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ON MINIMALITY OF INITIAL DATA REQUIRED TO UNIQUELY
CHARACTERIZE EVERY TRAJECTORY IN A DISCRETE \bfitn -D

SYSTEM\ast 
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Abstract. In this paper, we provide an essentially complete answer to the question of minimal
initial data required to solve an overdetermined system of linear partial difference equations with real
constant coefficients using the notion of characteristic sets. A characteristic set is a special subset of
the domain with the defining property that for every solution trajectory of the system of equations,
the knowledge of the solution trajectory restricted to this set uniquely determines the trajectory over
the whole domain. We emphasize the fact that subsets which are sublattices and unions of finitely
many parallel translates of such sublattices are best suited to answer the question of the minimality
of initial data. We first provide an algebraic characterization of a sublattice to be a characteristic
sublattice. The main result of this paper provides conditions under which a system admits a union of
a sublattice and finitely many parallel translates of it as a characteristic set; an important condition
is the rank of the sublattice being equal to the Krull dimension of the system. For the condition
when the rank of the sublattice is strictly less than the Krull dimension of the system, we show
that neither the sublattice nor a finite union of sublattices can be a characteristic set. For the case
when the rank of the sublattice is strictly greater than the Krull dimension of the system, a union
of the sublattice and finitely many parallel translates of it is a characteristic set. But, unlike the
case when the rank of the sublattice is equal to the Krull dimension of the system, in this case a
proper sublattice of the given sublattice exists which along with its finitely many parallel translates
now qualify as a characteristic set. We also show that for a given overdetermined system of partial
difference equations, a characteristic set of the form given by a union of a sublattice and finitely
many parallel translates of it always exists.
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1. Introduction. Characterization of minimal initial data for an overdeter-
mined system of partial differential/difference equations has been a long-standing
issue that is still largely open [28, 24]. The fundamental nature of this problem is
evident from its importance in a plethora of issues concerning systems of partial dif-
ferential/difference equations. Indeed, starting from the computational problem of
obtaining explicit solutions of such systems of equations to theoretical questions like
dissipativity [20], stability [19, 25], implementability [4], controller design [23], etc.,
the issue of initial data plays a crucial role in each of these problems. In this paper,
we consider overdetermined systems of linear partial difference equations (pdes) with
real constant coefficients having n independent variables; such systems are called dis-
crete n-D systems. We approach the problem of initial data, for discrete n-D systems,
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MINIMAL INITIAL DATA FOR DISCRETE n-D SYSTEMS 1521

from the perspective of ``characteristic sets."" Informally, a characteristic set is any
subset \scrS of the domain (here \BbbZ n) with the special property that for any solution
trajectory, say, w, of the system of partial difference equations, the knowledge of the
values w takes on \scrS lets us extend w to the entire domain \BbbZ n, uniquely [25]. Thus a
characteristic set, together with an algorithm (often iterative in nature) that enables
computation of the solution from the knowledge of a trajectory on the characteristic
set, formalizes the notion of initial data for a system of partial difference equations.

The next obvious question is, how large is this initial data for an overdetermined
system of partial difference equations? A partial answer to this question was provided
in [28, section 7.1] for systems evolving over \BbbN n. However, as mentioned in [28] and
also in the recent paper [24], the problem of characterizing minimal initial data for
systems of partial difference equations still remains open. One primary hindrance in
achieving a complete answer to this problem is the fact that characteristic sets can
come in any arbitrary size and shape. These sets, possibly of completely different con-
structs, may all have cardinalities equal to the countable infinity, \aleph 0 [16]. This fact
can obfuscate the question of minimality. In order to overcome this issue and provide
an essentially complete answer to the question of minimal initial data, in this paper,
we consider a special type of set as a candidate characteristic set for overdetermined
systems of partial difference equations. This special class is composed of sets that are
sublattices of \BbbZ n and unions of finitely many parallel translates of such sublattices.
The most remarkable feature of such sets is that the issue of minimality has a natural
remedy in terms of the rank of the sublattice. Incidentally, such kinds of characteristic
sets are also central to various other issues concerning systems of PDEs, namely, time-
relevance [3], stability [25], causality [6, 7], and so on. The choice of sublattices as
candidates for the initial condition set is not new. In [28, section 7.1] the authors use
co-ordinate sublattices to answer the question of largeness of initial data for systems
evolving over \BbbN n. However, a characterization of the initial condition set was missing.
In this connection, several questions which are still unanswered have been raised in
a recent paper [24], the most relevant ones being whether a sublattice can qualify as
a characteristic sublattice and whether the sublattice is free. We provide answers to
these questions in this paper. We show in this paper that the smallest rank possible
for such a characteristic sublattice (or a union of finitely many parallel translates of
them) happens to be equal to the Krull dimension of the system. Incidentally, nminus
the Krull dimension of a system (i.e., the co-dimension of the system) is known to be
equal to the ``degree of autonomy"" of the system (see [28, 24, 4]). This important pa-
rameter, i.e., the degree of autonomy of an overdetermined system of PDEs, is defined
as n - \ell , where \ell is the largest possible rank of a co-ordinate sublattice such that the
system restricted to the sublattice is underdetermined. The above-mentioned relation
brings out the connection between the characteristic set, which is a finite union of
parallel sublattices of minimal rank, and the degree of autonomy. We explore this
connection in depth in this paper. The results in this paper are stated using the Krull
dimension of the system. Using the relationship that the degree of autonomy is equal
to the co-dimension of the system [24, Theorem, p. 417], the results can be interpreted
using the degree of autonomy as well.

A preliminary version of a small portion of this paper, namely, results corre-
sponding to characteristic sublattices for the scalar case, have been published in [10].
Results from this paper, for the scalar case, have been further used in [13]. The main
contributions of this paper are the following.

1. A characterization for characteristic sublattices is provided (Theorem 3.7) us-
ing a variant of the well-known Malgrange's theorem for a system restricted
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1522 MOUSUMI MUKHERJEE AND DEBASATTAM PAL

to a sublattice (Proposition 3.6). This characterization establishes a rela-
tionship between the rank of the sublattice and the Krull dimension of the
system. In many cases such characteristic sublattices do not exist. Therefore,
the notion of finitely many parallel translates of a sublattice is introduced.

2. In Theorem 4.1 we proved that when the rank of the sublattice is equal to the
Krull dimension of the system, a union of the sublattice and finitely many
parallel translates of it is a characteristic set for the system.

3. For the case when the rank of the sublattice is strictly less than the Krull
dimension of the system, neither the sublattice nor finitely many parallel
translates of it can be a characteristic set for the system (Theorem 5.1).

4. When the rank of the sublattice is strictly greater than the Krull dimension of
the system, a union of the sublattice and finitely many parallel translates of
it is a characteristic set (Proposition 6.2). However, the sublattice is not free
with respect to the system (Lemma 6.3). It is further shown that a proper
sublattice of the given sublattice exists which along with its finitely many
parallel translates now qualify as a characteristic set (Theorem 6.6).

5. The existence of such a characteristic set given by a union of a sublattice and
finitely many parallel translates of it is always guaranteed for a given system
(Theorem 4.18).

In this paper, however, we do not dwell on the issue of freeness of the union of finitely
many parallel translates of the sublattice. This is a matter of future investigation.
Another important question that remains unanswered in this paper is that of the
minimal number of parallel translates.

It is important to note here that, for an underdetermined system of PDEs, some
of the dependent variables are free [14] and therefore the notion of characteristic set
becomes irrelevant in such a scenario. Thus, in this paper, by a system of PDEs we
always mean an overdetermined system of linear partial difference equations with real
constant coefficients. It is well known that a special class of an overdetermined system
of PDEs, namely, systems having Krull dimension equal to zero, admit a collection of
finitely many points as a characteristic set (see [25, Lemma 2.4] for the 2-D case and
[19, section 4] for the n-D case in the continuous setting). This paper extends this
idea for a system having Krull dimension, say, d. In particular, we show that for a
system of PDEs having Krull dimension equal to d, there exists a sublattice of rank
d (satisfying some additional conditions) such that the sublattice along with finitely
many parallel translates of it is a characteristic set for the system. This paper also
generalizes the 2-D case [22, 16]. In particular, we generalize the idea in [16], where it
was shown that every overdetermined system of PDEs in two independent variables
admits a finite union of parallel lines as a characteristic set.

Organization of the paper. In section 2 we discuss the preliminaries and set
the notation to be used in the rest of the paper. Section 3 characterizes initial data
using characteristic sets. A necessary and sufficient algebraic condition is provided
to check if a given sublattice is a characteristic sublattice for a given overdetermined
system of linear PDEs with real constant coefficients. From this characterization it
turns out that the rank condition, that is, the rank of the sublattice and the Krull
dimension of the system, plays an important role. In section 4 we discuss when a
union of a sublattice and finitely many parallel translates of it is a characteristic set
for an overdetermined system of PDEs; this corresponds to the case when the Krull
dimension of the system is equal to the rank of the sublattice. We also show the
existence of such a characteristic set for a given system of PDEs. In sections 5 and 6
we discuss the possibilities of a characteristic set for the cases when the rank of the
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MINIMAL INITIAL DATA FOR DISCRETE n-D SYSTEMS 1523

sublattice is strictly less than the Krull dimension of the system and when the rank
is strictly greater than the Krull dimension, respectively. We conclude the paper in
section 7.

2. Notation and preliminaries.

2.1. Notation. We use the symbols \BbbN , \BbbZ >0, \BbbZ , and \BbbR to denote the set of
nonnegative integers, the set of positive integers, the ring of integers, and the field of
real numbers, respectively. The sets of n-tuples of nonnegative integers, n-tuples of
integers, and n-tuples of real numbers are denoted by \BbbN n, \BbbZ n, and \BbbR n, respectively.
The shorthand \xi stands for the n-tuple of indeterminates \xi 1, \xi 2, . . . , \xi n. Accordingly,
we use the symbols \BbbR [\xi ] and \BbbR [\xi , \xi  - 1] to denote the rings of polynomials and Laurent
polynomials, in n variables \xi = (\xi 1, . . . , \xi n), over the field of real numbers, respectively.
For brevity, we define \scrA := \BbbR [\xi , \xi  - 1]. We use the symbol \frakL q to denote the set of all
discrete n-D systems having q dependent variables. For a set \scrS , | \scrS | denotes the
cardinality of \scrS . The symbol \bullet is used for denoting a quantity which is unspecified.
For example, R(\xi , \xi  - 1) \in \scrA \bullet \times q indicates that R(\xi , \xi  - 1) is a matrix having entries
from \scrA with q columns and an unspecified number of rows.

2.2. System description. In this paper, we consider systems described by a
set of partial difference equations with real constant coefficients having n independent
variables; we often refer to such systems as discrete n-D systems, n standing for the
number of independent variables. For such a discrete n-D system having q dependent
variables, a trajectory is a map from the domain (here, \BbbZ n) to the signal space (here,
\BbbR q). In other words, a trajectory is a multi-indexed sequence of vectors in \BbbR q, i.e.,
w : \BbbZ n \rightarrow \BbbR q. We use the symbol (\BbbR q)\BbbZ 

n

to denote the set of all q-tuples of real-valued
multi-indexed sequences. That is, (\BbbR q)\BbbZ 

n

:= \{ w : \BbbZ n \rightarrow \BbbR q\} . Following Willems [26],
we define the behavior, \frakB \subseteq (\BbbR q)\BbbZ 

n

, of a system of partial difference equations as the
collection of trajectories that satisfy the set of PDEs. We use the terms behavior and
system interchangeably in this paper. By writing \frakB \in \frakL q, we mean \frakB is the behavior
of a discrete n-D system (i.e., a system of linear constant real coefficient PDEs having
q dependent variables). Likewise, \frakB \in \frakL 1 denotes a discrete n-D system with one
dependent variable (also called a scalar system).

Linear constant real coefficient PDEs, having n independent variables, are suc-
cinctly described using n shift operators \sigma 1, \sigma 2, . . . , \sigma n. The shift operator in the ith
direction, \sigma i, acts on a trajectory w \in (\BbbR q)\BbbZ 

n

in the following manner:

(2.1)
\sigma i : (\BbbR q)\BbbZ 

n \rightarrow (\BbbR q)\BbbZ 
n

,
w(k1, . . . , kn) \mapsto \rightarrow w(k1, . . . , ki - 1, ki + 1, ki+1, . . . , kn).

We denote the n-tuple of shift operators by \sigma := (\sigma 1, \sigma 2, . . . , \sigma n). Following equation
(2.1), for a Laurent monomial \xi \nu := \xi \nu 1

1 \xi 
\nu 2
2 . . . \xi \nu n

n in\scrA , the action of \sigma \nu on a trajectory
w \in (\BbbR q)\BbbZ 

n

gets defined as

(\sigma \nu w) (k) := w(k1 + \nu 1, k2 + \nu 2, . . . , kn + \nu n),(2.2)

where \nu = (\nu 1, \nu 2, . . . , \nu n) \in \BbbZ n. The action of a Laurent polynomial in the shift op-
erators on a trajectory gets defined by extending (2.2) linearly. Indeed, for a Laurent
polynomial f(\xi , \xi  - 1) =

\sum 
\nu \in \Gamma \alpha \nu \xi 

\nu in \scrA , where \Gamma \subseteq \BbbZ n is finite and \alpha \nu \in \BbbR , the
action of f(\sigma , \sigma  - 1) on a trajectory w \in (\BbbR q)\BbbZ 

n

is given by

f(\sigma , \sigma  - 1)w =
\sum 
\nu \in \Gamma 

\alpha \nu \sigma 
\nu w.(2.3)
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1524 MOUSUMI MUKHERJEE AND DEBASATTAM PAL

Thus, a Laurent polynomial maps a trajectory w to another trajectory fw, that is,
f : (\BbbR q)\BbbZ 

n \rightarrow (\BbbR q)\BbbZ 
n

. A q-tuple of Laurent polynomials

r(\xi , \xi  - 1) =
\bigl[ 
r1(\xi , \xi 

 - 1) r2(\xi , \xi 
 - 1) . . . rq(\xi , \xi 

 - 1)
\bigr] 
\in \scrA 1\times q

acts on a trajectory w \in (\BbbR q)\BbbZ 
n

in the following manner:

r(\sigma , \sigma  - 1)w =

q\sum 
i=1

ri(\sigma , \sigma 
 - 1)wi,(2.4)

where wi \in \BbbR \BbbZ n

is the ith component of w. Note that r(\sigma , \sigma  - 1)w = 0 corresponds to
a discrete n-D system defined by just one pde. For a discrete n-D system defined by
a set of, say, p, PDEs have a representation of the form

R(\sigma , \sigma  - 1)w = 0,(2.5)

where R(\xi , \xi  - 1) \in \scrA p\times q. Thus, the behavior \frakB , that is, the collection of trajectories
satisfying (2.5), is equal to the kernel of the Laurent polynomial matrix R(\sigma , \sigma  - 1). In
other words,

\frakB :=
\Bigl\{ 
w \in (\BbbR q)

\BbbZ n

R(\sigma , \sigma  - 1)w = 0
\Bigr\} 
= ker R(\sigma , \sigma  - 1).(2.6)

For obvious reasons, such a representation is called a kernel representation of \frakB ,
and R(\xi , \xi  - 1) is called a kernel representation matrix. In this paper, we analyze
systems algebraically; the following subsection briefly discusses the algebraic entities
associated to a discrete n-D system.

2.3. Algebraic entities associated to a system. Given a kernel representa-
tion of the system, as in (2.6), we associate with it the equation module, \scrR , which is
defined as the row span over \scrA of any kernel representation matrix R(\xi , \xi  - 1), that is,
\scrR := rowspan\scrA R(\xi , \xi 

 - 1). Note that the equation module is a submodule of the free
module \scrA 1\times q. The behavior \frakB , as defined in (2.6), is equivalently given by

\frakB =
\Bigl\{ 
w \in (\BbbR q)

\BbbZ n

f(\sigma , \sigma  - 1)w = 0 \forall f(\xi , \xi  - 1) \in \scrR 
\Bigr\} 
=: \frakB (\scrR ).(2.7)

It was shown in [14, equation 56, p. 34], that submodules of \scrA 1\times q and discrete n-D
systems having q dependent variables are in an inclusion reversing one-to-one corre-
spondence with each other.

A behavior \frakB defined by a kernel representation, or, equivalently, by an equation
module, is closed under addition and multiplication by scalars in \BbbR . Thus, \frakB has the
structure of an \BbbR -vector space, too. Further, \frakB is also closed under multiplication by
scalars from \scrA , where scalar multiplication by an f \in \scrA to a trajectory w \in \frakB is as
defined in (2.3). Thus, \frakB also has the structure of a module over \scrA . Both of these
structures of \frakB have been exploited crucially in this paper.

