
1280 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

Improper Optimal/Suboptimal Controllers

Debasattam Pal and Madhu N. Belur, Member, IEEE

Abstract—We consider -control of MIMO systems and address solv-
ability of the problem over all finite dimensional LTI controllers: i.e., con-
trollers whose transfer functions can be proper or improper. We show that
improper controllers are easily dealt with using the behavioral approach,
unlike the standard state-space/transfer-matrix methods, and argue that
there are cases where an improper controller can outperform a proper con-
troller. In this setting, we next formulate and prove necessary and sufficient
conditions for suboptimal -control problem solvability and relate this
to existing results about system invariant zeros. Further, we infer that in our
formulation, assuming suboptimal solvability conditions on the system, an
optimal controller always exists, possibly with an improper transfer func-
tion. In other words, the infimum -norm of the closed loop system is
achievable when dealing with both proper and improper controller transfer
functions. We illustrate these results through an example for which the op-
timal -controller has an improper transfer function.

Index Terms—Dissipative systems, improper transfer function, -con-
trol, optimal control, polynomial matrix representations, system invariant
zeros.

I. INTRODUCTION AND NOTATION

While ����� control problems have far-reaching significance in
robust control and worst case scenario disturbance attenuation, one se-
rious drawback with the current control design procedure is that con-
trollers often end up having a large order. Consequently, the closed
loop system resulting from the obtained controller has an even higher
order. In our opinion, the key reason for this drawback is the inability of
state-space design methodology to accommodate improper controllers
in controller design. This technical note eliminates this drawback com-
pletely; we focus on�� suboptimal/optimal control problems, without
making any restrictive assumptions a priori that is done in state-space
theory to guarantee properness of the controller transfer function. In
this technical note, we do not address the internal stability aspect of
the problem, which together with �� control constitutes the corre-
sponding �� control problem. See [9] for recent work that addresses
the internal stability aspect, though in a different context, namely ro-
bust stabilization, and further, without dealing with improperness of
controller transfer function. An advantage of the approach in this tech-
nical note, also reflected by our main results, is that when nonproper
controllers are included in ��-optimal control problem, then the op-
timal value is always attained, possibly by an improper controller [10].
Another of the main results in this technical note is that, even when not
requiring properness of the controller/plant transfer functions, we ob-
tain the familiar necessary and sufficient conditions for solvability of
the suboptimal ��-control problem for sufficiently large �: absence
of the plant invariant zeros on the imaginary axis. See [5] for an earlier
reporting of these results.
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The content of this technical note is organized as follows. The issue
of controllers with improper transfer functions for the �� suboptimal
control problem is studied in Section III. Here we present necessary and
sufficient conditions (Theorem 3.2) for the solvability of the sub-op-
timal��-control problem under milder assumptions than made in con-
ventional state space control theory (see [7], for example). We also re-
late the conditions of Theorem 3.2 with well-known system theoretic
concepts of invariant zeros. The proof of the main result together with
some auxiliary results are in Section IV. Finally, we show how our main
result Theorem 3.2 can be used to infer the solvability of the �� op-
timal control problem (Section V). Here we show that due to non-re-
quirement of properness of the controller’s transfer function, the op-
timal controller always exists under suboptimal solvability conditions.
This result is our second main result of the technical note. Section II
contains preliminaries of behavioral theory of dissipative dynamical
systems. The rest of this section is devoted to the notation used in this
technical note.

The sets and stand for the fields of real and complex numbers
respectively, while �� � �� means the space of infinitely often dif-
ferentiable maps from to �. The subset of �� � ��with functions
having compact support is denoted by � � ��. Sometimes, when
it is clear from the context, we write just � and . Also, in order
to identify the number of components in a vector �, we simply use
�, for example, � � �� � ��. We often require to stack vectors
or matrices into a column; this is done using the ‘col’: ������� ���

denotes ���

� ��

� �
�

. Similarly, for readability purposes, we write the
vector � � ���� ��� ���, though � is a column vector in equations.
Finally, when defining a matrix �, in which the number of rows fol-
lows from matrix multiplication/addition compatibility, then we write
���� � ������ and thus specify only the number of columns of �.

