 0
0 0 0
0 0 1

⎤⎦ , and D =

⎡⎣ 0 0 0
− 2

3
− 2

3
− 1

3

0 0 0

⎤⎦ . Thus, the transfer function

matrix G(s) of Σ is given by

G(s) = C(sI3 −A)−1B +D =
1

3

⎡⎢⎣−
(5s−1)

(s−1)2
(4s−2)

(s−1)2
(2s+2)

(s−1)2

−2 −2 −1
2

(s−1)
2

(s−1)
1

(s−1)

⎤⎥⎦ .
It can be verified that nrankG(s) = 2, where nrankG(s) :=
max{rankG(λ)|λ ∈ C and G(s) is analytic at λ} is the normal rank
of G(s). But, since rank (D) = 1, by [8, Th. 1], we conclude that
CGCARE is not solvable.

Again, it can be easily verified that det(sE −H) ≡ 0, where E,H
are as defined in equation (2) with Q = CTC,S = CTD, and R =
DTD. Hence, the Hamiltonian system is nonautonomous. Therefore,
the problem cannot be solved by applying either [3], or [5], [6]. Next,
we solve this problem by using the behavioral formulation presented
in this article.

To obtain a behavioral representation of the system Σ, we
first obtain a left co-prime factorization of G(s) as G(s) =

Ỹ (s)−1Ũ(s), where Ỹ (s) :=

⎡⎣(s− 1)2 0 0
0 1 0
0 0 (s− 1)

⎤⎦ and Ũ(s) :=

1
3

⎡⎣1− 5 s 4s− 2 2s+ 2
−2 −2 −1
2 2 1

⎤⎦ . Then, the behavior B of the system Σ

is given by B = kerR( d
dt
), where R(ξ) = [−Ũ(ξ) Ỹ (ξ)]. Since, B

is controllable, by Proposition 2.9, we can obtain an observable image

representation B = img

[
U(ξ)
Y (ξ)

]
by computing an MRA

[
U(ξ)
Y (ξ)

]
of

R(ξ). These matrices can be found out to be

U(ξ) :=

⎡⎢⎣ −1 0 (3ξ−3)
2

3ξ+1
2

− (ξ−1)2

2
− 5ξ2−6ξ+1

4

1− 3ξ (ξ − 1)2 5ξ2−6ξ+1
2

⎤⎥⎦ and Y (ξ) :=

⎡⎣0 1 0
0 0 1− ξ
0 0 1

⎤⎦ .
We apply Lemma 4.1 to obtain the behavior Bnc. Thus, we find a
matrix M(ξ) which is an MRA of Y (ξ). We find this matrix to be
M(ξ) = [1 0 0]T . Then

Bnc = img

[
U( d

dt
)M( d

dt
)

03,1

]
︸ ︷︷ ︸

Mnc(
d
dt

)

= img

⎡⎢⎢⎣
−1

1
2
(3 d

dt
+ 1)

1− 3 d
dt

03,1

⎤⎥⎥⎦ . (18)

To obtain the behavior BLI, we apply Lemma 4.2. Thus, we find
a matrix N(ξ) such that

[
M(ξ) N(ξ)

]
is unimodular. Notice that,

N(ξ) =

⎡⎣0 0
1 0
0 1

⎤⎦ satisfies this condition. Thus, an observable image

representation of BLI is given as

BLI = img

[
U( d

dt
)

Y ( d
dt
)

]
N(

d

dt
)︸ ︷︷ ︸

MLI(
d
dt

)

= img

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 3ξ−3
2

− (ξ−1)2

2
− 5ξ2−6ξ+1

4

(ξ − 1)2 5ξ2−6ξ+1
2

1 0
0 1− ξ
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

Notice that B = Bnc ⊕BLI.
Say, col(u1(t), u2(t), u3(t), y1(t), y2(t), y3(t)) ∈ C∞(R,R6) is

an arbitrary trajectory of Bnc, then from equation (18) it is evident
that col(y1(t), y2(t), y3(t)) ≡ 0. Therefore, the Hamiltonian of Bnc

with respect to the cost function (5) is same as the behaviorBnc. Hence,
by Corollary 3.3, CGCARE is solvable for the behavior Bnc.