The next important algebraic entity associated to a system is the quotient module.
Given an equation module \scrR \subseteq \scrA 1\times q, the quotient module, denoted by \scrM (\scrR ) :=
\scrA 1\times q/\scrR , is defined as the set of all equivalence classes originating from the following
equivalence relation: two elements f1(\xi , \xi 

 - 1), f2(\xi , \xi 
 - 1) \in \scrA 1\times q are related if f1  - 

D
ow

nl
oa

de
d 

06
/1

5/
23

 to
 1

03
.2

1.
12

7.
60

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMAL INITIAL DATA FOR DISCRETE n-D SYSTEMS 1525

f2 \in \scrR . For an element f(\xi , \xi  - 1) \in \scrA 1\times q, the equivalence class of f is denoted by
f . Note that \scrM (\scrR ) is naturally an \scrA -module by the operations of addition and
scalar multiplication defined on \scrA 1\times q. Further, being a module over the \BbbR -algebra \scrA ,
naturally \scrM (\scrR ) has the structure of a vector space over \BbbR . We often use only \scrM 
to denote the quotient module when \scrR is clear from the context.

The canonical surjection \scrA 1\times q \twoheadrightarrow \scrM , where every element in \scrA 1\times q is mapped to
its equivalence class in \scrM , plays a crucial role in this paper. The action of elements
from \scrM on trajectories in \frakB is defined in the following manner: for m \in \scrM and
w \in \frakB ,

mw :=
\bigl( \widehat m(\sigma , \sigma  - 1)w

\bigr) 
,(2.8)

where \widehat m(\sigma , \sigma  - 1) is a preimage of m under the canonical surjection. Note that m may
have several distinct preimages in \scrA 1\times q. However, their actions on a trajectory in \frakB 
are the same. This is because if \widehat m1(\sigma , \sigma 

 - 1) and \widehat m2(\sigma , \sigma 
 - 1) are two distinct preimages

of m, then, by the definition of \scrM , we have \widehat m1  - \widehat m2 \in \scrR . Since \widehat m(\sigma , \sigma  - 1)w = 0 for
all \widehat m \in \scrR it follows that (\widehat m1  - \widehat m2)w = 0. Thus, both of the preimages define the
same action on a trajectory in \frakB . That is, the action of \scrM on \frakB is well-defined.

Related to a module, we have another algebraic entity called the annihilator ideal.
For an \scrA -module \scrM , the annihilator ideal is defined as

ann \scrM := \{ f \in \scrA fm = 0 for all m \in \scrM \} .(2.9)

The notion of the Krull dimension of rings and modules plays a crucial role in
this paper. An ideal p \subseteq \scrA is said to be a prime ideal if p is not equal to the full ring
and for p1p2 \in p either p1 \in p or p2 \in p. The Krull dimension of a ring \scrA is defined to
be the supremum of the lengths of chains of prime ideals in \scrA , where a chain of prime
ideals of the form p0 \subsetneq p1 \subsetneq . . . \subsetneq p\ell is said to be of length \ell . The Krull dimension of
an \scrA -module \scrM is defined to be the Krull dimension of the quotient ring \scrA /ann \scrM 
[5, Chapter 9]. That is,

Krull dimension \scrM := Krull dimension (\scrA /ann \scrM ).(2.10)

The co-dimension of a ring or a module is defined to be the global dimension (here,
n) minus the Krull dimension of the ring or the module. In this paper, for a behavior
\frakB \in \frakL q with corresponding quotient module\scrM , we often say that the Krull dimension
of \frakB is d, by which we mean the Krull dimension of \scrM is d. On several occasions we
use the fact that the Krull dimension remains invariant under isomorphism of rings
and modules [5].

2.4. Overdetermined/autonomous systems. In this paper, we consider only
overdetermined systems of linear PDEs. By this we mean that we consider those
systems that have no free variables (see [19] for the definition of free variables). Such
systems are also called autonomous in the literature. Autonomous/overdetermined
systems have been characterized using various equivalent conditions in the literature
[21, 19, 25, 29, 27]. We summarize in Proposition 2.1 some important characterizations
of autonomous/overdetermined discrete n-D systems.

Proposition 2.1. Let \frakB \in \frakL q be a discrete n-D system. Then the following are
equivalent:

1. \frakB is autonomous/overdetermined.
2. \frakB = ker R(\sigma , \sigma  - 1), where R(\xi , \xi  - 1) \in \scrA \bullet \times q has full column rank over \scrA (see

[29, Theorem 2], [27, Theorem 4] among others for a proof).
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1526 MOUSUMI MUKHERJEE AND DEBASATTAM PAL

3. The corresponding quotient module \scrM is a torsion module1 (see [19, section
4], [27, Theorem 4] among others for a proof).

4. The annihilator ideal, ann \scrM , is nonzero (see [29, Theorem 2], [27, Theorem
4] among others for a proof).

3. Characterization of initial data: Characteristic sets. A characteristic
set is one of the ways to formalize the notion of initial conditions required to solve
an overdetermined system of linear PDEs with real constant coefficients. Informally,
these sets are subsets of the domain such that the knowledge of a trajectory in this
subset enables one to uniquely extend the trajectory over the whole domain. In the
literature, a characteristic set is formally defined using the notion of restriction of
trajectories.

Definition 3.1. Given a trajectory w \in (\BbbR q)\BbbZ 
n

and a subset \scrS \subseteq \BbbZ n, the restric-
tion of w to \scrS , denoted by w| \scrS , is defined as

(3.1)
w| \scrS : \scrS \rightarrow \BbbR q,

w| \scrS (k) := w(k) for all k \in \scrS .

Applying Definition 3.1 to every trajectory in \frakB , we obtain the restriction of \frakB 
to \scrS , denoted as \frakB | \scrS . That is,

(3.2) \frakB | \scrS := \{ w| \scrS such that w \in \frakB \} .

In the subsequent parts of this paper, \frakB | \scrS plays a crucial role. A characteristic set is
defined using the notion of restriction as follows [25].

Definition 3.2. Given a behavior \frakB \in \frakL q, a subset \scrS \subseteq \BbbZ n is said to be a
characteristic set for \frakB if for every w,w\prime \in \frakB ,

w| \scrS = w\prime | \scrS =\Rightarrow w = w\prime .

In other words, \scrS \subseteq \BbbZ n is a characteristic set if and only if for every trajectory
w \in \frakB , the knowledge of w| \scrS allows us to uniquely determine w| \BbbZ n\setminus \scrS .

It is known that a system admits a proper subset of the domain, \BbbZ n, as a charac-
teristic set if and only if it is an overdetermined/autonomous system [21, 7, 29, 25].
In this paper, we consider a special class of subsets of \BbbZ n as candidate characteristic
sets: sublattices of \BbbZ n (defined below in Definition 3.3) and unions of finitely many
parallel translates of such sublattices. As mentioned in the introduction, the reason
for considering these sets is that with these sets we have a natural answer to the
question of minimality in terms of the rank of the sublattice (see Theorem 4.1).

In this section, we derive a necessary and sufficient algebraic criterion for a given
sublattice to be a characteristic set. A necessary and sufficient condition for a cone
in \BbbZ n to be a characteristic cone can be found in [12, Theorem 4]. In what follows,
we call a sublattice a characteristic sublattice if it is a characteristic set.

3.1. Sublattice and sublattice algebra. In this paper, by a sublattice we
mean a subset \scrS \subseteq \BbbZ n that has the structure of a submodule of the \BbbZ -module \BbbZ n.
Since \BbbZ n is a Noetherian module, every sublattice \scrS is finitely generated as a \BbbZ -
module. Also, \BbbZ being a principal ideal domain, it follows that a sublattice actually is
freely generated as a \BbbZ -module [8, Chapter 3, section 7]. In other words, every sublat-

1An \scrA -module \scrM is said to be a torsion module if for every element m \in \scrM , there exists a
nonzero element f \in \scrA such that fm = 0 \in \scrM .
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tice is generated by finitely many elements from \BbbZ n, which are linearly independent
over \BbbZ . The cardinality of a linearly independent generating set is called the rank of
the sublattice. Thus, we have the following definition.

Definition 3.3. A subset \scrS \subseteq \BbbZ n is called a sublattice of rank r \leqslant n if there
exists a set \{ s1, s2, . . . , sr\} \subseteq \BbbZ n, of cardinality r, linearly independent over \BbbZ , that
generates \scrS as a \BbbZ -module:

(3.3) \scrS = \{ \lambda 1s1 + \lambda 2s2 + \cdot \cdot \cdot + \lambda rsr \lambda 1, . . . , \lambda r \in \BbbZ \} .

Remark 3.4. It would be worthwhile to note here that this definition of a sublat-
tice is more general than some existing notions of sublattices in the literature. For
example, in [4] sublattices have been defined to be those which are more precisely
called co-ordinate sublattices. These sublattices are defined in the following manner:
let \Gamma \subseteq \{ 1, 2, . . . , n\} , then define sublattice

\scrS \Gamma := \{ (\nu 1, \nu 2, . . . , \nu n) \in \BbbZ n | \nu k = 0 for all k \in \Gamma \} .

Clearly, such a sublattice is a special case of the ones defined above in Definition 3.3.

A subalgebra, denoted here by \BbbR [\scrS ], of \scrA can be naturally associated with a given
sublattice \scrS of \BbbZ n in the following manner:

(3.4) \BbbR [\scrS ] :=

\Biggl\{ \sum 
\nu \in \scrS 1

\alpha \nu \xi 
\nu \scrS 1 \subseteq \scrS , | \scrS 1| <\infty , \alpha \nu \in \BbbR 

\Biggr\} 
.

We call this ring \BbbR [\scrS ], the sublattice algebra corresponding to \scrS ---this ring plays a
crucial role throughout this paper.

3.2. Algebraic characterization of characteristic sublattices. We present
the first main result of this paper, Theorem 3.7, in this section. This theorem provides
a necessary and sufficient algebraic condition for a given sublattice to be a charac-
teristic sublattice for a given autonomous behavior. In order to get to Theorem 3.7
(and also for developments later in the paper), the following algebraic construction is
required.

Given a sublattice \scrS \subseteq \BbbZ n, we have the sublattice algebra \BbbR [\scrS ], as defined in (3.4).
Consider the free module \BbbR [\scrS ]1\times q over the ring \BbbR [\scrS ]. Note that the free module \scrA 1\times q

has the structure of an \BbbR [\scrS ]-module via the injection \BbbR [\scrS ] \lhook \rightarrow \scrA . Thus, the natural
inclusion map \psi : \BbbR [\scrS ]1\times q \lhook \rightarrow \scrA 1\times q is an \BbbR [\scrS ]-module homomorphism. Now, consider

the composite homomorphism \widetilde \Psi of \BbbR [\scrS ]-modules obtained by the composition of \psi 
with the canonical surjection \scrA 1\times q \twoheadrightarrow \scrM , i.e.,

\widetilde \Psi : \BbbR [\scrS ]1\times q \lhook \rightarrow \scrA 1\times q \twoheadrightarrow \scrM ,

p \mapsto \rightarrow p \mapsto \rightarrow p = p+\scrR =: \widetilde \Psi (p).
(3.5)

Since \widetilde \Psi is an \BbbR [\scrS ]-module homomorphism, ker \widetilde \Psi is a submodule of \BbbR [\scrS ]1\times q, and it

is easy to verify that ker \widetilde \Psi = \scrR \cap \BbbR [\scrS ]1\times q. Define the quotient module

(3.6) \scrQ :=
\BbbR [\scrS ]1\times q

ker \widetilde \Psi =
\BbbR [\scrS ]1\times q

\scrR \cap \BbbR [\scrS ]1\times q
.

Then, the \BbbR [\scrS ]-module homomorphism \Psi : \scrQ \rightarrow \scrM , induced by \widetilde \Psi , is defined in the

following manner: for any f \in \scrQ , let \widehat f be a preimage of f in \BbbR [\scrS ]1\times q under the
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surjective \BbbR [\scrS ]-module homomorphism \BbbR [\scrS ]1\times q \twoheadrightarrow \scrQ . Then define

(3.7)
\Psi : \scrQ \rightarrow \scrM ,

f \mapsto \rightarrow \widetilde \Psi ( \widehat f).
It can be easily checked that \Psi is well defined. While it easily follows from the
definition that \Psi is injective, Theorem 3.7 below states that in order for \scrS to be a
characteristic sublattice, it is necessary and sufficient that the homomorphism \Psi be
surjective as well. This gives us the desired algebraic characterization of character-
istic sublattices. In order to prove this we need the following two important results:
Propositions 3.5 and 3.6. Proposition 3.5 is a variant of the well-known Malgrange's
theorem. Proposition 3.6 is a derivative of Malgrange's theorem that applies to the
restricted behavior \frakB | \scrS when \scrS \subseteq \BbbZ n is a sublattice.

Proposition 3.5. Let \frakB \in \frakL q be a discrete n-D system with equation module
\scrR \subseteq \scrA 1\times q. Let \scrM denote the corresponding quotient module \scrA 1\times q/\scrR . Define the \scrA -
module homomorphism \Phi : \frakB \rightarrow Hom\BbbR (\scrM ,\BbbR ) as (\Phi (w)) (m) := (mw)(0) for m \in \scrM .
Then \Phi is an isomorphism.

Proof. See the proof of [12, Proposition 6].

Proposition 3.6. Let \frakB \in \frakL q be a discrete n-D system with equation module
\scrR \subseteq \scrA 1\times q and the corresponding quotient module \scrM . Further, let \scrS \subseteq \BbbZ n be a
sublattice. Define the \BbbR [\scrS ]-module \scrQ as in (3.6). Then the restricted behavior \frakB | \scrS is
isomorphic to Hom\BbbR (\scrQ ,\BbbR ) as \BbbR [\scrS ]-modules.

Proof. We prove this by setting up an \BbbR [\scrS ]-linear map \varphi : Hom\BbbR (\scrQ ,\BbbR ) \rightarrow \frakB | \scrS 
in the following manner: let A \in Hom\BbbR (\scrQ ,\BbbR ) be arbitrary. Since \Psi : \scrQ \rightarrow \scrM is
injective, the corresponding dual map \Psi \ast : Hom\BbbR (\scrM ,\BbbR ) \rightarrow Hom\BbbR (\scrQ ,\BbbR ) is surjec-
tive.2 Thus, there exists \^A \in Hom\BbbR (\scrM ,\BbbR ) such that \Psi \ast ( \^A) = A. According to

Proposition 3.5 there exists a unique w
\^A \in \frakB corresponding to this \^A that satisfies

(\Phi (w
\^A))(m) = (mw

\^A)(0) = \^A(m) for all m \in \scrM . Define \varphi (A) := w
\^A| \scrS .

(\bfitvarphi is well-defined) Let \^A1 and \^A2 be two distinct elements from Hom\BbbR (\scrM ,\BbbR )
such that \Psi \ast ( \^A1) = \Psi \ast ( \^A2) = A. Since \Psi \ast is the dual of \Psi , it follows that for all
f \in \scrQ , \^A1(\Psi (f)) = \^A2(\Psi (f)) = A(f). Further, for any \nu \in \BbbZ n, i \in \{ 1, 2, . . . , q\} , and
j \in \{ 1, 2\} , we have

w
\^Aj

i (\nu ) =
\Bigl( 
\Phi (w

\^Aj )
\Bigr) \Bigl( 

\sigma \nu eTi

\Bigr) 
= \^Aj

\Bigl( 
\sigma \nu eTi

\Bigr) 
.

It then follows that for every \nu \in \scrS , i \in \{ 1, 2, . . . , q\} , and j \in \{ 1, 2\} ,

w
\^Aj

i (\nu ) = \^Aj

\Bigl( 
\sigma \nu eTi

\Bigr) 
= A

\Bigl( 
\sigma \nu eTi

\Bigr) 
,

where the last equality follows from the fact that \sigma \nu eTi \in \scrQ . Thus w
\^A1 | \scrS = w

\^A2 | \scrS ,
and hence \varphi is well-defined.

(\bfitvarphi is \BbbR [\bfscrS ]-linear) This is straightforward.

(\bfitvarphi is injective) Let A \in Hom\BbbR (\scrQ ,\BbbR ) be such that \varphi (A) = w
\^A| \scrS = 0. This

means w
\^A
i (\nu ) = 0 for all \nu \in \scrS and i \in \{ 1, 2, . . . , q\} . From the discussion above, it

follows that
w

\^A
i (\nu ) = A

\Bigl( 
\sigma \nu eTi

\Bigr) 
= 0

2Since \BbbR is a field, and \scrM and \scrQ are vector spaces over \BbbR , the functor Hom\BbbR (\bullet ,\BbbR ) is exact.
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Hom\BbbR (\scrM ,\BbbR ) Hom\BbbR (\scrQ ,\BbbR )

\frakB \frakB | \scrS 

\Psi \ast 

restriction to \scrS 
\Phi \sim = \varphi \sim =

Fig. 1. Complete commutative diagram.

for all \nu \in \scrS and i \in \{ 1, 2, . . . , q\} . But this means A(f) = 0 for all f \in \scrQ because

every element in \scrQ is a finite \BbbR -linear combination of monomials of the form \sigma \nu eTi
with \nu \in \scrS and i \in \{ 1, 2, . . . , q\} . Thus A = 0 \in Hom\BbbR (\scrQ ,\BbbR ). This proves that \varphi is
injective.