II. PRELIMINARIES

In this technical note, by a linear differential behavior , we mean
a subset of �� � �� such that elements � � satisfy a system
of ordinary linear differential equations with constant real coefficients.
This amounts to existence of a polynomial matrix ���� � ������
such that

	� � � �� � ����




�
� � � �

This representation is known as a kernel representation of . We de-
note the set of all such linear differential behaviors with � number
of variables by �. Though kernel representations are not unique, the
number of system inputs and system outputs do not depend on the par-
ticular kernel representation. We denote the number of inputs in the
system by �� �. The number of inputs turns out to be � � �
�����
for a kernel representation ��
�
��� � �. The polynomial matrix �
in a kernel representation can be assumed to have full row rank without
loss of generality: we assume this.

A behavior � � is said to be controllable if for every ��� ��� �
, there exists � � and 	 
 � such that

���� �
����� for all � � 
�


������ for all � 	�

We denote the set of all controllable behaviors with � variables as
�

����. It was shown in [6] that � �����
�
�� is controllable if
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and only if ���� has constant rank for all � � . Controllable be-
haviors are precisely the behaviors that admit an image representation:
there exists an ���� � ������ with

�� ���� � �� � �� ��	
 �
�� � � �




�
� 	

We then write � ����


��. For the purpose of this technical
note, we need the image representation to have the property that � can
be deduced from � � ; this is called observability. The image repre-
sentation above is said to be observable if ���� has full column rank
for all � � . It turns out that image representations can be assumed
to be observable without loss of generality: unless otherwise stated, we
assume this. A detailed exposition of these concepts can be found in
[6].

An important concept required for this technical note is the notion
of a quadratic differential form (QDF). (See [11] for a detailed ex-
position.) A QDF �� induced by a two-variable polynomial matrix
���� 
� ��

���
����

�
� � ������ 
�, where ��� �
���, is a map

�� � �� � �� � �� � � defined as

����� ��
���


��


��

�

���


��


��
	

When dealing with quadratic forms in� and its derivatives, we assume,
without loss of generality, that ���� 
� � �� �
� ��; such a ���� 
� is
called symmetric. We often require the one-variable polynomial matrix
����� �� obtained from ���� 
�; we define ����� �� ����� ��.

We call a controllable behavior � �

���� dissipative on with
respect to a symmetric two-variable polynomial matrix ���� 
� if

�����
� � for all � � � . We will make use of the
following result from [11], which relates the dissipativity of a behavior
to the non-negativity of a certain polynomial matrix on the imaginary
axis.

Proposition 2.1: Consider � ����


�� and a symmetric
� � ������ 
�. Then is �-dissipative on if and only if
�� ���������������� � for all � � .

We require the notion of orthogonal complement of a controllable
behavior in this technical note: consider � �

���� having a kernel
representation ��


��� � �, the orthogonal complement � of the
behavior is defined as

� �� �� �� � ��� �� �
��� ��� ��� �� � 	

III. SUBOPTIMAL �� CONTROL: PROBLEM

FORMULATION AND MAIN RESULT

In this section we address the solvability of the �� control problem
when the restrictive regularity assumptions on the “feed-through” terms
of the plant are relaxed. The regularity assumptions are required in
order to have the controller in the conventional observer-state-feedback
structure, which is equivalent to the properness of the controller transfer
function. These assumptions are restrictive in the sense that even when
regularity is violated, which can make the �� (sub)-optimal control
problem unsolvable with a proper controller, an improper controller
might still exist that makes the controlled system achieve the desired
�� norm1 condition.

Our main result provides necessary and sufficient conditions for the
solvability of the MIMO �� control problem without any such as-
sumptions. However, before we state our main result we give an ex-

1The � -norm ��� of a transfer matrix � is defined as ��� ��
��� � �������, where � denotes the maximum singular value.

Fig. 1. Standard control problem.

ample where regularity assumptions on the plant are not satisfied, but an
improper transfer function controller solves the ��-control problem.
We use a SISO example just for the purpose of demonstration: all the
results in this technical note are for the MIMO case.