Next, rankMLI(ξ) = 2. Hence, the input-cardinality of BLI = 2.
Let col(u1(t), u2(t), u3(t), y1(t), y2(t), y3(t)) ∈ C∞(R,R6) be an
arbitrary trajectory of BLI. To obtain a proper input–output partition,
we choosecol(u1(t), u3(t)) as the input. The variableu2(t) is ignored,
because it does not influence the objective function. Now, we obtain the
input-state-output (i/s/o) representation of the behaviorBLI from the in-
put ũ := col(u1(t), u3(t)) to the output y = col(y1(t), y2(t), y3(t))
(see [9, Ch. 6] for details about obtaining the i/s/o form). This repre-
sentation is found to be

d

dt
x̃(t) = Ãx̃(t) + B̃ũ(t) and y(t) = C̃x̃(t) + D̃ũ(t) (20)
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where Ã =

⎡⎣ 1 0 0
4
3

0 −1
− 4

3
1 2

⎤⎦ , B̃ =

⎡⎣1 0
0 1
0 0

⎤⎦ , C̃ =

⎡⎣− 5
3
0 1

0 0 0
2
3

0 0

⎤⎦, and

D̃ =

⎡⎣ 0 0
− 2

3
0

0 0

⎤⎦. For this system, the Hamiltonian matrix pair (E,H)

[defined in equation (2)] is found to be E =

⎡⎣I3 0 0
0 I3 0
0 0 02,2

⎤⎦ and H =[
˜A 0 ˜B

− ˜CT
˜C − ˜AT − ˜CT

˜D
˜DT

˜C ˜BT
˜DT

˜D

]
. It can be verified that det(sE −H) =

4
9
(s2 − 2). Thus, the Hamiltonian system is autonomous. By solving

the problem for the state-space system given by equation (20),
we get that the optimal state and the optimal input are given by

x̃∗ = 0.5

⎡⎣ 3

−(5
√
2 + 6)
5

⎤⎦ e−√
2tx03 +

⎡⎣ 0
x01 + x02

0

⎤⎦ δ and ũ∗ =

0.5

[−3(
√
2 + 1)

6
√
2 + 11

]
e−

√
2tx03 −

[
0

x01 − x02 +
5
2
(
√
2 + 1)x03

]
δ +[

0
x01 + x02

]
δ(1), respectively, where x0 = col (x01, x02, x03)

is the initial condition of the given plant Σ. Consequently, the
optimal output trajectory of BLI (and also of B) is given by

y∗ =

⎡⎣ 0√
2 + 1
1

⎤⎦ e−√
2tx03. Evidently, an optimal input for the

given plant Σ is given by u∗ = 0.5

⎡⎣−3(
√
2 + 1)

− 6
√
2+11
2

6
√
2 + 11

⎤⎦ e−√
2tx03 −⎡⎣ 0

− 1
2
{x01 − x02 +

5
2
(
√
2 + 1)x03}

x01 − x02 +
5
2
(
√
2 + 1)x03

⎤⎦ δ +
⎡⎣ 0
− 1

2
(x01 + x02)
x01 + x02

⎤⎦
δ(1) =: ure

−√
2t + r0δ + r1δ

(1). This optimal input pro-
duces the optimal state trajectory of Σ given by x∗ =

1
4

⎡⎣−5(
√
2 + 1)

5(
√
2 + 1)
4

⎤⎦ e−√
2tx03 +

1
2

⎡⎣ 1
−1
0

⎤⎦ (x01 + x02)δ = xre
−√

2t +

xdδ. So, d
dt
x∗ = −√

2xre
−√

2t − x0δ + xdδ
(1) (in distribu-

tional sense). To obtain a P–D feedback law, we solve the
equation u∗ = Fpx

∗ + Fd
d
dt
x∗ for Fp and Fd. Equivalently,

(Fp −
√
2Fd)xr = ur, (Fpxd − Fdx0) = r0, and Fdxd = r1. Fp =⎡⎣0 0 − 3
2
(
√
2 + 1)

0 0 − 1
4
(6
√
2 + 11)

0 0 1
2
(6
√
2 + 11)

⎤⎦ andFd =

⎡⎣ 0 0 0

− 1
2

1
2

− 5
4
(
√
2 + 1)

1 −1 5
2
(
√
2 + 1)

⎤⎦ satisfy the

set of equations. Hence, the feedback law u(t) = Fpx(t) + Fd
d
dt
x(t)

solves the given singular LQR problem.

VII. CONCLUSION

A singular LQR problem with nonautonomous Hamiltonian for
which the corresponding CGCARE is not solvable has been dealt with
in this article. We formulated the problem in a behavioral theoretic
setting. Then, we showed that the original problem can be divided into
two subproblems such that one problem admits a solvable CGCARE,
while the other admits an autonomous Hamiltonian. We achieve this
by obtaining a direct sum decomposition of the original behavior.
Finally, we show that the method described in this article can be used
to obtain both the smooth and the distributional optimal trajectories. In
Section VI, we demonstrated the theory presented in this article through
an illustrative example. We also provided a closed-loop solution for
this particular example. However, a closed-loop solution for a general
problem with nonautonomous Hamiltonian has not been provided here.
We plan to pursue this elsewhere in the future.
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