(\bfitvarphi is surjective) Note that an arbitrary element from \frakB | \scrS is of the form w| \scrS ,
where w \in \frakB . For such an arbitrary element w| \scrS \in \frakB | \scrS define A := \Psi \ast (\Phi (w)) \in 
Hom\BbbR (\scrQ ,\BbbR ), where \Phi is as defined in Proposition 3.5 above. We claim that \varphi (A) =
w| \scrS . Note that for any \nu \in \scrS and i \in \{ 1, 2, . . . , q\} 

wi| \scrS (\nu ) = wi(\nu ) =
\Bigl( 
\sigma \nu eTi w

\Bigr) 
(0) = (\Phi (w))

\Bigl( 
\sigma \nu eTi

\Bigr) 
.

However, since \sigma \nu eTi \in \scrQ , we must have

wi| \scrS (\nu ) = (\Phi (w))
\Bigl( 
\sigma \nu eTi

\Bigr) 
= (\Psi \ast (\Phi (w)))

\Bigl( 
\sigma \nu eTi

\Bigr) 
= A

\Bigl( 
\sigma \nu eTi

\Bigr) 
.

Hence \varphi (A) = w| \scrS .
The results of Propositions 3.5 and 3.6 can be summarized in the commutative

diagram (Figure 1); all the maps involved in it are \BbbR [\scrS ]-module homomorphisms.
We are now in a position to prove the first main result of this paper.

Theorem 3.7. Let \frakB \in \frakL q be a discrete n-D autonomous system with equation
module \scrR \subseteq \scrA 1\times q and corresponding quotient module \scrM . Then a sublattice \scrS \subseteq \BbbZ n

is a characteristic sublattice for \frakB if and only if the homomorphism of \BbbR [\scrS ]-modules
\Psi : \scrQ \rightarrow \scrM is surjective.

Proof. (If) Since \Psi : \scrQ \rightarrow \scrM is surjective, the corresponding dual map \Psi \ast :
Hom\BbbR (\scrM ,\BbbR ) \rightarrow Hom\BbbR (\scrQ ,\BbbR ) is injective. Using the isomorphisms in Propositions 3.5
and 3.6 it follows that \frakB \rightarrow \frakB | \scrS is injective. By the definition of injectivity, it follows
that w| \scrS = 0 implies w \equiv 0. Thus \scrS is a characteristic sublattice for \frakB .

(Only If) Suppose \scrS is a characteristic sublattice for \frakB . We need to show that
\Psi : \scrQ \rightarrow \scrM is surjective. This is equivalent to showing that the corresponding dual
map \Psi \ast : Hom\BbbR (\scrM ,\BbbR ) \rightarrow Hom\BbbR (\scrQ ,\BbbR ) is injective. Now \scrS being a characteristic
sublattice implies that if w| \scrS = 0, then w \equiv 0 (see [25, Lemma 2.3]). Using the
isomorphisms in Propositions 3.5 and 3.6, it follows that \Psi \ast is injective when \scrS is a
characteristic sublattice.

We illustrate the result of Theorem 3.7 with the help of Example 3.8 below.

Example 3.8. Consider the scalar 3-D autonomous system with kernel represen-
tation

\frakB = ker

\biggl[ 
\sigma 5
1\sigma 3 + \sigma 6

2 + \sigma 7
3\sigma 2

\sigma 3\sigma 
 - 1
1  - 1

\biggr] 
.
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The equation ideal is a = \langle \xi 51\xi 3+\xi 62+\xi 73\xi 2, \xi 3\xi  - 1
1  - 1\rangle \subseteq \BbbR [\xi 1, \xi  - 1

1 , \xi 2, \xi 
 - 1
2 , \xi 3, \xi 

 - 1
3 ]. The

sublattice \scrS generated by
\bigl[ 
0 1 0

\bigr] T
and

\bigl[ 
0 0 1

\bigr] T
is a characteristic sublattice.

This is because the monomials \xi 2, \xi 3, \xi 
 - 1
2 , and \xi  - 1

3 already belong to the sublat-
tice. Simple calculations show that \xi 1 \equiv \xi 3 mod a and \xi  - 1

1 \equiv \xi  - 1
3 mod a, where

\xi 3 and \xi  - 1
3 belong to \BbbR [\scrS ]. Thus the monomials \{ \xi 1, \xi 2, \xi 3, \xi 1

 - 1
, \xi 2

 - 1
, \xi 3

 - 1\} \subseteq \scrM 
that generate \scrM as an \BbbR -algebra are in the image of \Psi : \scrQ \rightarrow \scrM . Therefore, \Psi is
surjective.

3.3. Nonautonomy of \bffrakB | \bfscrS . Since \BbbZ n is a Noetherian module over a princi-
pal ideal domain \BbbZ , every sublattice \scrS of \BbbZ n is a finitely generated free module over
\BbbZ . This means the sublattice algebra \BbbR [\scrS ] is isomorphic to the r-variable Laurent
polynomial ring over \BbbR , where r is the rank of \scrS . Indeed, let \{ s1, s2, . . . , sr\} \subseteq \BbbZ n

be a free generating set of \scrS and define \eta i := \xi si for i = 1, 2, . . . , r. It can be
easily checked that the sublattice algebra \BbbR [\scrS ] is then the \BbbR -algebra generated by
\{ \eta 1, \eta  - 1

1 , \eta 2, \eta 
 - 1
2 , . . . , \eta r, \eta 

 - 1
r \} . Note that by virtue of being a free generating set,

\{ s1, s2, . . . , sr\} is linearly independent over \BbbZ , and hence \{ \eta 1, \eta 2, . . . , \eta r\} is algebrai-
cally independent over \BbbR . Therefore, \BbbR [\scrS ] = \BbbR [\eta 1, \eta  - 1

1 , \eta 2, \eta 
 - 1
2 , . . . , \eta r, \eta 

 - 1
r ] is isomor-

phic to the r-variable Laurent polynomial ring. It then follows from Propositions 3.5
and 3.6 that the restricted behavior \frakB | \scrS is isomorphic to an r-D behavior. Note that
\scrS being a characteristic sublattice for \frakB is equivalent to saying that this r-D behavior
\frakB | \scrS is in one-to-one correspondence with the original n-D behavior \frakB . Clearly, in
this scenario, it is desirable that \frakB | \scrS be nonautonomous as an r-D behavior. For if
\frakB | \scrS is autonomous, then \frakB | \scrS would admit a proper subset of its domain, i.e., \scrS , as
a characteristic set, and by transitivity, that proper subset of \scrS would be a charac-
teristic set for \frakB , too. From the perspective of minimality of a characteristic set, it
is therefore desirable to have \frakB | \scrS be a nonautonomous r-D behavior.

Definition 3.9. Given a discrete n-D behavior \frakB \in \frakL q, with equation module
\scrR \subseteq \scrA 1\times q, and a sublattice \scrS \subseteq \BbbZ n, the restricted behavior \frakB | \scrS is said to be nonau-
tonomous if the annihilator ideal of the quotient module \scrQ := \BbbR [\scrS ]1\times q/\scrR \cap \BbbR [\scrS ]1\times q

as an \BbbR [\scrS ]-module is zero, i.e.,

(3.8) ann\BbbR [\scrS ]\scrQ := \{ f \in \BbbR [\scrS ] | f(\sigma , \sigma  - 1)eTi \in \scrR for all 1 \leqslant i \leqslant q\} = \{ 0\} .

Proposition 3.10 below characterizes the property of \frakB | \scrS being nonautonomous
in terms of the algebraic entities associated with the original behavior \frakB .

Proposition 3.10. Let \frakB \in \frakL q be a discrete n-D behavior with equation module
\scrR \subseteq \scrA 1\times q and quotient module \scrM := \scrA 1\times q/\scrR . Further, let \scrS \subseteq \BbbZ n be a sublattice
of rank r. Define the \BbbR [\scrS ]-module \scrQ as in (3.6). Then the following are true.

1. ann \scrM \cap \BbbR [\scrS ] = ann \BbbR [\scrS ]\scrQ .
2. The restricted r-D behavior \frakB | \scrS is nonautonomous if and only if ann \scrM \cap 

\BbbR [\scrS ] = \{ 0\} .

Proof. (1) We first prove ann \scrM \cap \BbbR [\scrS ] \subseteq ann \BbbR [\scrS ]\scrQ . Let f \in ann \scrM \cap \BbbR [\scrS ]. In
particular, f \in ann \scrM , which implies that for any r \in \scrA 1\times q, fr \in \scrR . That is, for
all i \in \{ 1, 2, . . . , q\} , feTi \in \scrR . Therefore, the row span over \scrA of the q \times q matrix
fIq is contained in \scrR . Since f also belongs to \BbbR [\scrS ], the row span of fIq over \BbbR [\scrS ] is
contained in \scrR \cap \BbbR [\scrS ]1\times q. This implies f \in ann \BbbR [\scrS ]\scrQ .

To show ann \BbbR [\scrS ]\scrQ \subseteq ann \scrM \cap \BbbR [\scrS ], let f \in ann \BbbR [\scrS ]\scrQ . By the definition of
ann \BbbR [\scrS ]\scrQ , for all i \in \{ 1, 2, . . . , q\} , feTi \in \scrR . Therefore, the row span of fIq over
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\scrA is contained in \scrR . This implies f \in ann \scrM . By assumption f \in \BbbR [\scrS ] as well.
Therefore, f \in ann \scrM \cap \BbbR [\scrS ].

(2) Follows from Definition 3.9 and the fact that ann \scrM \cap \BbbR [\scrS ] = ann \BbbR [\scrS ]\scrQ .

As noted earlier, characteristic sets formalize the notion of initial data required for
solving an overdetermined system of PDEs. Albeit in addition to a characteristic set,
one must also be equipped with an algorithm for the extension of a trajectory from
its restriction on the characteristic set to the entire domain. Note that Theorem 3.7
above not only gives an algebraic criterion for checking characteristic sublattices, but
it also provides a method for doing this extension. Algorithm 3.14 below is adapted
from [12, Algorithm 17], [11] to carry out this job.

3.4. Algorithms. In this section, we provide algorithms, based on Gr\"obner
bases, for computing solutions for an overdetermined system of PDEs. This requires
us to first specify initial data for a given system of PDEs. We do this using charac-
teristic sets. In particular, for a given system of PDEs we first check if a sublattice is
a characteristic sublattice. Once this is done, trajectories restricted to that sublattice
form the initial data for the given system of PDEs. Then computing the solution of
the given system of PDEs at an arbitrary point in the domain is possible. The algo-
rithms require several important algebraic reductions, such as reducing the Laurent
polynomial ring for using Gr\"obner bases theory (applicable for polynomial rings) and
converting Theorem 3.7 to another equivalent algebraic condition (Proposition 3.11)
for implementation. We state the constructions briefly here, without proof, as they
can be worked out from [12, section 6]. Proofs of the correctness of algorithms are
provided that borrow heavily from [12, section 6].

3.4.1. Auxiliary equivalent criterion of the one in Theorem 3.7. In order
to obtain implementable algorithms using the theory of Gr\"obner bases, we convert
the algebraic condition of Theorem 3.7 to another equivalent algebraic condition in
Proposition 3.11. Note that the theory of Gr\"obner bases is applicable for polynomial
rings. Therefore, it is essential to convert the Laurent polynomial ring to a polynomial
ring. The other important algebraic reduction involves the representation of the
sublattice algebra as an image of a ring homomorphism. These two reductions play an
important role in converting the algebraic condition of Theorem 3.7 to the equivalent
condition in Proposition 3.11 below.

Define the 2n-variable polynomial ring \BbbR [x, y] and the \BbbR -algebra homomorphism
\pi : \BbbR [x, y] \twoheadrightarrow \scrA as follows: for i \in \{ 1, 2, . . . , n\} ,

(3.9)
\pi : \BbbR [x, y] \twoheadrightarrow \scrA ,

xi \mapsto \rightarrow \xi i,
yi \mapsto \rightarrow \xi  - 1

i .

Note that ker \pi = \langle x1y1  - 1, x2y2  - 1, . . . , xnyn  - 1\rangle . It follows from the first isomor-
phism theorem [2] that \scrA \sim = \BbbR [x, y]/ker \pi .

To extend \pi : \BbbR [x, y] \twoheadrightarrow \scrA to corresponding modules, construct the homomor-
phism of \BbbR -algebra modules \Pi : \BbbR [x, y]1\times q \twoheadrightarrow \scrA 1\times q induced3 by the \BbbR -algebra homo-

3The scalar multiplication property of the homomorphism obeys the following relation: for \alpha \in 
\BbbR [x, y], t \in \BbbR [x, y]1\times q

(3.10)
\Pi : \BbbR [x, y]1\times q \twoheadrightarrow \scrA 1\times q ,

\Pi (\alpha t) = \pi (\alpha )\Pi (t).
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morphism \pi : \BbbR [x, y] \twoheadrightarrow \scrA as follows: for i \in \{ 1, 2, . . . , n\} and j \in \{ 1, 2, . . . , q\} ,

(3.11)

\Pi : \BbbR [x, y]1\times q \twoheadrightarrow \scrA 1\times q,
xie

T
j \mapsto \rightarrow \xi ie

T
j ,

yie
T
j \mapsto \rightarrow \xi  - 1

i eTj .

The kernel of \Pi is a submodule of \BbbR [x, y]1\times q and is given by the rowspan of the
following matrix:

P = diag

\left(        
\left[   x1y1  - 1

...
xnyn  - 1

\right]   ,
\left[   x1y1  - 1

...
xnyn  - 1

\right]   , . . . ,
\left[   x1y1  - 1

...
xnyn  - 1

\right]   
\underbrace{}  \underbrace{}  

q entries

\right)        .

That is, ker \Pi = rowspan\BbbR [x,y]P.
Consider a sublattice \scrS \subseteq \BbbZ n of rank r, generated by \{ s1, s2, . . . , sr\} \subseteq \BbbZ n. Define

the 2r-variable polynomial ring \BbbR [t, u] and the \BbbR -algebra homomorphism \Phi : \BbbR [t, u] \rightarrow 
\scrA as follows: for i \in \{ 1, 2, . . . , r\} ,

(3.12)
\Phi : \BbbR [t, u] \rightarrow \scrA ,

ti \mapsto \rightarrow \xi si ,
ui \mapsto \rightarrow \xi  - si .

It can be shown that the sublattice algebra is given by im \Phi . That is, \BbbR [\scrS ] = im \Phi .
Let \Phi  \star : \BbbR [t, u]1\times q \rightarrow \scrA 1\times q be the homomorphism of \BbbR -algebra modules, induced
by the \BbbR -algebra homomorphism \Phi : \BbbR [t, u] \rightarrow \scrA . Then, it follows from the scalar
counterpart that \BbbR [\scrS ]1\times q = im \Phi  \star . Using the first isomorphism theorem, it then
follows that

\BbbR [\scrS ]1\times q = im \Phi  \star \sim =
\BbbR [t, u]1\times q

ker \Phi  \star 
,

where the isomorphism is between \BbbR -algebra modules induced by the \BbbR -algebra ho-
momorphism \Phi : \BbbR [t, u] \rightarrow \scrA .

Recall that the sublattice \scrS \subseteq \BbbZ n is generated by \{ s1, s2, . . . , sr\} \subseteq \BbbZ n. Let
si+ \in \BbbN n denote the n-tuple of nonnegative integers that contains the nonnega-
tive components of si with the negative components replaced by zero. Similarly,
si - \in \BbbN n represents the n-tuple of nonnegative integers that contains the negative of
the negative components of si with the positive components replaced by zero. For
i \in \{ 1, 2, . . . , r\} , define mi(x, y) := xsi+ysi - and ni(x, y) := ysi+xsi - . Using this

construction we define the \BbbR -algebra homomorphism, \widehat \Phi : \BbbR [t, u] \rightarrow \BbbR [x, y], as follows:
for i \in \{ 1, 2, . . . , r\} ,

(3.13)

\widehat \Phi : \BbbR [t, u] \rightarrow \BbbR [x, y],
ti \mapsto \rightarrow mi(x, y),
ui \mapsto \rightarrow ni(x, y).

The vector version of \widehat \Phi , that is, \widehat \Phi  \star : \BbbR [t, u]1\times q \rightarrow \BbbR [x, y]1\times q, is defined accordingly.
The complete commutative diagram is shown in Figure 2.

The algebraic equivalent of Theorem 3.7 is stated in Proposition 3.11. The proof
can be worked out from the proof of [12, Proposition 14]. Hence we provide only a
brief sketch of the proof here.
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\BbbR [x, y]1\times q

\BbbR [t, u]1\times q \scrA 1\times q

\scrM 

\Pi 

\Phi  \star 

\widetilde \Phi  \star 

\widehat \Phi  \star 

Fig. 2. Complete commutative diagram showing the reductions.

\BbbR [t, u]1\times q \BbbR [x, y]1\times q

\scrM 

\widehat \Phi  \star 

\widetilde \Phi  \star \widetilde \Pi 
Fig. 3. Commutative diagram in terms of polynomial rings.

Proposition 3.11. Consider the \BbbR [\scrS ]-module homomorphism \Psi : \scrQ \rightarrow \scrM as

defined in (3.7) and \widetilde \Phi  \star : \BbbR [t, u]1\times q \rightarrow \scrM as shown in the commutative diagram of

Figure 2. Then, \Psi is surjective if and only if \widetilde \Phi  \star is surjective.