Example 3.1: Consider the following plant:
�

��
�

��
�

� �

�� ��

��
��

�
�

�
��

�

�
��

��
��

�
��
�

��
 � � ��

where � � ���� ��� is the to-be-controlled variable, � is the control
input, � is the disturbance and � is the measurement. (See Fig. 1.) It
can be checked that a state-space controller cannot restrict this plant to
a controlled behavior whose �� norm is at most one (of the transfer
function from � to � in the closed loop system). However, a controller

of the form � �
�

�, which is improper, solves the problem. In Section V
we show that one can achieve �� norm equal to �
�, the optimal
value, by allowing all finite dimensional LTI controllers: those with
proper and improper transfer functions.

Through this observation we notice that for solvability of the ��
control problem over all controllers (i.e. proper and improper), more
general conditions than those in state space controller design are ex-
pected. It is well-known that, in state space �� optimal control, in-
variant zeros of the system play an important role in determining the
solvability of the problem. It is common to assume that the system has
no invariant zeros on the imaginary axis (see [2], [7]). Interestingly,
our main result below (Theorem 3.2) is very much reminiscent of the
invariant zeros condition (see Section III-A).

Our description of the plant is similar to that in [12]; also see Fig.
1. The system variables are partitioned into exogenous disturbance �,
to-be-regulated output � and control variable �. The variable � includes
the control inputs and the available measurements. The full-behavior
of the plant is denoted here by 	�	

 �

�����. The associated plant
behavior 	 is obtained by eliminating � from 	�	

. The behavior 	 is
defined as

	 �� ��� �� � �� � ������� � �� � �� ��	


�
�� ��� �� �� � 	�	


 	

The control objective is to restrict this plant behavior to a sub-behavior
� � ���� to meet the control specifications. In such a formulation of
the control problem the controller is allowed to put in restrictions on
the control variable � only. In �� control, the specification is given
in terms of the dissipativity on of the controlled behavior � with
respect to a real constant matrix

�� ��
���� �

� ���
(1)

together with internal stability, and ���� � ������ (see [12] for a
detailed formulation of the problem).

It was shown in [12] that a controlled behavior�, with the controller
putting restrictions only on the control variables, exists if and only if
� 
 � 
 	 , where � , called the “hidden behavior” is defined as

� �� ��� �� � �� � �������� �� �� � 	�	

 	 (2)
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The ��-control problem is called solvable for a plant if there exist a
controlled behavior � � ���

���� and � � � such that
1) � is �� dissipative on (��-control specification);
2) � � � � � (controller acting only on the �-variable);
3) ���� � ������ (liveness).
Note that condition 3 in the above problem is a maximality require-

ment: this is in view of [12, Proposition 2, Part I] that for a �� -dissipa-
tive behavior , the number of inputs �� � cannot exceed ������.
This condition ensures that in the controlled system, � is an input; this
allows speaking about the transfer function from � to �. Conditions 1
and 3 together mean that the transfer matrix from � to � (see Fig. 1)
has �� norm at most �.

We are now in a position to state our main result Theorem 3.2, which
provides necessary and sufficient conditions for the �� suboptimal
control problem to be solvable. In the sequel, we assume that the full
plant behavior ����� is given by the following kernel representation:

����� �� ��� �� ����	

�

�	
���


�

�	
����

�

�	
��� 
 (3)

After elimination, we get a kernel representation of the plant behavior
� � �� � ���� associated with ����� as

� �� ��� ����	�

�

�	
���
�

�

�	
� � � 
 (4)

Theorem 3.2: Consider the kernel representation of the full plant
behavior as in (3) and assume the associated plant behavior � is given
by (4). Suppose the hidden behavior � and the plant behavior � are
controllable. Then the �� control problem is solvable if and only if
the following four conditions are satisfied.

1) �
��� has full column rank for all � � � .
2) There exists a partition of � into ���� �
� such that �� is input and

��
� �� is output for � and the corresponding transfer function
from �� to ��
� �� is proper.

3) �
���� is full row rank for every � � � .
4) There exists a partition of � into ���� �
� such that ��� ��� is input

and �
 is output for � and the corresponding transfer function
from ��� ��� to �
 is proper.