Sketch of proof. Let m \in \scrM . Note that by the commutativity of the diagram of
Figure 2, m \in im \widetilde \Phi  \star if and only if there exists a preimage ofm in \scrA 1\times q, denoted by \widehat m,
such that \widehat m \in im \Phi  \star . However, note that im \Phi  \star = \BbbR [\scrS ]1\times q. Therefore, m \in im \widetilde \Phi  \star if
and only if \widehat m \in \BbbR [\scrS ]1\times q. Recall from (3.6) and (3.7) that \widehat m \in \BbbR [\scrS ]1\times q is equivalent to\widetilde \Psi (\widehat m), i.e., the image of \widehat m under the canonical surjection \widetilde \Psi : \BbbR [\scrS ]1\times q \twoheadrightarrow \scrQ , satisfying

\Psi (\widetilde \Psi (\widehat m)) = m. Thus, m \in im \widetilde \Phi  \star if and only if m \in im \Psi . The equivalence of the

surjectivity of the two maps, \Psi and \widetilde \Phi  \star , hence follows immediately.

3.4.2. Details of algorithms and their proofs of correctness. In this sec-
tion, we provide algorithms to first check whether a given sublattice is a characteristic
sublattice. Then using the knowledge of trajectories restricted to a characteristic sub-
lattice we provide an algorithm that computes explicit solutions of a given system of
PDEs at an arbitrary point in the domain.

To algorithmically test if a given sublattice is a characteristic sublattice, we use
the constructions in subsection 3.4.1. Using Proposition 3.11, checking if a sublattice
is a characteristic sublattice is equivalent to checking surjectivity of \widetilde \Phi  \star . To do this
check, using algorithms based on Gr\"obner bases, we consider the commutative dia-
gram in Figure 3, derived from the commutative diagram in Figure 2. Note that the
commutative diagram in Figure 3 circumvents the use of Laurent polynomial rings
by using suitable polynomial rings, thereby allowing the use of the theory of Gr\"obner
bases.

The first step in checking whether a given sublattice is a characteristic sublat-
tice for a given system of PDEs is computing a Gr\"obner basis of the submodule \scrK ,
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1534 MOUSUMI MUKHERJEE AND DEBASATTAM PAL

as defined in (3.14) below, using an elimination term ordering. This is outlined in
Algorithm 3.12.

Algorithm 3.12. Algorithm for computing a Gr\"obner basis for a given system
of PDEs and a given sublattice.
Input:

1. The system of equations given in kernel representation as \frakB = ker R, where
R(\xi , \xi  - 1) \in \scrA \bullet \times q, forming the equation module \scrR \subseteq \scrA 1\times q.

2. A sublattice \scrS generated by \{ s1, s2, . . . , sr\} \subseteq \BbbZ n.
Output: A Gr\"obner basis \scrG of the submodule \scrK defined in (3.14) below.
Computation:

1. Define the (2n+ 2r)-variable polynomial ring \BbbR [x, y, t, u].
2. Define the free module \BbbR [x, y, t, u]1\times q and the sub-module \scrK \subseteq \BbbR [x, y, t, u]1\times q

as

(3.14) \scrK := \widetilde \scrR + \scrT ,

where \widetilde \scrR = rowspan\BbbR [x,y,t,u] \widetilde R+ rowspan\BbbR [x,y,t,u]P , \scrT = rowspan\BbbR [x,y,t,u]T ,

with \widetilde R, P , and T defined as

\widetilde R = R(x, y) \in \BbbR [x, y]\bullet \times q (substituting \xi by x and \xi  - 1 by y in R(\xi , \xi  - 1)),

P = diag

\left(        
\left[   x1y1  - 1

...
xnyn  - 1

\right]   ,
\left[   x1y1  - 1

...
xnyn  - 1

\right]   , . . . ,
\left[   x1y1  - 1

...
xnyn  - 1

\right]   
\underbrace{}  \underbrace{}  

q entries

\right)        \in \BbbR [x, y]nq\times q,

T = diag

\left(        
\left[   t1  - m1

...
tr  - mr

\right]   , . . . ,
\left[   t1  - m1

...
tr  - mr

\right]   
\underbrace{}  \underbrace{}  

q entries

\right)        +diag

\left(        
\left[   u1  - n1

...
ur  - nr

\right]   , . . . ,
\left[   u1  - n1

...
ur  - nr

\right]   
\underbrace{}  \underbrace{}  

q entries

\right)        .

Note that T \in \BbbR [x, y, t, u]rq\times q, and mi := xsi+ysi - , ni = ysi+xsi - for i \in 
\{ 1, 2 . . . , r\} .

3. Calculate a Gr\"obner basis4 \scrG = \{ g1, . . . , gs\} of \scrK with elimination term or-
dering x \succ y \succ t \succ u and corresponding elimination module term ordering
\succ TOP .

Proof of correctness. The proof follows from standard results in Gr\"obner basis
theory [1, Chapter 3].

Algorithm 3.13. Algorithm for checking if a given sublattice is a characteristic
sublattice.
Input:

1. The system of equations given in kernel representation as \frakB = ker R, where
R(\xi , \xi  - 1) \in \scrA \bullet \times q, forming the equation module \scrR \subseteq \scrA 1\times q.

2. A sublattice \scrS generated by \{ s1, s2, . . . , sr\} \subseteq \BbbZ n.

4An algorithm for calculating the Gr\"obner basis of a module can be found in [1, Algorithm 3.5.2].
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Output:
1. Yes, if \scrS is a characteristic sublattice for \frakB .
2. No, if \scrS is not a characteristic sublattice.

Computation:
1. Use Algorithm 3.12 to compute a Gr\"obner basis \scrG .
2. For all j \in \{ 1, 2, . . . q\} , calculate the remainders of x1e

T
j , . . . , xne

T
j , y1e

T
j ,

. . . , yne
T
j , where ej is the jth standard basis (column) vector of \BbbR q, by division

with \scrG .
3. If x1eTj

\scrG 
, . . . , xneTj

\scrG 
, y1eTj

\scrG 
, . . . , yneTj

\scrG 
\in \BbbR [t, u]1\times q for all j \in \{ 1, 2, . . . q\} ,

then \scrS is a characteristic sublattice for \frakB .
4. If not, then \scrS is not a characteristic sublattice for \frakB .

Proof of correctness. To check if a given sublattice is a characteristic sublattice,
Proposition 3.11 is used. The surjectivity of \widetilde \Phi \ast is checked using a Gr\"obner basis for
\scrK , computed using the elimination term ordering, and the corresponding division-
with-remainder algorithm. That is, let \scrG = \{ g1, g2, . . . , gs\} be a Gr\"obner basis of
\scrK with respect to the elimination module ordering \succ TOP having the property that

x \succ y \succ t \succ u. For an element f(x, y) \in \BbbR [x, y]1\times q, let f
\scrG 
denote the remainder

of f obtained after dividing it by elements of \scrG . Then, f , the image of f under the

canonical surjection \BbbR [x, y]1\times q \twoheadrightarrow \scrM , belongs to im \widetilde \Phi  \star if and only if f
\scrG \in \BbbR [t, u]1\times q

[12, Lemma 15]. Therefore, it follows that \scrS \subseteq \BbbZ n is a characteristic sublattice for \frakB 
if and only if the remainders of x1e

T
j , . . . , xne

T
j , y1e

T
j , . . . , yne

T
j for all j \in \{ 1, 2, . . . q\} 

contain elements only in \BbbR [t, u]1\times q [12, Theorem 16].

Algorithm 3.14. The algorithm is for computing the solution at an arbitrary
point in the domain.
Input:

1. The system of equations given in kernel representation as \frakB = ker R, where
R(\xi , \xi  - 1) \in \scrA \bullet \times q, forming the equation module \scrR \subseteq \scrA 1\times q.

2. A sublattice \scrS generated by \{ s1, s2, . . . , sr\} \subseteq \BbbZ n.
3. The value the trajectory takes on the sublattice, that is, w| \scrS .
4. A point \nu \in \BbbZ n \setminus \scrS where the value of the trajectory needs to be computed.

Output: The trajectory w evaluated at \nu , that is, w(\nu ).
Computation:

1. Use Algorithm 3.13 to check if the given sublattice \scrS is a characteristic sub-
lattice.
(a) If yes, proceed further.
(b) If no, choose a different sublattice and try again.

2. Use Algorithm 3.12 to compute a Gr\"obner basis \scrG .
3. For the given \nu \in \BbbZ n \setminus \scrS , write \nu = \nu +  - \nu  - , where \nu +, \nu  - \in \BbbN n. Calculate

the remainders (x\nu +y\nu  - )eTj for all j \in \{ 1, 2, . . . q\} by division with \scrG .
4. The trajectory evaluated at \nu is

(3.15) w(\nu ) = w1(\nu )e1 + w2(\nu )e2 + . . .+ wq(\nu )eq =

q\sum 
j=1

wj(\nu )ej ,

where
wj(\nu ) =

\Bigl( \Bigl( 
\sigma \nu eTj

\Bigr) 
w
\Bigr) 
(0).

5. Let (x\nu +y\nu  - )eTj
\scrG 
=

\bigl[ 
fj1 fj2 . . . fjq

\bigr] 
, where fji \in \BbbR [t, u]. That is, fji is

of the form
\sum 

\gamma 1,\gamma 2\in \Gamma \alpha \gamma t
\gamma 1u\gamma 2 , where \alpha \gamma \in \BbbR , \gamma 1, \gamma 2 \in \BbbN r, and | \Gamma | <\infty .
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6. Now, t\gamma 1 = \xi 
\sum r

i=1 \gamma 1isi and u\gamma 2 = \xi  - 
\sum r

i=1 \gamma 2isi . Define w\gamma ji
:=

\bigl( \bigl( 
fjie

T
i

\bigr) 
w
\bigr) 
(0).

Thus w\gamma j
=

\bigl[ 
w\gamma j1

w\gamma j2
. . . w\gamma jq

\bigr] T
.

7. Using (3.15) the trajectory evaluated at \nu is w(\nu ) =
\sum q

j=1 w\gamma j
ej.

Proof of correctness. The trajectory evaluated at any point in the domain is
given by (3.15). This applies to a point \nu \in \BbbZ n \setminus \scrS as well. From (3.15), it is clear
that to compute w(\nu ), we need to calculate

wj(\nu ) =
\Bigl( \Bigl( 
\sigma \nu eTj

\Bigr) 
w
\Bigr) 
(0)

for all j \in \{ 1, 2, . . . , q\} . In order to do so, we first write \nu = \nu +  - \nu  - , where \nu +, \nu  - \in 
\BbbN n. Then, for all j \in \{ 1, 2, . . . q\} , calculating the remainders of (x\nu +y\nu  - )eTj by division

with \scrG , we have (x\nu +y\nu  - )eTj
\scrG 
=

\bigl[ 
fj1 fj2 . . . fjq

\bigr] 
, where fji \in \BbbR [t, u]. This follows

from the fact that \scrS is a characteristic sublattice. Since \scrS is a characteristic sublattice,
it is assumed that w| \scrS is known. In particular, for all i \in \{ 1, 2, . . . , q\} and for a
fixed j \in \{ 1, 2, . . . q\} the action of fji on a trajectory w can be computed using the
knowledge of w| \scrS . We denote this by w\gamma j . Repeating this for all j \in \{ 1, 2, . . . q\} , we
evaluate the trajectory at \nu using w(\nu ) =

\sum q
j=1 w\gamma j

ej .

The isomorphism between \scrQ and \scrM , which is the necessary and sufficient con-
dition proved in Theorem 3.7, also reveals that if \scrS is to be a characteristic set, then
the Krull dimensions of \scrQ and \scrM must match. Thus, a necessary condition for \scrS to
be a characteristic sublattice is that the Krull dimension of \scrQ is the same as that of
\scrM . This, however, is not sufficient, as shown in Example 3.15 below.

Example 3.15. Consider the scalar 3-D autonomous system given by

\frakB = ker

\biggl[ 
\sigma 2
1\sigma 

3
2 + \sigma 2

2 + \sigma  - 1
1

\sigma 4
3 + \sigma  - 2

1 \sigma 3
3 + \sigma 2

1\sigma 3 + 5

\biggr] 
,

where a = \langle \xi 21\xi 32 + \xi 22 + \xi  - 1
1 , \xi 43 + \xi  - 2

1 \xi 33 + \xi 21\xi 3 + 5\rangle \subseteq \BbbR [\xi 1, \xi  - 1
1 , \xi 2, \xi 

 - 1
2 , \xi 3, \xi 

 - 1
3 ] is

the equation ideal. It can be checked that the Krull dimension of the quotient ring
\scrM = \scrA /a is equal to one. Consider the sublattice \scrS of rank 1 given by

\scrS = span\BbbZ 

\left\{   
\left[  10
0

\right]  \right\}   .

Thus, the rank of the sublattice is equal to the Krull dimension of \scrM . However, using
Algorithm 3.13 it follows that \scrS is not a characteristic sublattice.

As Example 3.15 has shown, a sublattice often turns out not to be a characteristic
set. When a given sublattice is indeed not a characteristic set, we propose in this
paper that a natural choice then would be to look at the union of that sublattice
with a finitely many parallel translates of the same and ask whether this union of
affine sublattices is a characteristic set or not. In the next few sections we answer
this question by concentrating on three distinct cases that exhaust all possible cases.
These cases are based on the rank of a given sublattice \scrS .

4. Rank of \bfscrS is equal to the Krull dimension: Finite union of \bfscrS as a
characteristic set. This section provides a complete answer to the question posed
in [28] regarding how large the initial data is for a discrete autonomous n-D system.
In short, we prove Theorem 4.1, which is the second main result of this paper. Recall
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from Definition 3.1 the notion of restriction of a behavior \frakB to a sublattice \scrS denoted
by \frakB | \scrS . Another notion that plays a crucial role in Theorem 4.1 is that of a sublattice
\scrS of \BbbZ n being a direct summand of \BbbZ n. A sublattice \scrS is called a direct summand of
\BbbZ n if there exists another sublattice of \BbbZ n, say, \scrS \prime , such that \BbbZ n = \scrS \oplus \scrS \prime .

Theorem 4.1 (vector version). Consider a discrete autonomous n-D system
\frakB \in \frakL q with equation module \scrR \subseteq \scrA 1\times q and corresponding quotient module \scrM .
Let \scrS \subseteq \BbbZ n be a sublattice such that \scrS is a direct summand of \BbbZ n and \frakB | \scrS is a
nonautonomous system. Further, let the Krull dimension of \scrM be equal to the rank
of \scrS . Then, a union of \scrS and finitely many parallel translates of \scrS is a characteristic
set for \frakB .

This result is proved in two stages. We first prove the scalar version of this result
and extend it to the general vector case.

4.1. Scalar system. Some modifications are in order to work with scalar au-
tonomous systems \frakB \in \frakL 1. The role of the equation module is played by the equation
ideal (denoted by a), while the quotient module \scrM now becomes the quotient ring
\scrA /a, that is, \scrM = \scrA /a. For a sublattice \scrS \subseteq \BbbZ n, note that \frakB | \scrS is a scalar r-D
behavior, where r = rank(\scrS ). Further, it follows from [4, Theorem 6] that, when \scrS 
is a direct-summand of \BbbZ n, then the equation ideal of the restricted scalar behavior
\frakB | \scrS is \BbbR [\scrS ]\cap a. It then follows from Proposition 3.10 that the scalar behavior \frakB | \scrS is
nonautonomous if and only if \BbbR [\scrS ]\cap a = \{ 0\} \subseteq \BbbR [\scrS ]. However, note that that means
\frakB | \scrS = \BbbR \scrS ; in this case, we call \scrS to be free with respect to \frakB . Further recall that the
sublattice \scrS must also satisfy the rank condition. That is, the rank of \scrS must be equal
to the Krull dimension of \scrA /a. Following these observations, we define the notion of
a rank-maximally free sublattice with respect to a discrete scalar autonomous n-D
system.

Definition 4.2. A sublattice \scrS \subseteq \BbbZ n is said to be rank-maximally free with
respect to a scalar autonomous n-D behavior \frakB \in \frakL 1 if \scrS is free with respect to \frakB 
(i.e., a \cap \BbbR [\scrS ] = \{ 0\} ) and rank(\scrS ) = Krull dimension(\scrA /a).

Remark 4.3. Note that if a sublattice \scrS \subseteq \BbbZ n, which is also a direct summand
of \BbbZ n, is rank-maximally free, then for any other sublattice \widetilde \scrS \subseteq \BbbZ n such that \scrS \subseteq \widetilde \scrS 
and rank(\scrS ) < rank( \widetilde \scrS ), we must have \widetilde \scrS to be not free with respect to \frakB (see [10,
Corollary 12]).

Proposition 4.4 below gives a characterization of rank-maximally free sublattices
that is crucially used in this paper.

Proposition 4.4. Consider a scalar autonomous n-D system \frakB \in \frakL 1 given by
equation ideal a \subseteq \scrA . Let \scrS \subseteq \BbbZ n be a sublattice. Then \scrS is rank-maximally free with
respect to \frakB if and only if a \cap \BbbR [\scrS ] = \{ 0\} and rank(\scrS ) = Krull dimension(\scrA /a).

Proof. The proof is straightforward.

Let us now state the scalar version of Theorem 4.1 below.

Theorem 4.1 (scalar version). Let \frakB \in \frakL 1 be a discrete scalar autonomous n-D
behavior with equation ideal a \subseteq \scrA and corresponding quotient ring \scrA /a. Let \scrS \subseteq \BbbZ n

be a sublattice that is a direct summand of \BbbZ n. Further, let \scrS be rank-maximally free
with respect to \frakB . Then, a union of \scrS and finitely many parallel translates of it is a
characteristic set for \frakB .

In order to prove the scalar version of Theorem 4.1, we first show that when
\scrS is rank-maximally free with respect to \frakB \in \frakL 1, then the quotient ring \scrA /a is a
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finitely generated faithful5 module over the sublattice algebra \BbbR [\scrS ]. Then, under
the mild assumption that \scrS is a direct summand of \BbbZ n, we show that \scrA /a being a
finitely generated faithful module over \BbbR [\scrS ] ensures that a union of \scrS and finitely
many parallel translates of \scrS is a characteristic set for \frakB . The proofs crucially use
the concept of integrality and integral ring extension. We discuss these ideas briefly
here; for a detailed exposition, please refer to [2].

Let \scrA 1 and \scrA 2 be rings such that \scrA 1 \subseteq \scrA 2 as a subring. Then an element \alpha \in \scrA 2

is said to be integral over\scrA 1 if \alpha satisfies a monic polynomial equation with coefficients
from \scrA 1. In other words, there exists a monic f \in \scrA 1[x] such that f(\alpha ) = 0. When
\scrA 1 \subseteq \scrA 2 as a subring, \scrA 2 is said to be an integral extension of \scrA 1 if every element of
\scrA 2 is integral over \scrA 1. The following proposition summarizes the results on integral
ring extension required for this paper. (For details and proofs please see [2, Chapter
5].)

Proposition 4.5. Let \scrA 1 and \scrA 2 be rings. Further, let \scrA 2 be a finitely generated
algebra over \scrA 1, that is, \scrA 2 = \scrA 1[\alpha 1, \alpha 2, . . . , \alpha p] with \alpha 1, \alpha 2, . . . , \alpha p \in \scrA 2. Then the
following are equivalent.

1. \scrA 2 is integral over \scrA 1.
2. The elements \alpha 1, \alpha 2, . . . , \alpha p are integral over \scrA 1.
3. \scrA 2 is a finitely generated module over \scrA 1.

We show in Theorem 4.7 that when \scrS is a direct summand and rank-maximally
free with respect to \frakB \in \frakL 1, then the quotient ring \scrA /a is a finitely generated faithful
module over \BbbR [\scrS ]. In order to prove this theorem, we need the following auxiliary
lemma.

Lemma 4.6. Let \frakB \in \frakL 1 be a scalar discrete n-D autonomous behavior with equa-
tion ideal a \subseteq \scrA and corresponding quotient ring \scrA /a. Let \scrS \subseteq \BbbZ n be a sublattice
that is a direct summand of \BbbZ n and is rank-maximally free with respect to \frakB . Then,
the canonical \BbbR -algebra map \psi  \star : \BbbR [\scrS ] \rightarrow \scrA /a is injective and integral.

Proof. Injectivity follows by noting that \scrS is free with respect to \frakB if and only if
a \cap \BbbR [\scrS ] = \{ 0\} and ker \psi  \star = a \cap \BbbR [\scrS ].

We prove integrality by contradiction. Suppose \BbbR [\scrS ] \rightarrow \scrA /a is not integral. Then
there exists an element \xi \in \scrA /a transcendental over \BbbR [\scrS ]. Therefore, we have the
following chain of ring extensions: \BbbR [\scrS ] \subsetneq \BbbR [\scrS ][\xi ] \subseteq \scrA /a. Since \xi is transcendental
over \BbbR [\scrS ], it follows from the dimension theory of rings [5, Corollary 10.13b] that the
Krull dimension of \BbbR [\scrS ][\xi ] is one more than the Krull dimension of \BbbR [\scrS ]. On the other
hand, since \BbbR [\scrS ][\xi ] \subseteq \scrA /a, we have the Krull dimension of \scrA /a to be more than or
equal to the Krull dimension of \BbbR [\scrS ][\xi ] [5, Corollary 13.5]. Thus

rank(\scrS ) = Krull dim(\BbbR [\scrS ]) < Krull dim(\BbbR [\scrS ][\xi ]) \leqslant Krull dim(\scrA /a).

This is a contradiction to the assumption that rank(\scrS ) is equal to the Krull dimension
of \scrA /a.

We now prove, using Lemma 4.6, that the quotient ring \scrA /a is a finitely generated
faithful module over \BbbR [\scrS ] when \scrS is a direct summand and is rank-maximally free
with respect to a scalar behavior \frakB .

Theorem 4.7. Let \frakB \in \frakL 1 be a scalar discrete n-D autonomous behavior with
equation ideal a \subseteq \scrA and corresponding quotient ring \scrA /a. Let \scrS \subseteq \BbbZ n be a sublattice

5An \scrA -module \scrM is said to be a faithful module if ann \scrM = \{ 0\} .
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that is a direct summand of \BbbZ n and is rank-maximally free with respect to \frakB . Then,
the quotient ring \scrA /a is a finitely generated faithful module over \BbbR [\scrS ].

Proof. Note that \scrA /a is a finitely generated \BbbR -algebra. It then trivially follows
that \scrA /a is a finitely generated \BbbR [\scrS ]-algebra, too. Proposition 4.5 then applies to this
situation, whence it follows that \scrA /a is a finitely generated module over \BbbR [\scrS ] due to
integrality of \scrA /a over \BbbR [\scrS ], as shown in Lemma 4.6 above.

Moreover, since \BbbR [\scrS ] injects into \scrA /a, the annihilator ideal of \scrA /a as a module
over \BbbR [\scrS ] is the zero ideal. Thus \scrA /a is a faithful module over \BbbR [\scrS ].

Recall that since \scrS is a direct-summand of \BbbZ n, there exists a sublattice \scrS \prime \subseteq \BbbZ n

such that \BbbZ n = \scrS \oplus \scrS \prime . This sublattice \scrS \prime is called a complementary sublattice to
\scrS . Since \BbbZ is a principal ideal domain, \scrS \prime is also free. Assuming rank(\scrS ) = r, let
\{ s1, s2, . . . , sr\} \subseteq \BbbZ n be a free generating set for \scrS . Further, let \scrS \prime be freely generated
by \{ t1, t2, . . . , tn - r\} \subseteq \BbbZ n. It then follows that the matrix

T :=
\bigl[ 
s1 s2 . . . sr t1 t2 . . . tn - r

\bigr] 
\in \BbbZ n\times n

is unimodular6 over \BbbZ . Lemma 4.8 is an easy consequence of this observation.

Lemma 4.8. Consider \scrS ,\scrS \prime \subseteq \BbbZ n, T \in \BbbZ n\times n as defined above. Define \zeta :=
\{ \zeta 1, . . . , \zeta r\} and \eta := \{ \eta 1, . . . , \eta n - r\} in the following manner:

\zeta i := \xi si , \eta j := \xi tj

for 1 \leqslant i \leqslant r and 1 \leqslant j \leqslant n - r. Then

\scrA = \BbbR [\zeta 1, \zeta  - 1
1 , . . . , \zeta r, \zeta 

 - 1
r , \eta 1, \eta 

 - 1
1 , . . . , \eta n - r, \eta 

 - 1
n - r] =: \BbbR [\zeta , \zeta  - 1, \eta , \eta  - 1].

Proof. To show \scrA = \BbbR [\zeta , \zeta  - 1, \eta , \eta  - 1] it suffices to show that \scrA \subseteq \BbbR [\zeta , \zeta  - 1, \eta , \eta  - 1].
For this purpose, it is enough to show that any \xi \nu \in \scrA , for arbitrary \nu \in \BbbZ n, can be
expressed as a monomial in terms of \zeta is and \eta js and their inverses. Recall the matrix
T \in \BbbZ n\times n defined above, and note that T is unimodular. It then follows that there
exist \kappa := (\kappa 1, \kappa 2, . . . , \kappa n) \in \BbbZ n such that \nu = T\kappa . Thus

\xi \nu = \xi T\kappa = \xi 
\sum r

i=1 \kappa isi+
\sum n - r

j=1 \kappa r+jtj

= \xi 
\sum r

i=1 \kappa isi\xi 
\sum n - r

j=1 \kappa r+jtj

=

r\prod 
i=1

\zeta \kappa i
i

n - r\prod 
j=i

\eta 
\kappa r+j

j .

We now state Corollary 4.9, which follows directly from Theorem 4.7 and
Lemma 4.8. For discrete 2-D autonomous systems, an analogous result was proved in
[17, Proposition 3.4].

Corollary 4.9. Let \frakB \in \frakL 1 be a discrete scalar autonomous n-D system with
equation ideal a \subseteq \scrA and quotient ring \scrA /a. Let \scrS \subseteq \BbbZ n be a sublattice, which is rank-
maximally free with respect to \frakB , and also is a direct summand of \BbbZ n. Let \scrS \prime \subseteq \BbbZ n

be a complementary sublattice of \scrS such that \BbbZ n = \scrS \oplus \scrS \prime . Let \{ s1, s2, . . . , sr\} \subseteq \BbbZ n

and \{ t1, t2, . . . , tn - r\} \subseteq \BbbZ n be free generating sets for \scrS , and \scrS \prime , respectively, over \BbbZ .
Define \zeta , \eta as done in Lemma 4.8. Then the following are true:

6An integer matrix with determinant \pm 1 is known as a unimodular matrix.

D
ow

nl
oa

de
d 

06
/1

5/
23

 to
 1

03
.2

1.
12

7.
60

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1540 MOUSUMI MUKHERJEE AND DEBASATTAM PAL

1. \scrA /a is a finitely generated faithful module over \BbbR [\scrS ].
2. For every 1 \leqslant i \leqslant n - r there exists di \in \BbbZ >0, such that

pi(\zeta , \eta i) = \eta di
i + \alpha i,di - 1(\zeta )\eta 

di - 1
i + . . .+ \alpha i,1(\zeta )\eta i + \alpha i,0(\zeta ) \in a,(4.1)

where \alpha i,j(\zeta ) \in \BbbR [\scrS ] for every i \in \{ 1, . . . , n - r\} and j \in \{ 1, . . . , di  - 1\} , with
\alpha i,0(\zeta ) a unit for all i \in \{ 1, . . . , n - r\} .

Proof. (1) This is restatement of Theorem 4.7.
(2) Note that it follows from the definition of \zeta that \BbbR [\scrS ] = \BbbR [\zeta , \zeta  - 1]. Now, from

Proposition 4.5, we have that \scrA /a being a finitely generated faithful module over \BbbR [\scrS ]
implies that the \BbbR [\scrS ]-algebra homomorphism \BbbR [\scrS ] \rightarrow \scrA /a is injective and integral.
Using Lemma 4.8 and the fact that \BbbR [\scrS ] \rightarrow \scrA /a is integral, it follows that for all
1 \leqslant i \leqslant n  - r, every \eta i and \eta 

 - 1
i satisfy monic polynomial equations modulo a with

coefficients from \BbbR [\scrS ]. In other words, for all 1 \leqslant i \leqslant n  - r, there exists \ell i \in \BbbZ >0,
such that

q1i(\zeta , \eta i) = \eta \ell ii + \beta i,\ell i - 1(\zeta )\eta 
\ell i - 1
i + \cdot \cdot \cdot + \beta i,1(\zeta )\eta i + \beta i,0(\zeta ) \in a and

q2i(\zeta , \eta i) = \eta  - \ell i
i + \rho i,\ell i - 1(\zeta )\eta 

 - \ell i+1
i + \cdot \cdot \cdot + \rho i,1(\zeta )\eta 

 - 1
i + \rho i,0(\zeta ) \in a,

where \beta i,j(\zeta ) \in \BbbR [\scrS ] and \rho i,j(\zeta ) \in \BbbR [\scrS ] for every i \in \{ 1, . . . , n - r\} and j \in \{ 0, . . . , \ell i - 
1\} . Note that \beta i,0(\zeta ) and \rho i,0(\zeta ) may not be units in \BbbR [\scrS ]. To get to (4.1), define

pi(\zeta , \eta i) := \eta iq1i(\zeta , \eta i) + \eta \ell ii q2i(\zeta , \eta i). Since a is an ideal pi(\zeta , \eta i) \in a. Note that
di := \ell i +1, \alpha i,j(\zeta ) = \beta i,j - 1(\zeta ) + \rho i,li - j(\zeta ), where 1 \leqslant j \leqslant \ell i and \alpha i,0 = 1, which is a
unit in \BbbR [\scrS ].

Using Corollary 4.9, the following lemma gives an explicit list of generators for
\scrA /a as a module over \BbbR [\scrS ].

Lemma 4.10. Consider a discrete scalar autonomous n-D system \frakB \in \frakL 1 with
equation ideal a \subseteq \scrA and corresponding quotient ring \scrA /a. Let \scrS \subseteq \BbbZ n be a sublattice
of rank r, which is rank-maximally free with respect to \frakB and is a direct summand
of \BbbZ n. Then, there exist t1, . . . , tn - r \in \BbbZ n, and d1, . . . , dn - r \in \BbbZ >0 such that the
following finite subset of \scrA /a,

(4.2) \scrG :=
\bigl\{ 
\xi \nu | \nu \in \Gamma 

\bigr\} 
,

where

\Gamma :=

\Biggl\{ 
n - r\sum 
i=1

\pi iti 0 \leqslant \pi i \leqslant di  - 1

\Biggr\} 
,(4.3)

is a generating set of \scrA /a as a module over \BbbR [\scrS ].
Proof. Since \scrS is rank-maximally free, it follows from Corollary 4.9 that \scrA /a is a

finitely generated faithful module over the sublattice algebra \BbbR [\scrS ]. Further, since \scrS 
is assumed to be direct summand of \BbbZ n, it follows that there exists a complementary
sublattice \scrS \prime such that \scrS \oplus \scrS \prime = \BbbZ n. As done in Lemma 4.8, let \{ s1, . . . , sr\} \subseteq \BbbZ n and
\{ t1, . . . , tn - r\} \subseteq \BbbZ n be free generating sets for \scrS and \scrS \prime , respectively, as \BbbZ -modules.
Note that Lemma 4.8 applies in this case, and hence \scrA = \BbbR [\zeta , \zeta  - 1, \eta , \eta  - 1], where
the r-tuple of monomials \zeta = \{ \zeta 1, . . . , \zeta r\} and the (n  - r)-tuple of monomials \eta =
\{ \eta 1, . . . , \eta n - r\} are as defined in Lemma 4.8. Therefore, every Laurent polynomial in \scrA 
can be rewritten as a finite linear combination of monomials in \zeta , \eta ; these monomials
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look like \zeta \mu \eta \pi , where \mu \in \BbbZ r and \pi \in \BbbZ n - r. We prove the statement of the lemma by
showing that the image under the canonical surjection \scrA \twoheadrightarrow \scrA /a of every monomial of
the form \zeta \mu \eta \pi , where \mu \in \BbbZ r and \pi \in \BbbZ n - r, is a finite linear combination of elements
from the set \scrG (defined in (4.2) above) with coefficients coming from \BbbR [\scrS ]. We do
this by categorizing these monomials into three classes.

Class 1 (monomials of the form \bfitzeta \bfitmu with \bfitmu \in \BbbZ \bfitr ). Such a monomial is
already an element from \BbbR [\scrS ]. Therefore, these monomials are trivially expressible as
linear combinations of elements in \scrG , namely, 1, over \BbbR [\scrS ].

Class 2 (monomials of the form \bfiteta \bfitpi \bfiti 

\bfiti with \bfitpi \bfiti \in \BbbZ >\bfzero for any \bfiti = 1, 2, . . . , \bfitn  - 
\bfitr ). Since \scrS is rank-maximally free with respect to \frakB , it follows that \scrA /a is a finitely
generated faithful module over \BbbR [\scrS ]. Therefore, according to Corollary 4.9, for all
1 \leqslant i \leqslant n - r there exists di \in \BbbZ >0 such that

pi(\zeta , \eta i) := \eta di
i + \alpha i,di - 1(\zeta )\eta 

di - 1
i + \cdot \cdot \cdot + \alpha i,1(\zeta )\eta i + \alpha i,0(\zeta ) \in a,(4.4)

where \alpha i,j(\zeta ) \in \BbbR [\scrS ] for every i \in \{ 1, . . . , n  - r\} and j \in \{ 1, . . . , di  - 1\} . Now,
given any monomial of the form \eta \pi i

i with \pi i \in \BbbZ >0, it follows that one can carry
out Euclidean division on \eta \pi i

i by pi(\zeta , \eta i) because pi(\zeta , \eta i) is a monic polynomial in
\BbbR [\scrS ][\eta i]. The result of this Euclidean division is as follows:

(4.5) \eta \pi i
i  - \rho i,\pi i

(\zeta , \eta i) = qi(\zeta , \eta i)pi(\zeta , \eta i) \in a,

where the remainder \rho i,\pi i
(\zeta , \eta i) is an \BbbR [\scrS ]-linear combination of \{ 1, \eta i, \eta 2i , . . . , \eta 

di - 1
i \} .