It is noteworthy that none of the four conditions involve the param-
eter �: they only assure the existence of a finite � such that the��-con-
trol problem is solvable. For a particular �, whether the suboptimal con-
trol problem is solvable is the problem addressed (in more generality)
in [12] (see Proposition 4.1 below). The crucial fact of independence
from � suggests that instead of iterating over different � for obtaining
��-solvability, one ought to first verify if the four ‘system level prop-
erties’ to conclude the existence of a sufficiently large �. The procedure
to calculate the least � is the subject of Section V where we deal with
optimal �� control problem.

A. Relation With System Invariant Zeros

In this subsection we relate Conditions 1 and 3 (i.e. no loss of rank
on the imaginary axis of certain polynomial matrices) in Theorem 3.2
to the notion of ‘invariant’ zeros of a system. Traditionally, invari-
ance refers to invariance under feedback, i.e. these complex numbers
are closed loop poles no matter which feedback controller is used. It
is well-known in the state space literature that a system pole which
is either uncontrollable or unobservable is invariant with respect to
feedback. Note that Conditions 1 and 3 of Theorem 3.2 are nothing
but � -detectability and � -stabilizability of certain auxiliary behav-
iors derived from �����, as defined below. We now elaborate how these
two conditions are, in fact, about system invariant zeros on the imag-
inary axis. A similar relation in the context of state-space/polynomial
methods for suboptimal ��-control has been studied in [4], [7].

The following auxiliary behaviors, derived from ����� �
�����,

play a role for this purpose:
• �������������	 �� 	��� �� � �� � �������� �� �� � �����
;
• ��������	 �� 	� � �� � ������ �� � �
.

The ‘unforced’ here refers to the condition that the external distur-
bance � is zero in these two behaviors. Further, due to the condition
���� � ����� (which is equal to �) in the problem formulation (see
text after (2) above), it turns out that ��������	 is autonomous, i.e. the
input cardinality of ��������	 is zero. For an autonomous behavior, its
poles are defined as the column zeros of any kernel representation ma-
trix. It is known (see [6], for example) that the poles of the autonomous
behavior ��������	 are also the poles of the transfer function from � to
� in the behavior � � �

����. Since this transfer function is required to
have a bounded ��-norm, neither this transfer function nor ��������	

are allowed to have any imaginary axis poles. We now come to the re-
lation with system invariant zeros.

Of course, different controlled behaviors� � ��� can be obtained
from a given ����� �

����� by attaching different feedback2 con-
trollers � � � on the control variables �. Consider again the equations
defining ����� and � , namely (3) and (4)

����� �� ��� �� ����	

�

�	
���


�

�	
����

�

�	
���

	
�

� �� ��� ����	�

�

�	
���
�

�

�	
� � � 


It turns out that the column zeros of both �
 and ��

� are amongst the

poles of ��������	 no matter which feedback controller � is attached
on the control variables: this can be inferred as follows for the case of
��


�, the case of �
 being analogous and ‘dual’.
Consider the minimal kernel representation �	���
�	�� �

�
���
�	�� � � of the plant � . Notice that the control that is
possible by a controller �� � � that acts on the control variables
� to influence the to-be-controlled variables ��� �� cannot3 be better
than that possible by a controller �
 � ��� that acts on the vari-
ables ��� �� directly. Let �
 have a minimal kernel representation
����
�	�������
�	�� � �. Due to �
 being a feedback controller,
the matrix ��
��
�� ��� is square and nonsingular, further with the
roots of its determinant being the poles of ��������	 , and hence the
poles of the transfer function from � to � in the controlled system. No-
tice that the column zeros of ��


� are amongst these poles independent
of the polynomial matrix �� and hence independent of the controller
�
. This explains why column zeros of ��


� are invariant with respect
to every feedback controller that leaves the disturbance free in the
closed loop system.

Thus conditions 1 and 3 of Theorem 3.2, in fact, imply that there
are no invariant zeros of �������������	 on the imaginary axis. Further,
these invariant zeros are unaffected by elementary row operations on
the system equations, and hence these are properties of the system, and
not of the particular representation we used.

2A feedback controller is one which allows its variables to be partitioned such
that controller inputs and outputs are respectively plant outputs and inputs. This
has been shown to be equivalent to ‘regularity’ of the controller interconnection
in terms of output cardinalities of the plant and controller behaviors adding up
to that of the controlled behavior (see [6, Section 10.8.2]). Since this is not the
focus of this technical note, we don’t dwell further on this topic.