Therefore, going modulo a we find that

(4.6) \eta \pi i
i = \rho i,\pi i

(\zeta , \eta i) \in \scrA /a.

Thus, for 1 \leqslant i \leqslant n - r, every monomial of the form \eta \pi i
i with \pi i \in \BbbZ >0 is equal to an

\BbbR [\scrS ]-linear combination of \{ 1, \eta i, \eta 2i , . . . , \eta 
di - 1
i \} .

Class 3 (monomials of the form \bfiteta  - \bfitpi \bfiti 

\bfiti with \bfitpi \bfiti \in \BbbZ >\bfzero for any \bfiti =
1, 2, . . . , \bfitn  - \bfitr ). Arguing like above till (4.4), we now note from Corollary 4.9
that \alpha i,0(\zeta ) is a unit in \BbbR [\scrS ]. Hence, multiplying both sides of (4.4) by \alpha i,0(\zeta )

 - 1\eta  - 1
i

we get that

\alpha i,0(\zeta )
 - 1\eta  - 1

i pi(\zeta , \eta i) =
\eta di - 1
i

\alpha i,0(\zeta )
+
\alpha i,di - 1(\zeta )\eta 

di - 2
i

\alpha i,0(\zeta )
+ \cdot \cdot \cdot + \alpha i,1(\zeta )

\alpha i,0(\zeta )
+ \eta  - 1

i \in a,(4.7)

in other words, \eta  - 1
i is equal, in \scrA /a, to a finite linear combination of monomials from

Class 2 above. By raising both sides of (4.7) to higher positive powers, it follows

that every monomial of the form \eta  - \pi i
i is equal, in \scrA /a, to a finite linear combination

of monomials from Class 2 above. Hence, from the conclusion of the analysis of

monomials in Class 2, we infer that every monomial of the form \eta  - \pi i
i is equal to an

\BbbR [\scrS ]-linear combination of \{ 1, \eta i, \eta 2i , . . . , \eta 
di - 1
i \} .

As mentioned at the beginning of this proof, every monomial in \scrA is a finite
product of monomials from the above-mentioned three classes. It then follows from
the analysis presented above that the image of a typical monomial in \scrA under the
canonical surjection \scrA \twoheadrightarrow \scrA /a is an \BbbR [\scrS ]-linear combination of monomials that them-

selves are products of monomials \{ 1, \eta i, \eta 2i , . . . , \eta 
di - 1
i \} , in other words, \BbbR [\scrS ]-linear

combinations of monomials from the set

(4.8) \scrG \eta :=

\left\{   
n - r\prod 
i=1

\eta \pi i
i | 0 \leqslant \pi i \leqslant di  - 1

\right\}   .
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From the definition of \zeta , \eta , however, it follows that

\scrG \eta = \scrG .

Therefore, the image of a typical monomial in \scrA under the canonical surjection \scrA \twoheadrightarrow 
\scrA /a is an \BbbR [\scrS ]-linear combination of monomials from \scrG . Since every element in \scrA /a
is a finite \BbbR -linear combination of images of monomials in \scrA , it follows that every
element in \scrA /a is an \BbbR [\scrS ]-linear combination of monomials from \scrG .

Lemma 4.10 gives an explicit list of generators for \scrA /a as a module over \BbbR [\scrS ].
This forms an integral part of the proof of Theorem 4.1, which we now provide.

Theorem 4.1 (scalar version). Let \frakB \in \frakL 1 be a discrete scalar autonomous n-D
behavior with equation ideal a \subseteq \scrA and corresponding quotient ring \scrA /a. Let \scrS \subseteq \BbbZ n

be a sublattice that is a direct summand of \BbbZ n. Further, let \scrS be rank-maximally free
with respect to \frakB . Then, a union of \scrS and finitely many parallel translates of it is a
characteristic set for \frakB .

Proof. By Lemma 4.10 there exist \{ t1, . . . , tn - r\} \subseteq \BbbZ n with r = rank(\scrS ) and
di \in \BbbZ >0 such that \scrA /a is finitely generated as an \BbbR [\scrS ]-module by the elements from
the following set:

\scrG =
\bigl\{ 
\xi \nu | \nu \in \Gamma 

\bigr\} 
,

where

\Gamma =

\Biggl\{ 
n - r\sum 
i=1

\pi iti 0 \leqslant \pi i \leqslant di  - 1

\Biggr\} 
.

Given \scrS \subseteq \BbbZ n, we define a parallel translate of \scrS by a \nu \in \BbbZ n, and denote it by \scrS \nu ,
as follows:

(4.9) \scrS \nu := \nu + \scrS .

Now define
\scrC :=

\bigcup 
\nu \in \Gamma 

\scrS \nu .

Note that since \Gamma is a finite set, the set \scrC as defined above is a finite union of parallel
translates of \scrS . Also note that since 0 \in \Gamma , we must have \scrS \subseteq \scrC . We claim that \scrC is
a characteristic set of \frakB .

In order to prove the claim, note that it is sufficient that we prove for any w \in \frakB ,
w| \scrC \equiv 0 implies that w \equiv 0 [25, Lemma 2.3]. For this purpose, let \kappa \in \BbbZ n be arbitrary.
We want to show that w| \scrC \equiv 0 implies that w(\kappa ) = 0. Recall that for any w \in \frakB , we
must have w(\kappa ) = (\sigma \kappa w) (0). From Lemma 4.10, however, we can write that

\xi \kappa =
\sum 
\nu \in \Gamma 

\alpha \nu (\xi )\xi \nu ,

where \alpha \nu (\xi ) \in \BbbR [\scrS ]. Therefore,

(4.10) w(\kappa ) = (\sigma \kappa w) (0) =
\sum 
\nu \in \Gamma 

\alpha \nu (\sigma ) (\sigma \nu w) (0).

Since \alpha \nu (\xi ) \in \BbbR [\scrS ], it must be a finite \BbbR -linear combination of monomials of the
form \xi \widetilde \nu , where \widetilde \nu \in \scrS . It then follows that the right-most expression in (4.10) can be
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written as

w(\kappa ) =
\sum 
\nu \in \Gamma 

\alpha \nu (\sigma ) (\sigma \nu w) (0) =
\sum 
\nu \in \Gamma 

\sum 
\widetilde \nu \in \scrS 

\beta \widetilde \nu \Bigl( \sigma \widetilde \nu +\nu w
\Bigr) 
(0) with \beta \widetilde \nu \in \BbbR 

=
\sum 
\nu \in \scrC 

\widetilde \beta \nu (\sigma \nu w) (0) with \widetilde \beta \nu \in \BbbR 

=
\sum 
\nu \in \scrC 

\widetilde \beta \nu w(\nu ).
But, w| \scrC \equiv 0 means w(\nu ) = 0 for all \nu \in \scrC . Therefore, w(\kappa ) =

\sum 
\nu \in \scrC 

\widetilde \beta \nu w(\nu ) = 0.
This proves that \scrC is a characteristic set for \frakB .

In the following subsection we show that the result obtained for the scalar case is
sufficient to conclude the result for the general vector case.

4.2. The vector case. Given a discrete autonomous n-D system \frakB \in \frakL q with
equation module \scrR \subseteq \scrA 1\times q and corresponding quotient module \scrM , define the asso-
ciated scalar behavior \frakB sc \in \frakL 1 as

(4.11) \frakB sc := \frakB (ann \scrM ) \in \frakL 1.

This alternate description of the behavior, using the equation ideal, following (2.7),
plays an important role. The scalar behavior, \frakB sc, has some special significance,
which we state and prove in Proposition 4.11 below.

Proposition 4.11. Consider a discrete autonomous n-D system \frakB \in \frakL q with
equation module \scrR \subseteq \scrA 1\times q and corresponding quotient module \scrM . Define \frakB sc \in \frakL 1

as in (4.11). Then the following are true:
1. If \scrC \subseteq \BbbZ n is a characteristic set for \frakB sc, then \scrC is a characteristic set for \frakB ,

too.
2. If a sublattice \scrS \subseteq \BbbZ n is such that \frakB | \scrS is nonautonomous and the rank of

\scrS is equal to the Krull dimension of \scrM , then \scrS is rank-maximally free with
respect to \frakB sc.

Proof. (1) It follows from [16, Lemmas 22, 23] that if a set \scrC \subseteq \BbbZ n is a charac-
teristic set for \frakB sc, then \scrC is a characteristic set for \frakB , too.

(2) It follows from statement 2 of Proposition 3.10 that if \scrS \subseteq \BbbZ n is such that
\frakB | \scrS is nonautonomous, then \scrS is free with respect to \frakB sc. Also, the Krull dimension
of \scrM is equal to the Krull dimension of \scrA /a, by definition. Therefore, if \scrS \subseteq \BbbZ n is
a sublattice such that \frakB | \scrS is nonautonomous and the rank of \scrS is equal to the Krull
dimension of \scrM , then \scrS is rank-maximally free with respect to \frakB sc.

Recall Theorem 4.1. We prove the result here.

Theorem 4.1 (vector version). Consider a discrete autonomous n-D system \frakB \in 
\frakL q with equation module \scrR \subseteq \scrA 1\times q and corresponding quotient module \scrM . Let \scrS \subseteq 
\BbbZ n be a sublattice such that \scrS is a direct summand of \BbbZ n and \frakB | \scrS is a nonautonomous
system. Further, let the Krull dimension of \scrM be equal to the rank of \scrS . Then, a
union of \scrS and finitely many parallel translates of \scrS is a characteristic set for \frakB .

Proof. By statement 2 of Proposition 4.11, \scrS is rank-maximally free with respect
to \frakB sc. It follows from the scalar version of Theorem 4.1 that the union, say, \scrC , of \scrS 
and finitely many parallel translates of \scrS is a characteristic set for \frakB sc. By statement
1 of Proposition 4.11, the set \scrC is a characteristic set for \frakB .
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Remark 4.12. It is important to note that when a sublattice and finitely many
parallel translates of the sublattice is a characteristic set for a system, the number
of parallel translates of the sublattice is not an invariant property of the system. In
fact, the number of parallel translates depends on the choice of the generators for
\scrS \prime . The minimum number of these translates required for a given system (for a given
sublattice) is a matter of future investigation.

Remark 4.13. When a finite union of sublattices is a characteristic set for an
overdetermined system of PDEs, that is, trajectories restricted to this set serve as
initial data, Algorithm 3.14 can be suitably modified to compute the explicit solution
of the overdetermined system of PDEs.

We now investigate the question of existence of a sublattice \scrS \subseteq \BbbZ n for a given sys-
tem \frakB \in \frakL q that satisfies the rank condition and is such that \frakB | \scrS is nonautonomous.
The analysis so far has used the assumption that for a given autonomous n-D system
\frakB \in \frakL q, a sublattice \scrS \subseteq \BbbZ n satisfying the desired specifications is also available to
us. However, it is also imperative to show that such a sublattice can indeed be found.
This is precisely what we do in section 4.3 below: we show that for a given system
one can always find a sublattice which satisfies the desired specifications, namely, the
sublattice \scrS \subseteq \BbbZ n is a direct summand of \BbbZ n, the rank of \scrS is equal to the Krull
dimension of \scrM , and \frakB | \scrS is nonautonomous.

4.3. Existence of a sublattice with the desired specifications for a given
system. For a given n-D autonomous system \frakB \in \frakL q, the existence of a sublattice
\scrS \subseteq \BbbZ n, such that \scrS is a direct summand, \frakB | \scrS is nonautonomous, and the rank of \scrS 
is equal to the Krull dimension of \scrM , can be shown by invoking the discrete Noether's
normalization lemma (DNNL) [18, 15].

4.3.1. Discrete Noether's normalization lemma. Before stating the DNNL
we briefly discuss co-ordinate transformations on \BbbZ n and their effects, which play an
important role in DNNL. By a co-ordinate transformation, we mean a change of basis
in the domain, here \BbbZ n. A transformation T on \BbbZ n is defined as

(4.12)
T : \BbbZ n \rightarrow \BbbZ n,

\nu \mapsto \rightarrow T\nu ,

such that T is \BbbZ -linear and bijective. Since the transformation T is bijective and
\BbbZ -linear, it follows that a representation of the transformation is given by a square
unimodular matrix (see footnote 6 for a definition of unimodular matrix). With
a slight abuse of notation we denote the matrix representation also by T , that is,
T \in \BbbZ n\times n with detT = \pm 1. This coordinate transformation induces two maps---the
push-forward map, T\ast , and the pull-back map, T \ast .

The push-forward map, T\ast , is an automorphism of the \BbbR -algebra \scrA . For \xi =
(\xi 1, \xi 2, . . . , \xi n) and \nu \in \BbbZ n, the action of T\ast on a monomial is defined as

(4.13)
T\ast : \scrA \rightarrow \scrA ,

\xi \nu \mapsto \rightarrow \xi T\nu 

and is extended to Laurent polynomials by \BbbR -linearity. The bijectivity of T ensures the
bijectivity of T\ast as well. The push-forward map is extended to \scrA 1\times q componentwise.
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That is, we have the \scrA -module homomorphism \widetilde T\ast : \scrA 1\times q \rightarrow \scrA 1\times q induced7 by T\ast as
follows:
(4.14)\widetilde T\ast : \scrA 1\times q \rightarrow \scrA 1\times q\bigl[ 

f1(\xi ) f2(\xi ) . . . fq(\xi )
\bigr] 

\mapsto \rightarrow 
\bigl[ 
T\ast (f1(\xi )) T\ast (f2(\xi )) . . . T\ast (fq(\xi ))

\bigr] 
.

Therefore, under \widetilde T\ast a submodule \scrR \subseteq \scrA 1\times q is mapped to another submodule because\widetilde T\ast is a bijective \BbbR -linear homomorphism.

The pull-back map, T \ast , is an automorphism of the \BbbR -vector space (\BbbR q)
\BbbZ n

defined

as follows: for w \in (\BbbR q)
\BbbZ n

and \nu \in \BbbZ n,

(4.15)
T \ast : (\BbbR q)

\BbbZ n

\rightarrow (\BbbR q)
\BbbZ n

,
w(\nu ) \mapsto \rightarrow w(T\nu ).

The pull-back map is also \BbbR -linear and bijective as T is bijective.
Under this transformation of co-ordinates, the following result relates the original

behavior and the transformed behavior. The details of the proof can be found in [18,
Theorem 3.1] for a general n-D system.

Proposition 4.14. Let \frakB \in \frakL q be given by equation module \scrR \subseteq \scrA 1\times q. Let
T \in \BbbZ n\times n be a unimodular matrix representing the co-ordinate transformation on \BbbZ n.

Let T\ast : \scrA \rightarrow \scrA , \widetilde T\ast : \scrA 1\times q \rightarrow \scrA 1\times q, and T \ast : (\BbbR q)
\BbbZ n

\rightarrow (\BbbR q)
\BbbZ n

, as defined in (4.13),
(4.14), and (4.15), respectively, be induced by T . Then

(4.16) \frakB (\scrR ) = T \ast (\frakB ( \widetilde T\ast (\scrR ))).

We now state the vector version of the discrete Noether's normalization lemma
in Proposition 4.15 below. The details of the proof for the 2-D vector case can be
found in [17, Theorem 5.2]. The scalar version of the general n-D case is proved in
[15, Theorem 7.7]. For the general n-D vector case see [18, Lemma 3.2]. We use the
symbol \scrA d to denote the subring of the Laurent polynomial ring \scrA generated by the
first d indeterminates (\xi 1, \xi 2 . . . , \xi d). That is, \scrA d := \BbbR [\xi 1, \xi  - 1

1 , \xi 2, \xi 
 - 1
2 , . . . , \xi d, \xi 

 - 1
d ].

Also recall the definition of a faithful module from footnote 5.

Proposition 4.15. Suppose \scrR \subseteq \scrA 1\times q is a proper submodule such that the
quotient module \scrM is a torsion module. Then there exist a nonnegative integer
d < n and a unimodular matrix T \in \BbbZ n\times n, inducing the maps T\ast : \scrA \rightarrow \scrA and\widetilde T\ast : \scrA 1\times q \rightarrow \scrA 1\times q, as defined in (4.13) and (4.14), respectively, such that the quo-

tient module \scrA 1\times q/ \widetilde T\ast (\scrR ) is a finitely generated faithful module over \scrA d.

Using these results, we show the existence of a sublattice \scrS \subseteq \BbbZ n such that for
a given discrete n-D autonomous system \frakB \in \frakL q, \frakB | \scrS is nonautonomous, the rank
of \scrS is equal to the Krull dimension of \scrM , and \scrS is a direct summand. Therefore,
a characteristic set for the given system can be constructed using this sublattice and
finitely many parallel translates of it.

4.3.2. Existence of a sublattice with the desired specifications. We first
prove some auxiliary results using the construction and results of the last subsection.