3One of the reasons that the influence cannot be the same is because � can
have column zeros; these column zeros are then inevitable in � due to
the control action on the ��� �� variables being transmitted through the �-vari-
ables; this is the dual and analogous situation which we have skipped. These
invariant zeros reflect the limitation of having to use the control variables to in-
fluence the ��� �� variables.
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IV. PROOF OF THEOREM 3.2

For proof of the first main result of this technical note, Theorem 3.2,
we need a few results which we state/prove in this section.

Below is a result about synthesis of dissipative systems, without in-
ternal stability, when a supply rate �� is given (see [1, Theorem 7.2.1]).

Proposition 4.1: Given a � � �, the�� control problem is solvable
if and only if:

• � is �� dissipative on ;
• �� is ����� dissipative on .
We also need a property of polynomial matrices and its column zeros.

For a polynomial matrix ���� � ������ we define the column zeros
as follows:

��	
���
 ������ �� �� � � ����� ���
�
 � � � � � 
���

���� ����� � �	 �

In case���� is not full column rank, ��	
���
������ turns out to be the
whole of . Otherwise, it is a finite set. The following lemma (whose
proof we skip due to space constraints) relates column zeros of a poly-
nomial matrix and that of its maximal right annihilator4.

Lemma 4.2: Consider ���� �� ������ ������, with ����� �
������������ and ����� �

������������. Let ���� �� � ���
� ���

,
with ����� � ������ and ����� � ������ be such that
�������� � � and ���� full column rank for all � � . Then,

1) ��	
���
������� 
 ��	
���
�������.
2) If ����� is full column rank then so is �����.
3) If ���� has full row rank for all � � , then ��	
���
������� �

��	
���
�������.
Proof of Theorem 3.2: “Only if”: We first assume that the ��

problem is solvable and we show that each of the four conditions listed
in Theorem 3.2 are satisfied.

1) The hidden plant behavior is given by � �
��������	�
� ����	�
��. Since � is control-
lable, it allows an observable image represen-
tation � � �����	��� ��	�
�� 
� ��	�
���;
�� ��� � ������� 
� ��� � ������. The input cardi-
nality of the hidden behavior is taken to be �, which is at most �.
Let ����� lose its rank at ��, where � � . Then from Lemma
4.2, in the image representation of � , the matrix �� ��� also
loses its rank at ��. Let � �� � � ����� ����. Then there exists
a nonzero periodic trajectory � � �

� �����
���	 � � . Thus

the integral

�

�
����
 �
�������



� �����
� �����

�
� ��

This implies that � is not �� dissipative on , which contradicts
solvability (see Proposition 4.1). This proves that condition 1 is
satisfied.

2) The hidden behavior satisfies� 
 �, which implies that its input
cardinality is at most the positive signature of �� . Therefore in the
above image representation �� ��� has at least as many rows as
its columns. The fact that � is �� dissipative implies that there
exist polynomial matrices ����� � ���������� and 
���� �
���������� such that the behavior given by

� �� ��
��

�
�	

��
�
�	


�
�
�	


�
�
�	

4The Maximal Right Annihilator (MRA) of a full row rank polynomial matrix
� � ��� is a polynomial matrix � � ��� such that ����
has rank � for every � � .

is �� dissipative and ���� � ������. This in turn means that
the transfer matrix

�
� ��� 
����� ��� ��� ������
��

is proper (see [11, Theorem 5.7]). Without loss of generality, we
can assume that ��� ��� ������ is column-reduced.5 Then from
[3, Lemma 6.3–11] we conclude that properness of

�
� ��� 
����� ��� ��� ������
��

implies that each column of �
� ��� 
����� has degree at most
the degree of the corresponding column of ��� ��� ������. In
particular degree of each column of 
� ��� is at most the degree
of the corresponding column of �� ���. This implies that there
exists a square block ����� in �� ��� such that ��� ��������
is at least the degrees of the determinant of any square block in
� ���
� ���

. Partitioning � corresponding to this partition of �� ���
meets the requirement in condition 2, thus proving necessity of
condition 2.

3) Due to the similar nature of the proofs of necessities of conditions
1 and 3, we only outline the proof for 3). The given kernel repre-
sentation in (4) is used to obtain an image representation of ��,
the orthogonal complement of � . Loss of row rank of ��	 on the
imaginary axis results eventually in a nonzero periodic trajectory
in �� that leads to a contradiction to �����

��-dissipativity for
every � of �� and hence to a contradiction to solvability of the
�� control problem through Proposition 4.1.

4) Using [12, Theorem 5, Part I] and [1, Theorem 3], we first note
that�� is�����

�� dissipative, and hence this implies �����
�������� �. Following the same line of arguments as in 2) it can
be shown that a maximal minor of maximal determinantal degree
amongst all maximal minors of�


�	���� is also maximal determi-
nantal degree in ��


�	���� �

�	�����. Using the partition corre-

sponding to this maximal minor, say ��, leads to a proper transfer
function from ���� �� to ��. Like done in proof of necessity of
Condition 2, this �� satisfies the requirement. This completes the
‘only if’ part of the proof of Theorem 3.2, i.e. solvability of the
�� suboptimal control problem for some � implies each of the
conditions 1 to 4 are satisfied.

“If”: Assuming all the four conditions are satisfied we now show
that the �� control problem is solvable. In order to conclude that ��
problem is solvable, we will show that the first two conditions together
imply that � is �� dissipative and the last two imply the dissipativity
of �� with respect to ����� .

As done in the proof of necessity of condition 2), we partition �
is into ���� ��� such that the transfer function from �� to ���� �� is
proper. Corresponding to this partitioning�� ��� can be partitioned as
�� ��� � � ���

� ���
after a possible permutation of the rows of �� ���

if required. Since condition 1) implies ������ has full column rank
for all � � , from Lemma 4.2 �������� has no roots on the imagi-
nary axis. Therefore the transfer function from �� to ���� ��, namely,
�� ��� 
�� �� � ���

� ���
���� ��� is proper and has no poles on the

5A square nonsingular matrix is said to be column-reduced if the degree of
its determinant is equal to the sum of the maximum degrees of each column
(see [3] for a detailed exposition). A polynomial matrix, possibly not square,
is said to be column-reduced if this matrix forms the columns of a column-re-
duced square and nonsingular matrix. Column-reduced matrices are also called
column-proper. We use the property that elementary column operations can be
used on a given polynomial matrix to obtain a column-reduced polynomial ma-
trix. See [3, Section 6.3].
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imaginary axis. This means it has bounded �� norm. Define the sym-
metric nonsingular matrix�� �� ���������� ���� ����	, where ��
��� ��� ����� , then

�� ����	

�� ����	

�

��
�� ���	

�� ���	



for all � � . Since �� ��, we obtain that � is dissipative with
respect to �� also.

With exactly the same line of arguments conditions 3) and 4) imply
that there exists �� 	 
 such that �� is ����� dissipative. Thus by
taking � � ������� ��	, and utilizing Proposition 4.1 we conclude
that all the four conditions together imply the solvability of the ��
control problem. This completes the proof of Theorem 3.2.

V. �� OPTIMAL CONTROL

In this section we address the problem of solving the �� optimal
control problem, i.e., finding a controller that minimizes the �� norm
of the closed loop system in the configuration of Fig. 1. We first note
that none of the four necessary and sufficient conditions in Theorem 3.2
above for solvability of the ��-control problem involve the parameter
� explicitly. It tells us that the four conditions are equivalent to exis-
tence of a positive real � for which the sub-optimal problem is solvable
in the sense of Proposition 4.1. We will see in this section that if the
sub-optimal �� control problem is solvable for some � (equivalently,
if the four conditions in Theorem 3.2 are satisfied) then, in fact, the
optimal control problem too is solvable. This is in contrast with the re-
sults for the state space case (see [8]). The reason behind the difference
is that we optimize over the class of proper and improper controllers,
unlike the state space case where the controller could lose properness
at optimality.