7The scalar multiplication property of the homomorphism obeys the following relation: for f \in \scrA 
and r \in \scrA 1\times q , \widetilde T\ast : \scrA 1\times q \rightarrow \scrA 1\times q ,\widetilde T\ast (fr) = T\ast (f)\widetilde T\ast (r).
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Lemma 4.16. Let T \in \BbbZ n\times n be a co-ordinate transformation on the domain \BbbZ n.
Let T\ast : \scrA \rightarrow \scrA and \widetilde T\ast : \scrA 1\times q \rightarrow \scrA 1\times q be the T -induced maps as defined in (4.13),
and (4.14), respectively. Let \scrR \subseteq \scrA 1\times q be a submodule. Define the behaviors \frakB 1 :=

\frakB (\scrR ) and \frakB 2 := \frakB ( \widetilde T\ast (\scrR )) in \frakL q with the corresponding quotient modules \scrM 1 and
\scrM 2. Further, let \scrS 1 and \scrS 2 be two sublattices in \BbbZ n such that \scrS 2 := T (\scrS 1). Then

1. the rank of \scrS 1 is equal to the rank of \scrS 2,
2. the Krull dimension of \frakB 1 is equal to the Krull dimension of \frakB 2, and
3. the restricted behavior \frakB 1| \scrS 1 is nonautonomous if and only if the restricted

behavior \frakB 2| \scrS 2 is non-autonomous.

To prove Lemma 4.16 we require a small result, which we prove below.

Lemma 4.17. Let T \in \BbbZ n\times n be a co-ordinate transformation on the domain \BbbZ n.
Let T\ast : \scrA \rightarrow \scrA and \widetilde T\ast : \scrA 1\times q \rightarrow \scrA 1\times q be the T -induced maps as defined in (4.13),
and (4.14), respectively. Let \scrR \subseteq \scrA 1\times q be a submodule. Define the behaviors \frakB 1 :=

\frakB (\scrR ) and \frakB 2 := \frakB ( \widetilde T\ast (\scrR )) in \frakL q with the corresponding quotient modules \scrM 1 and
\scrM 2. Then T\ast (ann \scrM 1) = ann \scrM 2.

Proof. (\subseteq ): Let f \in ann \scrM 1. Then for any r \in \scrA 1\times q, fr \in \scrR . Since \widetilde T\ast is an

automorphism this implies \widetilde T\ast (fr) \in \widetilde T\ast (\scrR ), which in turn implies T\ast (f) \widetilde T\ast (r) \in \widetilde T\ast (\scrR ).

As \widetilde T\ast is an automorphism for every r \in \scrA 1\times q, there exists a unique r1 \in \scrA 1\times q such
that r1 = \widetilde T\ast (r). Thus, for r1 \in \scrA 1\times q, T\ast (f)r1 \in \widetilde T\ast (\scrR ). Therefore, T\ast (f) \in ann \scrM 2.

(\supseteq ): Let f \in ann \scrM 2. Then for any r \in \scrA 1\times q, fr \in \widetilde T\ast (\scrR ). Since T\ast 
is an automorphism, for every f \in \scrA , there exists a unique f1 \in \scrA such that
T\ast (f1) = f . Similarly, since \widetilde T\ast is an automorphism, for every r \in \scrA 1\times q, there

exists a unique r1 \in \scrA 1\times q such that \widetilde T\ast (r1) = r. Thus, T\ast (f1) \widetilde T\ast (r1) \in \widetilde T\ast (\scrR ), which

in turn implies \widetilde T\ast (f1r1) \in \widetilde T\ast (\scrR ). Therefore, f1r1 \in \scrR and f1 \in ann \scrM 1. Hence,
f \in T\ast (ann \scrM 1).

We now prove Lemma 4.16.

Proof of Lemma 4.16. (1) Since T is an isomorphism of \BbbZ -modules, the rank of
\scrS 1 is equal to the rank of \scrS 2.

(2) Note that the Krull dimension of \frakB 1 is equal to the Krull dimension of the

quotient module \scrA 1\times q/\scrR . Since \widetilde T\ast is an automorphism induced by T\ast , the Krull

dimension of the quotient module \scrA 1\times q/ \widetilde T\ast (\scrR ) is equal to the Krull dimension of
\scrA 1\times q/\scrR . Hence, the Krull dimension of \frakB 1 is equal to the Krull dimension \frakB 2.

(3) Recall that \frakB 1| \scrS 1
is a d-D behavior, where rank of \scrS 1 is equal to d. Since the

rank of \scrS 2 is equal to the rank of \scrS 1 it, therefore, follows that \frakB 2| \scrS 2
is also a d-D

behavior. Let \scrM \scrS 1
:= \BbbR [\scrS 1]

1\times q/\scrR \cap \BbbR [\scrS 1]
1\times q and \scrM \scrS 2

:= \BbbR [\scrS 2]
1\times q/ \widetilde T\ast (\scrR )\cap \BbbR [\scrS 2]

1\times q

be the corresponding quotient modules for \frakB 1| \scrS 1
, and \frakB 2| \scrS 2

, respectively. Suppose
\frakB 1| \scrS 1

is nonautonomous. Then, from Proposition 2.1, it follows that ann \scrM \scrS 1
= \{ 0\} .

Note that T\ast (\BbbR [\scrS 1]) = \BbbR [\scrS 2]. Now,

T\ast (ann \scrM \scrS 1
) = \{ 0\} since T\ast is an automorphism

\Rightarrow T\ast (ann \scrM 1 \cap \BbbR [\scrS 1]) = \{ 0\} follows from Proposition 3.10

\Rightarrow T\ast (ann \scrM 1) \cap T\ast (\BbbR [\scrS 1]) = \{ 0\} 
\Rightarrow T\ast (ann \scrM 1) \cap \BbbR [\scrS 2] = \{ 0\} since T\ast (\BbbR [\scrS 1]) = \BbbR [\scrS 2]

\Rightarrow ann \scrM 2 \cap \BbbR [\scrS 2] = \{ 0\} follows from Lemma 4.17

\Rightarrow ann \scrM \scrS 2
= \{ 0\} follows from Proposition 3.10.
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Therefore, \frakB 2| \scrS 2
is nonautonomous. Using the same line of arguments, it can be

shown that \frakB 1| \scrS 1
is nonautonomous when \frakB 2| \scrS 2

is nonautonomous.

Using Lemma 4.16 we now prove Theorem 4.18.

Theorem 4.18. Consider a discrete autonomous n-D system \frakB \in \frakL q with equa-
tion module \scrR \subseteq \scrA 1\times q. Let the Krull dimension of \scrM be equal to d. Then, there
exists a sublattice \scrS \subseteq \BbbZ n such that \frakB | \scrS is nonautonomous, the rank of \scrS is equal to
the Krull dimension of \scrM , and \scrS is a direct summand.

Proof. From Proposition 4.15, it follows that there exists a unimodular matrix
T \in \BbbZ n\times n and the T -induced maps T\ast : \scrA \rightarrow \scrA and \widetilde T\ast : \scrA 1\times q \rightarrow \scrA 1\times q such that
\scrA 1\times q/ \widetilde T\ast (\scrR ) is a finitely generated faithful module over \BbbR [\xi 1, \xi  - 1

1 , \xi 2, \xi 
 - 1
2 , . . . , \xi d, \xi 

 - 1
d ].

For i \in \{ 1, 2, . . . , d\} , let ei be the standard basis (column) vectors of \BbbZ n. Define

\scrS 2 := span\BbbZ \{ e1, e2, . . . , ed\} and \frakB 2 := \frakB ( \widetilde T\ast (\scrR )). Note that \scrS 2 is a direct summand

and rank of \scrS 2 is equal to d. Also, the quotient module\scrM 2 := \scrA 1\times q/ \widetilde T\ast (\scrR ) is a finitely
generated faithful module over \BbbR [\scrS 2]. We claim that \scrS 1 := T - 1(\scrS 2) is the required
sublattice with the desired specifications for \frakB 1 = \frakB (\scrR ). Clearly, \scrS 1 is a direct
summand as T is unimodular. From Lemma 4.16 it follows that the rank of \scrS 1 is equal
to d. Also, the Krull dimension of \frakB 1 is equal to the Krull dimension of \frakB 2, which is
equal to the rank of \scrS . It remains to show that \frakB 1| \scrS 1

is nonautonomous. It follows
from statement 3 of Lemma 4.16 that \frakB 1| \scrS 1 is nonautonomous if and only if \frakB 2| \scrS 2

is nonautonomous. Note that \frakB 2| \scrS 2 is a d-D behavior with quotient module \scrM \scrS 2 :=

\BbbR [\scrS 2]
1\times q/ \widetilde T\ast (\scrR ) \cap \BbbR [\scrS 2]

1\times q. Now, the quotient module \scrM 2 being a faithful module
over \BbbR [\scrS 2] implies that ann \scrM 2\cap \BbbR [\scrS 2] = \{ 0\} . Using Proposition 3.10, it follows that
ann \scrM 2 \cap \BbbR [\scrS 2] = ann \scrM \scrS 2 = \{ 0\} . This implies that \frakB 2| \scrS 2 is nonautonomous and
thus \frakB 1| \scrS 1 is also nonautonomous.

As previously mentioned, the existence of a sublattice with the desired specifi-
cations is crucial because it allows us to construct a characteristic set, given by a
union of the sublattice and finitely many parallel translates of it, for a given discrete
autonomous n-D system. This important consequence of Theorem 4.18 is stated in
Corollary 4.19.

Corollary 4.19. Consider a discrete autonomous n-D system \frakB \in \frakL q having
a Krull dimension equal to d. Then there exists a sublattice \scrS \subseteq \BbbZ n of dimension
d, satisfying that \frakB | \scrS is nonautonomous and \scrS is a direct summand, such that a
characteristic set for \frakB given by a union of a sublattice and finitely many parallel
traslates of it can be constructed using the sublattice \scrS .

Proof. Theorem 4.18 establishes the existence of a sublattice \scrS \subseteq \BbbZ n satisfying
the desired specifications. Applying Theorem 4.1, a characteristic set for \frakB is given
by a union of \scrS and finitely many parallel translates of it.

Corollary 4.19 shows that every discrete autonomous n-D system admits a char-
acteristic set given by a union of a sublattice and finitely many parallel translates of
it. In the following section, we elaborate on the construction of a characteristic set
for a given discrete autonomous n-D system from scratch.

4.4. Explicit construction of a characteristic set for a given discrete
autonomous \bfitn -D system. Consider a discrete autonomous n-D system \frakB \in \frakL q

having a Krull dimension equal to d. In this section, we outline the procedure for
constructing a characteristic set for \frakB given by a union of a sublattice and finitely
many parallel translates of it.
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It is clear from the proof of Theorem 4.18 that the discrete Noether's normaliza-
tion lemma plays a crucial role in establishing existence and subsequently in the con-
struction of a characteristic set. In fact, the existence of a sublattice \scrS \subseteq \BbbZ n, with the
desired specifications, is guaranteed by the existence of a transformation matrix T \in 
\BbbZ n\times n representing a co-ordinate transformation on \BbbZ n. Therefore, the question of con-
structing a characteristic set for\frakB is intrinsically related to constructing a transforma-
tion matrix T \in \BbbZ n\times n for a given system\frakB . One method of constructing a unimodular
transformation matrix T \in \BbbZ n\times n for DNNL has been discussed in [15, Lemma 7.3].

Therefore, to construct a characteristic set for a given discrete autonomous n-D
system \frakB \in \frakL q, having Krull dimension equal to d, we do the following. The steps
follow from the proof of Theorem 4.18.

1. Construct a unimodular transformation matrix T \in \BbbZ n\times n for performing the
discrete Noether's normalization. That is, construct a T \in \BbbZ n\times n and the
T -induced maps T\ast : \scrA \rightarrow \scrA and \widetilde T\ast : \scrA 1\times q \rightarrow \scrA 1\times q such that \scrA 1\times q/ \widetilde T\ast (\scrR )
is a finitely generated faithful module over \BbbR [\xi 1, \xi  - 1

1 , \xi 2, \xi 
 - 1
2 , . . . , \xi d, \xi 

 - 1
d ].

2. Define the behavior in the transformed domain as \frakB 2 := \frakB ( \widetilde T\ast (\scrR )). Define
the sublattice \scrS 2 := span\BbbZ \{ e1, e2, . . . , ed\} \subseteq \BbbZ n, where ei is the ith standard
basis of \BbbZ n. It has been shown in the proof of Theorem 4.18 that \scrS 2 satisfies
all the desired properties, namely, \scrS 2 is a direct summand, rank of \scrS 2 is equal
to d, and\frakB 2| \scrS 2

is nonautonomous. Therefore, a union of \scrS 2 and finitely many
parallel translates of \scrS 2 is a characteristic set for \frakB 2.

3. Transforming back to the original domain, we obtain a characteristic set for
\frakB . More precisely, defining \scrS := T - 1(\scrS 2), it has been shown in the proof
of Theorem 4.18 that \scrS \subseteq \BbbZ n satisfies the desired properties with respect to
\frakB . Hence, a characteristic set for \frakB given by a union of \scrS and finitely many
parallel translates of it is obtained.

In this section, we have shown when a system of overdetermined PDEs admits a
characteristic set given by a finite union of sublattices. In other words, a characteristic
set given by a union of a sublattice and finitely many parallel translates of it is
a characteristic set for a given system of overdetermined PDEs with real constant
coefficients if the Krull dimension of the system is equal to the rank of the sublattice,
the system restricted to the sublattice is underdetermined, and the sublattice is a
direct summand. We have also shown that for a given system of overdetermined
PDEs, a sublattice satisfying the above criteria always exits. Thus, for a given system
having Krull dimension equal to d, a characteristic set given by a finite union of
sublattices having rank d can always be constructed. The following section discusses
the possibilities of a characteristic set for the case when the rank of the sublattice is
strictly less than the Krull dimension of the system.

5. Rank of \bfscrS is less than the Krull dimension of the system. Let \frakB \in \frakL q

be a discrete n-D autonomous system with Krull dimension d. Let \scrS \subseteq \BbbZ n be a
sublattice of rank r. Supposing r < d, the question we now ask is the following:
can the sublattice along with finitely many parallel translates of it be a characteristic
set for \frakB ? The answer to this question is negative. We show in this section that
finitely many parallel translates along with the sublattice \scrS does not qualify as a
characteristic set for \frakB . In short, we prove Theorem 5.1.

Theorem 5.1. Let \frakB \in \frakL q be a discrete n-D autonomous system with Krull di-
mension equal to d. Let \scrS \subseteq \BbbZ n be a sublattice of rank r. Supposing r < d, then a
union of \scrS and finitely many parallel translates of it cannot be a characteristic set for
\frakB .
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Remark 5.2. Note that for a shift-invariant system, a union of a sublattice and
finitely many parallel translates of it is a characteristic set if and only if the union
shifted away from the origin is a characteristic set [21]. Thus, Theorem 5.1 also implies
that a finite union of parallel translates of a sublattice \scrS , which may not contain \scrS ,
cannot be a characteristic set if rank(\scrS ) is strictly less than the Krull dimension of
the behavior. In other words, the assumption in Theorem 5.1 that the finite union
must contain \scrS can be relaxed.

To prove Theorem 5.1, we require some auxiliary results, which we first discuss.
Let \frakB \in \frakL q be a discrete n-D autonomous system and let \scrS \subseteq \BbbZ n be a sublattice.
Suppose \Gamma := \{ \nu 1, \nu 2, . . . , \nu \ell \} \subseteq \BbbZ n. Define

(5.1) \scrC :=
\bigcup 
\nu \in \Gamma 

\scrS \nu ,

where \scrS \nu := \scrS + \nu . Under the assumption that 0 \in \Gamma , we have \scrS \subseteq \scrC . Recall that
for a sublattice \scrS \subseteq \BbbZ n, the sublattice algebra \BbbR [\scrS ] is as defined in (3.3). Also recall
that \scrA 1\times q is an \BbbR [\scrS ]-module via the injection \BbbR [\scrS ] \lhook \rightarrow \scrA . For j \in \{ 1, 2, . . . , q\} , let eTj
be the jth standard basis vector of \scrA 1\times q. That is, eTj =

\bigl[ 
0 0 . . . 1 . . . 0

\bigr] 
with

1 appearing at the jth position. Define the set

(5.2) \scrG :=
\Bigl\{ 
\xi \nu ieTj | \nu i \in \Gamma , 1 \leqslant j \leqslant q

\Bigr\} 
,

where \xi \nu ieTj is the image of \xi \nu ieTj under the canonical surjection \scrA 1\times q \twoheadrightarrow \scrM . Let \scrN 
be the finitely generated \BbbR [\scrS ]-module generated by elements of \scrG . Note that \scrN \subseteq \scrM 
as \BbbR [\scrS ]-modules. Also, \scrN is a vector space over \BbbR .

Lemma 5.3. Let \scrS be a sublattice of rank r. Let \scrN be the \BbbR [\scrS ]-module generated
by elements of \scrG . Then the Krull dimension of \scrN as an \scrA -module is less than or
equal to r.