Recall the definition of �� from (1). In this section � is viewed as a
parameter which is to be minimized with the condition that the two key
behaviors concerned in Proposition 4.1 are dissipative. We consider the
minimum � such that a behavior � �

���� is dissipative with respect
to �� . Define

�� �� �
��� �� �� �� ������������ (5)

i.e. the infimum � for which � is �� dissipative. Define �	 as the
infimum � such that �� is ����	

�� dissipative

�	 �� �
��� �� �� � ���	
�� ����������� 
 (6)

Note that fulfilment of the four conditions in Theorem 3.2
guarantees that the above mentioned two sets, namely �� �

		� �� �� ������������ and �� � 		�
� ������	

�� ������������
are non-empty. Moreover, except when the infimum is zero, these two
sets are closed6 subsets of 	. This is because the sets can be thought
of as solution sets of nonstrict polynomial inequalities parametrized by
� � , and thus, as (infinite) intersections of closed sets. Therefore,
the infima, �� and �	 , exist and are within the above mentioned
sets. In other words, whenever the four conditions in Theorem 3.2 are

6The ‘closed’ aspect of the interval in which � takes its values is true except
when the infimum is zero. This can happen only when the behavior is such that
for all its trajectories those variables corresponding to negative signature in the
supply rate are identically zero. The zero behavior and the behavior with transfer
function 0 are two such extreme examples. The situation that � � � causes �
to be singular, say rank �, and this just means that the supply rate � � � in
� (now, a singular supply rate) penalizes only an �-dimensional subspace of
linear combinations of the variables �: after a projection onto this subspace,
one reconsiders the supply rate on a new behavior, with only �-variables, for
which we again have nonsingularity of the supply rate. This is straightforward
and hence not pursued.

satisfied, ��
� �� ������ � �	� turns out to be the smallest � for
which the two behaviors � and �� are �� and ����	

�� dissipative,
respectively.

The above discussion and Theorem 3.2 of the previous section, in
fact, shows solvability of the optimal �� problem whenever the four
conditions in Theorem 3.2 are satisfied; this leads to the following the-
orem, which is our second main result of the technical note.

Theorem 5.1: Consider� and � � �

����, the hidden and the plant
behaviors of a system. Suppose the�� control problem is solvable for
some � 	 
, equivalently, the necessary and sufficient conditions listed
in Theorem 3.2 are satisfied. Define �� and �	 as in (5) and (6). Then
the ��-optimal control problem is also solvable. The optimal � value
is ��
� � ������ � �		

We demonstrate the utility of the above theorem in an example
below where we use a �-spectral factorization to compute the optimal
�� controller, in addition to calculating ��
�. We have chosen a
SISO example only for the convenience of demonstration: the results
hold for MIMO plants/controllers too. The controller turns out to be
what-can-be-called a ��� controller, an improper transfer function
controller.

Example 5.2: Consider again the state-space description of the plant
in Example 3.1. Consider the problem of finding a controller that takes
input 
, gives output � and minimizes the �� norm of the transfer
function from � to �. We demonstrate the procedure for finding the
optimal value and obtain equations of the optimal controller for this
example.

Elimination (see [6]) of �, 
, �� and �� from the above set
of equations to obtain an image representation of the plant � in
just the variables � �� ��� ��� ��	 gives � � �� �����	� with

�� ��	 �

�� 


� �� � � � �


 ��

. In order to compute �	 , we obtain

an image representation of �� and find the minimum � such that
�� is ����	

�� dissipative (see (6) above). This procedure yields
�	 � ���.

The other candidate for ��
� comes from the hidden behavior� . For
this example, we get� � 
, which is dissipative with respect to every
supply rate: hence the infimum �� � 
. Thus ��
�, the maximum of
�	 and �� is ���.