Proof. Since \scrN is a finitely generated module over \BbbR [\scrS ], there exists a surjective
\BbbR [\scrS ]-module homomorphism \Pi : \BbbR [\scrS ]p \twoheadrightarrow \scrN for some p \in \BbbZ >0. Therefore, the Krull
dimension of \BbbR [\scrS ]p is greater than or equal to the Krull dimension of \scrN [5]. Using
the fact that the Krull dimension of \BbbR [\scrS ]p as an \BbbR [\scrS ]-module is equal to the Krull
dimension of \BbbR [\scrS ], which is equal to the rank of \scrS , we have Krull dim \scrN \leqslant r, where
r is equal to the rank of \scrS .

We now prove Lemma 5.4, which plays a key role in proving Theorem 5.1. Recall
the variant of Malgrange's theorem as stated in Proposition 3.5.

Lemma 5.4. Let \frakB \in \frakL q be a discrete n-D autonomous system. Let \scrC \subseteq \BbbZ n be
as defined in (5.1). Let \scrN be the \BbbR [\scrS ]-module generated by elements of \scrG , where \scrG 
is as defined in (5.2). Suppose \mu \in Hom\BbbR (\scrM ,\BbbR ) and \scrN \subseteq ker \mu . Recall the \scrA -
module homomorphism \Phi : \frakB \rightarrow Hom\BbbR (\scrM ,\BbbR ) as defined in Proposition 3.5. Define
w := \Phi  - 1(\mu ) \in \frakB . Then w| \scrC \equiv 0.

Proof. Since \scrN \subseteq ker \mu , \mu (n) = 0 for all n \in \scrN . Thus (\Phi (w)) (n) = 0 for all
n \in \scrN . In other words, using the definition of \Phi , for all n \in \scrN , (n(w)) (0) = 0. Let
\kappa \in \scrC be arbitrary. Then \kappa = s+ \nu for some s \in \scrS and \nu \in \Gamma . Now

(5.3) (\sigma \kappa w)(0) = w(\kappa ) = w1(\kappa )e1 + w2(\kappa )e2 + \cdot \cdot \cdot + wq(\kappa )eq,

where wi : \BbbZ n \rightarrow \BbbR is the ith component of w and ei is the ith standard basis of \BbbR q.
Note that

(5.4) wi(\kappa ) =
\bigl( \bigl( 
\sigma \kappa eTi

\bigr) 
w
\bigr) 
(0) =

\Bigl( \Bigl( 
\sigma \kappa eTi

\Bigr) 
w
\Bigr) 
(0) =

\Bigl( \Bigl( 
\sigma s\sigma \nu eTi

\Bigr) 
w
\Bigr) 
(0).
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Observe that \sigma s\sigma \nu eTi is an element in \scrN for all i \in \{ 1, 2, . . . , q\} . Therefore, using the
fact that (n(w)) (0) = 0 for all n \in \scrN , wi(\kappa ) = 0 for all i \in \{ 1, 2, . . . , q\} , which in
turn implies w(\kappa ) = 0. Since \kappa \in \scrC was assumed to be arbitrary, w| \scrC \equiv 0.

Now we prove Theorem 5.1.

Proof of Theorem 5.1. We prove this by contradiction. Suppose \scrC , as defined in
(5.1), is a characteristic set for \frakB . Let \scrN be the \BbbR [\scrS ]-module generated by elements
of \scrG as defined in (5.2). Note that \scrN \subseteq \scrM as \BbbR [\scrS ]-modules. Indeed, \scrN \subsetneq \scrM . Oth-
erwise, it contradicts the rank assumption r < d, because it follows from Lemma 5.3
that the Krull dimension of \scrN is less than or equal to r. Let \mu \in Hom\BbbR (\scrM ,\BbbR ) be
such that \scrN \subseteq ker \mu . This is possible by choosing a Hamel basis [9, section 2] for
\scrN as a vector space over \BbbR and extending it to a Hamel basis of \scrM in such a way
that in Hom\BbbR (\scrM ,\BbbR ), \mu (\scrN ) = 0 and \mu (\scrM \setminus \scrN ) \not = 0. Using Malgrange's theorem, a
trajectory w \in \frakB can be constructed as w = \Phi  - 1(\mu ). It follows from Lemma 5.4 that
w| \scrC \equiv 0. However, as \scrN \subsetneq \scrM and \mu (\scrM \setminus \scrN ) \not = 0, we have w \not \equiv 0. It follows from
[25, Lemma 2.3] that \scrC is a characteristic set for \frakB if and only if w| \scrC \equiv 0 implies
w \equiv 0. Here, we have shown the existence of a trajectory w \in \frakB such that w| \scrC \equiv 0
but w \not \equiv 0, which contradicts the assumption that \scrC is a characteristic set.

6. Rank of \bfscrS is more than the Krull dimension of the system. Unlike
the situation in section 4, if the rank of \scrS is strictly greater than the Krull dimension
of the system, then the quotient module \scrM may or may not be a finitely generated
module over \BbbR [\scrS ]. The following lemma explains the conditions under which \scrM is a
finitely generated module over \BbbR [\scrS ].

Lemma 6.1. Consider a discrete autonomous n-D system \frakB \in \frakL q, with equation
module \scrR \subseteq \scrA 1\times q and corresponding quotient module \scrM . Let \scrS \subseteq \BbbZ n be a sublattice.
Then \scrM is a finitely generated module over \BbbR [\scrS ] if and only if \BbbR [\scrS ]/ann \scrM \cap \BbbR [\scrS ]
has a Krull dimension equal to the Krull dimension of \scrM .

Proof. Since \BbbR \subseteq \BbbR [\scrS ] and \scrA /ann \scrM is a finitely generated \BbbR -algebra, \scrA /ann \scrM 
is a finitely generated \BbbR [\scrS ]-algebra. Consider the \BbbR [\scrS ]-module homomorphism \phi :
\BbbR [\scrS ] \rightarrow \scrA /ann \scrM defined in the following manner:

(6.1)
\phi : \BbbR [\scrS ] \lhook \rightarrow \scrA \twoheadrightarrow \scrA /ann \scrM ,

p \mapsto \rightarrow p \mapsto \rightarrow p.

Note that ker \phi = ann \scrM \cap \BbbR [\scrS ]. Consider the \BbbR [\scrS ]-module homomorphism

(6.2) \widetilde \phi :
\BbbR [\scrS ]

ann \scrM \cap \BbbR [\scrS ]
\rightarrow \scrA 

ann \scrM 
.

It is easy to check that \widetilde \phi is well-defined. It can also be verified that \widetilde \phi is injective.
(If) To show that \scrM is a finitely generated module over \BbbR [\scrS ], note that \scrM is nat-

urally a finitely generated module over \scrA /ann \scrM . Therefore, in order to show that
\scrM is a finitely generated module over \BbbR [\scrS ], it is enough to show that \scrA /ann \scrM 
is a finitely generated module over \BbbR [\scrS ]. This is because if \scrM is generated by
\{ h1, h2, . . . , hy\} as a module over \scrA /ann \scrM and if \{ f1, f2, . . . , fz\} is a generating
set for \scrA /ann \scrM as module over \BbbR [\scrS ], then \{ hifj | 1 \leqslant i \leqslant y, 1 \leqslant j \leqslant z\} is a gen-
erating set for \scrM as a module over \BbbR [\scrS ]. That \scrA /ann \scrM is finitely generated over
\BbbR [\scrS ] can be proved in the following manner. Recall that the Krull dimension of \scrM is
by definition equal to the Krull dimension of \scrA /ann \scrM . From the assumption that
the Krull dimension of \BbbR [\scrS ]/ann \scrM \cap \BbbR [\scrS ] is equal to the Krull dimension of \scrM it
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follows that \widetilde \phi is integral. Therefore, using Proposition 4.5, \scrM is a finitely generated
module over \BbbR [\scrS ].

(Only if) Since \scrM is finitely generated as an \BbbR [\scrS ]-module, it follows that
\BbbR [\scrS ]/ann \scrM , too, must be a finitely generated \BbbR [\scrS ]-module. Thus by (6.2) and

Proposition 4.5 we must have \widetilde \phi : \BbbR [\scrS ]/ann \scrM \cap \BbbR [\scrS ] \rightarrow \scrA /ann \scrM to be injective
and integral. Hence, the Krull dimensions of \BbbR [\scrS ]/ann \scrM \cap \BbbR [\scrS ] and \scrA /ann \scrM must
be the same.

Proposition 6.2. Consider a discrete autonomous n-D system \frakB \in \frakL q with
equation module \scrR \subseteq \scrA 1\times q and corresponding quotient module \scrM . Let \scrS \subseteq \BbbZ n

be a sublattice such that \scrS is a direct summand of \BbbZ n, and the Krull dimension of \scrM 
is strictly less than the rank of \scrS . Further, let the Krull dimension of \scrM be equal to
the Krull dimension of \BbbR [\scrS ]/ann \scrM \cap \BbbR [\scrS ]. Then there exists g \in \BbbN such that a union
of \scrS and finitely many parallel translates of \scrS up to the gth one is a characteristic set
for \frakB .

Proof. It follows from Lemma 6.1 that\scrM is a finitely generated module over \BbbR [\scrS ].
When \scrM is a finitely generated module over \BbbR [\scrS ] under the additional assumption
that \scrS is also a direct summand of \BbbZ n, Lemma 4.8, Corollary 4.9, and Lemma 4.10
apply verbatim, except the faithfulness of \scrM over \BbbR [\scrS ]. Therefore, a union of \scrS and
finitely many parallel translates of \scrS is a characteristic set for \frakB .

Proposition 6.2 seems to suggest that the situation with rank of \scrS being strictly
greater than the Krull dimension is identical to that with rank of \scrS being equal to
the Krull dimension. However, we show in Lemma 6.3 below that, with rank of \scrS 
strictly bigger than the Krull dimension, the restricted behavior \frakB | \scrS will always be
autonomous. This is in contrast to the case when rank of \scrS is equal to the Krull
dimension (see Theorem 4.1).

Lemma 6.3. Consider a discrete autonomous n-D system \frakB \in \frakL q with equation
module \scrR \subseteq \scrA 1\times q and corresponding quotient module \scrM . Let \scrS \subseteq \BbbZ n be a sublattice
such that the Krull dimension of \scrM is strictly less than the rank of \scrS , say, r. Then,
the r-D behavior \frakB | \scrS is autonomous.

Proof. We prove this by contradiction. Suppose \frakB | \scrS is not autonomous. Using
statement 2 of Proposition 3.10 we have ann \scrM \cap \BbbR [\scrS ] = \{ 0\} . This implies that the
\BbbR [\scrS ]-module homomorphism \phi as defined in (6.1) is injective. Therefore the Krull
dimension of \scrM is greater than or equal to the rank of \scrS . This contradicts the
assumption that the Krull dimension of \scrM is strictly less than the rank of \scrS .

A striking consequence of Lemma 6.3 is the following: in the situation of Propo-
sition 6.2, let

\scrC :=
\bigcup 
\nu \in \Gamma 

\scrS + \nu 

with \Gamma \subseteq \BbbZ n, | \Gamma | < \infty , be a characteristic set for \frakB , which is guaranteed to exist
according to Proposition 6.2. It then follows that there exists a sublattice \scrS \prime \subsetneq \scrS and
a finite set \Gamma \prime \subseteq \BbbZ n such that

\scrC \prime :=
\bigcup 
\nu \in \Gamma \prime 

\scrS \prime + \nu \subseteq \scrC 

is a characteristic set for \frakB . This is the content of Theorem 6.6 below, the main result
of this section. We prove this in three steps, starting with Lemma 6.4 below.
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Lemma 6.4. Let \frakB \in \frakL q be a discrete autonomous n-D system and \scrS \subseteq \BbbZ n a
sublattice of rank r. Consider the r-D behavior \frakB | \scrS , and let \scrC \prime \subseteq \scrS be a characteristic
set for \frakB | \scrS . For any \nu \in \BbbZ n and w \in \frakB , we must have w| \scrS +\nu \equiv 0 if and only if
w| \scrC \prime +\nu \equiv 0.

Proof. The ``only if"" part is trivial. We prove the ``if"" part here. First note
that for every w \in \frakB , there exists a unique w\prime \in \frakB defined as w\prime := \sigma \nu w such that
w\prime (s) = w(s+ \nu ) for all s \in \scrS . Now suppose w \in \frakB is such that w| \scrC \prime +\nu \equiv 0. It then
follows that the corresponding w\prime satisfies w\prime | \scrC \prime \equiv 0. But, since \scrC \prime is a characteristic
set for \frakB | \scrS , this must imply that w\prime | \scrS \equiv 0. Therefore, the corresponding w must
satisfy that w| \scrS +\nu \equiv 0.

Lemma 6.5. Let \frakB \in \frakL q be a discrete autonomous n-D system and \scrS \subseteq \BbbZ n a
sublattice such that

\scrC :=
\bigcup 
\nu \in \Gamma 

\scrS + \nu 

with \Gamma \subseteq \BbbZ n, | \Gamma | <\infty , a characteristic set for \frakB . Suppose \scrC \prime \subseteq \scrS is a characteristic
set for the restricted behavior \frakB | \scrS . Then

\widetilde \scrC :=
\bigcup 
\nu \in \Gamma 

\scrC \prime + \nu 

is a characteristic set for \frakB .

Proof. It is enough to show that for any w \in \frakB if w| \widetilde \scrC \equiv 0, then w \equiv 0. First note
that by Lemma 6.4, for any w \in \frakB and any \nu \in \BbbZ n, we must have w| \scrS +\nu \equiv 0 if and
only if w| \scrC \prime +\nu \equiv 0. Clearly, w| \widetilde \scrC \equiv 0 implies that w| \scrC \prime +\nu \equiv 0 for all \nu \in \Gamma . Therefore,
Lemma 6.4 implies that w| \scrS +\nu \equiv 0 for all \nu \in \Gamma . Thus, w| \widetilde \scrC \equiv 0 implies that w| \scrC \equiv 0.
But, this means w \equiv 0 because \scrC has been assumed to be a characteristic set for
\frakB .

We are now in a position to prove the main result of this section.

Theorem 6.6. Let \frakB \in \frakL q be a discrete autonomous n-D system, and \scrS \subseteq \BbbZ n a
sublattice whose rank is bigger than the Krull dimension of \frakB . Suppose further that

\scrC :=
\bigcup 
\nu \in \Gamma 

\scrS + \nu 

with \Gamma \subseteq \BbbZ n, | \Gamma | < \infty is a characteristic set for \frakB . Then there exists a proper

sublattice \widetilde \scrS \subseteq \scrS and a finite set \widetilde \Gamma \subseteq \BbbZ n such that

\widetilde \scrC :=
\bigcup 
\nu \in \widetilde \Gamma 

\widetilde \scrS + \nu 

is a characteristic set for \frakB .

Proof. Consider the restricted behavior\frakB | \scrS . Since rank(\scrS ) is strictly greater than
the Krull dimension of \frakB , we must have that \frakB | \scrS is autonomous (Lemma 6.3). By
Theorems 4.1 and 4.18, there exists a proper sublattice (having rank strictly smaller

than that of \scrS ) \widetilde \scrS \subseteq \scrS and a finite set \Gamma \prime \subseteq \scrS such that

\scrC \prime :=
\bigcup 
\nu \in \Gamma \prime 

\widetilde \scrS + \nu 
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is a characteristic set for \frakB | \scrS . (Note that \scrC \prime \subseteq \scrS .) It then follows from Lemma 6.5
that \widetilde \scrC :=

\bigcup 
\nu \in \Gamma 

\scrC \prime + \nu 

is a characteristic set for \frakB . Defining \widetilde \Gamma := \{ \nu + \nu \prime | \nu \in \Gamma , \nu \prime \in \Gamma \prime \} we get the re-
sult.

7. Concluding remarks. We have provided an essentially complete answer to
the question of minimal initial data required to solve an overdetermined system of
linear PDEs with real constant coefficients using the notion of characteristic sets.
First, we emphasized the fact that sublattices are the most suitable subsets to answer
the question of minimality, primarily because of the rank associated to a sublattice.
We proved a variant of the well-known Malgrange's theorem for the behavior restricted
to a sublattice. Using this we gave a necessary and sufficient condition for a sublattice
to be a characteristic sublattice. From this characterization it follows that a necessary
condition for a sublattice to be a characteristic sublattice is to have a sublattice with
rank equal to the Krull dimension of the system. We proved that, for this case, a
union of a sublattice and finitely many parallel translates of it is a characteristic set
for a given system of PDEs. We further showed that such a characteristic set can
always be constructed for a given system.

We then addressed the cases when the rank of the sublattice is not equal to the
Krull dimension of the system. We showed that when the rank of the sublattice is
strictly less than the Krull dimension of the system, neither the sublattice nor a union
of finitely many parallel translates of it can be a characteristic set. For the case when
the rank of the sublattice is strictly greater than the Krull dimension of the system,
we showed that a union of finitely many parallel translates of the sublattice may turn
out to be a characteristic set for the system. But, unlike the case when the rank of
the sublattice is equal to the Krull dimension of the system, here a finite union of
parallel translates of a sublattice (of the given sublattice) having strictly smaller rank
qualifies as a characteristic set for the system.

Acknowledgments. We are grateful to Professor Harish K. Pillai and Professor
Shiva Shankar for many valuable suggestions.
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