The next step is to find a controller that results in the controlled be-
havior
 being dissipative with respect to this � value. This is obtained
using the procedure described in [1]. Obtain a �-spectral factorization
of �� ���	

����� ��	 �

�� ���������

��������� �����������
�� � ���	

� �
�





 

�

� ��	 (7)

with� ��	 �
� ��� � �� � �


 ��� � �
. Note that the optimality has caused

����� 	 to have some imaginary axis roots ����. Define the top row
of � as ��; the required controller is

� � ��

�

��
� ���� � ��������
� ��

�

��
� � 

 (8)

Dissipativity of 
 follows from the �-spectral factorization and
the controller ensuring that �������	� � 
. We now simplify
(8): �������	�



� �����	� � 
, where �


� ��	 is a left-inverse of
�� ��	. Of course, this controller acts on ��, �� and �. However, note
that �� � 
 and �� � �. A left-inverse �


� can be chosen to have
its last column zero, thus resulting in a ‘feedback controller’, i.e. a
controller whose equation involves only 
 and �, and further, 
 its
input and � its output. Such a left inverse �


� can be chosen as

�

� ��	 �


 � �� � � � �


 
 ��
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The calculation of ���������
�

�
������� gives �� � ���������� �

������ � ��� as the corresponding controller.
The significance of the results of this section is that if the measure-

ments are noise-free, then there is no harm, in fact, it can be helpful,
to differentiate the measurements and achieve better disturbance
attenuation.

VI. CONCLUSION

We proved an alternative and easily verifiable set of necessary and
sufficient conditions for solvability of the MIMO ��-control problem
(Theorem 3.2). One of the prime features of this result is that it brings
out the relation of�� problem solvability with system invariant zeros.
Further, the result importantly relaxes properness requirements on the
controller’s transfer function.

Another feature of Theorem 3.2 is that when these conditions are
satisfied, then the theorem states existence of a � sufficiently large for
which the suboptimal control problem is solvable. The obvious next
step: to compute the minimum � is the one we dealt in Section V. An
important conclusion there was that the optimal ��-control problem
admits a solution whenever the suboptimal case admits one, in other
words, when the four necessary and sufficient conditions are satisfied.
We demonstrated the procedure to determine the optimal � value for
��-control and the calculation of a controller using an example: note
that controller design packages like Matlab point that inbuilt algorithms
cannot work due to violation of regularity assumptions.
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Control of Switched Nonlinear Systems in -Normal
Form Using Multiple Lyapunov Functions

Lijun Long and Jun Zhao

Abstract—The problem of � control of switched nonlinear systems in
�-normal form is investigated in this technical note where the solvability of
the � control problem for individual subsystems is unnecessary. Using
the generalized multiple Lyapunov functions method and the adding a
power integrator technique, we design a switching law and construct con-
tinuous state feedback controllers of subsystems explicitly by a recursive
design algorithm to produce global asymptotical stability and a prescribed
� performance level. Multiple Lyapunov functions are exploited to
reduce the conservativeness caused by adoption of a common Lyapunov
function for all subsystems, which is usually required when applying the
backstepping-like recursive design scheme. An example is provided to
demonstrate the effectiveness of the proposed design method.

Index Terms—� control, multiple Lyapunov functions, �-normal form,
power integrator, switched systems.

I. INTRODUCTION

A switched system is a hybrid system which consists of a family of
subsystems, either continuous-time or discrete-time subsystems, and a
switching law, which defines a specific subsystem that is active at each
instant of time. In the last decade, switched systems have received a
great amount of attention because of their importance from both theo-
retical and practical points of view (see, e.g., [7], [8], [12], [17], [18]
and the references therein). The motivation for studying switched sys-
tems comes partly from the fact that many practical systems are inher-
ently multimodel in the sense that several dynamical subsystems are
required to describe their behavior which may depend on various envi-
ronmental factors [6], [9], and many complex nonlinear continuous or
discrete systems that are not stabilizable by a single continuous or dis-
crete controller can be stabilized by switching between finitely many
controllers [2]–[5]. Meanwhile, several methods, such as common Lya-
punov function (CLF), single Lyapunov function, multiple Lyapunov
functions (MLFs), and so forth, have been proposed in the study of
switched systems.

Turning to non-switched nonlinear systems, the strict-feedback
form is a typical system structure for which several effective design
approaches are available to solve the stabilization problem (see, [19],
[20]). Further, as a generalization of strict-feedback structure, the
	-normal form has also been extensively studied (see, [24]). However,
in switched nonlinear systems, only a few studies have appeared
on the strict-feedback form. In [13]–[15], global stabilization for
strict-feedback switched nonlinear systems under arbitrary switchings
is achieved by constructing a CLF; An adaptive control scheme for
strict-feedback switched nonlinear systems with switching jumps and
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